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In this paper, we establish classification and regression models to KEYWORDS
chailractenze. the rglatlpnshlp between traffic flpws and different tlme Negative binomial regression
points and identify different patterns of traffic flows by a negative model; smoothing spline
binomial model with smoothing splines. It provides mean response ANOVA model; traffic flow
curves and Bayesian credible bands for traffic flows, a single index, pattern; holiday traffic flow;
and the log-likelihood difference, for traffic flow pattern recognition. impact factor of accidents
We further propose an impact measure for evaluating the influ-

ence of accidents on traffic flows based on the fitted negative bino-

mial model. The proposed method has been successfully applied

to real-world traffic flows, and it can be used for improving traffic

management.

1. Introduction

In this paper, the traffic flow represents a sequence of numbers of vehicles passing by a
given location during sequential time intervals. Analyzing traffic flows at different locations
and time points can reveal the patterns and behaviors of the entire transportation system.
Identifying regular traffic flows and anomalies not only provides the information about
past and current traffic conditions but also helps with improving traffic controls and future
route designs. It is of critical needs to develop statistical models with high accuracy and low
computational cost to be applied practically and efficiently, as well as being incorporated
with spatial and temporal characteristics of the traffic flows [9].

In early studies, traffic flow data have been mainly used for detecting sensor malfunc-
tion, solve issues of data collection in process of vehicle congestion, estimate velocity and
forecast travel times on freeway networks [3,4]. However, one major challenge for modeling
traffic flow data is that overdispersion frequently occurs, since vehicles in urban and signal-
ized area have high fluctuating arriving and leaving rates during each traffic season [10,11].
It reduces accuracy and causes false conclusion on the significance of correlated variables
if it is not appropriately handled. In this paper, we propose a negative binomial model (1)
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Figure 1. Visualization of Traffic Patterns and Impact of an Accident Recorded by Sensor S312694: Dot-
ted lines represent the mean traffic flows of workday and weekend groups; bold smooth solid line
represents the mean traffic flow on Martin Luther King Jr. Day; thin fluctuating solid line denotes the
recorded traffic flow on 02/10/2017; two vertical dashed lines represent the start and end times of a
reported accident.

with temporal patterns for analyzing traffic flow data, which can capture both the mean
traffic flow and the influence of overdispersion well. More specifically, for j =1, ..., n, at
the time point x;, the number of cars Y; passing by a given location follows a negative
binomial model with constant parameter v > 0, temporal parameter p(x;) € (0, 1), and
predictor function n(x;) = log[p(x;)/(1 — p(x;))] with logit link

f(¥j | xj) = exp {—(u + Yj) log (1 + e”("")> + vn(x;) + log [F(V——FY])}} (1)
Yj' '(v)

For exponential family (including negative binomial distributions) smoothing splines,
[16] obtains a lower-dimensional approximation of the estimates. For complex and mas-
sive data, [31] proposed a procedure that randomly selects a subset of basis functions
to reduce the computational cost. Such an approximation approach was also adopted by
[15] for generalized linear models. In this paper, we develop an algorithm by utilizing the
lower-dimensional approximation to obtain a smoothing spline estimate for 1 (x;).

The second challenge that we need to address is different traffic patterns. Although some
studies on cluster analysis have developed a test-based procedure that performs unsuper-
vised clustering [30], our purpose is to model different traffic patterns due to workday,
weekend, and holiday rather than clustering. Hence this unsupervised clustering is not the
focus of this challenge. According to our analysis in Section 4.1, the traffic flow patterns
of workday and weekend are significantly different and need to be modeled separately (see
the two dash lines in Figure 1), while the traffic flows on most holidays follow a similar
pattern as of weekends except the Martin Luther King Jr. Day (see the bold smooth solid
line in Figure 1).

The third challenge that we will address is the impact of accidents to traffic flows. Acci-
dent leads to a critical problem for traffic control and transportation management since
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Table 1. Sample records by sensor $312425: Column $312425 lists traffic flow counts; NA in column
Holidayname means Not-a-holiday.

Date $312425 Timestamp Hour Holidayname Holiday Weekend
2017-01-01 61 2017-01-01 23:50:00 23:50:00 NA FALSE TRUE
2017-01-01 67 2017-01-01 23:55:00 23:55:00 NA FALSE TRUE
2017-01-02 64 2017-01-02 00:00:00 00:00:00 New Year TRUE FALSE
2017-01-02 48 2017-01-02 00:05:00 00:05:00 New Year TRUE FALSE
2017-01-02 51 2017-01-02 00:10:00 00:10:00 New Year TRUE FALSE

it causes traffic congestion and affects road safety [24]. For example, a reported accident
occurred on 10 February 2017 caused a significant reduction of observed traffic flow (see
the thin fluctuating solid line in Figure 1) between 12:44 pm and 14: 28 pm. In the litera-
ture, the existing studies in this domain [29] tend to use an analytical approach and a weak
proxy for traffic congestion [22] or measure purely the congestion time [25]. For example,
linear relationships [24] and U-shaped relationships [28] have been used to characterize
the associations between the flow of traffic and the levels of accidents, which may not be
realistic or suitable in many applications since they do not fit nonlinear traffic flow data
well without a large number of features [2].

The statistical models and inference used in this paper are different. For each group of
daily traffic flows (such as workday or weekend), we fit a separate negative binomial regres-
sion model (1). The temporal effects on traffic flows are captured by smoothing splines
built on a lower-dimensional space, called the effective model space. We construct Bayesian
credible bands of the mean traffic flow curves based on the fitted smoothing spline negative
binomial model for identifying anomalies and evaluating the impact of accidents.

2. Data

The data here contains 365 daily traffic flows in 2017 collected by 10 inductive loop road
sensors of the California Department of Transportation [7]. The traffic performance mea-
surement system (PeMS) currently functions as a statewide repository for traffic data
gathered by thousands of automatic sensors [3,4]. In this paper, the traffic data can be
downloaded through the Caltrans PeMS website (https://pems.dot.ca.gov/).

The traffic flow data were recorded over 5-min periods from time 00:00:00 to 23:55:00
by 10 sensors with ID labels S312425, S312520, S312694, S312942, S314147, S315017,
S315938, S317814, S318180, S318566, respectively. It contains 105,120 records with 16
entries, including Date, Sensor ID, Time, Hour, Holiday Label and Weekend Label (see
the sample records in Table 1 of sensor $312425).

Each sensor records the number of vehicles passing by or remaining over the sensor
within each 5-min period [8]. Figure 2 displays the measurements of the traffic flow counts.
The sensors record traffic flow data on workdays and weekends (see Table 1). Overall
the traffic flows are significantly different for workdays and weekends (see Figure S.2 in
Supplementary Material). More details can be found in Section 3.2.

The 10 sensors here are actually a subset of a larger collection of sensors that are dis-
tributed in and around District 3 of Sacramento, CA. These sensors are located generally on
Interstate 80 (I-80) Highway without exact coordinates informed. For readers’ reference, a



4 (&) ZYUETAL

Figure 2. Traffic flow count: dotted circle denotes the 5-min neighborhood that vehicles remain or pass
over the sensor.

map with some sensors along with their locations can be found in Figure S.1 in Section S.4
of Supplementary Material.

Due to various reasons, the data recorded and transferred by the sensors could be miss-
ing from time to time. For our data, there are 140 missing records in total on 3 days,
03/12/2017, 08/15/2017 and 10/15/2017.

For each of 08/15/2017 and 10/15/2017, only one record is missing at 22:45:00 or
11:55:00. We apply the last-value-carried-forward strategy [26] to impute the single miss-
ing data by duplicating the counts from their prior 5-min periods. For other missing data
imputation strategies, please see, for example, Chapter 25 of [14]. For 03/12/2017 with
more missing data involved, we apply the linear interpolation plus round-off strategy
[12] to impute the missing data from 02:00:00 to 02:55:00. More details on our missing
data imputation are relegated to Tables S.1, S.2, and S.3 in Section S.3 of Supplementary
Material.

3. Methodology
3.1. Negative binomial smoothing spline ANOVA model

The smoothing spline analysis of variance (SS-ANOVA or SSANOVA [15]) has been used
in applications that require a statistical technique to determine whether the shapes of mul-
tiple curves are significantly different from one another. It does not return a p-value to
determine significance. Instead, it provides a Bayesian credible band for the mean response
curve.

Typically, the generalized functional linear models [18,21] and functional ANOVA
models [18,20] can be used to perform this. After applying the functional data analysis
(FDA) to the traffic flow data, we find that the overall patterns of these two estimated mean
response curves are almost the same. However, especially during certain time periods, the
SSANOVA-based mean response curves are smoother than the FDA-based curves. More
importantly, SSANOVA-based mean response curves are more robust than FDA-based
curves for the sensors S314147, S315017 and S318180, which recorded numerous acci-
dents (see Table 3 and Table S.9). Hence we prefer SSANOVA in this paper. More details
on the FDA applications and comparisons can be found in Section S.9 of Supplementary
Material.

The SSANOVA model that we use in this study is to model the 5-min-period traffic
flow counts as negative binomial random variables with constant number vj of successes
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and time-dependent success rate p(t, k) as a penalized smoothing spline for each specified
group k.

More specifically, we denote Yy; as the number of vehicles passing over a sensor at the
tth 5-min period, where t = 1,. .., 288 is the time index indicating 5¢ min after midnight,
k = 0 for workday or 1 for weekend, i = 1,.. ., ny is the day index in group k. We assume
that Yy; ~ NB(vk, p(2, k)), that is, a negative binomial distribution with parameters vy > 0
and p(t, k) € (0, 1). The probability that Yy; = y is

C(ve +y)

Vk[] — y
ST (on) p(t, )™ [1 = p(t, k)] (2)

FYi = ys v p(t, k) =

wherey =0, 1,2, .. .. Following [15], we take the logit link for p(¢, k). That is, the predictor
ve(1=p(tk) __ ()

pak T ke :
Model (1) can be obtained by writing p(¢, k) in terms of 5 (¢, k). Given each group index
k € {0, 1}, the procedure for estimating the mean response curve ju(t, k), t = 1,...,288 is

described as Algorithm 1.

n(t k) =log %, and the mean response u(t, k) = E(Yy;) =

Algorithm 1 Estimating the mean response curve (%, k)

Input: Data {Yy; | t=1,...,288; k=0,1; i=1,...,m}.

Output: Estimated mean response curves j1(t, k), t =1,...,288;k =0, 1.

Steps: For each k =0, 1, do

1: Rewrite the data (Yy;), from its matrix form to a long vector (y1,¥2,. .., ¥x), where
n = 288ny; denote the time point x; as 5(f — 1) correspondingly,j = 1,...,n;

2: Calculate the maximum likelihood estimate v,,;, of v when p(t, k) = p, a constant;

3: Obtain A that minimizes the generalized approximate cross-validation score function
(see equation (5.42) in [15] or Section S.1 in Supplementary Material);

4: Obtain 7, which minimizes the penalized likelihood functional (see (5.1) in [15])

3 {0+ v tog (14+€) — vena | + 31 G
j=1

5: Calculate p(t, k) = %, t=1,...,288;

6: Calculate the mean response curve fi(t, k) = vmlglgft—(li’)k), t=1,...,288.

3.2. Log-likelihood difference

By fitting the negative binomial SSANOVA model in Section 3.1 on workday traffic flows
(k = 0) and weekend traffic flows (k = 1) separately, we obtain vy and p(t, k), k = 0, 1
and t = 1,...,288. Given any daily traffic flow data Y = {y;,t = 1,..., 288} we propose
a single index for pattern recognition of traffic flows, called the log-likelihood difference
(LLD) with

LLD(Y) = (Do, p(-,0) | Y) = I(D1,p( 1) | Y)
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where I(Vk, p(-, k) | Y) = Zfisl log f(Yii = ys; Uk p(t, k)). For instance, if a workday data
Y (e.g. Tuesday) is considered, it tends to produce a larger (D, p(+, 0) | Y) than I(D1, p(-, 1) |
Y), and LLD(Y) tends to be positive. On the contrary, a weekend traffic flow (e.g. Sunday)
is expected to produce a negative LLD. More technical details is relegated to Section S.2 in
Supplementary Material.

3.3. Pattern recognition and validation

For any daily traffic flow data, the log-likelihood difference (LLD) proposed in Section 3.2
provides a single-number index for pattern recognition such as workday versus weekend.
As an illustration, in this section we utilize Support Vector classifier (see, e.g. [17]) to show
how our LLD can be used for identifying traffic flow patterns.

In this study, the traffic flows can be naturally grouped into two classes, the workday class
and the weekend class. To separate these two classes based on the one-dimensional LLD,
a boundary point, called a threshold, can be determined by the Support Vector Classifier
(SVC) algorithm [23]. If the LLD is greater than the threshold, the traffic flow has a pattern
closer to workdays. Conversely, an LLD smaller than the threshold indicates that the traffic
flow more likely follows the weekend pattern.

If the threshold makes workdays and weekends well separable (as we will see in
Section 4.1), it is a clear indication that the underlying statistical model (negative bino-
mial SSANOVA) captures the traffic flow pattern accurately and efficiently. To validate the
well separation, we apply the fivefold cross-validation to evaluate the prediction error on
new data and prevent overfitting or selection bias [5,6]. Note that in the five-fold cross-
validation, the whole dataset is randomly partitioned into five equal-sized subsets [13],
and each subset will be used as the testing data, while the rest four subsets are used as the
training data. The threshold obtained by the SVC algorithm for predicting the testing data
is determined by the training data only.

3.4. Bayesian credible bands

By applying Algorithm 1, we obtain the negative binomial parameter estimates vy and
p(t, k) for each k and t. It is known that a point estimate alone is insufficient in practice
because of lacking an assessment of the estimation precision and an adequately justified
interval estimate is a rarity in nonparametric functional estimation [15]. We adopt the
Bayesian credible intervals of [27] based on a Bayesian model (see also Section 2.5 in [15]).
More specifically, we use the R package gssanova to obtain 95% Bayesian credible bands
for our mean traffic flow v(#, k). In Section 4.3, we will show how to use the Bayesian
credible bands for evaluating accident impacts.

4. Applications
4.1. Workday and weekend traffic flow patterns

Given any date, it is clear whether it is a workday or a weekend, while it is not clear whether
its traffic flow pattern is workday or weekend. For example, given that the workday is also
a holiday, does its traffic flow follow workday’s or weekend’s pattern?
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Figure 3. Log-likelihood difference (LLD) of daily traffic flow by sensor $312425 vs. day index in year
2017: Each point represents a traffic flow on a day in 2017; each hollow circle indicates a workday; each
solid triangle indicates a weekend; each little square with cross indicates a holiday; the horizontal line
represents the threshold 90.42 obtained by the SVC algorithm

Table 2. Thresholds obtained for individual sensors by SVC after removing holiday data.

Sensor ID 5312425 $312520 $312694 5312942 S314147
Threshold 90.42 164.63 —33.39 209.67 —45.53
Sensor ID $315017 5315938 5317814 $318180 5318566
Threshold 61.28 67.01 62.17 87.62 103.10

In this section, we use sensor $312425 as an illustration. Figure 3 shows the visualiza-
tion of the log-likelihood differences (LLD, see Section 3.2) against the day index of the
year 2017. Each daily traffic flow data corresponds to a single point in Figure 3. Almost all
weekend points (solid triangles) are at the bottom and almost all workday points (hollow
circles) are at the top. As mentioned in Section 3.3, the good separation implies that LLD
identifies the patterns of workday and weekend very well.

An interesting question is whether the traffic flows on holidays follow the pattern of
workdays or weekends. Although 9 out of 10 holidays are workdays (see Table S.4 in Sup-
plementary Material for the list of holidays under consideration), their traffic flows (see
little squares in Figure 3) show quite similar patterns to weekends except for Martin Luther
King Jr. Day (Monday, 16 January 2017), whose little square stays in the middle. We will
revisit this special holiday in Section 4.2.

As mentioned in Section 3.3, we utilize the SVC algorithm, which is commonly used
for linearly separable data [19], to obtain a threshold for separating workday and weekend
patterns after removing all the 10 holidays’ data. Note that the thresholds for different sen-
sors could be different (see Table 2). For instance, the threshold for sensor $312425 is 90.42
(see also the horizontal line in Figure 3), which means if the LLD of a traffic flow is larger
than 90.42, then its pattern is closer to workdays; otherwise, it is more like weekends.

To validate the threshold as a single-number indicator for classifying the patterns of
daily traffic flows, we define an error rate (ER), the relative frequency of classification errors
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Table 3. Error counts and rates of fivefold cross-validation with holidays treated as weekends based on
negative binomial SSANOVA.

Error Total Error
Workday (no holidays) Weekend (no holidays) Holidays Only

Error Error Error Error Error Error Error Error
Sensor ID Count Rate (%) Count Rate (%) Count Rate (%) Count Rate (%)
$312425 0 0 0 0 0 0 0 0
$312520 5 1.99 0 0 1 10 6 1.64
$312694 0 0 0 0 1 10 1 0.27
5312942 0 0 0 0 0 0 0 0
S314147 0 0 0 0 1 10 1 0.27
$315017 1 0.40 0 0 1 10 2 0.55
$315938 0 0 1 0.96 0 0 1 0.27
S317814 1 0.40 0 0 1 10 2 0.55
5318180 0 0 0 0 1 10 1 0.27
5318566 0 0 0 0 2 20 2 0.55

occurred, as the ratio of the total number of misclassified daily traffic flows to the total
number of daily traffic flows under consideration.

Since most holidays have a similar pattern as the weekends, we label k = 1 for all the
10 holidays for validation purpose. That is, class label k = 0 for 251 workdays excluding
holidays, and k = 1 for 104 non-holiday weekends plus 10 holidays. In total, we have 365
days for year 2017.

The summarized error counts based on fivefold cross-validations (see Section 3.3 and
Section S.5 of Supplementary Material) for all 10 sensors based on the thresholds deter-
mined by the SVC algorithm (see Table 2) are provided in Table 3. The error rates are quite
small for workdays (seven zeros, two 0.4% and one 1.99%) and extremely small for week-
ends (1 error in total). Almost all errors associated with holidays are caused by Martin
Luther King Jr. Day that have been mentioned previously. The overall ER is below 1% for
9 sensors and 1.64% for sensor S312520. Generally speaking, the SVC algorithm performs
very well with LLD on these ten sensors, which further validates the effectiveness of the
negative binomial SSANOVA model (1).

4.2. Aspecial holiday: martin luther king jr. Day

In this section, we look into the a special holiday, Martin Luther King Jr. Day (Monday,
16 January 2017), which appears to be an outlier among the 10 holidays. According to our
log-likelihood difference, this holiday neither likes a workday nor a weekend (see Figure 3).

Based on the negative binomial SSANOVA model (see Section 3.1), we obtain the mean
response curve and the corresponding 95% Bayesian credible interval (see Section 3.4) for
each class with k = 0 or k = 1 (see Figure 4). We relegate a justification on the robust-
ness of the estimated mean response curve to Section S.6 of Supplement Material. The
fitted mean response curve based solely on the traffic flow data on the Martin Luther King
Jr. (MLK) Day is obtained and plotted in Figure 4 as well (more illustrations can be found
in Figure S.4 in Section S.4 of Supplement Material).

Based on Figure 4 (see also Figure 1), the Martin Luther King Jr. Day’s mean response
curve (the solid line) is quite different from workdays and weekends. Especially between 3
am and 9 am, its mean response curve stays in the middle of workdays (higher curves) and
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Figure 4. Mean response curves and credible bands with MLK day vs. hours of a day at sensor $312520:
Dotted lines represent mean response curves and credible bands of the workday and weekend groups,
respectively; solid line represents the mean response curve of the Martin Luther King Jr. Day's traffic flow

weekends (lower curves), which is significant since it is totally outside the credible bands
of workday and weekend. It implies that the traffic flow on the Martin Luther King Jr. Day
holiday stands by itself as a distinct cluster other than workdays and weekends.

One possible explanation is that public schools and government agencies consider the
Martin Luther King Jr. Day a recognized holiday. However, most private schools and indus-
tries may not give their employees the day oft. Therefore, some people may choose to rest,
while some others still have to drive to schools or offices, which makes the Martin Luther
King Jr. Day stand alone.

4.3. Measuring accident impact

Based on the negative binomial SSANOVA model described in Section 3.1, in this section
we propose an impact factor for measuring or evaluating the impact of an accident on
traffic flows, which can be potentially used for analyzing accident data [2] and identifying
important factors for reducing accident impacts on traffic and transportation [29].

By applying Algorithm 1 in Section 3.1, we obtain from historical data the estimated
mean curve of traffic flow [i(x), representing the mean number of vehicles passing by a
specified sensor at a time point x, along with a 95% credible band (fi(x), ftr(x)), where
x € [0,60 x 24) is the number of minutes after midnight.

Given an observed traffic flow y(x) with a reported accident starting at time x; and
ending at time xg, we define the impact factor of the accident as

XR
I= / (o) — (0] dx (4)

L
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Figure 5. Visualization of an accident occurred on 02/10/2017 (Friday) from 12:44:00 to 14:28:00 by sen-
sor 5312694: dotted lines represent the mean response curve and its credible bands of the workday
group; solid line stands for the real traffic flow on 02/10/2017; two vertical dashed lines represent the
beginning and ending time of this reported accident.

and the impact intensity of the accident as

I 1 *R N
R= - f () — Ax)| dx. (5)

XR—XL  XR— XL Jy

Intuitively speaking, the impact factor I represents the absolute cumulative changes of traf-
fic flows compared with the mean traffic flows estimated from historical data, which is
essentially the change of number of cars passing by the specific sensor over the accident
period. The impact intensity R is the average change of number of cars per minute [1].
Since accidents typically reduce traffic flows significantly (see, e.g., Figure 5), our impact
factor I could be roughly interpreted as how many less cars passing by the sensor due to the
accident (up to a constant depending on the sampling frequency of the data).

Since f1(x) is estimated from historical data, then both I and R are essentially estimated
values. We can calculate 95% credible intervals based on fi;(x) and figr(x) for the true I
and R, respectively. That is, the left ends of credible intervals can be obtained by replacing
[(x) in (4) and (5) with fi (x), and the right ends of credible intervals uses fitg(x) instead
of 1(x).

In practice, we typically only observe traffic flow y(x) at discrete time points x =
X1,X2, . .., such as, x = 0,5, 10, ... minutes as in our dataset. When data points are sam-
pled frequently such as in every 1, 5 or 10 min, we recommend a step function for y(x)
used in (4) and (5), thatis, y(x) = y(x;), x € [x}, xj4+1) forj = 1,2,....In this case, suppose
X1 < x1, < x141 and x, < Xg < X4 for some indices [ <7. Then I = (x141 — x1)|y(x7) —
Al + Loy - Y0l G — ) ly() — G| + (g — x)lyGer) — A,

For traffic data collected less frequently, such as every 20, 30, even 60 min, we recom-
mend linear interpolation for generating a piecewise linear function f(x), that is, f(x) =
Xjp1—X

mf(xj) + %f(xjﬂ), x € [xj,xj11) for j = 1,2,.. ., where f(x;) here is defined as
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Table 4. Impact factors, rates, and accident categories of reported accidents based on step function.

Accident Impact Impact Accident
Sensor ID Accident date duration (min) factor rate (%) category
S312425 09/05/2017 173 2010 0.60 Minor
$312520 09/26/2017 105 1008 0.26 Minor
S312694 02/10/2017 104 18736 5.22 Severe
$312942 03/22/2017 124 7579 2.02 Moderate
S314147 01/12/2017 212 16605 5.27 Severe
S314147 05/05/2017 165 6699 2.13 Moderate
S314147 07/18/2017 108 2636 0.84 Minor
S315017 02/06/2017 211 33089 7.77 Severe
S315017 04/05/2017 102 3234 0.76 Minor
$315938 05/30/2017 169 10957 2.98 Moderate
$315938 12/01/2017 122 6366 1.73 Moderate
S317814 07/26/2017 178 15861 6.86 Severe
$318180 09/05/2017 104 3051 1.28 Moderate
S318180 10/28/2017 122 4236 2.18 Moderate
S318566 06/12/2017 128 4487 1.03 Moderate

f(xj) = Iy(xj) — ficx;)|. In this case, we obtain that, I = (xz41 — x)[f(xr) + f(x14-1)]/2 +
Loty - Z;;lil(xjﬂ —x)f () + f(x+1/2 + (xr — xp) [f (xr) + f(x1)]/2.

For the traffic data considered in this paper, the results based the step function y(x) and
the piecewise linear function f (x) are almost identical (see Figure S.7 in Section S.7 of Sup-
plementary Material). Therefore, in this study we use the step function y(x) to calculate the

impact factor I and the impact rate W, which is the relative impact of the accident
o M(x)dx

with respect to the total number of cars passing by the sensor during the full day on average
(see Table 4).

The accident categories listed in Table 4 are defined according to the impact rate or
the relative impact of the accident. In this study, we call an accident minor if its impact
rate < 1%, moderate if 1% < impact rate < 5%, and severe if the impact rate > 5%. For
example, Sensor S315017 involves two reported accidents, occurred on 6 February and 5
April 2017, respectively. According to our analysis (see Table 4), the accident on April 5 is
rated minor, while the accident on February 6 is rated severe.

To validate our impact measure, we plot the two accidents with Sensor S315017 in Fig-
ures 6 and 7, respectively. The accident on February 6 (see Figure 6) begins at 11:42:00
and ends at 15:13:00, lasting 211 minutes. Throughout this duration of the accident, the
real traffic flow is far below the mean traffic flow and its credible bands (dotted line). The
calculated impact rate is 7.77, which is a severe impact on the traffic flow. The correspond-
ing impact factor 33,089 implies that so many vehicles were forced to choose other routes,
which could significantly increase the traffic pressure and cause chaos in the neighborhood.
The accident on April 5, however, has a different story. It lasted 102 min from 10:45:00 to
12:27:00 and did not cause serious traffic problems. According to Figure 7, the accident
duration can be roughly divided into two parts. During the first 51 min (from 10:45:00 to
11:36:00), the real traffic flow (solid line) deviates significantly from the mean curve and
its credible bands (dotted lines). Nevertheless, after that, the traffic flow soon recovers to a
good state in the next 51 min (from 11:36:00 to 12:27:00), which falls within the credible
bands. It is a clear indication that overall the accident on April 5 did not cause a big impact
on the traffic flow. The corresponding impact rate is only 0.76 with an impact factor 3,234,
about one-tenth of the accidents on February 6.
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Figure 6. Traffic flow on 02/06/2017 recorded by sensor S315017: Dotted lines represent the mean
response curve and 95% credible bands of workdays; solid line denotes the real traffic flow on
02/06/2017, Monday; two vertical dashed lines denote an accident occurred between 11:42:00 and
15:13:00.
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Figure 7. Traffic flow on 04/05/2017 recorded by sensor S315017: Dotted lines represent the mean
response curve and 95% credible bands of workdays; solid line denotes the real traffic flow on
04/05/2017, Wednesday; two vertical dashed lines denote an accident occurred between 10:45:00 and
12:27:00.

Comparing Figure 6 and Figure 7, we conclude that impact factors and rates can mea-
sure the impact of an accident fairly well. The measures quantify the impact of an accident
and provide an intuitive but precise index, the number or rate of affected cars. It can
draw attentions from the traffic and transportation authorities and help them to discover
good solutions such as in dealing with the accident on 04/05/2017 and reduce the impact
of severe accident such as the one on 02/06/2017. With the precise measurement of the
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Figure 8. Traffic flow on 02/06/2017 recorded by sensor S314402: Dotted lines represent the mean
response curve and 95% credible bands of workdays; solid line denotes the real traffic flow on
02/06/2017; two vertical dashed lines indicate an accident occurred between 08:10:00 and 10:26:00.

accident impact, more statistical models and further data analysis could be applied to pre-
dict possible impact at the beginning of an accident and recommend the best strategy for
recovering the traffic flow and reducing the accident impact.

4.4. Investigation of accidents on 6 February 2017

From Table 4, we note that the accident with the highest impact rate (7.77) occurred on
February 6, which deserves further investigations to explore possible causes of this severe
accident. Through the inquiry, we find out that there was a basketball game of the National
Basketball Association (NBA), Chicago Bulls versus Sacramento Kings in Sacramento on
that day. To analyze this accident with the help of actual geographical information, we
calculate the impact rate by sensor S314402 whose latitude and longitude information is
available (while sensor S315017 is not). Figure 8 shows the visual effect of the accident
occurred on February 6 around this sensor.

The impact rate of the accident occurred between 08:10:00 and 10:26:00 at sen-
sor S314402 is 1.93, which indicates that it is a moderate accident. As we can see in Figure 8,
it seems that the impact of the accident on traffic flow lasted much longer than the reported
period from 08:10:00 to 10:26:00. The location of sensor S314402 is near Exit 14B of I-80
highway and close to the Sacramento McClellan Airport. Therefore, a reasonable explana-
tion is that lots of the NBA fans from different states and even different countries, especially
the Chicago Bulls, came to Sacramento to watch the game. The arrivals of a large number
of fans had increased the pressure on highway traffic near the airport, which had also led
to this accident, making the traffic flows on this day unusual. We investigate the impact of
the accident on this date, by calculating the impact rates of multiple sensors that recorded
this accident. Table 5 shows the results for multiple accidents reported on 6 February 2017.
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Table 5. Impact measures for accidents occurred on 6 February 2017,
recorded by six sensors.

Impact measures for accidents on 06-Feb-2017

Accident Impact Impact Accident
Sensor ID duration (min) factor rate (%) category
$312566 115 10165 3.47 Moderate
$313393 48 3484 0.71 Minor
S$313405 43 3702 0.80 Minor
$314402 136 7341 1.93 Moderate
$315017 211 33089 7.77 Severe
$318566 203 12142 2.79 Moderate

All the six sensors in Table 5 are distributed near the Sacramento McClellan Airport.
According to our measurements, the six reported accidents are rated as minor (2), moder-
ate (3), or severe (1) (see Table 5). These are good examples of the important role that the
proposed impact factors and rates for assessing the impact of accidents on traffic flow play
in analyzing accidental data and identifying important factors for reducing the impact of
accidents on traffic and transportation.

5. Conclusion

For the daily traffic flow data, we develop an effective negative binomial smoothing spline
ANOVA model whose success rate is a function of time. One major task in this study is
the pattern recognition of daily traffic flows. The most critical challenge in this pattern
recognition task is how to properly address the traffic patterns of holidays. Although 9 out
of the 10 federal holidays in 2017 fall in the range of workdays, including Monday (6),
Tuesday (1), Thursday (1) and Friday (1), the traffic flows during holidays are significantly
different from the usual workdays, which is reasonable since many people do not have to
work or go to school during holidays.

It is natural to group the traffic flow patterns into workdays and weekends. Based on
the proposed negative binomial smoothing spline ANOVA model, we propose the log-
likelihood difference (LLD) as a single index for identifying the two patterns. The fivefold
cross-validation described in Section 4.1 shows that the LLD index with the SVC works
very well in identifying the traffic patterns. According to the threshold determined by the
SVC algorithm, the traffic flow patterns of most holidays are classified as weekends except
for the Martin Luther King Jr. Day.

As a conclusion in Section 4.2, the traffic flow pattern of the Martin Luther King Jr. Day
is a mixture of workdays and weekends due to a significant portion of the population still
need to go to work or school. We recommend that the Martin Luther King Jr. Day stands
along as a distinct cluster in terms of traffic flow patterns.

Based on the proposed negative binomial smoothing spline ANOVA model, we could
go further on identifying distinct patterns of traffic flows. For example, according to our
further analysis (see Section S.8), the traffic flow patterns on Saturday and Sunday are actu-
ally significantly different (see Figures S.8 and S.9 in Supplementary Material). Similarly,
the workday group can be further divided into subgroups as well, which will provide more
precise descriptions for traffic flow patterns. With K > 3 possible classes of traffic flows,
instead of LLD, we would recommend a K-tuple (I(1,p(-, 1) | Y),...,I(Vk, p(-, K) | Y))
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for traffic flow classification or pattern recognition. A different classifier other than SVC
may be applied with the K-tuple.

Another major application based on the proposed statistical model is to properly eval-
uate the impact of an accident on traffic flows. The thresholds that we recommended
in Section 4.3 are 1% and 5% for using impact rates to separate minor, moderate and
severe accidents. Depending on different circumstances, the users may define their own
thresholds based on the impact rates and name their own class labels.
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