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ABSTRACT

We introduce a newly developed R package AZIAD for analysing
zero-inflated or zero-altered data. Compared with existing R pack-
ages, AZIAD covers a much larger class of zero-inflated and hurdle
models, including both discrete and continuous cases. It provides
more accurate parameter estimates, along with the corresponding
Fisher information matrix and confidence intervals. It achieves sig-
nificantly larger power for model identification and selection. To
facilitate the potential users, in this paper we provide detailed formu-
lae and theoretical justifications for AZIAD, as well as new theoretical
results on zero-inflated and zero-altered models. We use simulation
studies to show the advantages of AZIAD functions over existing R
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packages and provide real data examples and executable R code to
illustrate how to use our package for sparse data analysis and model
selection.

1. Introduction

Sparse or zero-inflated data arise frequently from a rich variety of scientific disciplines
including microbiome [1,2], gene expression [3], health care [4], insurance claim [5], secu-
rity [6], and more. Modeling sparse data is very challenging due to the high proportion
of zero values and the skewness of the distribution. Zero-inflated Poisson (ZIP), zero-
inflated negative binomial (ZINB), Poisson hurdle (PH), and negative binomial hurdle
(NBH) models have been widely used to model sparse data [2,7,8].

On one hand, more and more zero-inflated models have been proposed under differ-
ent circumstances. On the other hand, it becomes more and more difficult for researchers
and practitioners to choose the most appropriate model for their sparse data. Some partial
comparisons among existing models have been done for certain sparse data. For exam-
ples, [9] recommended ZINB and NBH models for microbiome data after comparing
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the performance of Poisson, ZIP, PH, NB (negative binomial), ZINB, and NBH models;
while [7] indicated that two new models, zero-inflated beta negative binomial (ZIBNB)
and beta negative binomial hurdle (BNBH) models, are more appropriate for microbiome
data examples.

For analysing zero-inflated data, there are some available R packages from the Com-
prehensive R Archive Network (CRAN, https://cran.r-project.org/) including bzinb [10],
hurdlr [11], 1ZID [12], gamlss [13], pscl [14], mazeinda [15], mhurdle [16],
rbtt [17], ZIBBSegDiscovery [18], ZIBseq [19], zic [20], ZIM [21], ziphsmm
[22], etc. For example, 1ZID covers 12 discrete distributions including Poisson, NB, BB
(beta binomial), BNB (beta negative binomial) and their zero-inflated and hurdle versions.
It implemented the bootstrapped Monte Carlo p-value estimates proposed by Aldirawi
et al. [7] for identifying a discrete distribution. For packages other than iZID, please
see [23] for a good review.

The existing literature and packages on analysing zero-inflated data, including the very
recent work [7,23], are still limited for three reasons. First, only a small number of zero-
inflated models were under consideration at the same time. Discrete and continuous
baseline distributions were typically considered separately. Secondly, the accuracy of the
parameter estimates and the power of the tests still have room for improvement. Thirdly,
the confidence intervals of the parameter values were seldom provided along with their
estimates, which is critical for model diagnostics, such as, testing whether the inflation or
deflation of zeros exists in the data.

In this paper, we introduce our newly developed R package named AZIAD for Analyzing
Zero-Inflated and Zero-Altered Data, available from the Comprehensive R Archive Net-
work (CRAN, https://cran.r-project.org/package = AZIAD). Compared with the existing
R packages for similar purposes, our AZIAD achieves the following significant improve-
ments: (1) We not only cover discrete baseline distributions including Poisson, geometric,
NB, BB, and BNB, but also cover commonly used continuous baseline distributions includ-
ing normal (or Gaussian), log-normal, half-normal, and exponential distributions along
with their zero-inflated and zero-altered (also known as hurdle) models; (2) By more pre-
cise specifications on solution forms under different situations and lower/upper bounds
needed for numerical optimizations, our R functions provide more accurate maximum
likelihood estimates (MLE) even under extreme circumstances, which further gains more
power when identifying the most appropriate zero-inflated or hurdle models for a given
data set; (3) Following [24], we provide not only MLEs for parameters, but also the Fisher
information matrix and the corresponding confidence intervals for estimated parameters,
which will facilitate the potential users from biological sciences, insurance, health studies,
security, ecology, etc, to identify the most appropriate probabilistic model for their dataset
and make robust statistical inference based on it.

The rest of this paper is organized as follows. In Section 2, we not only review relevant
theoretical results from [24], but also provide new formulae for Fisher information matri-
ces of the zero-inflated (ZI) and zero-altered (ZA or hurdle) models with geometric, BB,
BNB, normal, log-normal, half-normal and exponential distributions, as well as ZINB. In
Section 3, we summarize and use numerical examples to illustrate the improvements by
using our package over existing R packages, as well as identifying the most appropriate
models for real data. We interpret and discuss indistinguishable pairs of distributions in
Section 4.
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2. MLE and Fisher information for Zl and ZA models
2.1. MLE and Fisher information for zero-altered or hurdle models

Zero-altered models or hurdle models have been widely used for modelling data with an
excess or deficit of zeros (see, for example, [2], for a good review). A general hurdle model
consists of a baseline distribution and a component generating the zeros. The baseline dis-
tribution could be fairly general with the distribution function fy (y) and its zero-truncated
version fi(y | 0) = [1—po(@)]"'fy(»), y #0, where 6 is the model parameter(s),
and po(#) = Pg(Y = 0) is the probability that Y = 0 under the baseline distribution.
Following [24], the distribution function of the corresponding hurdle model can written
as:

Sza(y 1 6,0) = ¢ly—oy + (1 — d)fur (v | 0)1{y20) (1)

where ¢ € [0, 1] is the weight parameter of zeros. Actually, ¢ = P(Y = 0) if Y ~ fza.

If the baseline distribution is discrete with a probability mass function (pmf) fy(»),
such as Poisson, negative binomial (NB), geometric (Ge), beta binomial (BB) and beta
negative binomial (BNB) distributions, then both fi;(y | 8) and fza(y | ¢, ) are pmfs as
well. The corresponding zero-altered or hurdle models may be called as zero-altered Pois-
son (ZAP) or Poisson hurdle (PH), zero-altered negative binomial (ZANB) or negative
binomial hurdle (NBH), zero-altered geometric (ZAGe) or geometric hurdle (GeH), zero-
altered beta binomial (ZABB) or beta binomial hurdle (BBH), zero-altered beta negative
binomial (ZABNB) or beta negative binomial hurdle (BNBH) models, respectively.

If the baseline distribution is continuous with a probability density function (pdf) fy (),
such as Gaussian (or normal), log-normal, half-normal and exponential distributions, then
po(@) =0and fi:(y | @) = fo(»). In this case, fza(y | ¢,8) in (1) represents a mixture dis-
tribution consisting of a discrete component at 0 with probability ¢ and a continuous
component with density function (1 — ¢)fg (). We will revisit these continuous cases in
Section 2.3. In this section, we focus on discrete cases.

The parameters of the hurdle model (1) include both ¢ and 6. In this paper, we adopt
the maximum likelihood estimate (MLE) for estimating the parameters (see, for exam-
ple, Section 1.3.1 in [25], for justifications on adopting MLE). Let Y, ..., Y, be a random
sample from model (1). Then the likelihood function of (¢, 8) is

L($,0) = ¢" " =)™ [] fulYi|6) (2)

i:Y;#0

where m = #{i: Y; # 0} is the number of nonzero observations. According to Theorem 1
in [24], the maximum likelihood estimate (MLE) of (¢, #) that maximizes (2) is

d=1-—, 0= argmax l_[ fur(Yi | 0) (3)

m
n
0 iyi#0

Thatis, § is simply the MLE for the truncated model with distribution function f;(y | 8) =
Jo) /I —po(@)],y # 0.
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According to Theorem 3 in [24], under some regularity conditions, the Fisher informa-
tion matrix of the zero-altered distribution is

_[oe'a-e)t of ]
Fza = [ 0 Fynp (4)
where
B 1—-¢ <E|:8210gfo(Y/):| n po(0) . dlogpo () . 8logp0(0))
“a0 1 —po(0) 30007 1 —po(0) 00 90T

and Y’ follows the baseline distribution fy (y). Note that the sample size n does not show
up in (4) since the Fisher information here is of the distribution, not of the sample.

Major advantages for adopting MLE (3) and calculating the Fisher information
matrix (4) include: (i) (;3 and  are consistent estimators of ¢ and 0, respectively (Theorem 2

in [24]); (ii) /(¢ — @) = N(0,¢(1 — ¢)) and /n(® — 0) 5> N(0,F;.,), which pro-
vides the formulae for building up approximate confidence intervals and relevant hypoth-
esis tests for ¢ and 6 (see, for example, Sections 1.3.3 and 1.3.4 in [25]). For example, an
approximate (1 — «)100% confidence interval for ¢ is

n Za ~ ~ A zZe ~ N
¢ € (45 - ﬁ\/¢(1 —¢), o+ \/%\/aﬁ(l —¢)> (5)

where zg = ®~!(1 — %) is the upper $th quantile of the standard normal distribution,
and o € (0, 1) is the desired significance level, such as 0.05. If py () does not belong to the
confidence interval (5), then there is a significant evidence for zero-inflation or deflation.

Therefore, calculating MLE and Fisher information accurately and efficiently is the basis
of sound and thorough statistical inference.

Explicit formulae of the gradients (9 logfy(y)/060 and 9 logpo(#)/36, need for find-
ing MLEs) and the Fisher information matrices of zero-altered Poisson (ZAP) or Poisson
hurdle (PH) model, zero-altered negative binomial (ZANB) or negative binomial hur-
dle (NBH) model, have been provided in Examples 2 and 3 of [24], respectively. In this
section, we will provide explicit formulae for zero-altered geometric, beta binomial, and
beta negative binomial models.

Example 2.1 (Zero-altered geometric (ZAGe) or geometric hurdle (GeH) model): has
been used, for example, in [26] for modelling count data in econometrics. The pmf of
the baseline distribution can be written as f,(y) = p(1 — p)’ with y € {0,1,2,...} and

parameter p € (0, 1). In this case, po(p) = p, % = 117 — IyTp, and 610%# = 11).
According to Theorem 3 in [24], the Fisher information matrix of the ZAGe or GeH

distribution can be written as
1
S — 0
p(1—9¢)

FzaGe = 1—¢
p*(1—p)

Example 2.2 (Zero-altered beta-binomial (ZABB) or beta-binomial hurdle (BBH)
model): has been used by Aldirawi et al. [7] for modelling microbiome data. The pmf of
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the baseline distribution with parameters § = (n,«, 8) € N x (0, 00) x (0, 00) is given by
B n— .
foly) = (")%ﬁw,y €{0,1,2,...,n}. In this case, py(0) = Lntp)Uath) Thepn

) I'(n+a+p)(B) "
%:\I/(n—l-1)—\If(n—y+1)+‘1-’(”—y+:3)_\Ij(”+a+ﬁ)
%:\y(y+a)—\y(n+a+ﬂ)+‘1’(a+/3)—‘1’(“)
iﬂ%?(y):\I,(n_erﬁ)_ly(n+a+ﬁ)+w(a+/3)—\lf(ﬁ)
wzwwﬂ)—w(wwﬁ)
E)l()i%@z\l’(a-i-ﬁ)_‘p(n-’-a-f-ﬁ)
310%%(0):\p(n+ﬂ)+\p(a+/3)—W(n+a+ﬁ)—\1’(ﬁ)

where W(-) = I[''(-)/ ['(+) isknown as the digamma function. Note that the range of param-
eter n can be extended to positive real numbers. According to Theorem 3 in [24], the Fisher
information matrix of the ZABB or BBH distribution is

1 o
Fzagg = | ¢ (1 —¢)
0 Fgpe

where
_ All A12 A13_
Fppp = — I-p)Fn+a+pBT(B) A Ap Ap
F'n4+a+B8I'(B)—Tn+B)Il'(a+p) Az Axz Asg
Bii Bz Bis
N C(n+ B (a+B) Biy By By
Pnta+pLB) —Tn+pT@+p) |5 p- 5.
with

An=U(n+ )=V (ntat+p) +EV,(n—Y +B)—EW (n—Y +1)
Ap=—-VY n+aoa+p)

A=E¥V (n—Y +B) -V (n+a+p)
Ap=Vi(a+p)—Vi(n+a+p)— V() +EV (Y +a)
Ap=VYi(a+p)—Vin+a+p)

Ay =VWi(a+p) = Vi(f) —Vi(n+a+ ) +EVi(n—Y + )
Bii=[¥(n+p)—¥n+a+p)

Bp=[V(n+p) —-Vn+ta+p)] [V+p) —VY(n+ao+p)]
By=[V(n+p)—V(n+a+pl
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(W(n+p)+¥(a+p)—V(int+a+p) — V()]
Bp=[V(a+p) —V¥n+a+p)
Byy=[V(a+p)—V(nt+a+p)]

Wn+p)+V(a+p)—VY(n+a+p) — V()]
Bz =[W(n+p)+¥(+p) —V(in+a+p)— V(P

where W) (-) = W/(-) is known as the trigamma function, and Y’ follows the baseline
distribution fy (y).

Due to the lack of simple forms, we may use Monte Carlo estimates for calculating
EW(-) in Example 2.2 and others approximately. For example, E¥;(n — Y’ + ) can be
approximated by N1 Zfil W, (n— Y, + B) with simulated Y7, ..., Y}, from fy (y).

Another computational issue involved in Example 2.2 and others is that log[I"(n + o +
BT (B) —T(n+ BT (o + B)], which is relevant to log py(#), may be undefined numeri-
cally forlarge nsinceboth I'(n + o + B) and " (n + B) are numerical infinity. To overcome
this kind of issues, we use the fact log(A — B) = log(1 — exp(log B —log A)) + log A if
A > B.Itcan be verified that I'(n + o + )I'(B) > '(n + B)['(x + B).

Example 2.3 (Zero-altered beta negative binomial (ZABNB) or beta negative bino-
mial hurdle (BNBH) model): has been recommended by Aldirawi et al. [7] and Aldirawi
and Yang [24] for modelling microbiome data. The pmf of the baseline distribution with

parameters = (r,a, ) € N x (0,00) x (0,00) is given by fy (y) = (Hf,_l)%w,

y€1{0,1,2,...}. Then pp(0) = %m Note that r can also be extended to positive
real numbers.

w =VU(r+y) VO +Vr4a)—Vr+y+a+p)
% =V(r+a)—V(r+y+a+p)+Vi+p) — V()
al%g)(y):ly(y+ﬁ)_\p(r+y+a+ﬂ)+\ll(a+,3)—‘Ij(ﬁ)
w =VU(r+a)—V(r+a+p)
%:\p(o{-kﬁ)—\ll(r-l—a-f—ﬂ)

According to Theorem 3 in [24], the Fisher information matrix of the ZABNB or BNBH
distribution is
1

Fzagng = | ¢ (1 — @)
0 Fpneo

T
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where
_ (1= +a+pr (@) e
Fpnpg = — e
F(T+a + ,B)F(a) — F(r+a)r(0[ + IB) A13 A2’% A33
By, B, B
) F(r+ o) (e + f) B By B
Pr+at+pl@-Tr+aol@+p) 5. p. p,
with

A =EV (r+Y) =W (N +Wi(r+a) —E¥ (r+Y +a+p)

Ap =V (r+a)—EV r+Y +a+p)

Aiz=—EVi(r+Y +a+p)

Ap =V (r+a) —E¥(r+ Y +a+B) + ¥i(a + ) — Vi(a)

Ay = —E¥ (r+Y +a+p)+ Vi(e+p)

Ay = BV (Y + ) —EW(r + Y 4o + ) + Vi (a + ) — W1 ()
Bu=[W@r+a)—Vr+a+p)?

Bp=[V(r+a)—V(ir+a+p)] [Vr+to)+V(+p) —VFr+a+p) — V()]
Bi=V@r+a)—V(@r+a+p)] - [V(+B8)—VYr+aoa+p)]
By=[V(r+a)+V(@+pB)—V(r+atp) — ¥ ()]
Bi=[W(r+a)+¥(@+p) —V(r+a+p) — V(@) [V+p)—VY(+a+p)]
By =[W(@+p) —V(r+a+p))

As for W; and relevant calculations, please see the arguments right after Example 2.2.

2.2. MLE and Fisher information for zero-inflated models

When data is sparse, a zero-inflated (ZI) model is more commonly used in practice,
which assumes an excess of zeros (see, for example, [2] for a good review). Similar as
the zero-altered (ZA) models in Section 2.1, there is a baseline distribution with distri-
bution function fy(y) and parameter(s) 6. We also denote po(0) = Pp(Y = 0),if Y ~ fy.
Different from ZA models, a zero-weighting parameter ¢ € [0, 1] adds additional proba-
bility of zeros to the ZI model. Following [24], we write the distribution function of the
corresponding ZI model as

fuy 1 $,0) = [¢ + (1 —P)po(@)]1y—0y + (1 — P)fo (1) 1(y0) (6)

Note thatif Y ~ fz1, then P(Y = 0) = ¢p + (1 — ¢)po(#), which is larger than ¢ in general.
When the baseline distribution is either continuous with a pdf fy(y) or discrete but
with po(#) = 0, the corresponding zero-inflated model (6) is essentially the same as the
corresponding zero-altered model (1). Examples include Gaussian or normal, log-normal,
half-normal, and exponential distributions. We will revisit them in Section 2.3.
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When the baseline distribution is discrete, such as Poisson (P), negative binomial (NB),
geometric (Ge), beta binomial (BB) and beta negative binomial (BNB), the corresponding
zero-inflated models can be written as ZIP, ZINB, ZIGe, ZIBB, and ZIBNB, respectively.

Given a random sample Y, ..., Y, from the zero-inflated model fz1(y|¢, @), the likeli-
hood function of (¢, #) can be written as

L($.0) =[¢+po@ A =) -a=)" [] f(¥d)

i:Y;#0

=[p+p@ -] - A=) (1—po®)" - T] fu(¥i16) (7

i.Y;5£0

where m = #{i: Y; # 0}, and fi; (y;0) = fo(»)/[1 — po(0)],y # 0. .
According to Theorem 4 in [24], the maximum likelihood estimate (¢, #) maximiz-
ing (7) can be obtained as follows:

(0) Determine 6, = argmax L (@), where L;(6) = Hi:Yi;éOftr(Yi;o)‘
0

(1) Ifm/n <1—po(8,),then® =0, andd =1 — [1 — po(8)]~" - m/n.
(2) Otherwise, = argmax L((0),0) and ¢ =1 — y(8) - [1 — py(8)]™", where y(0) =
0

min{m/n,1 — po(0)}, and L(y,0) = (1 — )" "y™ ni:yi;&o]‘tr(Yi;o)-
Solving for the MLE X)) may involve two maximization problems, 6, =
argmax L, (#) and @ = argmax L(y(0), ). The following first order derivatives may be
[4 0

needed by, for example, quasi-Newton algorithms:

dlogLir(6) _ 3 dlogfe(Yi)  dlog[l —po(8)]

00 ) 00 00
Y50
alog'(]:g(Yi) _ malog[l‘—opo(e)] if1— po(6) > m
DlogL(y(0),0) | o ’ !
90 = dlog fy (Y;) 3 0 log po(0) i m
Z — + (n m)—30 if1 —po(0) < ”
iY;#0
Note that
dlog[1 —poB)] _ po(@)  9logpo()
00 1 —po(®) 00

Thus for different models, we only need to prepare specific formulae of 9 log fo (y)/06 and
0 log po(#)/00 for numerical calculations.

According to Theorem 5 in [24], under some regularity conditions, the Fisher informa-
tion matrix of a general zero-inflated distribution is

1 —po(0) Po(0) dlogpo(0)

[ + (1 —@)po(@)](1 — @) ¢+(1—¢)po(0)' 007 (8)
Po(0) dlogpo(0)

o+ 1 —Ppo® 98

Fz1 =

Fz19
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where

02 log fy (Y") bpo(8) 9 log po(#) 810gp0(0))
Frip = —(1 — E ~ . . —
a0 =0l ¢)([ 2098 }+¢+(1—¢)Po(9) 26 267

and Y’ follows the baseline distribution fy (). We denote Fy = —E[%], which is
essentially the Fisher information matrix of the baseline distribution. o

The Fisher information matrix (8) is more complicated than (4) for zero-altered mod-
els. To obtain the asymptotic distributions of MLEs, it is more convenient to obtain
the following theorem by applying the formulae (see, for example, Formulae 4.33 and
14.13(b) in [27]) of block matrices and the Sherman-Morrison formula (see, for example,

Section 2.1.4 in [28]).

Theorem 2.1: Suppose ¢ € (0, 1), |Fg| # 0 and |Fz1| # 0. Then

d959 _ ¢PO(0) 0 108?0(0) -1
2 _ $po(9) Bl dlogpo(9) Dy

dySg — po(8) ° 90

where dg = ¢ + (1 — $)po(8) > 0, 8 = 1 — L TP @) g1 DlogPo®) s gy

dp FrE
Dy = L $po(0) F_lalogpo(ﬂ)alogpo(ﬂ) _
_ 0 _ 0 T 0
1—¢ dgdg — po(0) 90 90

The proof of Theorem 2.1 is relegated to the Supplementary Materials (Section S.1).

With Theorem 2.1, we have /(@ — ¢) 5 N(0,¢(1 — ¢) ) and \/a(d — 6) A
N(0,Dp). The relevant confidence intervals and hypothesis tests can be performed simi-
larly as for zero-altered models.

As mentioned in Section 2.1, we need to calculating MLE and Fisher information accu-
rately and efficiently. Explicit formulae of the Fisher information matrix of zero-inflated
Poisson (ZIP) has been provided in Example 5 of [24]. In this section, we provide explicit
formulae of the gradients and Fisher information matrices for zero-inflated geometric
(Z1Ge) and zero-inflated negative binomial (ZINB) models. We relegate the corresponding
formulae for zero-inflated beta binomial (ZIBB) and zero-inflated beta negative binomial

(ZIBNB) models to the Supplementary Materials (Section S.2).

Example 2.4 (Zero-inflated geometric model (ZIGe)): Same as in Example 2.1, the pmf
of the baseline distribution can be written as f,(y) = p(1 — p)” with y € {0,1,2, ...} and
parameter p € (0, 1). According to Theorem 5 in [24], the Fisher information matrix of the
corresponding ZIGe distribution is
1-p 1
1 1—¢
¢+ (1—¢)p ] (1 =)o —p) +p(1 = ¢) + ¢p’]

p*(1—p)

Fz1Ge =
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Example 2.5 (Zero-inflated negative binomial model (ZINB)): Different from Exam-
ple 3 of [24], we take the form of the pmf of the baseline NB distribution as fy(y) =

%pr(l — p)” with parameters § = (r,p) € (0,00) x [0,1],y € {0,1,2,...}, which

is more popular in the statistical literature (see, for example, [29]). In short, the p in
Example 3 of [24] is replaced by 1—p here. Then po(#) = p" and

% =Wy +r)— V() +logp
dlogfol) _ 1 _
ap p 1l-p
dlogpo(0)
%a—po zlogp
r
dlogpo(®) _ 1
ap p

where W (-) is the digamma function. According to Theorem 5 in [24], the Fisher informa-
tion matrix of the ZINB distribution is

Ain A A

Fzing = A1 F
A13 ZINB6@
l—p r 1
where A1 = o=y gy A2 = ¢+<1 ¢>p“A13 = ¢+<1 —g> and

) L Bi1 Bz op" Cu Cu2
Fyingg = —(1 — ¢) ([312 Bzz] + TR pov |:C12 C22D

with Biy = EW (Y + 1) — W (r), Biy = l » By = logp

p >

—ra i = (logp)?, Crz =

and Cp; = 7—2 Here W, (-) is the trigamma functlon (see Example 2.2).

>

2.3. Zero-altered and zero-inflated models with continuous baseline distributions

As mentioned in Section 2.2, if the baseline distribution fy(y) satisfies po(0) = Pp(Y =
0) = 0 given Y ~ fy(y), then the zero-altered model (1) and the zero-inflated model (6)
are the same. We call such kind of models the zero-altered-zero-inflated (ZAZI) models.
Examples include all continuous baseline distributions, as well as discrete or mixture base-
line distributions satisfying py(6) = 0. For ZAZI models with a baseline distribution fy (y),
its distribution function can be written as

Jzazi(y | ¢,0) = ¢ly=0y + (1 — @) fg () 10y 9)
Given a random sample Yy, ..., Y, ~ fzaz1(y | ¢,0), the likelihood function of (¢, #) is
L($,0) =¢" "1 =) [ fo(¥d (10)
1:Y;£0

where m = #{i: Y; # 0}. Then the MLEs maximizing (10) are (]3 =1—m/n and 0 =
argmax [ [;.y. o fo (Yi), which are similar as (3) for zero-altered models. As a special case
0
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of Theorem 3 in [24], we have the following formulae for the Fisher information matrix of
Z.AZ1 distributions.

Theorem 2.2: Under regularity conditions, the Fisher information matrix of the ZAZI
distribution (9) is

F _ [¢_1(1—¢>)_1 o’ ]
ZAZL = 0 Fzaz10
where
azlogf.q(Y/)i|
F =—(1-¢) E|—="""~
ZAZ18 (1—¢) [ 50007

and Y’ follows the baseline distribution fp(y).

In this section, we provide explicit formulae of gradients and Fisher information matri-
ces for commonly used ZAZI models with continuous baseline distributions including
Gaussian or normal, log-normal, half-normal, and exponential distributions.

Example 2.6 (Zero-altered-zero-inflated Gaussian model (ZAZIG)): This model has
been used by, for example, [30] for analysing longitudinal microbiome data, known as a

zero-inflated Gaussian (ZIG) model. The pdf of the baseline distribution with parameters

0 = (u,0) € R x (0,00) is given by fo (y) = \/2;7 exp{—#(y — 10)?}. Then

dlogfe() _y— 1

o o2
dlog fy () 1 (y—w?’
— o 4L
do o o3

According to Theorem 2.2, the Fisher information matrix of the ZAZIG distribution is

¢~ (1 —g)7! 0 0
0 —¢ 0
Fzazic = o2
0 2(1 —¢)
o2

Note that in this case, given a random sample Y1, ..., Y, from ZAZIG, i = # > ivizo Vi
and6 = (% Zi:Y,—;éo(Yi — @))% have explicit formulae, where m = #{i : Y; # 0}.

Example 2.7 (Zero-altered-zero-inflated log-normal model (ZAZILN)): This model,
also known as zero-inflated log-normal (ZILN) model, has been used by, for example, [31]
to study the effects of a prospective DUR intervention programme for randomized clini-

cal trials. The pdf of the baseline distribution with parameters § = (u,0) € R x (0, 00) is

. _ 1 1 2
given by fo(y) = e exp{—5_z(logy — )}, y>0. Then

dlogfp(y) _ logy—p
o o?
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dlogfo(y) 1 (logy—p)?
o ol T
oo o o3

According to Theorem 2.2, the Fisher information matrix of the ZAZILN distribution is

p'1—-p)7t 0 0
0 —¢ 0
Fzazin = 2
0 0 21 —¢)
L o2

which is exactly the same as the one in Example 2.6.

Example 2.8 (Zero-altered-zero-inflated half-normal model (ZAZIHN)): Also known
as a zero-inflated half-normal model (ZIHN), this model has been used by, for exam-
ple, [32] as a candidate distribution for modelling the animal movement distances in the
wild. In our notations, the pdf of its baseline distribution with parameter § = o € (0, 00),

known as a standard half-normal distribution, is given by fy (y) = Jg exp{— 2};—22}, y>0.
o

. 2
Then % = —% + % According to Theorem 2.2, the Fisher information matrix of
the ZAZIHN distribution is

g7t A—¢)™ 0
FzazinN = 20-9)
0 A 4
o2
It should be noted that other forms of ZIHN models have also been used in the literature.
For example, [33] utilized a more general ZIHN distribution as a prior for a hierarchical
Bayesian model. The continuous component of their ZIHN is a general normal distribution
N(u, 0?) truncated below by zero. In that case, = (i, o).

Example 2.9 (Zero-altered-zero-inflated exponential model (ZAZIE)): Also known as
zero-inflated exponential model (ZIE), this model has been used by, for example, [34]
for modelling casualty rates in ship collision. The pdf of its baseline distribution with
parameter # = A € (0, 00) can be written as fp (y) = A e_ly,y > 0. Then 31053# = % — .

According to Theorem 2.2, the Fisher information matrix of the ZAZIE distribution is

p7'a-p7t 0
Fzazie = 1-¢
0
22
Note that the MLE of X has an explicit form A= ZV'YW;O 7 given a random sample

Yi,..., Y, from ZAZIE, where m = #{i: Y; # 0}.

2.4. Model selection based on KS and likelihood ratio tests

Given so many zero-altered or zero-inflated models listed in Sections 2.1-2.3, a critical
question is which model is the most appropriate one for a given dataset.

The Kolmogorov-Smirnov (KS) test has been commonly used for testing whether a ran-
dom sample {Y7, ..., Y,} comes from a continuous cumulative distribution function Fg(y)
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with specified model parameter(s) 6 [35]. It is based on the KS statistic D,, = sup,, |Fu(y) —
Fo(»)|, where F,,(y) = n~' 37| 1(_oc,1(Y;) is known as the empirical distribution func-
tion. Dimitrova et al. [36] extended the KS test for general distributions Fg (y) with known
parameter(s) 6, including discrete and mixed ones. For typical applications, # is unknown
and an estimate @ is plugged in when calculating D,,, which tends to overestimate the
corresponding p-value [7,37,38]. To overcome the biasedness of estimated p-value due to
the plugged-in estimated parameters, [7] proposed a bootstrapped Monte Carlo estimate
®)
#{le”B—:lD”HI for the p-value in their Algorithm 1, where fo’) = sup, |F£,C) (y) — Fé(h) CRIR
P (y) is the empirical distribution function of a random sample Y(© = {Yl(c) NS 720

from Fé(h), 0 @ is the MLE based on a bootstrapped sample Y?) = {Yl(b), . .,Y,gb)} of
{Y1,...., Y.}, b=1,...,B, and B is a predetermined large number, typically B = 1000.
If the estimated p-value is larger than 0.05, we say that the specified distribution passes the
KS test for the given dataset.

Since D,, = sup, |Fn(y) — F3(y)| when @ is unknown, where both F,, and 0 are based
on the same data {Y7, ..., Y,}, a more reasonable bootstrapped version of D, would be

qub)/ = sup, |F,(f) (y) — Fg;(” ()], where é(c) is the MLE based on Y© = {YI(C), .. .,Y,SC)}

instead of Y(?). In this paper, we propose the following nested bootstrap estimate for KS
test p-value based on the above argument. To make a distinction, we call [7]’s Algorithm 1
as Algorithm 1A and our Algorithm 1 as Algorithm 1B. The corresponding R functions
are named kstest .Aand kstest. B, respectively. According to our simulation studies
in Section 3.4, we recommend kstest . B for small sample sizes such as n = 30, 50. For
larger sample sizes, since the difference in terms of test power is negligible, we recommend
kstest.A for less computational cost.

Algorithm 1 Nested Bootstrap Algorithm for Estimating p-value of KS Test

1: Given data Y = {Y1, Yy, --Y,}, calculate the MLE 0 of 6 and the KS statistic D, =
sup, [Fx () — F ().

Forb=1,...,B, do steps 3~7.

Resample Y with replacement to get a bootstrapped sample Y = {Y{b), cee Y,(qb) 3
Calculate the MLE é(b) of @ based on Y.

Simulate a random sample Y© = {Y{C), ces Y,SC)} from Féw).

Calculate the MLE 9(6) of @ based on Y,
Calculate the bootstrapped KS statistic D;b)/ = supyIFﬁ,C) () — Fy0 (»)|, where F,(f) (») is
the empirical distribution function of Y.
#(b1D" > D)
= .

8: Estimate the p-value of the KS test by

In practice, it is not uncommon that two or more distributions pass the KS test for
the same dataset, especially when the sample size is moderate or small (see, for exam-
ple, [7]). In this situation, likelihood ratio tests may be used for pairwise comparisons.
More specifically, for testing Hy : Yy,..., Y, iild ~ f(y; ) with unknown parameter(s) ¢
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against H; : Yy,..., Y, iid ~ g(y; §) with unknown parameter(s) 8, the likelihood ratio
test statistic in log scale (see, for example, [7]) can be defined as

; A
A — o /0 0)

[T 8(Yisd)
where 8 and § are the corresponding maximum likelihood estimates. Smaller A values are
in favour of the alternative distribution g(y; §).

To overcome the possible biasedness due to plugged-in estimated parameters, we adopt
the bootstrapped estimate of p-value described by Algorithm 2 of [7]. More specifically,

(i) bootstrap samples Y?) = {be), N Yy(,b)}, b=1,...,Bare obtained from the original

. (b ~(b)
dataY = {Yy,...,Y,}; (ii) MLEs 0( ) and 8( are calculated based on Y®; (iii) a random
~(b
sample Y(©) = {ch), .., Y9} is simulated from fs 6 )); (iv) bootstrapped test statistic

(b)
A® is calculated based on Y(©; and (v) the estimated p-value is w. If the p-value
is less than 0.05, we claim that H; is significantly better; otherwise, we stick to Hy.

2.5. Zero-altered model versus zero-inflated model

Clearly a zero-altered model (1) and its corresponding zero-inflated model (6) are con-
nected by sharing the same baseline distribution fg (y). Under some conditions, they are
actually equivalent due to the following theorem.

Theorem 2.3: Let fza(y | ¢za, @) be a zero-altered model as in (1) and fz1(y | ¢z1,9) be the
corresponding zero-inflated model as in (6) with the same baseline distribution fy (y).

(i) Given fz1(y | ¢71,0), we let pza = ¢71 + (1 — ¢dz1)po(0) and then fza(y | dpza,0) =
fa(y | ¢z1,0) for all y.

(i) Givenfza(y | ¢za,0) with ¢pza > po(0), we let 71 = [pza — po(0)]/[1 — po(0)] and
then fz1(y | $71,0) = fza(y | ¢za,0) for all y.

The proof of Theorem 2.3 is relegated to the Supplementary Materials (Section S.1).
Theorem 2.3 implies that if ¢za > po(6), which indicates that the data is zero-inflated, then
a ZA model is equivalent to the corresponding ZI model. Given a random sample from a
zero-inflated model fz1(y | ¢z1,80), a KS test will conclude that some zero-altered model
fza(y | ¢za,0) seems fine with the data as well. The other direction is slightly different
though. That is, if the true model is a zero-altered one, only when ¢4 is at least as large
as po(0), a KS test will conclude that some zero-inflated model seems to be true as well. In
Section 3.5, we will provide a numerical example such that both ZIBNB and BNBH fit the
data well.

3. Software implementation and numerical analysis

In this section, the R implementation of the proposed package AZIZD is introduced and its
numerical analysis is performed. Real data examples are used to illustrate how our package
can be used in practice.
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Compared with existing R packages each covering only a limited number of baseline dis-
tributions, our package covers many more discrete and continuous distributions including
Poisson, geometric, negative binomial, beta binomial, beta negative binomial, normal (or
Gaussian), log-normal, half-normal, and exponential distributions along with their zero-
altered and zero-inflated models, which facilitates the potential users to choose the most
appropriate model from a large class of candidates for their dataset. For all the models men-
tioned above, we provide the corresponding Fisher information matrix and confidence
intervals for estimated parameters, which allows users to run hypothesis tests and make
further inference.

3.1. Improvements over existing packages on finding MLEs

From Section 2.4, we can see that an accurate MLE is a critical component for both KS
test and likelihood ratio test. In this section, we first summarize the improvements of the
proposed AZIAD over existing R packages on finding MLEs for zero-altered and zero-
inflated models.

(1) Compared with other packages, AZIAD provides MLEs well even for extreme cases
including ¢ = 0 or ¢ = 1 (see the comparison analysis in Section 3.3).

(2) Some packages encountered error message L-BFGS-B needs finite values
of "fn" for some zero-inflated data when using, for example, the function
dis.kstest in package i ZID. This issue is solved in AZIAD by specifying appro-
priate lower bound and upper bound for optimizations Section 3.3.

(3) Compared with package 1ZID which also covered MLEs for ZIBNB, BNBH, ZIBB,
and BBH models, our results are more reliable (see Example 3.2 for a comparison)
by applying Theorem 4 in [24]. More specifically, we separate the two situations (1)
m/n <1—py(y) and (2) m/n > 1 — po(#) and calculate the MLEs in each case.

(4) Some parameters are originally defined as positive integers, such as n in Examples 2.2
and S.1 and r in Examples 2.3 and 2.5, while in practice they could be extended to
positive real numbers. In AZIAD, we seek for real-valued MLEs by default. In the
mean time, we keep the option of integer-valued # or r in response to users’ call.

In the rest part of this section, we use examples to illustrate how to use our package to
find the MLEs and the improved accuracy by using our package.

Example 3.1: In order to find the MLE for the parameter(s) of zero-inflated or hurdle
models, the main function built in AZTAD is

zih.mle(x, r, p, alphal, alpha2, n, lambda, mean, sigma,
type = c("zi","h"), dist, lowerbound = 0.01,
upperbound = 10000)

where x is a sequence of numbers, which could be integers for discrete cases or real
numbers for continuous cases; the arguments r, p, alphal, alpha2, n, lambda,
mean, and sigma are initial values of the corresponding parameters; dist could be
chosen as poisson.zihmle, geometric.zihmle, nb.zihmle, nbl.zihmle,
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bb.zihmle, bbl.zihmle, bnb.zihmle, bnbl.zihmle, normal.zihmle,
halfnorm.zihmle, lognorm.zimle, and exp.zihmle, which correspond to
zero-inflated or zero-altered Poisson, geometric, negative binomial, negative binomial with
integer-valued r, beta binomial, beta binomial with integer-valued », beta negative bino-
mial, beta negative binomial with integer-valued r, normal, log-normal, half-normal, and
exponential distributions, respectively; option type indicates the type of distribution is
zero-inflated (z1) or hurdle/zero-altered (h); lowerbound and upperbound specify
the searching range of parameters when maximizing the likelihood function. For instance,
in order to calculate the MLE of zero-inflated geometric distribution (see Example 2.4),
one may use the following R code:

R> set.seed(008)
R> x22=sample.hl(2000,phi=0.3,dist="geometric’,p=0.3)
R> zih.mle(x22,p=0.2,dist="geometric.zihmle", type="h")
p phi loglik
0.2942292 0.3015 -4101.05

Our estimates p = 0.2942292 and ¢ = 0.3015 are fairly close to the true parameter
values p = 0.3 and ¢ = 0.3.

Example 3.2: To compare the performance of our AZIAD package and the existing 1ZID
on finding MLEs, we generate random samples from a BNBH model (see Example 2.3) with
parameters (¢, r, o1, o2) = (0.3, 5,8, 3), and a BBH model (see Example 2.2) with parame-
ters (¢, n, a1, 02) = (0.6, 5,8, 3), each with increasing sample sizes N = 10%,5 x 10%,20 x
10* and 100 x 10%. To see the converging pattern more clearly, we generate nested datasets
such that any dataset with a smaller N is a subset of the corresponding datasets with bigger
N, if they are simulated from the same distribution.

For the each sample, we find the MLEs (¢A>, él,éz, (;3) of the parameters and calculate
the aggregated L, relative distance (LIRD) L; = | — ¢|/|p| + Yo, 16; — 6:1/16i]. The
implemented R codes are as follows:

R> set.seed(167)

R> hil=sample.hl (N=1000000,phi=0.3,dist="bnb", r=5,
alphal=8,alpha2=3)

R> hi2=hil[1:200000]

R> hi3=hil[1:50000]

R> hi4=hil[1:10000]

R> mlel3=zih.mle(hi4, type="h",r=6,alphal=9,alpha2=4,
dist="bnb.zihmle")

R> mlel3=zih.mle(hi4, type="h",r=6,alphal=9,alpha2=4,
dist="bnbl.zihmle")

R> mleld=bnb.zihmle (hi4, type="h",r=6,alphal=9,alpha2=4)

R> set.seed(171)
R> hil=sample.hl (N=1000000,phi=0.6,dist="bb",n=5,
alphal = 8,alpha2=3)
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Table 1. Comparison of MLE estimates, log-likelihood, and L; relative distance (L1RD) for BNB Hur-
dle distribution with true parameters (r = 5, 1 = 8, @y = 3, ¢ = 0.3) using bnb.zihmle in 1ZID
and zih.mlein AZIAD withdist =bnb.zihmle (real-valuedr) and dist =bnbl.zihmle
(integer-valued r) with various sample sizes N.

N R function r o o) ) loglike L1RD
1 x 10* zih.mle(bnb) 3.81 7.69 3.81 0.303 —19232.34 0.555
zih.mle(bnb1) 4 7.70 3.64 0.303 —19232.35 0.460

bnb.zihmle 5.83 20.68 3.89 0 777027.7 3.05

5x 10* zih.mle(bnb) 5.35 7.69 2,67 0.301 —96201.68 0.223
zih.mle(bnb1) 5 7.59 2.82 0.301 —96201.71 0.113

bnb.zihmle 30.09 453.25 28.96 0 134618737 70.32

20 x 10* zih.mle(bnb) 5.36 7.88 2.74 0.299 —384542.1 0.175
zih.mle(bnb1) 5 7.78 2.90 0.299 —384542.2 0.061

bnb.zihmle 92.90 5492.33 119.79 0 8730091135 743.05

1 x 10° zih.mle(bnb) 5.46 8.01 2.78 0.299 —1921040 0.181
zih.mle(bnb1) 5 7.97 298 0.299 —1921041 0.009

bnb.zihmle 101.23 6842.71 138.64 0 55719787227 919.80

R> hi2=hi1[1:200000]

R> hi3=hil[1:50000]

R> hi4=hil[1:10000]

R> mle23=zih.mle(hil,n=6,alphal=9,alpha2=4, type="h",
dist="bb.zihmle")

R> mle23=zih.mle(hi4,n=6,alphal=9,alpha2=4, type="h",
dist="bbl.zihmle")

R> mle24=bb.zihmle (hil,n=6,alphal=9,alpha2=3, type="h")

In Tables 1 and 2, we list and compare the MLEs, log-likelihood, and L1RD obtained
by our package (R function zih.mle with real-valued or integer-valued MLEs) and the
1ZID package (R functions bnb.zihmle and bb. zihmle) for BNBH and BBH mod-
els. We can see that the estimates based on our functions are more accurate as indicated by
smaller LIRD. As the sample size increases, the LIRD based on our MLEs shows an overall
decreasing pattern which indicates the convergence of MLEs towards the true parameter
values. Similar results are collected for ZIBNB and ZIBB as well but not shown here.

3.2. Fisher information, confidence interval, and test on zero-inflation

As mentioned in Sections 2.1 — 2.3, the Fisher information matrix Fz, Fz; or Fzaz1 can be
calculated by AZIAD for zero-altered/hurdle, zero-inflated, or ZAZI models, respectively.
Its inverse matrix is approximately the variance-covariance matrix of parameter estimates
(¢, 9). For example, for zero-altered or hurdle models (see Section 2.1),

Vi@ —¢) ~ N@O,¢(1—¢)), /n@ —0) ~ N©O,Fj,y)

for large n. Approximate confidence intervals can be constructed for ¢ and @ (for example,
expression (5) for ¢).
In our package AZIAD, we use the function

FI.ZI(x, dist= "poisson", r = NULL, p = NULL, alphal =
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Table 2. Comparison of MLE estimates, log-likelihood, and L; relative distance (L1RD) for BB Hur-
dle distribution with true parameters (n = 5, 1 = 8, ay = 3, ¢ = 0.6) using bb.zihmle in 1ZID
and zih.mle in AZIAD with dist =bb.zihmle (real-valued r) and dist =bbl.zihmle
(integer-valued r) with various sample sizes N.

N R function n o oy ) loglike L1RD
1 x 10* zih.mle(bb) 4.99 7.58 2.84 0.597 —12572.96 0.110
zih.mle(bb1) 5 7.86 2.96 0.597 —12579.31 0.033

bb.zihmle 6 9 3 0.597 28775.56 0.33

5x 10* zih.mle(bb) 4.99 7.57 2.78 0.597 —62688.44 0.129
zih.mle(bb1) 5 7.85 291 0.597 —62721.29 0.051

bb.zihmle 6 9 3 0.597 143733.9 0.328

20 x 10* zih.mle(bb) 4,99 7.67 2.84 0.600 —249962 0.094
zih.mle(bb1) 5 7.95 297 0.600 —250089.3 0.015

bb.zihmle 6 9 3 0.600 570424.6 0.325

1 x 10° zih.mle(bb) 4.99 7.66 2.85 0.600 —1249976 0.093
zih.mle(bb1) 5 7.94 297 0.600 —1250610 0.015

bnb.zihmle 6 9 3 0.600 2850793 0.325

NULL, alpha2 = NULL, n
sigma=NULL, lowerbound

NULL, lambda=NULL, mean=NULL,
0.01, upperbound = 10000)

to calculate (the inverse of) the Fisher information matrix at the MLE and 95% approxi-
mate confidence intervals for all parameters, where x is the data in its vector form; dist
can be poisson, geometric, nb, bb, bnb, normal, hal fnormal, lognormal,
exponential, zip, zigeom, zinb, zibb, zibnb, zinormal, zilognorm,
zihalfnorm, ziexp, ph, geomh, nbh, bbh, and bnbh for Poisson, geometric, neg-
ative binomial, beta binomial, beta negative binomial, normal/Gaussian, log-normal,
half-normal, exponential, their zero-inflated versions and hurdle versions, respectively;
T, p, alphal, alpha?2, n, lambda, mean, sigma provide initial values of distribu-
tion parameters; 1 owerbound and upperbound are predetermined ranges for MLEs,
which could be extended if attained by any of the estimated parameter values.

Example 3.3 (Confidence intervals for ZINB): As an illustration, we apply the FI. ZI
function to a simulated ZINB dataset with true parameters ¢ = 0.4, r = 10 and p = 0.2.

R> set.seed(117)
R> N=1000;r=10;p=0.2;phi=0.4;
R> x<-sample.zil (N,phi=phi,dist="nb",r=r, p=p)
R> FI.ZI(x,r=3,p=0.1, dist="zinb")
Sinversefisher
[,1] [,2] [,3]

1,] 0.32302489 0.0661767 0.02116832
2,] 0.06617670 35.0781124 -0.53660185
3,1 0.02116832 -0.5366019 0.03658915
ConfidencelIntervals

[,1] [,2]
CI of phi 0.3937737 0.4642262
CI of r 9.8952803 10.6294496

’

[
[
[
$
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CI of p 0.1923346 0.2160458

With sample size N = 1000, the derived 95% confidence intervals cover the true
parameter values fairly well.

Example 3.4 (Test zero-inflation in Poisson data): As an illustration, we simulate a ZIP
data with N = 1000, ¢ = 0 and A = 0.8, which is actually a regular Poisson data with
A = 0.8 without zero-inflation. There are 459 zeros which roughly matches the probatility
of zero po(A) = 0.449. Then we use the FI . ZT function with distribution Poisson Hurdle
(PH) to allow both zero-inflation and deflation.

R> set.seed(337)
R> x<-sample.zil (N=1000,phi=0,dist="poisson", lambda=0.8)
R> table(x)
X
0 1 2 3 4 5
459 334 153 41 10 3
R> dpois (0, lambda=0.8)
[1] 0.449329
R> FI.zI(x,lambda=1, dist="ph")
Sinversefisher
[,1] [,2]

[1,] 0.248319 0.000000
[2,] 0.000000 2.558941
SConfidencelIntervals

[,11] [,2]
CI of Phi 0.4281146 0.4898854
CI of lambda 0.7937409 0.9920343
R> FI.zI(x,lambda=1, dist="poisson")
Sinversefisher
lambda
[1,] 0.818
SConfidencelIntervals
[1] 0.7619437 0.8740563

It turns out that the 95% approximate confidence interval (0.4281,0.4899) of ¢ based
on PH model (dist = "ph") covers the baseline zero probability py(1) = 0.4493, which
indicates that neither zero-inflation nor zero-deflation is significant at the 5% level. Actu-
ally, the 95% approximate confidence interval (0.7619,0.8741) of A based on the regular
Poisson model (dist ="poisson") covers the true value 0.8 roughly at the centre,
which is better than (0.7937, 0.9920) based on the PH model.

3.3. Comparison study in terms of type | error

In this section and Section 3.4, we use simulation studies to compare the performance of
our algorithms for model identification with existing R functions for the same purposes. In
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Table 3. Typel error rates of KS tests on whether the data comes from ZIP, based on B = 1000 simulated
ZIP datasets with parameters ¢ = 0.3, A = 10 for each sample size N.

Sample size N 30 50 100 200 500
ks.test 0 0 0 0.001 0.005
disc_ks_test 0.074 0.116 0.081 0.112 0.08
dis.kstest 0 0 0 0 0
kstest.A 0 0 0.001 0 0
kstest.B 0 0 0 0 0

Table 4. Type | error rates of KS tests on whether the data comes from ZINB, based on B = 1000
simulated ZINB datasets with parameters ¢ = 0.3,r = 5, p = 0.2 for each sample size N.

Sample size N 30 50 100 200 500
ks.test 0.001 0.002 0.001 0.004 0.003
disc_ks_test 0.062 0.065 0.099 0.089 0.107
dis.kstest 0.003 (536NA) 0.004 (638NA) 0.003 (903NA) 0.001 (996NA) AllNA
kstest.A 0 0 0 0 0
kstest.B 0 0 0 0 0

Table 5. Type | error rates of KS tests on whether the data comes from ZIBNB, based on B = 1000
simulated ZIBNB datasets with parameters ¢ = 0.3,r = 3, a1 = 3, ay = 5 for each sample size N.

Sample size N 30 50 100 200 500
ks.test 0.058 0 0 0.001 0
disc_ks_test 0.062 0.049 0.067 0.07 0.084
dis.kstest 0.788 (176NA) 0.889 (89NA) 0.921 (87NA) 0.832 (168NA) 0.671 (383NA)
kstest.A 0 0 0 0.002 0.002
kstest.B 0.002 0 0 0.003 0.001

this section we focus on type I errors. That is, given the true distribution, say ZINB, what
is the chance that the test erroneously concludes that the distribution is not ZINB due to a
p-value less than 0.05. Such an error is known as a type I error [39]. Ideally, such a chance
is no more than 0.05, known as the size of the test.

The R functions under comparison in this section include the basic function ks . test,
function disc_ks_test in package KSgeneral [36], function dis.kstest in
package iZID [23], and two of our functions in AZIAD, kstest.A based on [7]’s
Algorithm 1 with (#6+ 1)/(B + 1) replaced by #b/B, and kstest.B based on our
Algorithm 1 described in Section 2.4.

For illustration purposes, we consider four zero-inflated models, ZIP, ZINB, ZIBNB,
and ZIBB. For each model, we consider five different samples sizes, N = 30, 50, 100, 200,
500, and simulate B = 1000 independent datasets for each sample size. For each simulated
dataset, we run the five R functions under comparison individually targeting the corre-
sponding true model. If the p-value of the test is less than 0.05, we count it as a type I error.
The ratios of type I errors (that is, the number of type I errors divided by B = 1000) are
listed in Tables 3 - 6. For readers’ reference, we provide the R code for generating Table 4
in the Supplementary Materials (Section S.3).

According to these tables, disc_ks_test (package KSgeneral) seems to have
larger type I error rates than the nominal level 0.05. One concern about function
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Table 6. Type | error rates of KS tests on whether the data comes from ZIBB, based on B = 1000
simulated ZIBB datasets with parameters ¢ = 0.3,n = 5, a1 = 8, @y = 3 for each sample size N.

Sample size N 30 50 100 200 500
ks.test 0 0 0.001 0 0
disc_ks_test 0.054 0.06 0.06 0.058 0.066
dis.kstest 0.039 (24NA) 0.05 (34NA) 0.084 (47NA) 0.645 (64NA) 0.947 (53NA)
kstest.A 0.001 0 0 0 0
kstest.B 0.001 0 0 0 0

dis.kstest (1ZID) for ZINB, ZIBNB and ZIBB distributions is its significant por-
tions of NA’s due to errors. Our two functions, kstest .A and kstest.B, and R basic
function ks . test have type I error rates nearly zero, which are satisfactory.

3.4. Comparison study in terms of test power

In this section, we continue the simulation studies in Section 3.3 and compare the power of
the tests based on four different R functions. More specifically, given the B = 1000 datasets
simulated from, for example, the ZIP distribution, we run a KS test on whether the data
comes from a ZINB distribution, and denote the test as ZIP versus ZINB. If we reject ZINB
distribution for 800 times, then the empirical power of the KS test at ZINB is 800/1000 =
0.80. Given that the type I error rate does not go beyond the nominal level 0.05, the bigger
the power is, the better the test performs (see, for example, [39]). We remove function
dis.kstest of package 1ZID from power analysis since it generates too many NA’s for
ZINB (see Table 4) or has a type I error rate much higher than 0.05 for ZIBNB (see Table 5)
and ZIBB (see Table 6).

Table 7 shows that our functions, kstest.A and kstest.B, have larger power at
ZIP versus ZIBNB. All tests fail at ZIP versus ZINB and ZIP versus ZIBB. It often happens
for a test of a simpler model versus a more flexible model, especially when the flexible
model could approximate the simpler model well (see Section 4 for a discussion on it).
More simulation studies show that our functions have the largest powers at ZIBNB versus
ZIP, and at ZIBB versus ZIBNB as well (see Tables S.1 —S.3 in the Supplementary Materials,
Section S.4). Note that both ks . test and disc_ks_test here rely on the MLEs for
ZIBB and ZIBNB provided by our package AZIAD.

Opverall our two functions kstest .2 and ks . test . B are most reliable for KS tests
involving zero-inflated models. In practice, we recommend ks . testB for small sample
sizes such as N = 30, 50 (see ZIP versus ZIBNB in Table 7, ZINB versus ZIP in Table S.2,
and ZIBNB versus ZIP in Table S.2) and ks . testA for large sample size such as N = 100,
200, 500, which is faster.

3.5. Real data analysis

Example 3.5 (DedTrivedi Data): In this example, we use a real data DebTrivedi from
R package MixA11 to illustrate how to use our package AZIAD to identify the most appro-
priate zero-inflated model. The DebTrivedi data was obtained from the US National
Medial Expenditure Survey [40,41]. It contains 19 variables from 4,406 individuals aged
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Table 7. Empirical power of KS tests on whether the data comes from ZINB, ZIBNB or ZIBB, based on
B = 1000 simulated ZIP datasets with parameters ¢ = 0.3, A = 10 for each sample size N.

Test Function N =30 N = 50 N = 100 N = 200 N = 500
ZIPvsZINB ks.test 0.002 0 0.001 0.001 0
disc_ks_test 0.079 0.087 0.076 0.096 0.093
kstest.A 0 0 0 0 0
kstest.B 0 0 0 0 0
ZIPvsZIBNB ks.test 0.132 0.441 0.844 0.978 0.984
disc_ks_test 0.115 0.096 0.084 0.099 0.101
kstest.A 0.749 0.892 0.954 0.973 0.992
kstest.B 0.73 0.984 0.954 0.973 0.992
ZIPvsZIBB ks.test 0.002 0.001 0.001 0.005 0.007
disc_ks_test 0.079 0.084 0.09 0.074 0.091
kstest.A 0 0 0 0.001 0
kstest.B 0 0 0 0 0

66 and over. For illustration purpose, we select the variable o fp, which is the number of
physician office visits.

In order to analyse the data, we first use KS tests to check each distribution covered by
our package. Since the sample size 4,406 is fairly large, we use our function kstest.A
instead of kstest .B. Out of 19 distributions under test, we have 7 models with p-value
larger than 0.05, including geometric, NB (with real-valued r), NB1 (with integer-valued
r), ZIBB, ZIBNB, BBH, and BNBH.

Since there are seven distributions passing the KS test, we further run our likeli-
hood ratio test function 1rt.A to compare each pair of the candidate distributions.
For example, if d1 represents geometric distribution and d2 represents NB distribu-
tion, we run 1rt.A(dl, d2). A p-value less than 0.05 indicates that d2 is signifi-
cantly better than d1. The relevant R codes are relegated to the Supplementary Materials
(Section S.3).

Table 8 shows the results of pairwise comparisons of the seven candidate distributions
based on 1rt.A (HO,H1) with row names indicating Hy and column names indicating
H;j. A small p-value implies that the column distribution is significantly better than the
row distribution. It should be noted that in general the p-values of 1rt.A (d1,d2) and
1rt.A(d2,dl) arenotequal Based on the p-values in Table 8, we conclude that ZIBNB
and BNBH are significantly better than geometric, NB, NB1, ZIBB and BBH, while there
is no significant difference between ZIBNB and BNBH, which confirms our conclusion in
Section 2.5. Note that neither ZIBNB nor BNBH was considered by Deb and Trivedi [40]
and Zeileis et al. [41]. Both distributions were recommended by Aldirawi et al. [7] and
Aldirawi and Yang [24] for microbiome data analysis.

We run the same procedure based on our function 1rt.B as well, which is based on
kstest.B. The results are consistent with 1rt .A’s. Similarly as in Section 3.4, we rec-
ommend 1rt.B for cases with smaller sample sizes and 1rt . A for cases with a sample
size larger than 100.

Example 3.6 (Omic Data): In this example, we analyse the Omic data from [42], which
is a list of 229 bacterial and fungal OTUs, for identifying appropriate models. More specif-
ically, for each of the following distributions, Poisson, geometric, negative binomial, beta
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Table 8. The p-values of pairwise comparisons of the seven candidate models basedon 1rt . A for data
DebTrivedi, ap-value less than 0.05 indicating that the corresponding column model is significantly
better than the corresponding row model.

H
Ho Geometric NB NB1 ZIBB ZIBNB BBH BNBH
Geometric 1 0.88 0.79 0.9 0 0.81 0
NB 0.07 1 0.165 0.835 0 0.49 0
NB1 0.84 0.82 1 0.895 0 0.8 0
ZIBB 0 0.04 0.015 1 0 0.96 0
ZIBNB 0.66 0.725 0.69 0.81 1 0.83 1
BBH 0.005 0.09 0.015 1 0 1 0
BNBH 0.705 0.73 0.67 0.81 0.995 0.735 1

Table 9. Number and percentage of species out of
229 that passed kstest . A with p-value > 0.05.

Distribution Number Percentage
Poisson 0 0%
Geometric 2 0.8%
NB 0 0%
BB 149 65%
BNB 170 74%
ZIP 5 2%
ZIGe 56 24%
ZINB 57 25%
ZIBB 148 65%
ZIBNB 172 75%
PH 4 2%
GeH 55 24%
NBH 56 24%
BBH 181 79%
BNBH 200 87%

binomial, beta negative binomial, and their corresponding zero-inflated and hurdle mod-
els, we use our kstest .A in AZIAD to check how many species out of 229 passed the
corresponding KS tests.

Table 9 summarizes the numbers and percentages of species that do not show significant
divergence (p-value > 0.05). The bigger the number is, the more appropriate the model is
for omic data. The relevant R codes are displayed below:

R> dvect = list("poisson", "zip", "ph", "geometric",
"zigeom", "geomh",
"nb", "zinb", "nbh", "bb", "zibb", "bbh", "bnb",
"zibnb", "bnbh")
R> dmatnew = matrix(, nrow=229, ncol=15)
R> set.seed(473415)
R> for(i in 1:229) for(j in 13:15)
{dmatnew([i,J] = kstest.A(as.numeric(omicl[i,]),
dist=dvect[j]) Spvalue}
R> write.csv(dmatnew, file="kstestBunpolishedfinal.csv")
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Table 10. Maximum difference between the CDF of ZIP and the CDF of fitted ZINB based on random
samples from ZIP(¢ = 0.3, A = 10) with various sample sizes N.

N 30 50 100 200 500 1000 5000
supy |Fzip(y) — Fzing ()| 0.166 0.12 0.08 0.03 0.024 0.04 0.0158

Table 11. Maximum difference between the CDF of ZIBNB and the CDF of fitted ZIBB based on random
samples from ZIBNB(¢ = 0.3,r = 15,1 = 19,y = 10) with various sample sizes N.

N 30 50 100 200 500 1000 5000
sup, |Fzing (¥) — Fzis (¥)| 0.166 0.1 0.1 0.11 0.04 0.024 0.014

We conclude that Poisson, geometric, negative binomial (NB), zero-inflated Poisson
(ZIP), Poisson hurdle (PH) and geometric hurdle (GeH) are not appropriate for sparse
microbial features due to their low percentages (no more than 2%), while beta binomial
(BB), beta negative binomial (BNB) and their zero-inflated and hurdle versions are much
more popular (at least 64%). Among them, BNBH (or ZABNB, see Example 2.3) is the
most appropriate model with percentage 87%. Compared with Table 1 in [7] or Table 2
in [24], our results are more reliable although the patterns are similar.

4, Discussion

A major goal targeted in this paper is to identify the underlying distribution Fy given a
random sample {Y7, ..., Y,} from it. Given the data {Y3,...,Y},}, ideally our tests could
accomplish two tasks, (i) do not reject Fj itself; (ii) reject any F; which is not Fj.

According to the Glivenko-Cantelli theorem (see, for example, Theorem 19.1 in [43]),
the empirical distribution function F,, converges to Fy uniformly and then Task (i) can be
achieved by proper KS tests up to a type I error, which is confirmed by our simulation
studies in Section 3.3.

Task (ii) is much more complicated. First of all, in Section 2.5, we show the equiva-
lence of a zero-inflated model and its corresponding hurdle model given that ¢zo > po(8).
Therefore, one could not make a distinction between a ZI model and its corresponding ZA
or hurdle model when zero-inflation exists. We have such a real data example in Section 3.5.

Secondly, as shown by simulation studies in Section 3.4, one may not be able to reject
F; if Fy is a more flexible model than Fj, especially when F; with fitted parameters could
approximate Fy well. In this section, we use ZIP versus ZINB as an example to illustrate
why one may not be able to reject F; given that Fj is the true model.

It is known that Poisson(1) can be approximated by NB(r, p) with a large r and a p
close to 1 such that A = r(1 — p) (see, for example, [44]). To illustrate how well ZINB
could approximate a ZIP distribution, we simulate random samples {Y7,..., Yy} from
ZIP(¢ = 0.3, A = 10) with various sample sizes N, then fit a ZINB model. In Table 10, we
list the maximum difference between the cumulative distribution function (CDF) Fzrp(y)
of ZIP and the CDF Fzinp(y) of the fitted ZINB. As the sample size N increases, the max-
imum distance sup, |Fzip(y) — Fzing(p)| decreases, which indicates ZINB approximates
ZIP better and better.
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Another example is the KS test of ZIBNB versus ZIBB, whose empirical power shows
a decreasing pattern as the sample size N increases (see Table S.2 in the Supplementary
Materials). We perform a similar numerical study here for ZIBNB versus ZIBB as well.
More specifically, we simulate random samples {Y7,..., Yy} from ZIBNB(¢ = 0.3,r =
15,01 = 19,y = 10) with various sample sizes N, then fit a ZIBB model. Table 11 shows
a decreasing pattern of the maximum difference between the two CDFs as the sample size
N increases, which indicates ZIBB can approximate ZIBNB better and better.
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