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Ana Bălibanu1

Accepted: 2 August 2023 / Published online: 27 October 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
The universal centralizer of a semisimple algebraic group G is the family of cen-
tralizers of regular elements, parametrized by their conjugacy classes. When G is of
adjoint type, we construct a smooth, log-symplectic fiberwise compactification Z of
the universal centralizer Z by taking the closure of each fiber in the wonderful com-
pactification G. We use the geometry of the wonderful compactification to give an
explicit description of the symplectic leaves of Z. We also show that its compactified
centralizer fibers are isomorphic to certain Hessenberg varieties—we apply this con-
nection to compute the singular cohomology of Z, and to study the geometry of the
corresponding universal Hessenberg family.
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Introduction

Let G be a semisimple complex algebraic group of adjoint type. Its Lie algebra g
contains a transversal slice S for the adjoint action, which was introduced by Kostant
[27]. The universal centralizer of G is the smooth affine variety

Z := {
(a, x) ∈ G × S | a ∈ Gx} .

It can be obtained by Whittaker Hamiltonian reduction from the cotangent bundle of
G, and this equips it with a natural symplectic structure.

This variety appears as a prominent technical tool in the derived geometric Satake
equivalence of Bezrukavnikov and Finkelberg [6], in the work of Ngô on the funda-
mental lemma [34, 35], and in the study of Coulomb branches by Braverman et al. [8,
9]. In particular, Bezrukavnikov et al. [5] have identified Z with the spectrum of the
equivariant homology of the affine Grassmannian of the Langlands dual group G∨, so
Z is an example of a Coulomb branch as defined by Nakajima [33].

In this paper we construct a smooth relative compactification of Z. Its fibers are
centralizer closures inside the wonderful compactification G, a distinguished equiv-
ariant embedding of G first introduced by de Concini and Procesi [16] which encodes
the asymptotic behavior of the group “at infinity.” We prove the following theorem,
as Theorem 3.5:

Theorem The relative compactification

Z := {
(a, x) ∈ G × S | a ∈ Gx

}

is a smooth algebraic variety with a natural log-symplectic Poisson structure whose
open dense symplectic leaf is Z.

The log-symplectic Poisson structure on Z is inherited from the log-cotangent
bundle of G by Whittaker reduction. Using the geometry of G, we give an explicit
algebraic characterization of its symplectic leaves.Moreover, we explain how to obtain
Z directly from the Coulomb branch given by [5]. This approach, which involves a
Rees construction, uses the realization of G via the Vinberg monoid and is similar to
another example of a compactified Coulomb branch which appears in [9].

The compactified centralizer fibers of Z have been studied in [3], where they were
identified with closures of generic centralizer orbits on the flag variety B. We refine
these results by studying them as a family. In Theorem 4.8 we show that they are
in fact isomorphic to certain subvarieties of B known as Hessenberg varieties, which
were first introduced by De Mari et al. [17].
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Theorem There is an isomorphism of Poisson varieties between the relative compact-
ification Z and the Hessenberg family

H := {(b, x) ∈ B × S | b ∈ Hess(x)} .

For any regular element x ∈ g, this gives an isomorphism between the compactified
centralizer Gx and the standard Hessenberg variety Hess(x).

Hessenberg varieties have many applications to combinatorics and representation
theory, notably in the recent proof of theShareshian–Wachs conjecture [42] byBrosnan
and Chow [12], in the description of the quantum cohomology of flag varieties in the
work of Kostant and of Rietsch [30, 39, 40], and in the study of affine Springer fibers
by Goresky et al. [22]. We apply the theorem above and the geometry of nilpotent
Hessenberg varieties to compute the singular cohomology of Z, by constructing an
explicit affine paving derived from Schubert cells.

In the other direction, we use the connection between Z and the Hessenberg fam-
ily H to show that the natural Poisson structure on the universal family of standard
Hessenberg varieties is log-symplectic. We also identify more general, non-regular
Hessenberg varieties with moment map fibers of the log-cotangent bundle of G, prov-
ing a conjecture of Crooks and Röser [14] which was formulated based on an earlier
version of the present paper. This gives a natural way to embed any standard Hessen-
berg variety into the wonderful compactification.

Outline

In Sect. 1 we review the construction of the universal centralizer Z as a Whittaker
reduction of the cotangent bundle of G. In Sect. 2 we recall some facts about the
remarkable geometry of G. In Sect. 3 we obtain Z as a Whittaker reduction of the
log-cotangent bundle of G, show that its induced Poisson structure is log-symplectic,
and describe its symplectic leaves.

In Sect. 4 we place the relative compactification Z into the setting of Hessenberg
varieties by identifying it with the restriction of the standard universal Hessenberg
family to the Kostant slice, and use this to compute its singular cohomology. In Sect. 5
we apply this connection to show that the Poisson structure on the standard universal
Hessenberg family is log-symplectic. Lastly, in Sect. 6 we show how the relative com-
pactification Z is related to the realization of the universal centralizer as a Coulomb
branch.

1 The universal centralizer

Let G be a connected complex semisimple algebraic group of adjoint type, and let g
be its Lie algebra. Given an element x ∈ g, we write

Gx := {g ∈ G | Adg x = x} and gx := {y ∈ g | adyx = 0}.
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Fix a principal sl2-triple {e, h, f }—a triple of regular elements in g that satisfy the sl2
commutation relations. The corresponding Kostant slice

S := f + ge

consists entirely of regular elements and intersects each regular adjoint orbit in g
exactly once and transversally. The restriction of the adjoint quotient map

g −→ g // G (1.1)

to the subvariety S is an isomorphism, and therefore S provides a regular section for
the adjoint quotient [27].

Definition 1.2 The universal centralizer of G is the affine variety

Z := {
(a, x) ∈ G × S | a ∈ Gx} .

The variety Z is the family of centralizers of regular elements of g, parametrized
by representatives of their conjugacy classes. Because G is of adjoint type, the fibers
of Z over points in S are connected. Moreover, Z has a natural symplectic structure,
which is inherited from the cotangent bundle of G. We recall how to construct this
structure using Whittaker reduction, following Kostant [29].

Trivializing the cotangent bundle of G with respect to the left G-action, and using
the Killing form to identify g with its dual, we obtain an identification

T ∗G ∼= G × g. (1.3)

Under this isomorphism, the cotangent lifts of left- and right-multiplication on G
correspond to the G × G-action

(g, h) · (a, x) = (gah−1,Adh x) for g, h ∈ G, (a, x) ∈ G × g.

Under the identification

g × g
∼−−→ g∗ × g∗

(x, y) �−→ ((x, ·),−(y, ·))

given by the Killing form, the associated moment map is

μ : T ∗G ∼= G × g −→ g × g

(a, x) �−→ (Ada x, x). (1.4)

Note that the image of μ is the set of conjugate pairs inside g × g, and that the fiber
above the diagonal point (x, x) is

μ−1(x, x) ∼= Gx .
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Let B be the unique Borel subgroup of G whose Lie algebra contains the regular
nilpotent e, let N be its unipotent radical, and write b and n for the corresponding Lie
algebras. Letting the maximal unipotent subgroup N × N act on T ∗G, and using the
Killing form to identify n∗ ∼= g/b, the moment map

ν : T ∗G −→ n∗ × n∗

factors through the moment map for the G × G-action:

T ∗G ∼= G × g g × g

g/b × g/b.

μ

ν

The coset ( f , f ) ∈ g/b × g/b, which corresponds to a regular character in n∗ × n∗,
is fixed by the action of N × N . The fiber of ν above this point is

ν−1( f , f ) = {(a, x) ∈ G × g | x ∈ f + b, Ada x ∈ f + b} .

We will repeatedly use the essential fact [28, Theorem 1.2] that the action map
induces an isomorphism

N × ( f + ge) −→ f + b. (1.5)

In view of this, N ×N acts freely on ν−1( f , f ). Since ν is a moment map, this implies
that ( f , f ) is a regular value of ν and therefore that the variety ν−1( f , f ) is smooth.
Moreover, there is a natural N × N -equivariant isomorphism

N × N × Z −→ ν−1( f , f )

(n1, n2, (a, x)) �−→
(
n1an

−1
2 ,Adn2 x

)
.

This gives an identification

Z ∼= ν−1( f , f )/(N × N ),

and the right-hand side, being a Hamiltonian reduction, is equipped with the structure
of a symplectic variety.

Remark 1.6 The symplectic structure on the universal centralizer can also be obtained
by considering the diagonal G-action on the open dense locus

G × gr ⊂ T ∗G
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and taking a Hamiltonian reduction at 0 along the corresponding moment map

� : G × gr −→ g

(a, x) �−→ Ada x − x .

The fiber of this moment map above 0 is

�−1(0) = {(a, x) ∈ G × gr | a ∈ Gx },

and its quotient by the diagonal action of G is an abelian group scheme over g // G.
The universal centralizerZ is then the pullback of this quotient along the isomorphism
S ∼−−→ g // G.

2 The wonderful compactification

To develop a compactified version of the construction outlined in the previous section,
we will use the wonderful compactification G of the group G. This is a canonical,
smooth, equivariant projective embedding of G which was introduced in [16]. A
detailed survey of its geometry can be found in [19], and here we collect only the facts
that we will need later.

2.1 Geometry of the wonderful compactification

Let l be the rank of G. The G × G-equivariant compactification G contains G as an
open dense subset, and the complement

D := G\G

is a divisor with simple normal crossings and irreducible components D1, . . . , Dl .
The group G × G acts on D with finitely many orbits, which are in bijection with the
proper subsets I ⊂ {1, . . . , l}. The closure of the orbit OI is

OI =
⋂

i /∈I
Di

the intersection of the divisor components not indexed by I . In particular, the G ×G-
orbit closures are smooth, and there is a unique closed orbit of minimal dimension
obtained by intersecting all the irreducible components of D.

Let T = Gh be the centralizer of the regular semisimple element h. Then T is a
maximal torus contained in the Borel B, and we write

� = {α1, . . . , αl}

for the corresponding set of simple roots. Let PI be the standard parabolic subgroup
generated by B and the negative simple root groups indexed by {αi | i ∈ I }, and let
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P−
I be the opposite parabolic with respect to T . WriteUI andU

−
I for their respective

unipotent radicals, L I = PI ∩ P−
I for their shared Levi component, and Z(L I ) for its

center. We will denote by p±
I , u±

I , and lI the Lie algebras of these subgroups.
For each index set I there is a distinguished basepoint zI ∈ OI whose stabilizer is

StabG×G(zI ) =
{
(us, vt) ∈ PI × P−

I | u ∈ UI , v ∈ U−
I , s, t ∈ L I , st

−1 ∈ Z(L I )
}

.

This implies that the orbit OI fibers over the product G/PI × G/P−
I with fiber

isomorphic to L I /Z(L I ), which is a semisimple group of adjoint type. Taking the
closure, we obtain a smooth fibration

L I /Z(L I ) OI

G/PI × G/P−
I ,

where the fiber is the wonderful compactification of the adjoint group L I /Z(L I ). In
particular, the unique closed orbit of minimal dimension is isomorphic to the product
of full flag varieties

G/B × G/B−.

2.2 The logarithmic cotangent bundle

Because the divisor D has simple normal crossings, the sheaf of vector fields on G
which are tangent to D is locally free. The associated vector bundle TDG is called
the logarithmic tangent bundle of G. Because D is G × G-stable, the group action
induces a map of vector bundles

G × g × g −→ TDG,

which is surjective by [10, Example 2.5]. The kernel of this map is Lagrangian, and
therefore it is isomorphic to the logarithmic cotangent bundle T ∗

DG—the bundlewhose
sections are differential forms with logarithmic poles along D. This gives an equiv-
ariant embedding

T ∗
DG ↪−→ G × g × g, (2.1)

of vector bundles over G, where G × G acts on the right-hand side by

(g, h) · (a, y, x) = (gah−1,Adg y,Adh x) for g, h ∈ G, (a, y, x) ∈ G × g × g.
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Remark 2.2 Under our earlier identification (1.3), the map (2.1) extends the natural
embedding

T ∗G ∼= G × g ↪−→ G × g × g

(a, x) �−→ (a,Ada x, x). (2.3)

The compactification G can also be realized [19, Section 3.2] as a subvariety of the
Grassmannian

Gr(dim g, g × g),

by taking the closure of the image of the embedding

G −→ Gr(dim g, g × g)

a �−→ a · g�,

where

a · g� = {(Ada x, x) | x ∈ g}.

Using (2.3), one sees that the log-cotangent bundle T ∗
DG is precisely the restriction of

the tautological bundle on the Grassmannian to this subvariety. It then follows from
[19, Remark 3.9] that, under the embedding (2.1), the fiber of T ∗

DG above the orbit
basepoint zI ∈ OI is identified with the subalgebra

T ∗
D,zI G

∼= pI ×lI p
−
I . (2.4)

Consider the G × G-equivariant morphism

μ : T ∗
DG −→ g × g

(a, y, x) �−→ (y, x) (2.5)

given by projection onto the fibers of G ×g×g. Because it extends the usual moment
map μ defined in (1.4), the map μ is called a compactified moment map in [10, 25].
We conclude this section by listing some properties of this morphism.

Lemma 2.6 The image ofμ is the variety g×g//G g, which consists of pairs of elements
in g × g that lie in the closure of the same adjoint orbit.

Proof Since the fibers of the adjoint quotient are closures of regular adjoint orbits [27,
Theorem 0.7], the variety g ×g//G g consists of pairs of elements in the same orbit
closure. Moreover, since this variety is the preimage of the diagonal under the adjoint
quotient map of g × g, it is closed.
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The map μ is proper because it factors through the projection

T ∗
DG G × g × g

g × g.

μ

Because it is proper, its image is closed, so it is the closure of the image of μ. Since
the image of μ is the set of conjugate pairs in g × g, and since a function on g × g
vanishes on the locus of conjugate pairs if and only if it vanishes on g ×g//G g, its
closure is g ×g//G g.

Lemma 2.7 The variety g ×g//G g is normal.

Proof Since g×g//G g is the image ofμ, it is irreducible, and therefore it has dimension

2 dimG − dim(g // G) = 2 dimG − l.

Let

f1, . . . , fl ∈ C[g]G

be a minimal set of generators for the algebra of G-invariant polynomials on g. Then

g ×g//G g = {(x, y) ∈ g × g | fi (x) − fi (y) = 0 for all i = 1, . . . , l}

is the vanishing locus of l algebraically independent polynomials, so it is a complete
intersection.

Because the differentials d f1, . . . d fl are linearly independent at every point of the
regular locus gr [13, Claim 6.7.10], the subset

gr ×g//G gr = {(x, y) ∈ gr × gr | x ∈ G · y} ⊂ gr × gr

is a smooth open subvariety of g×g//G g. Moreover, its complement has codimension
at least 2 because adjoint orbits are even-dimensional [13, Claim 6.7.10]. It follows
that g ×g//G g is a complete intersection with no codimension-one singularities, so it
is normal. 
�
Lemma 2.8 The fibers of μ are connected.

Proof The fiber of μ above a regular semisimple pair is a connected toric variety [10,
Example 2.5]. Moreover, by Lemmas 2.6 and 2.7, the image ofμ is normal. Sinceμ is
proper with normal image and the fiber above a generic point is connected, it follows
by Stein factorization that every fiber of μ is connected. 
�
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3 The relative compactification ofZ
In this section we compactify the fibers of the universal centralizer Z by taking their
closures inside the wonderful compactificationG, and we describe how the symplectic
structure onZ extends to the boundary of this new variety.We begin by recalling some
standard facts about log-symplectic manifolds, and we refer to [38, Section 5] for a
more general introduction.

3.1 Log-symplectic structures

Suppose that X is a complex manifold containing a divisor

Z = ∪Zi

with simple normal crossings. A log-symplectic structure on (X , Z) is a closed, nonde-
generate 2-form with logarithmic poles along Z . Such a form restricts to a symplectic
form on X\Z , and induces an isomorphism

TZ X
∼−−→ T ∗

Z X

between the log-tangent bundle and the log-cotangent bundle of X .
There is a corresponding isomorphism of associated sheaves

TX ,Z
∼−−→ T∗

X ,Z

between the log-tangent sheaf, whose sections are vector fields parallel to Z , and
the log-cotangent sheaf, whose sections are differential forms with logarithmic poles
along Z . Reversing this isomorphism and restricting to the subsheaf of differential
forms without poles, we get a morphism

T ∗X −→ T X .

This bundle map corresponds to a generically non-degenerate Poisson bivector. In
other words, a log-symplectic structure is a type of Poisson structure.

Example Suppose thatM is a complexmanifold with a simple normal crossing divisor
D. Let X := T ∗

DM , let

ϕ : X = T ∗
DM −→ M

be the bundle map, and let Z := ϕ−1(D) be the simple normal crossing divisor in
T ∗
DM obtained by taking the preimage of D.
The dual of the differential of ϕ, which we write as

λ : T ∗
DM −→ T ∗

Z X ,
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is a logarithmic 1-form on X analogous to the usual Liouville 1-form. Its differential

ω := dλ

is a closed, nondegenerate logarithmic 2-form. In this way, the log-cotangent bundle
of any complex manifold with a simple normal crossing divisor has a canonical log-
symplectic structure.

Explicitly, if a1, . . . , an are local coordinates onM such that the divisor D is cut out
by the vanishing of the product a1 · . . . · ak , and if x1, . . . , xn are induced coordinates
on the fiber, the log-symplectic form is given locally by

ω =
k∑

i=1

dai
ai

∧ dxi +
n∑

i=k+1

dai ∧ dxi . (3.1)

The associated Poisson bivector is

π =
k∑

i=1

ai∂ai ∧ ∂xi +
n∑

i=k+1

∂ai ∧ ∂xi . (3.2)

In particular, the restriction of ω to the cotangent bundle T ∗(X\Z) ⊂ T ∗
Z X is the

canonical symplectic form.

For completeness, we include the following log-symplectic analogue of the
Marsden–Weinstein–Meyer Theorem. Although it appears to be known to experts,
we were unable to find a reference in the existing literature. A similar statement is
discussed in [23, Section 7.7].

Proposition 3.3 Let (X , Z) be a log-symplectic Poisson manifold with log-symplectic
form ω. Suppose that H is a connected Lie group with a Hamiltonian action on X, let

ρ : X −→ h∗,

be the moment map, and let x ∈ h∗ be a point fixed by the coadjoint H-action. Suppose
that H acts on the fiber X̃ := ρ−1(x) freely and that the intersection X̃ ∩ Z is a divisor
in X̃ . Then

(1) X0 := X̃/H is smooth and Z0 := (X̃ ∩ Z)/H is a simple normal crossing divisor;
(2) there is a log-symplectic structure ω0 on (X0, Z0) such that

ι∗ω = q∗ω0, (3.4)

where ι : X̃ ↪−→ X is the inclusion and q : X̃ −→ X0 is the quotient map.

Proof (1) Let L ⊂ X be any symplectic leaf that intersects the fiber X̃—since the
action of H is Hamiltonian and H is connected, L is H -stable, and we can consider
the restricted moment map

ρ|L : L −→ h∗.
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The group H acts freely on ρ−1
|L (x) and L is symplectic, so x is a regular value of ρ|L .

Being a regular value of ρ|L for every symplectic leaf L , x is also a regular value of ρ.
This implies that X̃ , and therefore X0, are both smooth. Moreover, writing

Z = Z1 ∪ · · · ∪ Zl

as a union of irreducible components, we obtain a stratification of Z indexed by the
subsets I ⊂ {1, . . . , l} which is given by the smooth submanifolds

Z I = (∩i∈I Zi )\(∪i /∈I Zi ).

Any such stratum S is an H -stable union of symplectic leaves, and x is a regular value
of ρ|S , so X̃ ∩ S is smooth. Therefore Z̃ = X̃ ∩ Z and Z0 are simple normal crossing
divisors.

(2) Since the action of H is Hamiltonian, it preserves the Poisson structure on X
and therefore also the degeneracy divisor Z . This induces an infinitesimal action map

h −→ �(TZ X)

x �−→ ϑx

which assigns to each Lie algebra element a vector field tangent to Z .
The restriction of ω to X̃ is a degenerate logarithmic 2-form whose kernel is gener-

ated by these Hamiltonian vector fields. The quotient morphism q induces a surjection
of logarithmic tangent bundles

q∗ : TZ̃ X̃ −→ TZ0X0

whose kernel is exactly 〈ϑx | x ∈ g〉. Therefore, the 2-form ω|X̃ descends to a non-
degenerate logarithmic 2-form ω0 on (X0, Z0), which satisfies (3.4) by definition. 
�

3.2 Whittaker reduction of T∗
DG

We now define a fiberwise compactification of the universal centralizer by

Z := {
(a, x) ∈ G × S | a ∈ Gx

}
.

We will use a log-symplectic Hamiltonian reduction of T ∗
DG to prove the following

theorem:

Theorem 3.5 The relative compactification Z is a smooth algebraic variety whose
boundary is a divisor with simple normal crossings. The variety Z has a natural
log-symplectic structure which extends the symplectic structure on Z.

Proof The log-cotangent bundle T ∗
DG is equipped with the canonical log-symplectic

form ω defined in Example 3.1, which restricts to the usual symplectic form on T ∗G.
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Therefore the action ofG×G on T ∗
DG is Hamiltonian, and the correspondingmoment

map is precisely the compactified moment map μ defined in (2.5).
We follow the same reduction procedure as in Sect. 2.1. Restricting to the action of

the maximal unipotent subgroup N × N , we obtain a moment map

ν : T ∗
DG −→ n∗ × n∗.

Making once again the identification n∗ ∼= g/b gives a commutative diagram

T ∗
DG g × g

g/b × g/b.

μ

ν

The points in the fiber of ν above ( f , f ) are of the form

(a, x1, x2) ∈ G × g × g

with x1, x2 ∈ f + b. By (1.5), this implies that N × N acts freely on ν−1( f , f ). In
particular, ( f , f ) is a regular value of ν and the fiber ν−1( f , f ) is smooth.

By Lemma 2.8, ν−1( f , f ) is connected. Being connected and smooth, it is irre-
ducible. It follows that the intersection

ν−1( f , f ) ∩ T ∗G = ν−1( f , f )

is dense in ν−1( f , f ). But this intersection is precisely

ν−1( f , f ) =
{
(g, n1x, n2x) ∈ T ∗

DG | n1, n2 ∈ N , x ∈ f + ge, g ∈ n1G
xn−1

2

}
,

and therefore

ν−1( f , f ) =
{
(a, n1x, n2x) ∈ T ∗

DG | n1, n2 ∈ N , x ∈ f + ge, a ∈ n1Gxn−1
2

}
,

This gives an isomorphism

Z ∼= ν−1( f , f )/N × N .

By Proposition 3.3, Z is a smooth variety and its boundary is a divisor with simple
normal crossings. Moreover, Z has a natural log-symplectic structure. Its open dense
symplectic leaf is the reduction of the open dense leaf T ∗G of T ∗

DG—in other words,
it is the universal centralizer Z. 
�

As part of the proof of Theorem 3.5, we showed that the fibers of μ above regular
elements of g× g are precisely the closures of the fibers of the usual moment map μ.
In particular, we have the following immediate corollary.
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Corollary 3.6 Let x ∈ g be a regular element. There is an isomorphism

μ−1(x, x) ∼= Gx ,

where the right-hand side is the closure of the centralizer of x in the wonderful com-
pactification.

Remark 3.7 The compactified centralizer fibers ofZ are studied in [3], where they are
identified with the closures of generic centralizer orbits on the flag variety G/B. This
result will be extended in Sect. 4.

The fiber above a regular semisimple element is the projective toric variety whose
fan is the fan of Weyl chambers [19, Remark 4.5]. The fiber above the principal
nilpotent f is the Peterson variety [3, Theorem 4.1]. In particular, away from the
semisimple locus, the fibers of Z are singular and generally not normal [30, Theorem
14].

3.3 Symplectic leaves

The symplectic leaves of Z are Hamiltonian reductions of the symplectic leaves of
T ∗
DG. Therefore, in order to describe the former, we first give a general description of

the latter. In view of (3.1), the restriction of the logarithmic cotangent bundle to each
G×G-orbitOI is a unionof symplectic leaves.Wewill give an explicit characterization
of the leaves in each such restriction.

Fix a subset I ⊆ {1, . . . , l}. Let

cI : pI −→ pI /[pI , pI ]

be the quotient of the parabolic subalgebra pI by its derived subgroup. There is a
direct-sum decomposition

pI = [pI , pI ] ⊕ Z(lI ),

and the fibers of cI are the points in pI with the same component in the center Z(lI )
of the Levi. Applying (2.4), we first give a criterion for when two points in the fiber

T ∗
D,zI G

∼= pI ×lI p
−
I

are in the same symplectic leaf.

Proposition 3.8 Let (x, x−), (y, y−) ∈ pI ×lI p−
I . The points (zI , x, x−) and

(zI , y, y−) are in the same symplectic leaf of T ∗
DG if and only if

cI (x) = cI (y).
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Proof Let n = dim N . Around the basepoint zI ∈ OI there are algebraic local coor-
dinates

{
a±
1 , . . . , a±

n , z1, . . . , zl
}

such that D is cut out by the vanishing of the product�i∈I zi and such that the induced
coordinates on the fiber

{
x±
1 , . . . , x±

n , ζ1, . . . , ζl
}

have the property that the directions {ζi | i ∈ I } are tangent to the diagonal copy
of Z(lI ) [19, Section 2.2]. In these coodinates, the log-symplectic Poisson bivector
defined in (3.2) is

π =
∑

j

∂

∂a±
j

∧ ∂

∂x±
j

+
∑

i /∈I

∂

∂zi
∧ ∂

∂ζi
+

∑

i∈I
zi

∂

∂zi
∧ ∂

∂ζi
.

This bivector is tangent to {zi = ζi = 0 | i ∈ I } and is nondegenerate along this
submanifold. Therefore, two points of

T ∗
D,zI G

∼= pI ×lI p
−
I

are in the same symplectic leaf if and only if they have the same component in the
center Z(lI ) of the Levi. 
�

Recall that the orbit OI fibers over the product G/PI × G/P−
I of partial flag

varieties. Therefore we can associate to each a ∈ G a pair of parabolic subalgebras

(pa, qa) ∈ G/PI × G/P−
I .

If a = gzI h−1, these parabolics satisfy pa = g · pI and qa = h · p−
I . There is a

canonical identification of algebras

pa/[pa, pa] ∼= pI /[pI , pI ].

We define the abelian algebra

aI := pI /[pI , pI ]

to be the “universal” Cartan algebra associated to the partial flag variety G/PI , and
then for each a ∈ OI we have a corresponding quotient map

ca : pa −→ aI .
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Let T ∗
D,I G be the restriction of T ∗

DG to the orbit OI . Since T ∗
DG is an equivariant

vector bundle, there is an isomorphism

T ∗
D,I G ∼= (G × G) ×StabG×G (zI ) (pI ×lI p

−
I ).

This induces a smooth, well-defined morphism

T ∗
D,I G −→ aI

(a, x, x−) �−→ ca(x).

In the next proposition we show that its fibers are precisely the symplectic leaves of
T ∗
D,I G.

Proposition 3.9 Two points (a, x, x−) and (b, y, y−) of T ∗
D,I G are in the same sym-

plectic leaf of T ∗
DG if and only if

ca(x) = cb(y).

Proof Under the action ofG×G, (a, x, x−) is conjugate to some point (zI , x0, x
−
0 ) in

the fiber over zI and (b, y, y−) is conjugate to some (zI , y0, y
−
0 ). Since the symplectic

leaves of T ∗
DG are G ×G-stable, (a, x, x−) and (b, y, y−) are in the same symplectic

leaf if and only if the same is true of (zI , x0, x
−
0 ) and (zI , y0, y

−
0 ). By Proposition 3.8,

this happens if and only if cI (x0) = cI (y0). Since ca(x) = cI (x0) and cb(y) = cI (y0),
the theorem follows. 
�

The symplectic leaves of the Hamiltonian reduction Z are the Hamiltonian reduc-
tions of the symplectic leaves of T ∗

DG. We obtain the following immediate corollary.

Corollary 3.10 Two points (a, x), (b, y) ∈ Z are in the same symplectic leaf if and
only if a and b are contained in in the same G × G-orbit and ca(x) = cb(y).

4 The universal family of Hessenberg varieties

In this section we will show that each fiber of Z is isomorphic to a certain type of
subvariety of G/B known as a Hessenberg variety. This connection makes it possible
to compute the singular cohomology of Z, and to characterize more general fibers of
the moment map μ.

4.1 Hessenberg varieties

We keep the notation of the previous sections, and we begin with some general back-
ground. A Hessenberg subspace of g is a B-submodule of g that contains b. Let H
be such a space, and consider the associated vector bundle G ×B H . It has a canon-
ical Poisson structure, observed also in a special case in [1], which comes from a
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Hamiltonian reduction as follows. The right action of G on T ∗G, given by

h · (g, x) = (gh−1,Adh x), for h ∈ G, (g, x) ∈ G × g,

is Hamiltonian with moment map

μR : T ∗G ∼= G × g −→ g

(g, x) �−→ x

Restricting to the action of the Borel B and applying the Killing form to identify
b∗ ∼= g/n, we get a moment map

T ∗G −→ g/n,

and we consider the preimage of the B-stable subset H/n ⊂ g/n. Reducing, we obtain
the smooth Poisson variety

G ×B H = μ−1
R (H)/B.

Its symplectic leaves are in bijective correspondence with the B-orbits on the quotient
H/n, and it inherits a Hamiltonian action of G on the left, with moment map

μH : G ×B H −→ g

[g : x] �−→ Adg x .

The Hessenberg variety associated to the point x ∈ g is the moment map fiber

Hess(x) : = μ−1
H (x) = {

gB ∈ G/B | Adg−1 x ∈ H
}
.

Because of this, the bundle G ×B H is called the universal family of Hessenberg
varieties. We will consider its restriction

H := {(gB, x) ∈ G/B × S | gB ∈ Hess(x)}

to the Kostant slice S.

Proposition 4.1 The spaceH is a smooth Poisson variety and a proper flat family over
S of relative dimension dim(H/b).

Proof We will take a Whittaker reduction of the space G ×B H . Restricting to the
action of N , we get a moment map

νH : G ×B H −→ n∗.
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Under the usual Killing form identification, it factors as

G ×B H g

g/b.

μH

νH

As before, we take the fiber above the coset of f in g/b:

ν−1
H ( f ) = μ−1

H ( f + b)

= {(gB, x) ∈ G/B × g | x ∈ ( f + b), gB ∈ Hess(x)} .

By (1.5), the action of N on this fiber is free, so ν−1
H ( f ) is smooth. The action map

N × H −→ ν−1
H ( f )

(n, (gB, x)) �−→ (ngB,Adn x)

is an isomorphism, and this realizes H as the smooth Poisson variety

H ∼= ν−1
H ( f )/N .

Let

πH : H −→ S

be the structure morphism. Since it factors through the projection G/B × S −→ S,
it is proper. Moreover, the fibers of πH are regular Hessenberg varieties, which all
have dimension dim(H/b) [37, Corollary 2.7]. Since H and S are both smooth and
the fibers of πH are equidimensional, this morphism is flat. 
�

We end this section by showing that the flat familyH has a contracting C
∗-actions

which allows us to compute its cohomology directly from the cohomology of the fiber
above the regular nilpotent point. Recall that {e, h, f } is our fixed principal sl2-triple,
and choose a one-parameter subgroup

γ : C
∗ −→ G

whose Lie algebra is spanned by the regular semisimple element h. The spaces S and
H have natural C

∗-actions given by

t · x = t2 Adγ (t) x, for t ∈ C
∗, x ∈ S,

t · (gB, x) = (γ (t)gB, t2 Adγ (t) x), for t ∈ C
∗, (gB, x) ∈ H, and

The structure morphism πH isC
∗-equivariant with respect to these actions. Moreover,

both of these actions are contracting as t → 0—in the limit, the principal slice S
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is contracted to the principal nilpotent f ∈ S and the variety H is contracted to the
C

∗-fixed points of Hess( f ).

Proposition 4.2 There are isomorphisms of singular cohomology rings

H∗(H, C) ∼= H∗(Hess( f ), C).

Proof This follows from a standard fact in the topology of algebraic varieties. Suppose

f : X −→ S

is a proper C
∗-equivariant morphism between smooth varieties, and suppose that the

C
∗-action contracts the base S to the point o ∈ S. Then the action gives a deformation

retraction of the family X onto a small Euclidean neighborhood U of f −1(o). This
implies that

H∗(X , C) ∼= H∗(U , C) ∼= H∗( f −1(o), C).


�

4.2 The standard Hessenberg space

From now on we let H be the standard Hessenberg space

H :=
(

∑

α∈�

g−α

)

⊕ b,

which is the sum of the positive Borel subalgebra and the negative simple root spaces.
We write H for the corresponding universal family of regular Hessenberg varieties.

When s ∈ g is regular and semisimple, the associated Hessenberg variety Hess(s)
is the complete toric variety whose fan is the fan of Weyl chambers [17, Theorem
11]. When f ∈ g is regular and nilpotent, the regular Hessenberg variety Hess( f ) is
precisely the Peterson variety.

Remark 4.3 When s ∈ g is semisimple, the variety Hess(s) is connected [36]. Then
the moment map

μH : G ×B H −→ g

is a proper map whose target is smooth and whose generic fibers are connected, so by
Stein factorization all of its fibers are connected. It follows that the standardHessenberg
variety Hess(x) is connected for every element x ∈ g.

We now relate the standard family of Hessenberg varieties to the compactified
universal centralizer of the previous section. First we will need the following two
elementary lemmas.
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Lemma 4.4 Let x ∈ S. Then Gx ∩ B = 1.

Proof Write x = f + v ∈ f + ge and suppose that g ∈ Gx ∩ B. Let g = tu with
t ∈ T and u ∈ N . The Lie algebra g is graded by eigenvalues for the adjoint action of
the regular semisimple h. The regular nilpotent f sits in degree −2, and the Borel b
is the sum of the non-negative eigenspaces. Then

f + v = Adg( f + v) = Adtu f + Adg v = Adt f + (higher degree terms).

It follows that t ∈ G f , and therefore t = 1 and g ∈ N . But by (1.5), N acts freely on
f + b, so g = 1. 
�
Write W for the Weyl group associated to the maximal torus T . For any element

w ∈ W , we abuse notation to denote by w ∈ NG(T ) an arbitrary choice of preimage
in the normalizer of T .

Lemma 4.5 Let x ∈ S and suppose that g ∈ G is such that Adg x ∈ b. Then g is
contained in the maximal Bruhat cell Bw0N.

Proof Let x = f + v ∈ f + ge and use the Bruhat decomposition to write g = bwu
for some b ∈ B, u ∈ N , and w ∈ NG(T ). Since

Adb(Adwu( f + v)) ∈ b,

it follows that Adwu( f + v) is an element of b. Writing

Adu( f + v) = f + v′ ∈ f + b,

we obtain

Adw( f + v′) ∈ b.

Since, as a sum of root vectors, f has a nonzero component in each negative simple
root space [13, Lemma 3.2.12], this implies that w flips the sign of every simple root.
Therefore w = w0 is the longest element of the Weyl group. 
�

Because the Kostant slice S is contained in the standard Hessenberg space H , we
can define the morphism

α : Z −→ H
(g, x) �−→ (gB, x), (4.6)

which is compatible with the structure maps over the slice S. If we equip Z with the
C

∗-action

t · (a, x) = (γ (t)aγ (t)−1, t2 Adγ (t) x), for t ∈ C
∗, (a, x) ∈ Z,
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then the open dense subset Z is C
∗-stable and the morphism α is C

∗-equivariant.
Moreover, the action map gives an isomorphism

B × S −→ H◦ :=
(

∑

α∈�

g−α\{0}
)

⊕ b.

Therefore, the image of α is the open subset of H given by

H◦ := {(gB, x) ∈ G/B × S | g ∈ Gx }
= {(gB, x) ∈ G/B × S | Adg−1(x) ∈ H◦} = H ∩ (G ×B H◦).

As before, write

πZ : Z −→ S and πH : H −→ S

for the structure maps and let Ss ⊂ S be the semisimple locus of the principal slice.
Consider the two open dense subsets

Zs = π−1
Z (Ss) ⊂ Z and Hs = π−1

H (Ss) ⊂ H.

Above a semisimple element of S, the fiber ofZ and the fiber ofH are both isomorphic
to the toric variety corresponding to the fan of Weyl chambers. Therefore α extends
to an isomorphism along every semisimple fiber.

Lemma 4.7 The restriction of the map α to Ss extends to an isomorphism of varieties

Zs −→ Hs.

Proof The restriction of the adjoint quotient map (1.1) to the regular locus tr of the
maximal Cartan is the W -cover

tr −→ tr/W ∼= Ss.

The pullback of Z to tr along this map is the trivial group scheme tr × T , and the
pullback of Z to tr is the trivial bundle tr × T . The pullback of H to tr is the variety

Htr := {
(x, gB) ∈ tr × G/B | Adg−1 x ∈ H

}
.

In particular, the constant section of H given by the positive Borel B pulls back to a
smooth section

x �−→ (x, gx B)

of the familyHtr and, since each point (x, gx B) is G-conjugate to a point (s, B) ∈ H,
Lemma 4.5 implies that gx is contained in the maximal Bruhat cell Bw0N . Lastly, the
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map α pulls back to the morphism

α̃ : tr × T −→ Htr

(x, t) �−→ (x, tgx B).

Since α̃ is the pullback of α through a W -invariant map, it is W -equivariant. To prove
the lemma, it is then sufficient to show that α̃ extends to a morphism defined on all of
tr × T . This morphism, being W -equivariant, will then descend through the covering
map to an extension ofα defined on all ofZs

, and any such extension is an isomorphism
because it is an isomorphism on each fiber.

Consider the basepoint z∅ ∈ T of the closed G × G-orbit on G. If (xh, th) is a
1-parameter family in tr×T which approaches (x, z∅) as h tends to infinity, it follows
from [19, Section 2.4] that

lim
h→∞ αi (th) → ∞

for every simple root αi . Since the maximal Schubert cell is precisely the attracting
set of the point B ∈ G/B under the action of T as the values of the simple roots tend
to infinity [13, Theorem 3.1.9],

lim
h→∞ α̃(xh, th) = lim

h→∞(xh, thgxh B) = (x, B).

Since this limit is independent of the chosen one-parameter family, it follows that the
map α̃ extends continuously to the point (x, z∅). Because any T -fixed point of T is
W -conjugate to z∅, this implies that α̃ extends continuously to all T -fixed points of
tr × T .

The set X ⊂ tr × T of points to which the morphism α̃ fails to extend continuously
consists exactly of those points above which the closure of the graph of α̃ has fibers
of nonzero dimension (see, for example, the proof of [18, Lemma 7.4]). Since fiber
dimension is upper semi-continuous, X is a closed subvariety of tr × T . Since α̃ is
T -equivariant, X is also T -stable. However, by the above discussion X contains no
T -fixed points—therefore, it must be the empty set. It follows that α̃ extends to a
morphism on all of tr × T , and therefore that α extends to an isomorphism as desired.


�
Theorem 4.8 The map α extends to an isomorphism

α : Z −→ H.

Proof The fiber of Z above the regular nilpotent element f ∈ S is the closure of the
unipotent subgroup G f in the wonderful compactification G. By [3, Theorem 4.1],
the restriction of α to the fiber above f extends to an isomorphism

G f −→ Hess( f ).
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Let L be an C
∗-equivariant ample line bundle onH. The pullback of its restriction

to Hess( f ) is then an ample line bundle on G f . Since the higher cohomology groups
of the structure sheaf of Hess( f ) vanish [2, Theorem 1.1], the deformations of this
line bundle are unobstructed and therefore it extends to an ample line bundle on a
formal neighborhood of G f in Z [41, Theorem 3.3.11(iii)]. Pulling back through the
contracting C

∗-action, it futher extends to an ample line bundle on Z. Because α is
C

∗-equivariant, along Z this extension agrees with the pullback α∗L.
By Lemma 4.7, the map α extends to an isomorphism

Z ∪ Zs ∼−−→ H◦ ∪ Hs.

Because the fibers of πZ and πH are connected, the complements of the open sets
Z ∪ Zs

andH◦ ∪ Hs have codimension at least 2. Since both Z andH are projective
over S and smooth, and since the pullback α∗L is an ample line bundle, it follows
from a Hartog argument [32] (see also [26, Theorem 11.39]) that α extends to an
isomorphism

α : Z −→ H.


�
Since every regular element in g is conjugate to some element of the Kostant slice

S, Theorem 4.8 has the following immediate corollary.

Corollary 4.9 For any regular x ∈ g, there is a Gx-equivariant isomorphism of vari-
eties

Gx ∼= Hess(x).

Remark 4.10 It was proved in [3] that there is an isomorphism between the compact-
ified regular centralizer Gx and the closure of a generic Gx -orbit on the flag variety
G/B. It then follows from Corollary 4.9 that the closure of a genericGx -orbit onG/B
is isomorphic to the standard Hessenberg variety associated to x .

4.3 Cohomology ofZ

Proposition 4.2 shows that the cohomology of H is isomorphic to the cohomology
of the Peterson variety Hess( f ). We improve this result by using the C

∗-action on H
described in the previous section to construct an affine paving. In view of Theorem
4.8, this gives a basis for the singular cohomology space H∗(Z, C).

The C
∗-action contractsH to the C

∗-fixed points of the Peterson variety Hess( f ).
Because h is regular, these coincide with the T -fixed points on the flag variety which
lie in Hess( f ), which are known to be exactly

{wI B ∈ G/B | I ⊂ �},
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where wI ∈ W is the longest word of the parabolic Weyl group indexed by the subset
of simple roots I [24, Proposition 5.8].

For each I ⊂ �, consider the attracting set

XI := {(gB, x) ∈ H | gB ∈ Hess(x) ∩ BwI B} .

It is shown in [3, Proposition 6.3] that

dim (Hess( f ) ∩ BwI B) = |I |.

SinceH is flat over S, it follows that the dimension of the attracting set XI is l + |I |.

Proposition 4.11 The attracting sets X I give a stratification of H by affine spaces,
and the classes

{[XI ] | I ⊂ �}

form an additive basis for the singular cohomology H∗(H, C), where the degree of
the class [XI ] is

2l − 2|I |.

Proof This is a direct consequence of the Bialynicki-Birula decomposition [7, Theo-
rem 4.3]. We remark that the result of loc. cit. is stated for smooth projective schemes.
However, the projectivity assumption is needed only to establish that the fixed set of
the C

∗-action is projective and that, in the limit, every point of the variety flows to
a fixed point. If these conditions are satisfied, the Bialynicki-Birula decomposition
holds more generally for any smooth quasi-projective variety. See for example [4,
Appendix B], where an action satisfying these conditions is called circle compact. 
�

4.4 General fibers of themomentmap

Consider the moment map

μR : T ∗
DG −→ g

corresponding to the right action of G on the log-cotangent bundle T ∗
DG. Restricting

to the action of the maximal unipotent subgroup N , we have a moment map

νR : T ∗
DG −→ n∗.
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Once again identifying n∗ ∼= g/b, we obtain a commutative diagram

T ∗
DG g

g/b.

μR

νR

As in the previous sections, by (1.5) the action of N on the fiber ν−1
R ( f ) is free, and

so this fiber is smooth.
Viewing T ∗

DG as a subbundle of the trivial bundle G × g× g as in (2.1), define the
closed subvariety

X := {
(a, y, x) ∈ T ∗

DG | x ∈ S
}
.

Through the action map we get an isomorphism

N × X ∼−−→ ν−1
R ( f ),

and Proposition 3.3 implies that

X ∼= ν−1
R ( f )/N

is a smooth log-symplectic variety. The left action of G descends to a Hamiltonian
action on X, and the associated moment map is

μX : X −→ g

(a, y, x) �−→ y.

Let γ : C
∗ −→ G once again be the one-parameter subgroup whose Lie algebra is

spanned by the regular semisimple element h, and define an action of C
∗ on G×g×g

by

t · (a, y, x) = (aγ (t)−1, t2y, t2 Adγ (t) x) for t ∈ C
∗, (a, y, x) ∈ G × g × g.

(4.12)

Since this action stabilizes both the closed subvariety G × g × S and the locus (2.3)
of points of T ∗G, it induces a well-defined action on X.

The moment map μX is then equivariant with respect to the C
∗-action on g which

scales by a factor of t2. In the limit as t → 0, this action therefore contracts the variety
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X to the fiber of μX above 0. This fiber is given by

μ−1
X (0) = {(a, 0, x) ∈ T ∗

DG | x ∈ S}
= {(gz∅h

−1, 0, f ) | Adh−1 f ∈ b−}
∼= (G × B−) · z∅

∼= G/B,

where z∅ is the basepoint of the closed orbit of minimal dimension inG [14, Corollary
4.22].

Via the embedding (2.3), the cotangent bundle T ∗G sits inside T ∗
DG as the locus

of points of the form (a,Ada x, x). Intersecting X with this open locus, we obtain

X◦ := {
(a,Ada x, x) ∈ T ∗

DG | a ∈ G, x ∈ S
}
.

This variety, which is the Whittaker reduction of T ∗G with respect to the right-action
of G, is the open dense symplectic leaf of X. It is isomorphic to

G ×N ( f + b) ∼= G × S

the twisted cotangent bundle of the base affine space G/N .
We define a morphism

β : X◦ −→ G ×B H

(a,Ada x, x) −→ [a : x].

This map commutes with the moment maps μX and μH , and by Lemma 4.4 it is
injective. Moreover, it is C

∗-equivariant when the vector bundle G ×B H with the
C

∗-action

t · [a : x] = [a : t2x] for t ∈ C
∗, [a : x] ∈ G ×B H

given by scaling along the fibers.

Lemma 4.13 The morphism β extends to an isomorphism between the fiber of μX
above 0 and the zero-section of the vector bundle G ×B H.

Proof In the log-cotangent bundle T ∗
DG, the point (z∅, 0, f ) can be realized as the

limit

(z∅, 0, f ) = lim
t→0

t · (1, f , f )

under the action (4.12). Since any point of μ−1
X (0) is a left translate of this one, we

can continuously extend β to this fiber by

β(gz∅, 0, f ) = lim
t→0

t · β(g,Adg( f ), f ) = lim
t→0

t · [g : f ] = [g : 0].
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Since the stabilizer of z∅ under the left action of G is exactly the Borel subgroup B,
it follows that this extension is an isomorphism of varieties. 
�

We can now use Theorem 4.8 to prove the following proposition, which was con-
jectured in [14, Conjecture 4.26] based on an earlier version of the present paper.

Proposition 4.14 The map β extends to an isomorphism

β : X −→ G ×B H

which commutes with the moment mapts μX and μH .

Proof Consider the regular loci

Xr := μ−1
X (gr) = {

(a, y, x) ∈ T ∗
DG | x ∈ S, y ∈ gr

}

and

μ−1
H (gr) = {

(gB, x) | x ∈ gr, gB ∈ Hess(x)
} = G ×B H r.

Since two regular elements are in the same adjoint orbit closure if and only if they are
conjugate, we have isomorphisms

Z ×S gr ∼= Xr and H ×S gr ∼= G ×B H r

Therefore, the isomorphism

α : Z −→ H

of Theorem 4.8 induces an isomorphism

βr : X r ∼−−→ G ×B H r.

which agrees with β on the overlap with X ◦.
We now bound the codimension of the complements of the subvarieties Xr and

G ×B H r. First, since regular semisimple adjoint orbits are closed, each irreducible
component of the complement of Xr is strictly contained in an irreducible component
of the complement of X∩ (G × g× grs), which has codimension at least 1. It follows
that

codimX(X\X r) ≥ 2.

Moreover, the codimension of the complement of G ×B H r in G ×B H is equal to

codim(G×B H)(G ×B (H\H r)) = codimH (H\H r) ≥ 3

where the last inequality follows, for instance, from the proof of [14, Lemma 4.15].
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Therefore βr is a birational map between open subvarieties whose complements
have codimension at least 2. Moreover, by Lemma 4.13, β extends continuously to
an isomorphism between the zero-fiber of μX and the zero-section G/B of G ×B H .
Since any line bundle on G/B extends to a unique line bundle on the vector bundle
G×B H by pulling back along the bundlemap, it follows once again thatβr intertwines
two ample line bundles. Therefore, once again by [26, Theorem 11.39] it follows that
βr extends to an isomorphism

β : X −→ G ×B H .


�

Corollary 4.15 Let y ∈ g and let x ∈ S be the unique point in the Kostant slice such
that y is in the closure of the adjoint orbit of x. Then there is an isomorphism

μ−1(y, x) ∼= Hess(y).

Proof The isomorphism of Proposition 4.14 induces an isomorphism between corre-
sponding moment map fibers

μ−1
X (y) ∼= μ−1

H (y).

The left-hand side is precisely μ−1(y, x), and the right-hand side is Hess(y). 
�

5 The Poisson structure on the standard Hessenberg family

Both sides of the isomorphism

α : Z ∼−−→ H

constructed inTheorem4.8 are equippedwith natural Poisson structures. In this section
we will show that the morphism α is Poisson. We will use this observation to prove
that the Poisson structure on the standard universal Hessenberg family G ×B H is
log-symplectic. To do this we will apply the theory of Poisson transversals, which we
first briefly recall. See, for instance, [20, Section 2] for more details.

5.1 Poisson transversals

Let X be a complex Poisson manifold. A Poisson transversal in X is an embedded
submanifold V such that, for any symplectic leaf (L, ωL) of X which meets V ,

• V is transverse to L , and
• the pullback of ωL to V ∩ L is symplectic.
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The property of being a Poisson transversal induces a natural Poisson structure on V ,
and the symplectic leaves of this structure are precisely the intersections

(V ∩ L, ωL|V∩L).

Example (1) If X is symplectic, then the Poisson transversals in X are the symplectic
submanifolds, and the induced Poisson structures are simply the restrictions of the
symplectic form.

(2) If all the symplectic leaves of X have the same dimension, and if V is a submanifold
of complementary dimension which meets each leaf transversally, then V is a
Poisson transversal and its induced Poisson structure is trivial.

(3) If X is the semisimple Lie algebra g with the standard Kostant-Kirillov Poisson
structure, and {e, h, f } ⊂ g is any sl2-triple, the Slodowy slice f +ge is a Poisson
transversal [21, Section 3.2].

The following lemma appears in [20] in the setting of real differential manifolds.
For complex manifolds the proof is identical, so we do not reproduce it.

Lemma 5.1 [20, Lemma 7] Let ϕ : X1 −→ X2 be a Poisson morphism between
smooth Poisson varieties, and suppose that V ⊂ X2 is a Poisson transversal. Then
the preimage ϕ−1(V ) is a Poisson transversal in X1. In particular, ϕ−1(V ) is smooth.

Remark 5.2 It follows from Lemma 5.1 that, for any Hamiltonian G-manifold M with
moment map

ϕ : M −→ g,

the preimage�−1(S) is a Poisson transversal in M and therefore has a natural Poisson
structure. Moreover, (1.5) gives an isomorphism

ϕ−1(S) ∼= ϕ−1( f + b)/N , (5.3)

which is an isomorphism of Poisson manifolds. While this is true in full generality
[15, Proposition 3.13], in the symplectic and log-symplectic setting it is particularly
easy to see and seems to have been known to experts for some time, so we include
here a short explanation. The isomorphism (5.3) fits into the diagram

ϕ−1(S) ϕ−1( f + b) M

ϕ−1( f + b)/N .

ı

∼ q

j

Lettingω be the 2-form induced byWhittaker reduction on the quotientϕ−1( f +b)/N ,
we have

ı∗q∗ω = ı∗j∗ω,
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and therefore (5.3) is a Poisson map. In particular the Poisson manifoldsH, Z, and Z
can be realized as the Poisson transversals

μ−1
H (S), μ−1(S × S), and μ−1(S × S)

in G ×B H , T ∗G, and T ∗
DG respectively.

We prove the following result on log-symplectic Poisson transversals in the setting
of complex manifolds. Because in the next section all Poisson algebraic varieties are
smooth, we will be able to apply it to our algebraic setting as well.

Proposition 5.4 Let (X , π) be a complex Poisson manifold and suppose that V ⊂ X
is a Poisson transversal which intersects every symplectic leaf. If the induced Poisson
structure on V is log-symplectic, then thePoisson structure on X is also log-symplectic.

Proof Choose a point x ∈ V . By the Weinstein splitting theorem [31, Theorem
1.25], there is an open neighborhood U ⊂ X containing x such that U is Poisson-
diffeomorphic to the product of V ∩U and a symplectic manifold (L, ρL)—that is,

(U , π|U ) ∼= (U ∩ V , πV ) × (L, ρL).

If V is log-symplectic, then the Poisson structure π|U is also log-symplectic. It follows
that there is an open neighborhood of V in X where the Poisson bivector is log-
symplectic at every point.

If V intersects every symplectic leaf, then any point in X is reached from a point of
V by flowing along Hamiltonian vector fields. Since the Poisson structure is invariant
under this flow, it follows that it is log-symplectic at every point of X . 
�

5.2 The log-symplectic structure on G ×B H

The symplectic leaves ofG×B H correspond bijectively to the B-orbits on the quotient
space H/n. They are described in detail in [1]. In particular, there is a uniqueopendense
orbit whose preimage in H is H ◦. It follows that the unique open dense symplectic
leaf of G ×B H is

G ×B H ◦.

Lemma 5.5 The open dense symplectic leaf of H is precisely the image H◦ of the
morphism α defined in (4.6).

Proof The open dense symplectic leaf of H is the Whittaker reduction of G ×B H ◦,
which we can write as

L0 := {
(gB, x) ∈ G/B × S | Adg−1 x ∈ H ◦} .
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Recall that α was defined by

α :Z −→ H
(g, x) �−→ (gB, x),

and that the points of Z are pairs (g, x) ∈ G × g with the property that g centralizers
x . It follows immediately thatH◦ ⊂ L0. Therefore, it is enough to check that the fiber
of L0 over x ∈ S is a single Gx -orbit.

Let g1B, g2B be elements of this fiber, so that Adg−1
1

x, Adg−1
2

x ∈ H ◦. By (1.5),
the action map gives an isomorphism

B × S −→ H ◦.

This implies that any two elements in H ◦ that are G-conjugate are actually B-
conjugate, so there is an element b ∈ B with

Adg−1
1

x = Adbg−1
2

x .

It follows that g1bg
−1
2 ∈ Gx , and therefore the flags g1B and g2B are in the same

Gx -orbit. 
�
Proposition 5.6 The isomorphism

α : Z −→ H

defined in Theorem 4.8 is an isomorphism of Poisson manifolds. In particular, the
Poisson structure onH is log-symplectic.

Proof The isomorphism α is Poisson if and only if its differential α∗ maps the Poisson
bivector of Z to the Poisson bivector of H. It is sufficient to check this condition on
the open dense symplectic leaf—that is, to check that the isomorphism of varieties

α : Z −→ H◦

is a symplectomorphism when Z is equipped with the Poisson structure described
in Sect. 1 and H◦ is equipped with the Poisson structure coming from Hamiltonian
reduction of G ×B H ◦.

Consider again the moment map

μR : T ∗G −→ g

(a, x) �−→ x

for the right action of G on T ∗G. Since μR is G-equivariant and Poisson, we have an
isomorphism of coisotropic varieties

T × μ−1
R ( f + b) ∼= μ−1

R (H ◦)
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induced by the action map, where the coisotropic structure on T is zero. Quotienting
by the action of B gives a symplectomorphism

G ×N ( f + b) ∼= μ−1
R ( f + b)/N ∼= μ−1

R (H ◦)/B ∼= G ×B H ◦. (5.7)

The universal centralizer Z is the Whittaker reduction of the left-hand side with
respect to the left action of N , and the leafH◦ is the Whittaker reduction of the right-
hand side with respect toμH . Since the isomorphism α is induced from (5.7) by taking
Whittaker reduction of both sides, it is a symplectomorphism. 
�
Theorem 5.8 The Poisson structure on the space G ×B H is log-symplectic.

Proof The moment map

μH : G ×B H −→ g

is a Poissonmorphism andS is a Poisson transversal in g. By Lemma 5.1, the preimage

μ−1
H (S) ∼= H

is a Poisson transversal in G ×B H , and by Proposition 5.6 it is log-symplectic. It
remains to show that it intersects every symplectic leaf of G×B H—then the theorem
will follow from Proposition 5.4.

The symplectic leaves of G ×B H are in bijection with the B-orbits on the quotient
space H/n. IfO ⊂ H/n is such an orbit, we writeO+ n for its preimage in H . Then
the corresponding symplectic leaf is G ×B (O + n).

For each simple root α ∈ �, let α̌ be the corresponding coroot and let fα ∈ g−α be
a fixed choice of negative simple root vector. Then the B-orbits on H/n are indexed
by the data

• a subset of simple roots I ⊂ �

• a collection of elements {hα ∈ Cα̌ | α /∈ I },
in the sense that each orbit O ⊂ H/n contains a unique coset of the form

(
∑

α∈I
fα

)

+
(

∑

α/∈I
hα

)

+ n.

Then O + n contains the element

y =
(

∑

α∈I
fα

)

+
(

∑

α/∈I
hα

)

+ e ∈ b− + e ⊂ gr.

Since y is regular, there is some g ∈ G such that gy ∈ S. The point

[g : y] ∈ G ×B H
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lies both in the symplectic leaf corresponding to O and in the Poisson transversal
μ−1
H (S). 
�

6 Relation to Coulomb branches

Let Ǧ be the Langlands dual group of G, and denote by K = C((t)) the field of
Laurent series and by O = C[[t]] its ring of integers. The affine Grassmannian of Ǧ
is the ind-scheme

GrǦ := Ǧ(K)/Ǧ(O).

The Ǧ(O)-orbits on GrǦ are finite-dimensional varieties indexed by �+, the set of
dominant characters of the maximal torus T of G. They form a stratification of GrǦ,
ordered by the standard partial order on the character lattice.

The equivariant homology space

HǦ(O)• (GrǦ)

has a ring structure given by the convolution product [13, Section 2.7]. It is a Poisson
algebra [5] whose Poisson structure comes from the non-commutative one-parameter
deformation

HǦ(O)�C
∗

• (GrǦ).

This is an example of a Coulomb branch in the sense of Nakajima [33].
In [5] the authors construct an isomorphism of Poisson algebras

HǦ(O)• (GrǦ) ∼= C[Z]. (6.1)

In this section we will explain, through the lens of this isomorphism, how to obtain

the partial compactification Z directly from the Coulomb branch HǦ(O)• (GrǦ).
First notice that both sides of (6.1) have natural filtrations indexed by the lattice �

of characters of T . The filtration on the equivariant homology ring HǦ(O)• (GrǦ) is

induced by the support in Ǧ(O)-orbit closures. The filtration on the coordinate ring
C[Z] is inherited through the surjection

C[G] ⊗ C[S] ∼= C[G × S] � C[Z]

from the Peter-Weyl filtration on C[G].
Proposition 6.2 The isomorphism (6.1) is an isomorphism of filtered algebras.
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Proof We recall an outline of the construction of (6.1). Let R be the set of roots of g
andW the Weyl group. In [5, Proposition 2.8], the universal centralizerZ is identified
with the spectrum of the Weyl group invariants of an affine blow-up of T × t:

C[Z] ∼= C

[
T × t,

(tα − 1) × 0

1 × α
| α ∈ R

]W

.

Here we write α ∈ R for the function on t and tα for the corresponding function on T .
The right-hand side is filtered by dominant weights of T , and from the construction it
is clear that this isomorphism is compatible with the filtrations on both sides.

Let Ť be the maximal torus of Ǧ. Using the fixed-point localization theorem, it is
shown in [5, Section 6.3] that there is an isomorphism of localized C[t]W -modules

HǦ(O)(GrǦ)|tr/W ∼= HŤ (O)(GrŤ)W|tr/W ∼= C[T × t]W|tr/W ∼= C[Z]|tr/W .

The authors then prove that this restricts to the desired isomorphism (6.1). The filtra-
tions we are interested in are compatible with the localization and with the first and
third isomorphisms above. But it is clear that they also coincide under the second,
which is induced by

HŤ (O)(GrŤ) ∼= C� ⊗ HŤ (O)(pt) ∼= C� ⊗ C[t] ∼= C[T × t].


�
Now, the wonderful compactification G admits a Rees-type construction from the

Peter-Weyl filtration on C[G] as follows. One considers the Rees algebra

Rees� C[G] =
⊕

λ∈�

C[G]≤λt
λ ⊂ C[G × T ],

where

C[G]≤λ =
⊕

μ≤λ

V ∗
μ ⊗ Vμ

is a sum over all dominant weights μ which are less than or equal to λ in the partial
ordering on �. The wonderful compactification G is obtained from Rees� C[G] by a
multi-proj construction [11, Chapter 6]:

G ∼= Proj (Rees� C[G]) .

In other words, the Vinberg monoid

VG := Spec (Rees� C[G])
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carries a natural action of T , and G is the quotient of an open dense subset by this
action.

An analogous procedure produces the partial compactificationZ. We take the Rees
algebra of C[Z] with respect to the filtration by weights of T to obtain

Z ∼= ProjS (Rees� C[Z]) ,

where the right-hand side is a multi-proj relative to the Kostant slice S. In view of
Proposition 6.2, we have proved the following result:

Proposition 6.3 There is an isomorphism of projective

S-schemes Z ∼= ProjS
(
Rees� HǦ(O)• (GrǦ)

)
.

Remark 6.4 This construction is similar to the approach suggested in [9, Remark 3.7].
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