STEINBERG SLICES AND GROUP-VALUED MOMENT MAPS

ANA BALIBANU

ABSTRACT. We define a class of transversal slices in spaces which are quasi-Poisson for the ac-
tion of a complex semisimple group G. This is a multiplicative analogue of Whittaker reduction.
One example is the multiplicative universal centralizer 3 of GG, which is equipped with the usual
symplectic structure in this way. We construct a smooth relative compactification 3 by taking the
closure of each centralizer fiber in the wonderful compactification of G. By realizing this relative
compactification as a transversal in a larger quasi-Poisson variety, we show that it is smooth and

log-symplectic.
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INTRODUCTION

Let G be a simply-connected, complex semisimple group, and let G4 be its adjoint form. The
group G,q acts on G by conjugation, and G contains a transversal slice X for this action which was
introduced by Steinberg [Ste]. The resulting (multiplicative) universal centralizer is the smooth
affine variety

3= {(a,h) EGuyxX|ac ng}.
This family of centralizers first appeared in work of Lusztig [Lus|, Section 8.6]. When G is simply-
laced, Bezrukavnikov, Finkelberg, and Mirkovic [BEM]| showed that its coordinate ring is isomorphic
to the equivariant K-theory of the affine Grassmannian of the Langlands dual group GV—therefore,
in this case 3 is an example of a Coulomb branch as defined by Nakajima [Nak].

The natural symplectic structure on 3 is inherited from the nondegenerate quasi-Poisson struc-

ture on the double Dg,, := Gaq X G as described, up to a finite central quotient, by Finkelberg
1
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and Tsymbaliuk [FiTs|. We construct a relative compactification
3= {(a,h) e@xZ\ae@}

of 3, by taking the closure of each centralizer fiber inside the wonderful compactification G,q. We
show that 3 is smooth, and that the symplectic structure on 3 extends to a log-symplectic Poisson
structure on 3. When G is simply-laced, the relative compactification 3 can be obtained from
the Coulomb branch definition given in [BEM]| through a Rees construction which comes from the
Vinberg monoid. Therefore, in this case 3 is an example of a Rees algebra approach to compactified
Couloumb branches suggested by Braverman, Finkelberg, and Nakajima [BFN], Remark 3.7].

The additive setting. Let g be the Lie algebra of G and fix a regular slo-triple {e, h, f}. The
regular nilpotent element e is contained in a unique Borel subalgebra b, and we write u for its
nilpotent radical and U for the corresponding subgroup of G.

Suppose that M is a Poisson manifold with a Hamiltonian action of G and, identifying the Lie
algebra g with its dual via the Killing form isomorphism, let v: M — g be the associated moment
map. The Whittaker reduction of M is the Poisson manifold

v (f +b)/U

obtained by Hamiltonian reduction with respect to the action of U at a point corresponding to a
regular character in u*.

On the other hand, one can consider the principal slice of regular elements
S:=f+g"Cug,

which was defined by Kostant [Kos] and which is contained in the space f + b. Because S meets
every regular adjoint orbit exactly once and transversally, it is a Poisson transversal for the Kirillov—
Kostant-Souriau Poisson structure on g. This implies that the preimage v~!(S) is a Poisson
transversal in M, and in this way inherits a natural Poisson structure.

These two constructions are related through the Kostant Cross-section Theorem [Kos, Theorem
8], which states that S is a slice for the free action of U on f + b. The induced isomorphism of
Poisson manifolds

vH(S) = v (f +b)/U,
shows that classical Whittaker reduction coincides with the preimage of the Kostant section S
under the moment map.

This approach is used in [Bal] to construct a canonical relative compactification of the universal
centralizer

Z:={(a,x) € Gaga xS |a € Gyy}.
This is a symplectic variety obtained by Whittaker reduction relative to the G x G-action on the
cotangent bundle T*G,q. The canonical symplectic structure on T*G,q extends to a log-symplectic

structure on the logarithmic cotangent bundle T},Gaq. It is shown in [Bal] that the universal
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centralizer Z has a smooth, log-symplectic relative compactification
Z:={(a,2) € Gaa xS |acG%},

which is the Whittaker reduction of T75G,q. In view of the discussion above, there is a commutative
diagram of moment maps

T*Gad —> TBGad

Nk

The varieties Z and Z are simply the preimages of the principal slice S x (—S) under v and 7, and
their Poisson structures are therefore also obtained via restriction in this way.

Summary of results. We give a multiplicative analogue of these results by considering manifolds
which are quasi-Poisson relative to the action of G. These can be viewed as deformations of ordinary
Poisson structures in which the Jacobi identity is twisted by a canonical trivector field induced by
the group action. They were introduced in a series of papers by Alekseev, Malkin, and Meinrenken
[AMM], Alekseev and Kosmann-Schwarzbach [AKS], and Alekseev, Kosmann-Schwarzbach, and
Meinreken [AKSM]. These manifolds come equipped with group-valued momentum maps, and
they are foliated by nondegenerate leaves.

The geometry of quasi-Poisson structures makes the multiplicative setting more subtle than the
additive case described above. In this setting there is no naive analogue of Whittaker reduction,
because one cannot generally perform quasi-Hamiltonian reduction with respect to the action of
a subgroup. This is because a quasi-Poisson G-manifold is generally not quasi-Poisson for the
action of a subgroup of GG. To fix this issue, we introduce a multiplicative counterpart of Whittaker
reduction which uses transversal slices. Kostant’s principal slice S is replaced by the Steinberg
cross-section X of G, and we prove the following theorem, as Corollary

Theorem. Let M be a quasi-Poisson G-manifold with group-valued moment map ®: M — G.
The Steinberg slice

My = o~ H(%)
is a smooth submanifold of M. The quasi-Poisson structure on M pulls back to a Poisson structure
on My, whose symplectic leaves are the intersections of My, with the nondegenerate leaves of M.

The natural Poisson structure on My is “transverse” to the quasi-Poisson structure on M, in
the sense that it intersects every nondegenerate leaf transversally and symplectically. We use this
approach to construct multiplicative analogues of several Whittaker-type algebraic varieties. We
also define the notion of log-nondegenerate quasi-Poisson structures, which are a multiplicative
analogue of log-symplectic structures. In Proposition we show that the log-nondegeneracy
condition behaves well with respect to Steinberg slices:
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Proposition. If M is a log-nondegenerate quasi-Poisson G-manifold, the Poisson structure induced
on the Steinberg slice My, is log-symplectic.

We then apply this framework to the multiplicative universal centralizer 3. This variety sits as a
Steinberg slice in the double D¢, , = Gaq x G, which is the quasi-Poisson analogue of the cotangent
bundle of G. In fact, using the identification T*G,q = Gaq X g, the cotangent bundle T*G,q is a
bundle of Lie algebras over G,q and Dg,, is the simply-connected group scheme which integrates
it. In Proposition We extend the group scheme D¢, to a group scheme over Gaq, which we call
the logarithmic double.

Proposition. The double Dg,, extends to a group scheme DTM over Guq which integrates the

bundle of Lie algebras THGqaq. The nondegenerate quasi-Poisson structure on Dq,, extends to a

log-nondegenerate quasi-Poisson structure on DG—d.
a

This produces a commutative diagram of group-valued moment maps

DGad DGad

Nk

We write ¢: G — G for the inversion map, and we prove the following theorem, as Theorem

Theorem. There is an isomorphism of varieties
3= (T xuR)

between the compactified universal centralizer 3 and the Steinberg slice i (X x 1(X)) of the log-
arithmic double DGTd' Therefore 3 is a smooth, log-symplectic Poisson variety whose open dense

symplectic leaf is 3.

Outline. In Section [l| we review quasi-Poisson manifolds as developed in [AKSM]|. We also outline
how they fit into the framework of twisted Dirac structures, as described in [BuCrl] and [BuCr2].
In Section [2] we develop a theory of Steinberg slices in quasi-Poisson manifolds. We give several
examples of these slices, including a multiplicative analogue of the twisted cotangent bundle of the
base affine space. Then we define the notion of log-nondegeneracy for quasi-Poisson manifolds, and
we show that Steinberg slices in log-nondegenerate quasi-Poisson manifolds are log-symplectic.

In Section [3] we recall the multiplicative universal centralizer 3, which is a Steinberg slice in the
double D¢,
In Section E| we use the Vinberg monoid to construct the smooth group scheme DG—ad. Then we

and we review some facts about the geometry of the wonderful compactification G,q.

show that the quasi-Poisson structure on D¢, , extends to a log-nondegenerate structure on DG—ad.
Finally, in Sectionwe realize the relative compactification 3 as a Steinberg slice in DG—ad, equipping
it with a log-symplectic Poisson structure. We give an explicit description of its stratification by

symplectic leaves.
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1. QUASI-HAMILTONIAN AND QUASI-POISSON STRUCTURES

We recall the basics of quasi-Hamiltonian and quasi-Poisson manifolds below, and we refer to
[AKSM]| for more details. We then explain how to view quasi-Poisson manifolds as twisted Dirac
manifolds, following [BuCrl] and [BuCr2]. We will use this formalism in Section

1.1. Quasi-Poisson manifolds. Let G be a simply-connected, semisimple complex group, let g
be its Lie algebra, and write (-,-) for the Killing form. Under the isomorphism g = g* induced by
this form, the Cartan 3-tensor ¢ € A3g is the dual of the invariant trilinear function n € A3g* given
by

1
77(1"73/"2) = E(:’Ua [ysz for all T,Y,2 €8

Let {e;} be a basis of g which is orthonormal relative to the Killing form. Then

Y= ﬁCijkei Nej N eg
where Cjji, = (e;, [ej, ex]) are the structure constants. Here and throughout the paper we adopt the
convention of summing over repeated indices.

If G acts on a complex manifold M, we write £ys for the polyvector field induced by the infin-
itesimal action of an element ¢ € A*g. In particular, the Cartan 3-tensor ¢ generates a trivector
field ¢p; € T(A3TM). A quasi-Poisson structure on the manifold M is a G-invariant section

7 € T(A’TM) such that
(1.1) [, 7] = ¢,

where the bracket on the left is the Schouten—Nijenhuis bracket. In the special case where G is
abelian, the Cartan 3-tensor is trivial, and a quasi-Poisson structure on M is simply a G-invariant
Poisson structure.

Example 1.2. [AKSM, Section 3] The group G, equipped with the conjugation action, has a
natural quasi-Poisson bivector

TG = %eﬁ A eZL .
Here el and elt are the invariant vector fields on G corresponding to left- and right-multiplication.
The bivector 7 is tangent to the conjugacy classes, and it induces a quasi-Poisson structure on

each one.

If (M, 1) and (Ma, ) are quasi-Poisson G-manifolds, a G-equivariant map f: M; — My is
called quasi-Poisson if the bivectors m; and 7y are f-related. A quasi-Poisson manifold (M, ) is
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Hamiltonian if it has a G-equivariant group-valued moment map
o.M — G

which satisfies a differential equation analogous to the usual moment map condition [AKSM| Defi-
nition 2.2]. In particular, ® is a quasi-Poisson map when G is equipped with the bivector 7g. In

what follows all quasi-Poisson manifolds will be Hamiltonian, so we will suppress this adjective.

Example 1.3. [AKSM| Example 5.3] Consider the internal fusion double D(G) := G x G. The
group G x G acts on D(G) by

(g.h) - (u,v) = (guh™", hvg™")
for (g,h) € G x G and (u,v) € D(G). Let {e},e?} be the induced orthonormal basis for the Lie
algebra g @ g. The manifold D(G) has a quasi-Poisson structure
1

3 (eilL A et 4 et e?L) )

The associated moment map is

D(G) — Gx G
(u,v) — (uv,u to™1).

In the subsequent sections we will often use the reparametrization of D(G) given by setting
a = uw and b = vu. This is analogous to the left-trivialization of the cotangent bundle T*G. In
these coordinates the G x G-action is

(1.4) (9,h) - (a,b) = (gah™ ', hbh™ 1)
At the point (a,b) the quasi-Poisson bivector becomes

1
B (eif NeB+ el ne +eff A (Ady-1e:)).

Using the fact that Ad,-1 is an orthogonal transformation relative to the Killing form and summing
once again over repeated indices, the last term simplifies to

e A (Adg-1 €)= (Adg-1 €)™ A (Ady-1 €)= elF A e2l,

(2

Therefore the quasi-Poisson structure in these coordinates is

1
(1.5) mi=— (elF A (eZF + ) + 2t Aedlt)

2
and the associated moment map is

(1.6) p: D(G) — Gx G
(a,b) — (aba™t,b71).

Quasi-Poisson structures are not compatible with restriction to the action of a subgroup—that
is, a quasi-Poisson G-manifold is not in general quasi-Poisson for the action of a subgroup of G. An
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exception to this is the case of diagonal subgroups, for which there is a procedure called internal
fusion [AKSM, Section 5] which we now describe.

Suppose that (M, 7) is a quasi-Poisson G x G x H-manifold with group-valued moment map
M—GxGxH
m — (®1(m), o(m), ¥(m)).
Define a 2-tensor
(1.7) ) = %e% nep €N (gD g),
and consider the modified bivector
Thus = T + P
Let ®1®5 denote the pointwise product of the components of ®. Then the triple
(M, Tpus, (21 P2, V)

is a quasi-Poisson G x H-manifold relative to the diagonal action of G.

Fusion equips the category of quasi-Poisson G-manifolds with a monoidal structure. Given two
quasi-Poisson G-manifolds (Mj, 71, ®1) and (Ma, ma, $2), their direct product M; x My is naturally
a quasi-Poisson manifold for the action of G x G. Fusing the two sides of the G-action, we obtain
a new quasi-Poisson G-manifold denoted

My ® Mo,

with bivector (71 + 72)fys and moment map P Ps.

1.2. Nondegenerate quasi-Poisson structures. Let (M, m, ®) be a quasi-Poisson G-manifold.
The bivector 7 induces a morphism of vector bundles

7 T*M — TM
a— (o, —)

from the cotangent bundle T*M to the tangent bundle T'M. The action of G differentiates to an
infinitesimal action map

p:Mxg—TM.
The quasi-Poisson manifold M is called nondegenerate if the bundle map
(1.8) ™ op: T"M ©&g — TM

(0, &) = 7 () + p(€)

is surjective. For example, the double D(G) defined in Example is nondegenerate.
Let 6% and A% be the left- and right-invariant Maurer-Cartan forms on G. These are g-valued
1-forms defined as follows: if Ly, Ry are the differentials of left- and right-multiplication by the
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element h € G, then for any v € TG
0L (v) = Ly-1v and 0F(v) = Rj,-1v.

The bi-invariant 3-form on G induced by 1 € A3g*, which by abusing notation we denote by the

same symbol, is
(1.9) n= % (6%, (0%, 0")) = % (07, [07,61]) € T(A*T*Q).

Every nondegenerate quasi-Poisson manifold (M, w, ®) carries a (possibly degenerate, non-closed)
2-form w which satifies the following properties:

(Ql) dw=—9"n;
(Q2) 1e,w = %@*(aL + 0 ¢) forall € € g;
(Q3)  kerwy, = {&u(m) | € € g such that Adg(,) & = —E} .

This 2-form gives M the structure of a quasi-Hamiltonian G-space in the sense of [AMM]. We
write 07, 0% € T'(T*Q) for the components of #* and 6% in the basis {e;}. At every point these

177

1-forms are a dual basis to the left- and right-invariant vector fields, so that
OF (b) = OR(eT) = 6
Define C': TM — T M to be the morphism of vector bundles
(1.10) C=Td— i@*(ef —0R) ® e
Then w and 7 satisfy the compatibility condition
(1.11) 0w’ = C,
where w”: TM —s T*M is the vector bundle map given by contraction with w.

Example 1.12. The quasi-Hamiltonian 2-form corresponding to the nondegenerate quasi-Poisson
manifold D(G) from Example is

1
w=—3 (01 N OZE 4+ 017 A 02F)

Remark 1.13. If the action of G is trivial, the quasi-Poisson manifold M is nondegenerate if and
only if 77 is an isomorphism—that is, if and only if 7 is a nondegenerate Poisson structure. In this
case w is exactly the corresponding symplectic form.

Even when 7 is degenerate, the image of is an integrable generalized distribution. Its
integral submanifolds, which are G-stable, are called the nondegenerate leaves of M, because 7 gives
each the structure of a nondegenerate quasi-Poisson manifold. In particular, each nondegenerate
leaf S is equipped with a quasi-Hamiltonian 2-form wg.

Example 1.14. The nondegenerate leaves of the quasi-Poisson structure (G, ) defined in Ex-
ample are the conjugacy classes.
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There is an analogue of Hamiltonian reduction for quasi-Poisson manifolds. Let (M, m, ®) be
a quasi-Poisson G-manifold and fix a conjugacy class O C G. If the action of G on ®~1(0O) is
locally-free, then the quotient
M)oG :=d"10)/G
has a natural Poisson structure whose symplectic leaves are precisely the reductions of the nonde-

generate leaves of M. When O = {1} is the identity element, we denote this quotient simply by
MJG.

1.3. Twisted Dirac structures. Fix a closed 3-form ¢ € T'(A3T*M). A vector subbundle
LcTMeT'M
is called a ¢-twisted Dirac structure on M if it satisfies the following two conditions:

L is Lagrangian with respect to the symmetric pairing on I'(TM @ T*M) given by

(X, 0), (Y, 0)) = B(X) + a(Y);
« I'(L) is closed under the ¢-twisted Courant bracket on I'(TM & T*M) defined by

[[(X, a), (Y,,@)]]¢ = ([X, Y], ﬁxﬁ —tydo + LX/\y¢).

The projection of L C T'M &T*M onto the first summand is an integrable generalized distribution,
and induces a foliation of M by presymplectic leaves. Each presymplectic leaf S C M carries a
(potentially degenerate, non-closed) 2-form wg such that dwg = ¢|g.

Example 1.15. (1) A symplectic structure w on a manifold M corresponds to the 0-twisted Dirac
structure
Ly = {(X,(X)) | X e TM} CTM & T*M
given by the graph of w”. Conversely, a O-twisted Dirac structure L ¢ TM & T*M is induced
by a symplectic form if and only if L is transverse to both T'M and T* M, viewed as subbundles
of TM @T*M.
(2) Similarly, a Poisson structure 7 on M corresponds to the O-twisted Dirac structure

Ly :={(n"(a),a) |a e T*M} c TM & T*M

given by the graph of 7#. Its projection onto the first coordinate is the distribution whose
integral submanifolds are the symplectic leaves of w. Conversely, a O-twisted Dirac structure
L CTM @ T*M is induced by a Poisson bivector if and only if L is transverse to T'M.

(3) [BuCrll, Theorem 3.16] A Hamiltonian quasi-Poisson structure 7 on a G-manifold M corre-
sponds to the —®*n-twisted Dirac structure

L= {(ﬁ(a) +0(6), C*(a) + @*a(g)) e T*M, ¢ € g} C TM @ T*M.
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Here C is as defined in ([1.10) and o is given by
(1.16) o:9g— I'(T7G)
1 %
£ 5 (- +eR),
where v is the dual of the vector field v € T'(T'G) under the isomorphism TG = T*G induced
by the Killing form.
This Dirac structure has the property that ker ®, N L = 0. The associated presymplectic

foliation, given by projecting L onto T'M, is exactly the foliation of M by quasi-Hamiltonian
leaves described in Section [[.2

Let (M, Lys) be a Dirac manifold and let f: M — N be a smooth map to a manifold N. The
pushforward of the Dirac structure Ly, if it is well-defined, is the distribution
fLat == {(f.X.8) € TN @ T"N | (X, [*B) € Lu}.
If this distribution defines a smooth vector bundle on N, it is a Dirac structure. When (M, Lys)
and (N, Ly) are Dirac manifolds, a map f: M — N is forward-Dirac if

Ly = fiLln-

This notion generalizes the pushforward of vector fields, and all Poisson and quasi-Poisson maps
are forward-Dirac. In particular, if (M, 7, ®) is a quasi-Poisson G-manifold, then the group-valued
moment map & is forward-Dirac when M and G are viewed as Dirac manifolds. Moreover, [BuCrll,
Theorem 3.16] shows that every ¢-twisted Dirac manifold (M, L) equipped with a forward-Dirac
map ®: M — G which satisfies

(1.17) ¢p=—0n and ker®, NL =0

is a quasi-Poisson manifold. (In [BuCr2], such a map is called strong forward-Dirac.)
Conversely, let (N, Ly) be a Dirac manifold and let f: M — N be a smooth map from a
manifold M. The pullback of the Dirac structure Ly is the Lagrangian distribution
Ly = {(X, f'8) € TM & T*M | (£.X,5) € Ly},
If this distribution defines a smooth vector bundle on M, it is a Dirac structure. When (M, Lys)
and (N, Ly) are Dirac manifolds, a map f: M — N is called backward-Dirac if

Ly = f*Ly.

This is a generalization of the pullback of differential forms—symplectomorphisms, for instance,
are backward-Dirac. We give the following important example of a Dirac pullback, which we will
use repeatedly in the next section.

Lemma 1.18. Suppose that (N, L) is a ¢-twisted Dirac manifold. If 1: Z — N is a submanifold

which is transverse to the foliation of N by presymplectic leaves, then

FL={(X,*B)eTZ&T*Z | (uX,B) € L}
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s a 1*p-twisted Dirac structure on Z.

Proof. By [Bur, Section 1.5.1], the pullback +*L defines a Lagrangian distribution in 77 @& T*Z.
Let pr be the projection of TN @& T*N onto the first summand. The condition that Z is transverse
to the presymplectic foliation is equivalent to

pT(L)\Z +T7 = TM|Z
Then we have
LizNTZ = pr(L)jz NTZ*

= (pr(L) )z +TZ)*

= O’
where the first equality follows from the fact that L is Lagrangian. In particular Lz N TZ L has
constant rank, so [Bur, Proposition 1.10 and Example 1.11] implies that the Lagrangian distribution
1*L is a smooth subbundle of TZ & T Z.

The ¢-twisted Courant bracket on T'N @ T*N restricts to a 1*¢-twisted Courant bracket on

TZ & T*Z. Since the Lagrangian distribution ¢*L is a smooth vector bundle, its space of sections
is closed under this bracket and +*L is therefore a 1*¢-twisted Dirac structure on Z. ]

Note that any isomorphism which is forward-Dirac is also backward-Dirac, and vice-versa. To
conclude we prove two simple “push—pull” lemmas which will be useful in the next section.

Lemma 1.19. Let A, B,C, D be manifolds which fit into the diagram

A—" B

(1.20) pl Jg

C ——— D.

Suppose that B has a Dirac structure Lp and that all Dirac pullbacks and pushforwards along the
diagram are well-defined smooth vector bundles. If (1.20) is Cartesian, then

p*l/J*LB = T*O'*LB.

Proof. Computing, we obtain
pp*Lp = {(pca,7) € TC&T*C | (a,p*y) € Y*Lp}
={(psa,y) e TC®T*C | 3B € T*B such that ¥* = p*y and (¢xa,B) € Lp}
and
0L ={(c,770) e TC & T*C | (14¢,0) € 0. Lp}
={(c,770) e TC & T*C | b € T'B such that o.b = 7..c and (b,0*)) € Lp}
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Suppose now that (p.a,v) € ps*Lp. Then there exists 5 € T*B such that

Y*B=p"y and (¢Yxa,B) € Lp.

Since the pullbacks of § and 7 to A agree, and since the diagram ((1.20]) is Cartesian, there exists
a covector 0 € T*D such that

c*d=p0F and T"9=r.
Let b = v¥*a. Then o4b = Ty psa and

(b,0%6) = (Yra,B) € Lp.
Therefore (p.a,7) € T*0.Lp, and we see that
p«0*Lp C T 0 Lp.

Since the two sides of this inclusion are vector bundles of the same rank over C, they are equal. [J

Lemma 1.21. Let A, B, C be Dirac manifolds and let 0: A — C be an isomorphism which factors

as

AcLB

N

where 1 is backward-Dirac and p is forward-Dirac. Then o is both backward- and forward-Dirac.

Proof. Write Ly, Lp, and Lo for the Dirac structures on A, B, and C respectively. Since 1 is
backward-Dirac and p is forward-Dirac, we have

Loa=4v"Lg and L¢c = ps«Lp.

Since ¢ is an isomorphism, it is sufficient to prove that it is forward-Dirac—that is, to show that
Lo =o04L4.

Suppose that (o.a,7) € 0,L4. Then
(a,0*y) € La = (a,¥*p*y) € La

= (w a, p 7) € Lp since Ly =¢*Lp

= (pssa,y) € Le since Lo = p.Lp

(o

= «a,7) € Le.

Therefore o,L 4 C L. Since o,L4 and Lg are vector bundles of the same rank over C, this inclu-
sion implies equality. Therefore ¢ is forward-Dirac. ([l
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2. STEINBERG SLICES

In this section we show that any quasi-Poisson G-manifold (M, 7, ®) has a distinguished sub-
manifold My, which intersects each nondegenerate leaf transversally and symplectically. This sub-
manifold, which we call the Steinberg slice of M, is the preimage of the Steinberg cross-section
of G under the moment map ®. It carries a Poisson structure whose symplectic leaves are its
intersections with the nondegenerate leaves of M.

2.1. Construction of My. Let W be the Weyl group of GG corresponding to a maximal torus T,
and let ¢ € W be a Coxeter element—that is, ¢ is the product of the simple reflections, which is
unique up to conjugation. Write ¢ € Ng(T) for a fixed group representative of c.

Fix a pair of opposite Borel subgroups B and B~ containing 7', and let U and U~ be their
unipotent radicals. The Steinberg cross-section of G, which was introduced in [Ste], is the closed
subvariety

Y:=Uene¢eU™ CG.
It is an affine space which consists entirely of regular elements. Its dimension is equal to the length
of ¢ as an element of the Weyl group, which is the rank of G.

Since G is simply-connected, 3 intersects every regular conjugacy class in G exactly once and
transversally [Ste), Theorem 1.4]. If £: G — T/W is the quotient map induced by the Chevalley
isomorphism C[G]¢ = C[T]", then the composition

(2.1) S e G T/W

is an isomorphism of affine varieties.

Lemma 2.2. The pullback of the twisted Dirac structure Lg to the cross-section % is the zero
Poisson structure.

Proof. Let 3: ¥ — G be the inclusion map. Since ¥ is transverse to the conjugacy classes of G,
by Lemma the Dirac structure Lg pulls back to a j*n-twisted Dirac structure

Ly :=7Le={(0,70) e TS @ T"E [ (0,0) € La}

on .

For any h € 3, the image of

0F = (Rp-1)s: THY — g

is contained in b = Lie(B), and (b, [b,b]) = 0. In view of we have y*n = 0, so the Dirac
structure Ly is non-twisted.

Moreover, since Ly, is a Lagrangian subbundle of T'> @ T*3, it follows that the map j* has full
rank and therefore

Ly ={(0,0) e TE® T |a € T*%}

corresponds to the zero Poisson structure. ]
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Theorem 2.3. Let H and K be complex groups. Suppose that K is simply-connected and semisim-
ple, and let 3 be the Steinberg cross-section of K. Let (M, 7) be a quasi-Poisson H x K-manifold

with group-valued moment map

O M —HxK
mr— (P (m), Pr(m)).

(a) The preimage My y, = @;(I(Z) is a smooth submanifold of M.

(b) The pullback of the twisted Dirac structure Ly to My s is quasi-Poisson for the action of
H, with group-valued moment map P pry, .-

(c) The nondegenerate leaves of My, are the connected components of Mg s, NS, where S
varies over all nondegenerate leaves of M ; the quasi-Hamiltonian 2-form on each connected
component of My s, NS is the restriction of the quasi-Hamiltonian form wg.

Proof. (a) Let k € ¥ and m € CID;{l(k:), and write O C K for the conjugacy class of k. Because ®x
is K-equivariant,
T.0 = @K*(Tm(K . m)) C CI)K*(TmM).
Therefore, since X is transverse to O, it is transverse to ®x. It follows that My s = @;(1(2) is a
smooth submanifold of M.
(b) Let y: H x ¥ —— H x K be the inclusion, and let n = (ng,nx) be the canonical 3-form on
the product H x K. Since ¥ is transverse to the conjugacy classes of K,

TnMp s + T (K -m) = &L (Ti S + T,0) = T,, M.

It follows that Mp s is transverse to the H x K-orbits on M, and therefore also to the presymplectic
leaves of the Dirac structure Ljy;.

Let v: My s, — M be the inclusion. By Example transversality implies that the —®*y-
twisted Dirac structure on M pulls back to a —*(P*n)-twisted Dirac structure L1\4H7E on Mg y.
The commutative diagram

MH,E ‘% M
(2.4 } F

shows that
=1 (®") = —2*(5"n) = —Pma,
where the last equality follows since the restriction of i to 3 vanishes by Lemma Therefore
Ly s is a —® nu-twisted Dirac structure on My x.
To show that Ly, is quasi-Poisson for the action of H, by it is sufficient to show (i)
that ®p is a forward-Dirac map and (ii) that it has the property

ker @, N LMH,E = 0.
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(i) Let pg: H x K — H be the first projection, so that &5 = py o ®. Since py and ¢ are
forward-Dirac, we obtain
Ly = pu«Luxs
= pH*((I)*Z*LM) = (I)H*LMHE’
where the third equality follows from applying Lemma to (2.4). Therefore ® is forward-Dirac.
(ii) Let px: H x K — K be the second projection, so that
Ly, = pr+«Luxs.

Suppose that (X,0) € Ly, s is such that @, (X) = 0. In particular, it follows that (X,0) € Ly;.
Since Ly is the zero Poisson by Lemma and since px and @ are forward-Dirac,

This implies that ®,(X) = 0. Therefore X € ker ®, N Ly;. Since @ satisfies condition (1.17)), it
follows that X = 0.

(c) This is immediate since we have shown that the quasi-Poisson structure on Mpyy is the
pullback of the Dirac structure L;. O

When H =1 and K = G, Theorem [2.3 has the following corollary:

Corollary 2.5. Let (M, m,®) be a quasi-Poisson G-manifold. Then

(a) My := ® (%) is a smooth submanifold of M.

(b) The pullback of the twisted Dirac structure Ly to My, is Poisson.

(¢) The symplectic leaves of My, are the connected components of My NS, where S varies over
all nondegenerate leaves of M ; the symplectic form on each connected component of My NS

s the restriction of the quasi-Hamiltonian 2-form wg.

Our first example of a Steinberg slice is the group scheme of regular centralizers of G, whose
symplectic structure is constructed in essentially the same way in [FiTs|, Section 2].
Example 2.6. Consider the double D(G) of Example Recall that its moment map is
w: D(G) — G x G
(a,b) — (aba™ 1,071,
with image
(2.7) im(u) = {(g9,h) € G x G | g is conjugate to h™'} .

Let
Sa={(h,h)|heZ}CGxG
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be the antidiagonal embedding of the Steinberg cross-section . Since two elements of 3 are
conjugate if and only if they are equal, we have

pHZBa) = pmHE X (D)),

where 1: G — G is the inversion. Since 3 x (X)) is a Steinberg cross-section in G x G, it follows
from Corollary that u=1(3¥a) is a smooth submanifold of D(G) with an induced symplectic
structure.

The fiber of 4 above an antidiagonal point (h,h™!) € G x G is the G-centralizer of h, and
therefore

p 1 (Za) = {(a,h) € G x X | aha™" = h}.

This space is the completion of the phase space of the open relativistic Toda lattice, and this sym-
plectic structure is precisely the one described in [FiTs, Lemma 2.1].

2.2. Slices and the base affine space. We may also take the preimage of the Steinberg cross-
section through only one component of the moment map ([1.6[). This is the analogue of the one-sided
Whittaker reduction of T*G, which gives the twisted cotangent bundle of the base affine space G/U.

Example 2.8. By letting M = D(G) and H = K = G in Theorem we see that
Dy (G) =G x (%),
has a natural nondegenerate quasi-Poisson structure for the residual G-action
g (a,h) = (ga,h), for g € G, (a,h) € Ds(G).
The corresponding group-valued moment map is
Dx(G) — G
(a,h) — aha™'.

Remark 2.9. Consider the affine space © := U¢U, which contains ¥. By [Ste, Section 8.9], the

conjugation action gives an isomorphism
UxX—= 0.

(The proof in loc. cit. is omitted, but more general versions of this statement are proved in [Sev,
Proposition 2.1] or [HeLu, Theorem 3.6].) Then Dyx(G) becomes a bundle of affine spaces

DZ(G) aye. XU L(@) — G/U

The one-sided slice Dy (G) is similar to the universal imploded cross-section of [HJS|, where the
authors study real quasi-Hamiltonian manifolds under the action of compact Lie groups. Following
this analogy, we will show that the Steinberg slice My can always be obtained as a quasi-Poisson
reduction of the fusion product M ® Dy (G). We will need the following two preliminary lemmas.
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Lemma 2.10. Let (N, 7, ®) be a nondegenerate quasi-Poisson G-manifold with quasi-Hamiltonian
2-form w and Dirac structure Ly . Suppose that

g: M — N
is a map from a manifold M which has the property that g*w = 0. Then g*Ly =TM & 0.

Proof. Let (X, g*y) be any element of ¢*Ly, so that (9.X,vy) € Ly. Then there is a 1-form
a € T*N and a Lie algebra element ¢ € g such that

X =7 (@) +p(€)  and 7y =C%(a)+ P a(§),
where p is the infinitesimal action map, C* is as defined in , and o is given by .
The assumption that g*w = 0 implies that
0 = g*w’ (7% (a) + p(€))
= g*C*(a) + g"«’ (p(€))
=g C"(a) + 9" (a(¢))
=g
Here the second equality follows by taking the dual of , and the third equality follows from

the quasi-Hamiltonian moment map condition (Q2). We conclude that g*Ly C T'M @ 0, and since
these are vector bundles of the same rank they must therefore be equal. O

Lemma 2.11. Let (M, 7, o) be a quasi-Poisson G-manifold with corresponding Dirac structure
Ly, and let (N, mn, (PN, V) be a quasi-Poisson G x H-manifold with Dirac structure Ly . Suppose
that g: M — N is a map which satisfies

(2.12) gLy =TM ®0 and (®n o g)(m) =Dy (m)~" for allm € M.
Then the embedding
fiM— M®N
m — (m, g(m))
is backward-Dirac.
Proof. Let Lyjen be the Dirac structure associated to M ® N. We will show that Ly = f*Lyen,

by showing that the right-hand side is contained in the left-hand side.
Write

oM xg—TM
pn: Nxg— TN
T:Nxh—TN
p: Gxg—TG
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for the infinitesimal action maps, and let
Cyvan: T"(M ®N) — T*(M ® N)

be the map of vector bundles defined in ((1.10f). By Example the Dirac structure f*Lasen
consists of all pairs (X, f*y) € TM & T*M such that

X 9. X =1y (@) + 78(8) + Wir (o + B) + pur(€) + pv(€) + 7(x)
and
v = Cuen(a+B) +(PuPn) 0c(§) + Viou(x),
where « € T*M, p € T*N, £ € g, and x € h. Here og and oy are defined as in (1.16[), and
the bivector ¥as«n is induced by (1.7)). In particular, the second condition of (2.12)) implies that
fro(®pmPnN)* =0, and therefore that
* * 1 * Tk * T %
(2.13) [y =ot g8 = 1BUin)g V(G = )+ g o),

where {f;} is an orthonormal basis of h and {(;} is the corresponding dual basis in h*.
Summing once again over repeated indices, define

1

Eo = §a(€iM)ei and  {g:= %5(61'1\!)61;-

Then
X =) +puE—€) and  gX =73(8) + pv(E+ €a) +7(X0)-
It then follows from the first condition of (2.12]) that

9" (CN(B) + Pog (§ +&a) + ¥on(x)) = 0.
Applying this to equation (2.13)) gives
* 1 * * * *
f'r=a+ 8(en)g @ (0 — 0F) — 9" Pxo (€ + &)
1 * L R *
=a+ Z/B(eiN)q)M(ei —0;") + 2a0G(€ + &a)-
Here the last equality follows once again from the second condition of (2.12)), which implies that
GOR(OF) = —@3,(0F)  and g OR(OF) = ~D3,(6),
To complete the proof, we will now show that the 1-forms « and § satisfy the symmetry relation
(2.14) aleinr) = —pein) for all basis elements e; € g.
Since the quasi-Poisson moment maps ®5; and ¢y are G-equivariant,
Ry 1®arpar(€) = Ry 1p(6)

= - (Ad@M £)
=—Lg,,p(§) = —La,, Pnwpn(§).
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We therefore obtain
(2.15) 0= (PnPn)«(X + g:X)
= (RoyPars + Loy, Py ) (X + g:.X)
= R@;;(I)M*Wﬁ(o‘) + Rcbjwlp(_gﬂ) + Loy, (I)N*Tr#[(ﬁ) + Lo, p(Ea)

We unpack the last line term-by-term. Using the quasi-Poisson moment map condition [AKSM]|
Lemma 2.3],

1
ch;[lq)M*ﬂf/[(O‘)(ei) = —QOpPpN O Jv(eﬁ) = —ia((AdcbX{l 67;)]\/[ + €Z‘M)

Summing over repeated indices, we conclude that

1

1
Ry1 ®aramy (o) = —5(Adgr eir)ei = alein)ei = —(Aday, &a +&a),

where the second equality follows from the fact that Adg,, is an orthogonal operator. Similarly,

L, ®Nmi () = —(Ada,, &5 + Eg).
Moreover,
chMp(fa) = Adq;.M fa - fa and ch[\*dlp(_gﬁ) = Ad‘I’M 5,3 - §ﬂ
Equation (2.15|) therefore becomes
fa = _6,6’7
proving the claim (2.14)).
Now we return to our computation of the pullback of v, which in view of ([2.14]) gives
* 1 * *
[ffy=a- Za(eiM)q)M(eiL —6f") + ®306(§ — &)
= Cy(a) + Phroa(€ - &s).

This shows that (X, f*y) € Ly, proving the desired inclusion and implying that f is backward-
Dirac. ]

Now let (M, 7, ®) be a quasi-Poisson G-manifold, and consider the embedding
f: M — M & D(G)
m— (m,1,®(m) ),
where M ® D(G) is given by fusing the G-action on M with the first G-action on D(G). In view
of [AMM| Remark 3.2], the pullback of the quasi-Hamiltonian 2-form on D(G) to the submanifold
{1} x G vanishes. By Lemma f satisfies the conditions of Lemma and is therefore a

backward-Dirac map.
The restriction of f to My descends to a backward-Dirac embedding

(2.16) My, — M ® Dx(G).
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The moment map of the right-hand side is given by
J: M ® Dx(G) — G
(m,a,z) — ®(m)aza™?,

and the image of (2.16)) is contained in the fiber J~!(1) above the identity.

Proposition 2.17. The embedding (2.16) induces an isomorphism of Poisson manifolds
My = (M ® Dx(Q))/G.

Proof. Since the diagonal action of G on M ® Dyx(G) is free, each G-orbit in J~!(1) contains a
unique element of the form (m, 1, ®(m)~!). Therefore the induced map

My — J7(1)/G = (M ® Dx(G)) /G

is an isomorphism. We only need to check that it is Poisson.
Since J is a quasi-Poisson moment map, it satisfies the transversality condition ([1.17]). Therefore

the inclusion
(2.18) J1(1) — M ® Dx(G)
equips J~!(1) with a Dirac structure via pullback, and we get a diagram

My, — J_l(l)

J71(1)/G.

Here the horizontal arrow is backward-Dirac because its composition with (2.18)) is the backward-
Dirac map (2.16)). The vertical arrow is forward-Dirac by [BuCrl, Theorem 4.11] and, since the
diagonal arrow is an isomorphism, Lemma [T.21] implies that it is forward-Dirac, and therefore Pois-

son. O

2.3. Log-nondegenerate quasi-Poisson structures. Once again let (M, 7, ®) be a quasi-Poisson
G-manifold, and let D C M be a G-stable divisor with simple normal crossings. The logarithmic
tangent sheaf is the sheaf of logarithmic vector fields on M—that is, vector fields which are tangent
to the divisor D. Because D has simple normal crossings, this sheaf is locally free. The associ-
ated vector bundle TpM is called the logarithmic tangent bundle of M, and its dual T/, M is the
logarithmic cotangent bundle.

Suppose for the rest of this section that the bivector field 7 is logarithmic. Then it corresponds

to a natural morphism of vector bundles

7 THM — TpM
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from the log-cotangent bundle of M to the log-tangent bundle. Similarly, any logarithmic 2-form
w € I'(A?T}, M) corresponds to

W TpM —s THM.
Since the action of G on M stabilizes the divisor D, there is also a logarithmic infinitesimal action
map

pDIMXg—)TDM.

Definition 2.19. The quasi-Poisson G-manifold M is log-nondegenerate if the morphism of vector
bundles

(2.20) @ pp: ToM &g — TpM
(a,€) — (@) + pp(€)
is surjective.

Remark 2.21. The pullback of Tp M to the open dense locus M° := M\D is just the ordinary
cotangent bundle T'M°; similarly, the pullback of T/5M to M®° is T*M°. Therefore, along M°
the morphism agrees with the morphism of vector bundles . In particular, if M is
log-nondegenerate then M° is its unique open dense nondegenerate leaf.

Viewed as an automorphism of the tangent sheaf of M, the map defined in ([1.10)) takes logarithmic
vector fields to logarithmic vector fields. Therefore it defines a morphism of vector bundles

(2.22) CDZ TDM — TDM.
Using this and [AKSM|, Theorem 10.3], we give an equivalent condition for log-nondegeneracy.

Proposition 2.23. The quasi-Poisson manifold (M, m, ®) is log-nondegenerate if and only if there
exists a logarithmic 2-form w € T(A*THM) such that

(2.24) 7 owh = Cp.

Proof. (=) First suppose that 7 is log-nondegenerate. Then its restriction to M° is a nondegenerate
quasi-Poisson bivector 7°. By [AKSM| Theorem 10.3] there is a 2-form

w® € D(A*T*M°)

which satisfies conditions (Q1), (Q2), and (Q3). If C° is the restriction of to M°, then
7_‘_o# ° wob — C°.

Taking duals, we also obtain

(2.25) w® o 7% = C°*.

If w° extends to a logarithmic 2-form w on M, then condition is automatically satisfied by
continuity. Therefore it is enough to show that w®: TM°® — T*M° extends to a morphism of
vector bundles

wh: TpM —s THM.
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First, define a morphism of vector bundles Ap: THM & g — T, M by
* ]' *
Ap(ae) = Cp(a) + 50" (0F +077),

and let \°: T*M° @ g — T*M?° be its restriction to M°. In view of condition (Q2) and equation
([2.25)), this restriction descends to the morphism w® through the commutative diagram

T*M° ® g —2— T*M°®

Tro#@ﬁ’l ob
w

TM°.
Second, for any local section a of T, M let

Wh(nh(@)) == Ch(a).

This is well-defined: if ﬁg (a) = 0, it follows that 7°# vanishes on the restriction Q|pre, SO that
C*(ape) = 0 and therefore C}(a) = 0. Therefore this defines w’, on the image of Wﬁ. On
the other hand, the condition (Q2) defines w% on the image of pp. By the log-nondegeneracy
assumption , this determines w% entirely.

b

Since w is well-defined on the intersection of the images of 7°# and p, it follows that w?j is also

well-defined on
im(ﬂﬁ) Nim(pp).
Therefore the map w% fits into the following commutative diagram:

THM @ g —2— ThM

™ ﬁ ®rD b
wp

TpM.

In particular, this implies that w?) is a smooth morphism of vector bundles.
(<) Conversely, suppose that there exists a logarithmic 2-form w on M such that (2.24]) holds,
and let v € TpM be any logarithmic vector. Then, in view of ({1.10]),

7 0w (v) = Cp(v) = v — pp(€)

for some ¢ € g. It follows that
7% (b)) + () =,
#

and so 7}, @ pp is surjective. Therefore 7 is log-nondegenerate. O

Remark 2.26. Together with [AKSM|, Theorem 10.3], Proposition implies that any log-
nondegenerate quasi-Poisson manifold comes equipped with a unique logarithmic 2-form which
satisfies logarithmic versions of conditions (Q1), (Q2), (Q3), as well as the compatibility condition
(2.24).
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In the special case that the action of G is trivial, (M, ) is log-nondegenerate if and only if wﬁ is
an isomorphism—that is, if and only if 7 is a log-symplectic Poisson structure. In this case C'p is
the identity morphism and the logarithmic 2-form wp is is exactly the corresponding log-symplectic

form.

The following proposition shows that Steinberg slices in log-nondegenerate quasi-Poisson mani-

folds are log-symplectic.

Proposition 2.27. Suppose that (M, m, ®) is log-nondegenerate.
(a) My N D is a simple normal crossing divisor in Msy,.
(b) The induced bivector m, is tangent to Msx, N D.
(¢) (Ms,my) is a log-symplectic Poisson manifold.

Proof. (a) Let Dy,...,D; be the smooth irreducible components of the simple normal crossing
divisor D. Since the bivector 7 is tangent to D and since D is G-stable, each partial intersection
D, Ic{1,...1}
i€l
is a union of nondegenerate leaves of (M, ). Since My is transverse to these nondegenerate leaves,
it is transverse to every partial intersection of divisor components. It follows that My N D is again
a simple normal crossing divisor.
(b) Fix a point m € Ms, and a covector o € Tx My, and let 2: My, — M be the inclusion map.
Write Ly, and Ly for the twisted Dirac structures associated to My, and M. By Theorem @

Lyr, =" L.

Therefore, since (Wéﬁ (o), @) € Ly, there exists some g € 1,5, M such that

(ﬂg(a),a> = (F;(a),i*ﬁ) and <z*7r§(a),ﬁ> € Ly.
Since (M, ) is quasi-Poisson, Example [L.15(3)| then implies that

il (a) = 7 (7) + p(€)

for some v € T;; M and £ € g. Since 7 is logarithmic and D is G-stable, both terms on the right-
hand side are tangent to D. It follows that 7r§é () is tangent to My N D, and therefore the bivector
7y, is logarithmic.

(c) Let w be the logarithmic 2-form on M defined by Proposition Write wy; for its restriction
to My, and w§, for its restriction to My, := MxNM?°. Since (M°, 7°) is nondegenerate and Mg C M°
is a Steinberg slice, it follows from Theorem that wy, is a symplectic form. Therefore

m5? 0w TMg — TMS

is the identity map.
There is a morphism of vector bundles

W?Z%,D ¢} ng,D: TDMZ — TDME.
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For simplicity and since there is no risk of confusion, here we abuse notation to write Tp My for the
log-tangent bundle of My, relative to the normal crossing divisor My, N D. This morphism agrees
with the identity map along Msy,. Therefore it agrees with the identity map everywhere, and y is
log-symplectic. O

3. THE MULTIPLICATIVE UNIVERSAL CENTRALIZER AND THE WONDERFUL COMPACTIFICATION

Let Zg be the center of the simply-connected, semisimple group G, and let G,q = G/Zg
be its adjoint form. A finite quotient of Example produces a smooth, symplectic family of
centralizer subgroups of G4 over Y. In the next sections we will compactify the centralizer fibers
of this family inside the wonderful compactification of G,q. First we recall the construction of this
universal centralizer and of the wonderful compactification.

3.1. The multiplicative universal centralizer. The natural action of G on itself by conjugation
descends to an action of G4 on G, for which we use the same notation. For every h € G we define
the adjoint centralizer

Zaa(h) :={a € Gaq | aha™ = h}.
Note that Z,q(h) = Zg(h)/Zq, where Zg is the center of G, and we have the following simple
lemma.

Lemma 3.1. Suppose that h € G is a reqular element. Then Znq(h) is connected.

Proof. Let h = us be the Jordan decomposition of h into a unipotent part u and a semisimple part
s. Let L = Zg(s) be the centralizer of s in G. Because G is simply-connected, the reductive group
L is connected.

Since h is regular, the unipotent element u is regular in L and by [Spr, Lemma 4.3] we have
Zg(h) = ZL(U) = ZL X ZUL(U).

Here Up, is the unique maximal unipotent subgroup of L which contains u, and the second factor
Zy, (u) is connected by [Spr, Theorem 4.11].

Write Logq := L/Zg C Gaq for the Levi subgroup of G,q which is the image of L. Let R be the
weight lattice of Gaq, and let I be the simple roots which do not vanish on the center Z;_,. Then
the number of connected components of Z;,_, is given by the torsion subgroup of the abelian group

R/ZI.

Since G.q is of adjoint type, R is equal to the root lattice and this torsion subgroup is trivial.
Therefore Z1,,, is connected.
The center Zg is the kernel of the group homomorphism

(3.2) ZL = ZLy-
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Fix an element g € Zr_, and let g € L be a point in the preimage of g. Then the set
Sy ={glg™ " | 1€ L}

is contained in Zg. Since L is connected, the set Sy is connected. Moreover, since G is a semisimple
group, the center Zg is discrete and therefore S, consists only of the identity element. This implies
that g € Zr, so the group homomorphism (3.2) is surjective. Therefore

Zaa(h) = Za(h)/Za = 21,4 % Zu, (u)
and, since Z,_, is connected, it follows that Z,q(h) is also connected. O

Definition 3.3. The (multiplicative) universal centralizer associated to G is the affine variety
3:={(a,h) € Gag X X | a € Znq(h)}.

Remark 3.4. Consider the space of commuting pairs
C:={(a,h) € Gag x G" | a € Zya(h)}

in which the second element is regular. The group G acts on C diagonally, and via there is an
isomorphism

3¢C/G.
Here the right-hand side is the categorical quotient of C by the G-action, which is studied in
[BEM]. In Proposition 2.8 and Theorem 2.15 of loc. cit. it is shown that, when G is simply-laced,
its coordinate ring is isomorphic to the equivariant K-theory of the affine Grassmannian of the

Langlands dual group GV.
We will consider the double
DGad = Gad X G7
which is the quotient of the space D(G) in Example by the action of the finite center Zg on

the left. The G x G-action (1.4)), the bivector 7 (1.5)), and the moment map p (1.6]) all descend to
D¢,,. Keeping this notation, (D¢, , 7, ) is a nondegenerate quasi-Poisson G' x G-variety.

Remark 3.5. We may view D¢, as a constant algebraic group scheme over G,q. On the other
hand, letting g be the Lie algebra of G,q and using the Killing form to identify g* = g, the cotangent
bundle

T"Gag = Gag X 9

becomes a bundle of Lie algebras over G,q. The double
DGa 4= Gad x G
is then its simply-connected integration.

In view of Example the multiplicative universal centralizer

3= 1 (S x (L)) = {(a,h) € Gog x S| aha™" = h}
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sits inside D¢, , as a symplectic Steinberg slice. In particular, as in [FiTs], through isomorphism
(2.1) 3 is equipped with an integrable system given by the invariant generators of C[T]".

3.2. The wonderful compactification. Let [ be the rank of G. The wonderful compactification
(aq is a canonical, smooth, G x G-equivariant compactification of G,q which was introduced by de
Concini and Procesi [dCP]. We recall some of its structure theory, following [EvJo]. It is a smooth
projective variety which contains G,q as an open dense subset and on which G acts by extensions

of the left- and right-multiplication. The boundary

D = Gaq\Gaa
is a simple normal crossing divisor with irreducible components Dy, ..., D;.

The G x G orbits on G,q are in bijection with subsets of the simple roots in the sense that, for
any I C {1,...,1}, the closure of the orbit Oy is the corresponding partial intersection of divisor
components

O; = (D
i€l

In particular, the closure of each orbit is smooth.

The subset I C {1,...,l} determines a “positive” parabolic subgroup Pr, generated by the
“positive” Borel B and the simple root spaces indexed by I. Write P, for the opposite parabolic
and Ly for their common Levi component. Let UIjE C PIlL be the unipotent radicals, and denote by
p]i, ujt, and [; the Lie algebras of these subgroups. Each orbit O has a distinguished basepoint

Zr € 01
whose G x G-stabilizer is
(3.6) Stabgxg(z1) == {(us,vt) €EPrx Py lueUnvel;,ste L st™le ZLI}-

It follows that Oy is a fiber bundle over the product of partial flag varieties G/Pr x G/P; , with
fiber isomorphic to the adjoint group L;/Z,,. This extends to a smooth fibration

LI/ZLI > @

J

G/P[ X G/PI_

whose fiber is the wonderful compactification of L;/Zy,.
The wonderful compactification Goq is log-homogeneous in the sense of [Bri]—that is, the loga-

rithmic infinitesimal action map

actp: Gaq X g X g — TpGaq
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is surjective. Let x be the Killing form on g. In the short exact sequence of vector bundles over
Gad

0 — ker(actp) — Gaqg X g X g — TpGag — 0,

the kernel ker(actp) is Lagrangian relative to the form (k, —k) on the direct sum g x g [Bri, Example
2.5]. It follows that

(3.7) ker(actp) = THGaq.

This identifies the log-cotangent bundle TB@ with a subbundle of the trivial bundle G,q x g X g,
extending the embedding

T'Gad EGaaXg—Gag XxgXxg
(a,z) — (a,Ad, z, x).

Under (3.7)), the fiber of the log-cotangent bundle at the orbit basepoint z; € Oy is

* _
TD 2, Gaa E b1 Xy, pr-

Remark 3.8. Via (3.7)), the log-cotangent bundle T7,G,q is a bundle of Lie algebras over G,q. In
analogy with Remark we will show in the next section that it integrates to a smooth subgroup
scheme of the constant group scheme

Gaqd X G X G — Gag.

4. THE LOGARITHMIC DOUBLE

In this section we recall the Vinberg monoid, and we use it to construct an enlargement of the
double D¢, , to a group scheme DGTd over the wonderful compactification GG,4. The nondegenerate
quasi-Poisson structure on Dg,, will extend to a log-nondegenerate quasi-Poisson structure on

D&

4.1. Construction of Dg—. The Vinberg monoid Vg, introduced in [Vin], is a normal affine
algebraic semigroup whose locus of invertible elements is the enhanced group

Genh =G XZa T.
There are natural projections

Genh

(4.1) / \

Gad T



STEINBERG SLICES AND GROUP-VALUED MOMENT MAPS 28

—the first is a principal T-bundle, and the second is the abelianization of the group Genn. The
second map extends to

a: Vg — T,
where

T = SpecC[t*, ... t] = C!.
Here o, ..., q; are the simple roots and ¢* € C[T] is the function on 7" given by the weight A. The
space T is an abelian monoid into which the adjoint torus embeds as the group of units via the
map
t— (a1(t),...,qq(t)).

The morphism « is the abelianization of the monoid V4.

The monoid Vi; carries an action of G x G x T that extends the natural action on the enhanced
group, and « is G X G-invariant. In particular, every fiber of o contains an open dense GG x G-orbit.
The nondegenerate locus f}'g C Vg is the quasi-affine open dense subvariety whose intersection with
each fiber of « is this maximal orbit. We obtain a diagram

Vo
Gad T,

whose pullback along the inclusion Gepp — XO/G is (4.1)).
Now 7 and & are smooth morphisms, 7 is a principal T-bundle, and the G x G-stabilizer of any
point v € 771(zy) is

(4.2) StabGXg(Q}) =P XL; PI_
Let G x G act on Gog x G x G via
(9,h) - (a,2,y) = (gah™", gzg~" hyh™")

for (g,h) € G x G and (a,x,y) € Gaq X G x G.

Proposition 4.3. There is a smooth, closed, G x G-stable subgroup scheme DTM CGuaxGxGE
whose fiber over the basepoint z;y € Gaq is

Prxp, Pr.
Proof. Since ¢ is smooth, the fiber product XO/G X XO/G is a smooth variety. The action morphism
(4.4) XO/GxGxG—HO/G XT‘O/G
(v,9,h) — (v,gvh™")

is smooth and surjective, because every fiber of & is a single G x G-orbit. The preimage of the
diagonal
VG — VG X VG
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under (4.4)) is the smooth family of stabilizers
S = {(v,g, h) e Ve xGxG|(gh)e StabGXg(v)},

defined for example in [DrGal, Appendix D].
Because the action of G x G commutes with the action of T', for any v € V57 and t € T' we have

Stabgxa(v) = Stabaxg(t - v).

Therefore the group scheme of stabilizers S descends through the principal T-bundle 7 to a smooth,
closed, G x G-stable subvariety
Dg- C G X G % G.

By (4.2)), the fiber of Dg— over z1 € Ghaa is Pr xp, P;. O

The group scheme DG—ad, which we call the logarithmic double, integrates the bundle of Lie
algebras given by the log-cotangent bundle
THGaq C Gaga X g X g.
Its fiber at the identity element 1 € G,q is the diagonal subgroup
{(9.9)|9eGcGxG.

Since DG—ad is G x G stable, it follows that its fiber at any point a € G,q is
{(aga™,9) | g € G}.
Therefore the logarithmic double D¢ is the closure of the image of the embedding
(4.5) Dg,, = Gaa X G X G
(a,9) — (a,aga™",g).

The diagram

DGad DGad

|

Gad — Gada
is Cartesian, and D¢, is exactly the restriction of DG—adl to the open dense copy of G.q which sits
inside Gpq.

4.2. The quasi-Poisson structure on DTM. In view of the previous section, the nondegenerate
quasi-Poisson variety (Dg,,, 7, it) sits inside the logarithmic double D@ as an open dense subset.
Its complement is a simple normal crossing divisor, and for simplicity we abuse notation to denote
it by D. We will show that the quasi-Poisson bivector 7 extends to a logarithmic bivector on DG—ad,
and that this gives DTM the structure of a log-nondegenerate quasi-Poisson manifold in the sense

of Section 231
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Using the notation of Section [I] and summing over repeated indices, define a bivector on the
space Gaq X G X G by
1
(4.6) =3 (eif A (el + el + el A (28 + e2) + eff A et + el A el
Let the morphism 7, which extends the moment map p: Dg,, — G x G first defined in (1.6)), be

the composition

D@‘—)GiadXGXG

N

where the vertical arrow is

GuxGxGE—GxG
((I’g,h) '_> (g7h71)'

Proposition 4.8. The bivector T is tangent to DTM, and (DGM,?7 1) is a quasi-Poisson variety
whose unique open dense nondegenerate leaf is (Dg,,, T, 1).

Proof. It is enough to show that the restriction of 7 to
Dg,, CGua x G x G

agrees with 7. This will imply that 7 is tangent to DG—M, which is the closure of Dg,,. Moreover,
since 7 satisfies the quasi-Poisson condition (1.1]) along D¢, , 7 will satisfy (L.1)) along D&
Recall that the embedding of D¢, into G,q X G x G fits into the commutative diagram

D(G) —— GxGxG
Dg,, = Gaa X G x G,
where D(G) is as defined in Example The top horizontal arrow is
D(G)=GxG—GxGxG
(g, h) — (g, gh, hg).

The bottom horizontal arrow is (4.5)), and the vertical arrows are quotients by the left action of the
center Zg. Therefore, from Example it is sufficient to check that the pushforward of
1
3 (et Nt el nel) e T (ATD(Q))
along the top arrow of this diagram agrees with (4.6)).
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At the point (g, gh, hg) the vectors which constitute m push forward to

et el 4 (Ady e;)? R + 3L
et et p o2 (Adgy— e;)3L
e?L — e?L + (Ady— ei)gL
e (Ady ;)R + 31,

Therefore, at (g, gh, hg) the bivector 7 is half the expression

(4.9) etP A (Adge)* B 4 elt A e el p 3t
+ (Ady ;)2 A BB 4 &3l A (Ady e)
+etfEn e 4 elf A (Adg— ;)3 4 e p 2L
+ et A (Ady— )3t + (Adg— ei)3E el

Since Adgy and Adg,-1 are orthogonal operators relative to the Killing form, and since we are

summing over repeated indices, the first terms in the first and third lines simplify:

et A (Ady ) = (Adg e)' A (Ady ;) = efft A e2F;

et A (Adg— ;)3 = (Adg— ei)'E A (Adg— e’ = el At
Moreover, applying orthogonality again, the terms in the last row become

et A (Adg— ei)*t = (Adge;)* P A el
and
(Adgy— &) A et = el A (Ady )t = 3R A (Ad, e)* .

Therefore the second and fourth lines of sum to zero, and we see that agrees exactly
with ([4.6)). O
Proposition 4.10. The quasi-Poisson variety (DTM7 T, 1) 1s log-nondegenerate.
Proof. Tt is clear from that 7 is a logarithmic bivector, because the action of G' x G on Gaq

preserves the boundary divisor. We will check that 7 satisfies condition ([2.20))—that the morphism

of vector bundles
75 @ pp: THDg— @ g® g — TpDg—
is surjective. By G x G-equivariance, is sufficient to check this at a point of the form (z7,z,y) €
DGTd' We begin by making a fixed choice of orthonormal basis.
Let Ry be the set of weights of the T-action on g, with multiplicity and including 0. Write R™

for the subset of Ry consisting of positive roots. Choose a basis of generalized eigenvectors
B:={E,|a€ Ry} Cg.
By scaling F,, if necessary, we obtain an orthonormal basis

{Ey|a=0}U{E,+E ,|acR"}
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of g relative to the Killing form. In this basis, the bivector 7 from (4.6)) becomes
T =ES A EY + EYY + B A (B + B + EXFAER + ESF A ERE,

where once again we sum over the repeated index o € Ry.
As in (3.7)), the infinitesimal action map

gxg— TD,zIGad

is surjective with kernel p; x, p;. In particular, the vector fields {EL, EX | a € Ry} span the
log-cotangent space of G,q at every point. Therefore the image of pp at (zr, z,y), which is spanned
by the logarithmic vectors

(B3 + B9 R, B4 53— 527},

contains a subspace of dimension dim G which is not parallel to the fiber.
Let {6, | & € Ry} be the basis of g* dual to B. Since the logarithmic vector fields

{E) | Ea €p;} CT(THDg)
are linearly independent at (z7,z,y) € Dz, the corresponding 1-forms
{0a" | B« €97} cT(I"Dg,,)

extend to logarithmic 1-forms in a neighborhood of (z,z,y) € DGTld' By the same argument, the
same is true for

{6a"| Ba € p1} CT(T*Dg,,)-
Applying ﬁﬁ to these logarithmic 1-forms at (z7,z,y) € DG—ad, we obtain

0L = B3 4 B3R if Eq € p7\l1
piie B2l 4 2Ry E3L 4 B3R i E, el
and
E2L 4 2R if B, € pr\l
SRR s el

E2L p p2R g3l B3R E, 1.

This implies that the image of ﬁﬁ contains a subspace of dimension dim GG which is parallel to the
fiber. It follows that, at the point (z7,z,y),

dim <im(f§ @ pD)) =2dimG.

Therefore this morphism of vector bundles is surjective. O
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5. THE RELATIVE COMPACTIFICATION OF 3

Consider the relative compactification
3={(@h eGuxS|acZah)}.

By realizing 3 as a Steinberg slice in D¢, we will use the results of the previous sections to show
that it is a smooth algebraic variety whose boundary is a simple normal crossing divisor, and that
the symplectic structure on 3 defined (up to a finite central quotient) in Example extends to a
log-symplectic structure on 3. We will then describe the symplectic leaves of this structure.

5.1. Construction of 3. We begin by characterizing the image and fibers of the compactified
moment map . In Section [2] we defined the quotient map =Z: G — T'/W, whose fibers are the
closures of the regular conjugacy classes. In view of diagram , the map 7 is proper, and we
have the following description of its image.

Lemma 5.1. The image of [t is the closed subvariety
A = {(g,h) eEGxG|E(g) = E(h_l)}

consisting of pairs of elements (g,h) € G x G with the property that g and h™" lie in the closure of

the same conjugacy class.

Proof. Since i is proper, its image is closed, so it is the closure of the image of p. As in ([2.7)), the
image of p is the collection of pairs

{(9,h) € G x G| g is conjugate to h_l} )
The closure of this set is precisely A. O
Lemma 5.2. The variety A is normal.

Proof. Because A is the image of [, it is irreducible of dimension
2dim G —I.

Let fi,..., fi € C[G]% be a set of generators for the algebra of conjugation-invariant functions on
G. Then

A={(g,h) EGXG| filg)=fi(h ") forall 1 <i<1}.
In particular, A is the vanishing locus of exactly [ algebraically independent functions on G x G.
Therefore it is a complete intersection, and in particular it is Cohen—Macaulay.

The regular locus
A" ={(g,h) € A | g and h are regular}

is a smooth open subset of A because the differentials dfy, ..., df; are linearly independent at every
point of G* [Stel, Theorem 1.5]. Moreover, the complement of A" in A has codimension at least
two [Stel, Theorem 1.3]. Since A is a Cohen—Macaulay variety with no singularities in codimension

one, by Serre’s criterion it is normal. O



STEINBERG SLICES AND GROUP-VALUED MOMENT MAPS 34

Lemma 5.3. The fibers of i are connected.

Proof. A general fiber of 1 is the closure in De— of a general fiber of u, which is connected by
Lemma [3.1] Since 7 is proper, by Stein factorization it decomposes as a composition

p=/foy
where f is a finite morphism and ¢ has connected fibers.
Because the general fiber of 71 is connected, f is a birational map. Moreover, since the image

of f is normal by Lemma [5.2] it follows from Zariski’s main theorem that all the fibers of f are
connected. Therefore the fibers of 11 are also connected. g

Theorem 5.4. The variety 3 is smooth and has a natural log-symplectic Poisson structure whose

open dense symplectic leaf is 3.

Proof. By Propositions 4.8 and D5 is a log-nondegenerate quasi-Poisson variety whose open

dense leaf is the double D¢, ,. There is a commutative diagram of moment maps

DGad DGad

(5.5) \ P

G x .

Two elements of X are in the closure of the same conjugacy class if and only if they are equal.
It follows from Lemma [B.1] that

AN S % () = (Sa),

Since ¥ x ¢(X) is a Steinberg cross-section in G x G, Theorem implies that the preimage
7= 1(XA) is a smooth subvariety of DGTd with a natural Poisson structure whose symplectic leaves
are the intersections of 7~ (Xa) with the nondegenerate leaves of Dz This Poisson structure is
log-symplectic by Proposition It remains only to show that 7—!(XA) is isomorphic to 3.

By Lemma the variety i~ (Xa) is connected. Since it is also smooth, it is irreducible, and

therefore it is the closure in DG—ad of p=1(Za) C Dg¢,,. In particular, for any h € ¥,

A (hoh™Y) = (A h1) & Zog(h) C G,
It follows that

A (Za) = {(ah b7 € Gaa x Gx G heT,a € Zpa(h) } =3,

\

We obtain a commutative diagram

|

3
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which is the pullback of (5.5)) along the embedding ¥ & A —— G x G. Since the horizontal arrow
in this diagram is the restriction of a backward-Dirac map, it is a Poisson morphism. In particular,
3 sits inside 3 as the unique open dense symplectic leaf. O

Remark 5.6. Suppose that G is simply-laced and let G be its Langlands dual group. Write K
for the field C((¢)) of Laurent series, O for its ring of integers, and

Grev = GY(K) /G (O)

for the affine Grassmannian of GV. In [BFM, Proposition 2.8 and Theorem 2.15], the authors prove
that there is a natural isomorphism Poisson algebras

C[3] = K¢ ©)(Grgv)

between the coordinate ring of the multiplicative universal centralizer and the equivariant K-theory
of Grgv. Here the right-hand side has a ring structure given by convolution, and its Poisson bracket
comes from the one-parameter deformation K& (0)*C" (Grgv) induced by the loop rotation.

The algebra K Gv(O)(Grgv) has a natural filtration indexed by the weight lattice A of G, which
is induced by the support in GV(O)-orbit closures. Using the Vinberg monoid realization of the
wonderful compactification, one easily shows (see [Bal, Section 5]) that the relative compactification
3 can also be obtained via relative Proj as

3 = Projy; (ReeSA(KGV(O)(Grgv)> :

Therefore, in the simply-laced case, our relative compactification 3 is an example the Rees algebra

approach to compactified Coulomb branches illustrated in [BEN, Remark 3.7].

5.2. Symplectic leaves. By Proposition the symplectic leaves of 3 are the connected com-
ponents of the intersections of 3 with the nondegenerate leaves of D& Therefore we first describe
the nondegenerate leaves of the quasi-Poisson variety (DGTd’ 7,71). For this we need to analyze the
image of the (non-logarithmic) bundle map

7 & p: T"Dg-©g®g — TDg .
Fix an index set I C {1,...,l}, and write
Cr: P] — P[/[P[,P[] =: A[

for the quotient of P; by its derived subgroup. The torus A; is the “universal torus” associated to
the standard parabolic P;. We first give a criterion for when two points in the fiber of Dz above
z1 € Gaq are in the same nondegenerate leaf.

Proposition 5.7. Let (z,y), («',y') € Pr x1, Py . Then (z21,x,y) and (zr,2',y") are in the same
nondegenerate leaf of (Dg—, 7, [i) if and only if

ad’

C[(l’) = C](ﬂjl).
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Remark 5.8. The value of ¢;(z) depends only on the Lj-component of the element
re Pr=L;xUj.

Since points in Py X, P, are pairs with the same Levi component, the proposition could instead
be stated in an equivalent way relative to the second coordinate and the negative parabolic P; .

Proof. In order to determine the intersection of the fiber {2} x (Prxr, P; ) with each nondegenerate
leaf, we will find which vectors in the image of T @ p are tangent to the fibers of D@'
By (3.6]), the kernel of the infinitesimal action map

gxg— T:Gau
is the subalgebra of pairs
{(u+s,v+t)eprxp; |lucu,veu,,s;tel,s—teZ,}.

We use the same notation as in the proof of Proposition Viewed as a section of /\QTDG—M, at
the point (27, z,y) the value of the bivector 7 is

=Y, E'NEF+ER+ D EFAEF+ER
Eacp; \Z; Ea€pr\Zy,

+ Y (EREA B 4+ B3R AER).
a€Ry

Therefore, the vectors in the image of T# @ p which are parallel to the fiber of D at 21 € Gad
are given by the span of

{E2F + E2F | B, e up JU{EY + B3 | B, € ur}
U{E2F + B2+ B3 + B3R | E, € 1\Z, } .
At each point this is the tangent space to the fibers of the smooth morphism
Prxp, Py — Ap
(x,y) — ¢r(x).

Since these fibers are connected, it follows that two points (27, z,y) and (z7,2’,y’) are in the same

nondegenerate leaf if and only if they have the same image under this map. O

Let DTM7 ; be the preimage of O; C G,q under the structure map
DG7ad — Gad‘

Since both 7 and p are tangent to the boundary of DG—ad, each orbit preimage DG—adl ; is a union
of nondegenerate leaves. To extend the criterion of Proposition to this preimage, we define the

following data.
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For any a € G,q, there exist group elements g, h € G such that a = gzrh~. We associate to this
point a corresponding “positive” parabolic subgroup
Py:=gPrg™ !,

which, in view of (3.6]), depends only on the point a € G,q. There is a canonical identification of
tori

Po/[Pa; Po] = Pr/[Pr, Pr] = Aj,

and we denote the corresponding quotient map by
¢o: Py — Py/[P,, Py] = Aj.

The preimage DCTd ; is a locally trivial G' x G-equivariant fiber bundle over O;. In other words,

there is an isomorphism

D —— (G X G) Xstabgya(er) (Prxe, Pr)

|

Olv
Moreover, the map
(G X G) XStabgyc(2r) (P[ X[; P;) — Ag
[(g,h) : (z,y)] —> er(z)

is well-defined. Composing it with the isomorphism above, we get a smooth morphism

In the following proposition we show that its fibers are precisely the nondegenerate quasi-Poisson
leaves in DG—d I

Proposition 5.9. Two points (a,z,y), (b,w,z) € Dz ; are in the same nondegenerate leaf of T
if and only if

o) = cp(w).

Proof. There exist points
(:U/?y,)v (’LU,, Zl) € P XLg PI_
such that (a,z,y) is G x G-conjugate to (zr,2’,y’) and (b, w, z) is G x G-conjugate to (zr,w’,z’).
Since the nondegenerate leaves of (DGT,d7 7) are G x G-stable, (a,z,y) and (b, w, z) are in the same
leaf if and only if their translates (z7,2’,vy") and (27,w’,2") are in the same leaf. By Proposition
this occurs if and only if
C](x/) = C[(w/).

But now ¢,(z) = ¢;(2’) and ¢p(w) = ¢7(w’), and the statement follows. O
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The orbit stratification on G4 induces a stratification

3=| 3

on 3, where

3, :=3nNDg, = {(a,h) e@xz\aezad(h)mol}.

By Theorem (c), each stratum 3; is a union of symplectic leaves, and Proposition has the
following immediate corollary.

Corollary 5.10. The symplectic leaves of 31 are the fibers of the smooth morphism

[AKS]
[AKSM]
[AMM]
[Bal]
[BFM]

[BFN]

[Bri]
[Bur]
[BuCrl]
[BuCr2]
[dCP]
[DrGal
[EvJo]

[FiTs]

[HeLu]

31— Ap
(a, 1) —> ca(h).
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