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Abstract. We define a class of transversal slices in spaces which are quasi-Poisson for the ac-

tion of a complex semisimple group G. This is a multiplicative analogue of Whittaker reduction.

One example is the multiplicative universal centralizer Z of G, which is equipped with the usual

symplectic structure in this way. We construct a smooth relative compactification Z by taking the

closure of each centralizer fiber in the wonderful compactification of G. By realizing this relative

compactification as a transversal in a larger quasi-Poisson variety, we show that it is smooth and

log-symplectic.
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Introduction

Let G be a simply-connected, complex semisimple group, and let Gad be its adjoint form. The

group Gad acts on G by conjugation, and G contains a transversal slice Σ for this action which was

introduced by Steinberg [Ste]. The resulting (multiplicative) universal centralizer is the smooth

affine variety

Z :=
{︂
(a, h) ∈ Gad × Σ | a ∈ Ghad

}︂
.

This family of centralizers first appeared in work of Lusztig [Lus, Section 8.6]. When G is simply-

laced, Bezrukavnikov, Finkelberg, and Mirkovic [BFM] showed that its coordinate ring is isomorphic

to the equivariant K-theory of the affine Grassmannian of the Langlands dual group G∨—therefore,

in this case Z is an example of a Coulomb branch as defined by Nakajima [Nak].

The natural symplectic structure on Z is inherited from the nondegenerate quasi-Poisson struc-

ture on the double DGad
:= Gad × G as described, up to a finite central quotient, by Finkelberg

1
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and Tsymbaliuk [FiTs]. We construct a relative compactification

Z :=
{︂
(a, h) ∈ Gad × Σ | a ∈ Ghad

}︂
of Z, by taking the closure of each centralizer fiber inside the wonderful compactification Gad. We

show that Z is smooth, and that the symplectic structure on Z extends to a log-symplectic Poisson

structure on Z. When G is simply-laced, the relative compactification Z can be obtained from

the Coulomb branch definition given in [BFM] through a Rees construction which comes from the

Vinberg monoid. Therefore, in this case Z is an example of a Rees algebra approach to compactified

Couloumb branches suggested by Braverman, Finkelberg, and Nakajima [BFN, Remark 3.7].

The additive setting. Let g be the Lie algebra of G and fix a regular sl2-triple {e, h, f}. The

regular nilpotent element e is contained in a unique Borel subalgebra b, and we write u for its

nilpotent radical and U for the corresponding subgroup of G.

Suppose that M is a Poisson manifold with a Hamiltonian action of G and, identifying the Lie

algebra g with its dual via the Killing form isomorphism, let ν : M −→ g be the associated moment

map. The Whittaker reduction of M is the Poisson manifold

ν−1(f + b)/U

obtained by Hamiltonian reduction with respect to the action of U at a point corresponding to a

regular character in u∗.

On the other hand, one can consider the principal slice of regular elements

S := f + ge ⊂ g,

which was defined by Kostant [Kos] and which is contained in the space f + b. Because S meets

every regular adjoint orbit exactly once and transversally, it is a Poisson transversal for the Kirillov–

Kostant–Souriau Poisson structure on g. This implies that the preimage ν−1(S) is a Poisson

transversal in M , and in this way inherits a natural Poisson structure.

These two constructions are related through the Kostant Cross-section Theorem [Kos, Theorem

8], which states that S is a slice for the free action of U on f + b. The induced isomorphism of

Poisson manifolds

ν−1(S) ∼= ν−1(f + b)/U,

shows that classical Whittaker reduction coincides with the preimage of the Kostant section S
under the moment map.

This approach is used in [Bal] to construct a canonical relative compactification of the universal

centralizer

Z := {(a, x) ∈ Gad × S | a ∈ Gxad} .

This is a symplectic variety obtained by Whittaker reduction relative to the G × G-action on the

cotangent bundle T ∗Gad. The canonical symplectic structure on T ∗Gad extends to a log-symplectic

structure on the logarithmic cotangent bundle T ∗
DGad. It is shown in [Bal] that the universal
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centralizer Z has a smooth, log-symplectic relative compactification

Z :=
{︁
(a, x) ∈ Gad × S | a ∈ Gxad

}︁
,

which is the Whittaker reduction of T ∗
DGad. In view of the discussion above, there is a commutative

diagram of moment maps

T ∗Gad T ∗
DGad

g× g.

ν ν

The varieties Z and Z are simply the preimages of the principal slice S × (−S) under ν and ν, and

their Poisson structures are therefore also obtained via restriction in this way.

Summary of results. We give a multiplicative analogue of these results by considering manifolds

which are quasi-Poisson relative to the action of G. These can be viewed as deformations of ordinary

Poisson structures in which the Jacobi identity is twisted by a canonical trivector field induced by

the group action. They were introduced in a series of papers by Alekseev, Malkin, and Meinrenken

[AMM], Alekseev and Kosmann-Schwarzbach [AKS], and Alekseev, Kosmann-Schwarzbach, and

Meinreken [AKSM]. These manifolds come equipped with group-valued momentum maps, and

they are foliated by nondegenerate leaves.

The geometry of quasi-Poisson structures makes the multiplicative setting more subtle than the

additive case described above. In this setting there is no näıve analogue of Whittaker reduction,

because one cannot generally perform quasi-Hamiltonian reduction with respect to the action of

a subgroup. This is because a quasi-Poisson G-manifold is generally not quasi-Poisson for the

action of a subgroup of G. To fix this issue, we introduce a multiplicative counterpart of Whittaker

reduction which uses transversal slices. Kostant’s principal slice S is replaced by the Steinberg

cross-section Σ of G, and we prove the following theorem, as Corollary 2.5:

Theorem. Let M be a quasi-Poisson G-manifold with group-valued moment map Φ: M −→ G.

The Steinberg slice

MΣ := Φ−1(Σ)

is a smooth submanifold of M . The quasi-Poisson structure on M pulls back to a Poisson structure

on MΣ whose symplectic leaves are the intersections of MΣ with the nondegenerate leaves of M .

The natural Poisson structure on MΣ is “transverse” to the quasi-Poisson structure on M , in

the sense that it intersects every nondegenerate leaf transversally and symplectically. We use this

approach to construct multiplicative analogues of several Whittaker-type algebraic varieties. We

also define the notion of log-nondegenerate quasi-Poisson structures, which are a multiplicative

analogue of log-symplectic structures. In Proposition 2.27 we show that the log-nondegeneracy

condition behaves well with respect to Steinberg slices:
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Proposition. IfM is a log-nondegenerate quasi-Poisson G-manifold, the Poisson structure induced

on the Steinberg slice MΣ is log-symplectic.

We then apply this framework to the multiplicative universal centralizer Z. This variety sits as a

Steinberg slice in the double DGad
= Gad×G, which is the quasi-Poisson analogue of the cotangent

bundle of G. In fact, using the identification T ∗Gad
∼= Gad × g, the cotangent bundle T ∗Gad is a

bundle of Lie algebras over Gad and DGad
is the simply-connected group scheme which integrates

it. In Proposition 4.3 we extend the group scheme DGad
to a group scheme over Gad, which we call

the logarithmic double.

Proposition. The double DGad
extends to a group scheme DGad

over Gad which integrates the

bundle of Lie algebras T ∗
DGad. The nondegenerate quasi-Poisson structure on DGad

extends to a

log-nondegenerate quasi-Poisson structure on DGad
.

This produces a commutative diagram of group-valued moment maps

DGad
DGad

G×G.

µ µ

We write ι : G −→ G for the inversion map, and we prove the following theorem, as Theorem 5.4:

Theorem. There is an isomorphism of varieties

Z ∼= µ−1(Σ× ι(Σ))

between the compactified universal centralizer Z and the Steinberg slice µ−1(Σ × ι(Σ)) of the log-

arithmic double DGad
. Therefore Z is a smooth, log-symplectic Poisson variety whose open dense

symplectic leaf is Z.

Outline. In Section 1 we review quasi-Poisson manifolds as developed in [AKSM]. We also outline

how they fit into the framework of twisted Dirac structures, as described in [BuCr1] and [BuCr2].

In Section 2 we develop a theory of Steinberg slices in quasi-Poisson manifolds. We give several

examples of these slices, including a multiplicative analogue of the twisted cotangent bundle of the

base affine space. Then we define the notion of log-nondegeneracy for quasi-Poisson manifolds, and

we show that Steinberg slices in log-nondegenerate quasi-Poisson manifolds are log-symplectic.

In Section 3 we recall the multiplicative universal centralizer Z, which is a Steinberg slice in the

double DGad
, and we review some facts about the geometry of the wonderful compactification Gad.

In Section 4 we use the Vinberg monoid to construct the smooth group scheme DGad
. Then we

show that the quasi-Poisson structure on DGad
extends to a log-nondegenerate structure on DGad

.

Finally, in Section 5 we realize the relative compactification Z as a Steinberg slice inDGad
, equipping

it with a log-symplectic Poisson structure. We give an explicit description of its stratification by

symplectic leaves.
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1. Quasi-Hamiltonian and quasi-Poisson structures

We recall the basics of quasi-Hamiltonian and quasi-Poisson manifolds below, and we refer to

[AKSM] for more details. We then explain how to view quasi-Poisson manifolds as twisted Dirac

manifolds, following [BuCr1] and [BuCr2]. We will use this formalism in Section 2.

1.1. Quasi-Poisson manifolds. Let G be a simply-connected, semisimple complex group, let g

be its Lie algebra, and write (·, ·) for the Killing form. Under the isomorphism g ∼= g∗ induced by

this form, the Cartan 3-tensor φ ∈ ∧3g is the dual of the invariant trilinear function η ∈ ∧3g∗ given

by

η(x, y, z) =
1

12
(x, [y, z]) for all x, y, z ∈ g.

Let {ei} be a basis of g which is orthonormal relative to the Killing form. Then

φ =
1

12
Cijkei ∧ ej ∧ ek

where Cijk = (ei, [ej , ek]) are the structure constants. Here and throughout the paper we adopt the

convention of summing over repeated indices.

If G acts on a complex manifold M , we write ξM for the polyvector field induced by the infin-

itesimal action of an element ξ ∈ ∧kg. In particular, the Cartan 3-tensor φ generates a trivector

field φM ∈ Γ(∧3TM). A quasi-Poisson structure on the manifold M is a G-invariant section

π ∈ Γ(∧2TM) such that

(1.1) [π, π] = φM ,

where the bracket on the left is the Schouten–Nijenhuis bracket. In the special case where G is

abelian, the Cartan 3-tensor is trivial, and a quasi-Poisson structure on M is simply a G-invariant

Poisson structure.

Example 1.2. [AKSM, Section 3] The group G, equipped with the conjugation action, has a

natural quasi-Poisson bivector

πG :=
1

2
eRi ∧ eLi .

Here eLi and eRi are the invariant vector fields on G corresponding to left- and right-multiplication.

The bivector πG is tangent to the conjugacy classes, and it induces a quasi-Poisson structure on

each one.

If (M1, π1) and (M2, π2) are quasi-Poisson G-manifolds, a G-equivariant map f : M1 −→ M2 is

called quasi-Poisson if the bivectors π1 and π2 are f -related. A quasi-Poisson manifold (M,π) is
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Hamiltonian if it has a G-equivariant group-valued moment map

Φ: M −→ G

which satisfies a differential equation analogous to the usual moment map condition [AKSM, Defi-

nition 2.2]. In particular, Φ is a quasi-Poisson map when G is equipped with the bivector πG. In

what follows all quasi-Poisson manifolds will be Hamiltonian, so we will suppress this adjective.

Example 1.3. [AKSM, Example 5.3] Consider the internal fusion double D(G) := G × G. The

group G×G acts on D(G) by

(g, h) · (u, v) =
(︁
guh−1, hvg−1

)︁
for (g, h) ∈ G × G and (u, v) ∈ D(G). Let {e1i , e2i } be the induced orthonormal basis for the Lie

algebra g⊕ g. The manifold D(G) has a quasi-Poisson structure

1

2

(︁
e1Li ∧ e2Ri + e1Ri ∧ e2Li

)︁
.

The associated moment map is

D(G) −→ G×G

(u, v) ↦−→ (uv, u−1v−1).

In the subsequent sections we will often use the reparametrization of D(G) given by setting

a = u and b = vu. This is analogous to the left-trivialization of the cotangent bundle T ∗G. In

these coordinates the G×G-action is

(1.4) (g, h) · (a, b) =
(︁
gah−1, hbh−1

)︁
.

At the point (a, b) the quasi-Poisson bivector becomes

1

2

(︁
e1Li ∧ e2Ri + e2Li ∧ e2Ri + e1Ri ∧ (Ada−1 ei)

2L
)︁
.

Using the fact that Ada−1 is an orthogonal transformation relative to the Killing form and summing

once again over repeated indices, the last term simplifies to

e1Ri ∧ (Ada−1 ei)
2L = (Ada−1 ei)

1L ∧ (Ada−1 ei)
2L = e1Li ∧ e2Li .

Therefore the quasi-Poisson structure in these coordinates is

π :=
1

2

(︁
e1Li ∧

(︁
e2Li + e2Ri

)︁
+ e2Li ∧ e2Ri

)︁
,(1.5)

and the associated moment map is

µ : D(G) −→ G×G(1.6)

(a, b) ↦−→ (aba−1, b−1).

Quasi-Poisson structures are not compatible with restriction to the action of a subgroup—that

is, a quasi-Poisson G-manifold is not in general quasi-Poisson for the action of a subgroup of G. An
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exception to this is the case of diagonal subgroups, for which there is a procedure called internal

fusion [AKSM, Section 5] which we now describe.

Suppose that (M,π) is a quasi-Poisson G×G×H-manifold with group-valued moment map

M −→ G×G×H

m ↦−→ (Φ1(m),Φ2(m),Ψ(m)).

Define a 2-tensor

(1.7) ψ :=
1

2
e1i ∧ e2i ∈ ∧2(g⊕ g),

and consider the modified bivector

πfus := π + ψM .

Let Φ1Φ2 denote the pointwise product of the components of Φ. Then the triple

(M,πfus, (Φ1Φ2,Ψ))

is a quasi-Poisson G×H-manifold relative to the diagonal action of G.

Fusion equips the category of quasi-Poisson G-manifolds with a monoidal structure. Given two

quasi-Poisson G-manifolds (M1, π1,Φ1) and (M2, π2,Φ2), their direct product M1×M2 is naturally

a quasi-Poisson manifold for the action of G×G. Fusing the two sides of the G-action, we obtain

a new quasi-Poisson G-manifold denoted

M1 ⊛M2,

with bivector (π1 + π2)fus and moment map Φ1Φ2.

1.2. Nondegenerate quasi-Poisson structures. Let (M,π,Φ) be a quasi-Poisson G-manifold.

The bivector π induces a morphism of vector bundles

π# : T ∗M −→ TM

α ↦−→ π(α,−)

from the cotangent bundle T ∗M to the tangent bundle TM . The action of G differentiates to an

infinitesimal action map

ρ : M × g −→ TM.

The quasi-Poisson manifold M is called nondegenerate if the bundle map

π# ⊕ ρ : T ∗M ⊕ g −→ TM(1.8)

(α, ξ) ↦−→ π#(α) + ρ(ξ)

is surjective. For example, the double D(G) defined in Example 1.3 is nondegenerate.

Let θL and θR be the left- and right-invariant Maurer–Cartan forms on G. These are g-valued

1-forms defined as follows: if Lh, Rh are the differentials of left- and right-multiplication by the
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element h ∈ G, then for any v ∈ ThG

θLh (v) = Lh−1v and θRh (v) = Rh−1v.

The bi-invariant 3-form on G induced by η ∈ ∧3g∗, which by abusing notation we denote by the

same symbol, is

(1.9) η =
1

12

(︁
θL, [θL, θL]

)︁
=

1

12

(︁
θR, [θR, θR]

)︁
∈ Γ(∧3T ∗G).

Every nondegenerate quasi-Poisson manifold (M,π,Φ) carries a (possibly degenerate, non-closed)

2-form ω which satifies the following properties:

(Q1) dω = −Φ∗η;

(Q2) ιξMω =
1

2
Φ∗(θL + θR, ξ) for all ξ ∈ g;

(Q3) kerωm =
{︁
ξM (m) | ξ ∈ g such that AdΦ(m) ξ = −ξ

}︁
.

This 2-form gives M the structure of a quasi-Hamiltonian G-space in the sense of [AMM]. We

write θLi , θ
R
i ∈ Γ(T ∗G) for the components of θL and θR in the basis {ei}. At every point these

1-forms are a dual basis to the left- and right-invariant vector fields, so that

θLi (e
L
j ) = θRi (e

R
j ) = δij .

Define C : TM −→ TM to be the morphism of vector bundles

(1.10) C := Id− 1

4
Φ∗(θLi − θRi )⊗ eiM .

Then ω and π satisfy the compatibility condition

(1.11) π# ◦ ω♭ = C,

where ω♭ : TM −→ T ∗M is the vector bundle map given by contraction with ω.

Example 1.12. The quasi-Hamiltonian 2-form corresponding to the nondegenerate quasi-Poisson

manifold D(G) from Example 1.3 is

ω = −1

2

(︁
θ1Li ∧ θ2Ri + θ1Ri ∧ θ2Li

)︁
.

Remark 1.13. If the action of G is trivial, the quasi-Poisson manifold M is nondegenerate if and

only if π# is an isomorphism—that is, if and only if π is a nondegenerate Poisson structure. In this

case ω is exactly the corresponding symplectic form.

Even when π is degenerate, the image of (1.8) is an integrable generalized distribution. Its

integral submanifolds, which are G-stable, are called the nondegenerate leaves ofM , because π gives

each the structure of a nondegenerate quasi-Poisson manifold. In particular, each nondegenerate

leaf S is equipped with a quasi-Hamiltonian 2-form ωS .

Example 1.14. The nondegenerate leaves of the quasi-Poisson structure (G, πG) defined in Ex-

ample 1.2 are the conjugacy classes.
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There is an analogue of Hamiltonian reduction for quasi-Poisson manifolds. Let (M,π,Φ) be

a quasi-Poisson G-manifold and fix a conjugacy class O ⊂ G. If the action of G on Φ−1(O) is

locally-free, then the quotient

M�OG := Φ−1(O)/G

has a natural Poisson structure whose symplectic leaves are precisely the reductions of the nonde-

generate leaves of M . When O = {1} is the identity element, we denote this quotient simply by

M�G.

1.3. Twisted Dirac structures. Fix a closed 3-form ϕ ∈ Γ(∧3T ∗M). A vector subbundle

L ⊂ TM ⊕ T ∗M

is called a ϕ-twisted Dirac structure on M if it satisfies the following two conditions:

• L is Lagrangian with respect to the symmetric pairing on Γ(TM ⊕ T ∗M) given by

⟨(X,α), (Y, β)⟩ = β(X) + α(Y );

• Γ(L) is closed under the ϕ-twisted Courant bracket on Γ(TM ⊕ T ∗M) defined by

J(X,α), (Y, β)Kϕ = ([X,Y ],LXβ − ιY dα+ ιX∧Y ϕ).

The projection of L ⊂ TM⊕T ∗M onto the first summand is an integrable generalized distribution,

and induces a foliation of M by presymplectic leaves. Each presymplectic leaf S ⊂ M carries a

(potentially degenerate, non-closed) 2-form ωS such that dωS = ϕ|S .

Example 1.15. (1) A symplectic structure ω on a manifoldM corresponds to the 0-twisted Dirac

structure

Lω := {(X,ω♭(X)) | X ∈ TM} ⊂ TM ⊕ T ∗M

given by the graph of ω♭. Conversely, a 0-twisted Dirac structure L ⊂ TM ⊕ T ∗M is induced

by a symplectic form if and only if L is transverse to both TM and T ∗M, viewed as subbundles

of TM ⊕ T ∗M .

(2) Similarly, a Poisson structure π on M corresponds to the 0-twisted Dirac structure

Lπ := {(π#(α), α) | α ∈ T ∗M} ⊂ TM ⊕ T ∗M

given by the graph of π#. Its projection onto the first coordinate is the distribution whose

integral submanifolds are the symplectic leaves of π. Conversely, a 0-twisted Dirac structure

L ⊂ TM ⊕ T ∗M is induced by a Poisson bivector if and only if L is transverse to TM .

(3) [BuCr1, Theorem 3.16] A Hamiltonian quasi-Poisson structure π on a G-manifold M corre-

sponds to the −Φ∗η-twisted Dirac structure

L =
{︂(︂
π#(α) + ρ(ξ), C∗(α) + Φ∗σ(ξ)

)︂
| α ∈ T ∗M, ξ ∈ g

}︂
⊂ TM ⊕ T ∗M.
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Here C is as defined in (1.10) and σ is given by

σ : g −→ Γ(T ∗G)(1.16)

ξ ↦−→ 1

2

(︁
ξL + ξR

)︁∨
,

where v∨ is the dual of the vector field v ∈ Γ(TG) under the isomorphism TG ∼= T ∗G induced

by the Killing form.

This Dirac structure has the property that kerΦ∗ ∩ L = 0. The associated presymplectic

foliation, given by projecting L onto TM , is exactly the foliation of M by quasi-Hamiltonian

leaves described in Section 1.2.

Let (M,LM ) be a Dirac manifold and let f : M −→ N be a smooth map to a manifold N . The

pushforward of the Dirac structure LM , if it is well-defined, is the distribution

f∗LM := {(f∗X,β) ∈ TN ⊕ T ∗N | (X, f∗β) ∈ LM}.

If this distribution defines a smooth vector bundle on N , it is a Dirac structure. When (M,LM )

and (N,LN ) are Dirac manifolds, a map f : M −→ N is forward-Dirac if

LN = f∗LM .

This notion generalizes the pushforward of vector fields, and all Poisson and quasi-Poisson maps

are forward-Dirac. In particular, if (M,π,Φ) is a quasi-Poisson G-manifold, then the group-valued

moment map Φ is forward-Dirac when M and G are viewed as Dirac manifolds. Moreover, [BuCr1,

Theorem 3.16] shows that every ϕ-twisted Dirac manifold (M,L) equipped with a forward-Dirac

map Φ: M −→ G which satisfies

(1.17) ϕ = −Φ∗η and kerΦ∗ ∩ L = 0

is a quasi-Poisson manifold. (In [BuCr2], such a map is called strong forward-Dirac.)

Conversely, let (N,LN ) be a Dirac manifold and let f : M −→ N be a smooth map from a

manifold M . The pullback of the Dirac structure LN is the Lagrangian distribution

f∗LN := {(X, f∗β) ∈ TM ⊕ T ∗M | (f∗X,β) ∈ LN}.

If this distribution defines a smooth vector bundle on M , it is a Dirac structure. When (M,LM )

and (N,LN ) are Dirac manifolds, a map f : M −→ N is called backward-Dirac if

LM = f∗LN .

This is a generalization of the pullback of differential forms—symplectomorphisms, for instance,

are backward-Dirac. We give the following important example of a Dirac pullback, which we will

use repeatedly in the next section.

Lemma 1.18. Suppose that (N,L) is a ϕ-twisted Dirac manifold. If ı : Z ↪−→ N is a submanifold

which is transverse to the foliation of N by presymplectic leaves, then

ı∗L = {(X, ı∗β) ∈ TZ ⊕ T ∗Z | (ı∗X,β) ∈ L}
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is a ı∗ϕ-twisted Dirac structure on Z.

Proof. By [Bur, Section 1.5.1], the pullback ı∗L defines a Lagrangian distribution in TZ ⊕ T ∗Z.

Let pT be the projection of TN ⊕T ∗N onto the first summand. The condition that Z is transverse

to the presymplectic foliation is equivalent to

pT (L)|Z + TZ = TM|Z .

Then we have

L|Z ∩ TZ⊥ = pT (L)
⊥
|Z ∩ TZ⊥

= (pT (L)|Z + TZ)⊥

= 0,

where the first equality follows from the fact that L is Lagrangian. In particular L|Z ∩ TZ⊥ has

constant rank, so [Bur, Proposition 1.10 and Example 1.11] implies that the Lagrangian distribution

ı∗L is a smooth subbundle of TZ ⊕ T ∗Z.

The ϕ-twisted Courant bracket on TN ⊕ T ∗N restricts to a ı∗ϕ-twisted Courant bracket on

TZ ⊕ T ∗Z. Since the Lagrangian distribution ı∗L is a smooth vector bundle, its space of sections

is closed under this bracket and ı∗L is therefore a ı∗ϕ-twisted Dirac structure on Z. □

Note that any isomorphism which is forward-Dirac is also backward-Dirac, and vice-versa. To

conclude we prove two simple “push–pull” lemmas which will be useful in the next section.

Lemma 1.19. Let A,B,C,D be manifolds which fit into the diagram

(1.20)

A B

C D.

ψ

ρ σ

τ

Suppose that B has a Dirac structure LB and that all Dirac pullbacks and pushforwards along the

diagram are well-defined smooth vector bundles. If (1.20) is Cartesian, then

ρ∗ψ
∗LB = τ∗σ∗LB.

Proof. Computing, we obtain

ρ∗ψ
∗LB = {(ρ∗a, γ) ∈ TC ⊕ T ∗C | (a, ρ∗γ) ∈ ψ∗LB}

= {(ρ∗a, γ) ∈ TC ⊕ T ∗C | ∃β ∈ T ∗B such that ψ∗β = ρ∗γ and (ψ∗a, β) ∈ LB}

and

τ∗σ∗LB = {(c, τ∗δ) ∈ TC ⊕ T ∗C | (τ∗c, δ) ∈ σ∗LB}

= {(c, τ∗δ) ∈ TC ⊕ T ∗C | ∃b ∈ TB such that σ∗b = τ∗c and (b, σ∗δ) ∈ LB}
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Suppose now that (ρ∗a, γ) ∈ ρ∗ψ
∗LB. Then there exists β ∈ T ∗B such that

ψ∗β = ρ∗γ and (ψ∗a, β) ∈ LB.

Since the pullbacks of β and γ to A agree, and since the diagram (1.20) is Cartesian, there exists

a covector δ ∈ T ∗D such that

σ∗δ = β and τ∗δ = γ.

Let b = ψ∗a. Then σ∗b = τ∗ρ∗a and

(b, σ∗δ) = (ψ∗a, β) ∈ LB.

Therefore (ρ∗a, γ) ∈ τ∗σ∗LB, and we see that

ρ∗ψ
∗LB ⊂ τ∗σ∗LB.

Since the two sides of this inclusion are vector bundles of the same rank over C, they are equal. □

Lemma 1.21. Let A,B,C be Dirac manifolds and let σ : A −→ C be an isomorphism which factors

as

A B

C,

ψ

σ
ρ

where ψ is backward-Dirac and ρ is forward-Dirac. Then σ is both backward- and forward-Dirac.

Proof. Write LA, LB, and LC for the Dirac structures on A, B, and C respectively. Since ψ is

backward-Dirac and ρ is forward-Dirac, we have

LA = ψ∗LB and LC = ρ∗LB.

Since σ is an isomorphism, it is sufficient to prove that it is forward-Dirac—that is, to show that

LC = σ∗LA.

Suppose that (σ∗a, γ) ∈ σ∗LA. Then

(a, σ∗γ) ∈ LA ⇒ (a, ψ∗ρ∗γ) ∈ LA

⇒ (ψ∗a, ρ
∗γ) ∈ LB since LA = ψ∗LB

⇒ (ρ∗ψ∗a, γ) ∈ LC since LC = ρ∗LB

⇒ (σ∗a, γ) ∈ LC .

Therefore σ∗LA ⊂ LC . Since σ∗LA and LC are vector bundles of the same rank over C, this inclu-

sion implies equality. Therefore σ is forward-Dirac. □
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2. Steinberg slices

In this section we show that any quasi-Poisson G-manifold (M,π,Φ) has a distinguished sub-

manifold MΣ which intersects each nondegenerate leaf transversally and symplectically. This sub-

manifold, which we call the Steinberg slice of M , is the preimage of the Steinberg cross-section

of G under the moment map Φ. It carries a Poisson structure whose symplectic leaves are its

intersections with the nondegenerate leaves of M .

2.1. Construction of MΣ. Let W be the Weyl group of G corresponding to a maximal torus T ,

and let c ∈ W be a Coxeter element—that is, c is the product of the simple reflections, which is

unique up to conjugation. Write ċ ∈ NG(T ) for a fixed group representative of c.

Fix a pair of opposite Borel subgroups B and B− containing T , and let U and U− be their

unipotent radicals. The Steinberg cross-section of G, which was introduced in [Ste], is the closed

subvariety

Σ := Uċ ∩ ċ U− ⊂ G.

It is an affine space which consists entirely of regular elements. Its dimension is equal to the length

of c as an element of the Weyl group, which is the rank of G.

Since G is simply-connected, Σ intersects every regular conjugacy class in G exactly once and

transversally [Ste, Theorem 1.4]. If Ξ: G −→ T/W is the quotient map induced by the Chevalley

isomorphism C[G]G ∼= C[T ]W , then the composition

(2.1) Σ ↪−→ G
Ξ−−→ T/W

is an isomorphism of affine varieties.

Lemma 2.2. The pullback of the twisted Dirac structure LG to the cross-section Σ is the zero

Poisson structure.

Proof. Let ȷ : Σ −→ G be the inclusion map. Since Σ is transverse to the conjugacy classes of G,

by Lemma 1.18 the Dirac structure LG pulls back to a ȷ∗η-twisted Dirac structure

LΣ := ȷ∗LG = {(0, ȷ∗α) ∈ TΣ⊕ T ∗Σ | (0, α) ∈ LG}

on Σ.

For any h ∈ Σ, the image of

θRh = (Rh−1)∗ : ThΣ −→ g

is contained in b = Lie(B), and (b, [b, b]) = 0. In view of (1.9) we have ȷ∗η = 0, so the Dirac

structure LΣ is non-twisted.

Moreover, since LΣ is a Lagrangian subbundle of TΣ⊕ T ∗Σ, it follows that the map ȷ∗ has full

rank and therefore

LΣ = {(0, α) ∈ TΣ⊕ T ∗Σ | α ∈ T ∗Σ}

corresponds to the zero Poisson structure. □
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Theorem 2.3. Let H and K be complex groups. Suppose that K is simply-connected and semisim-

ple, and let Σ be the Steinberg cross-section of K. Let (M,π) be a quasi-Poisson H ×K-manifold

with group-valued moment map

Φ: M −→ H ×K

m ↦−→ (ΦH(m),ΦK(m)).

(a) The preimage MH,Σ := Φ−1
K (Σ) is a smooth submanifold of M .

(b) The pullback of the twisted Dirac structure LM to MH,Σ is quasi-Poisson for the action of

H, with group-valued moment map ΦH|MH,Σ
.

(c) The nondegenerate leaves of MH,Σ are the connected components of MH,Σ ∩ S, where S

varies over all nondegenerate leaves of M ; the quasi-Hamiltonian 2-form on each connected

component of MH,Σ ∩ S is the restriction of the quasi-Hamiltonian form ωS.

Proof. (a) Let k ∈ Σ and m ∈ Φ−1
K (k), and write O ⊂ K for the conjugacy class of k. Because ΦK

is K-equivariant,

TkO = ΦK∗(Tm(K ·m)) ⊂ ΦK∗(TmM).

Therefore, since Σ is transverse to O, it is transverse to ΦK . It follows that MH,Σ = Φ−1
K (Σ) is a

smooth submanifold of M .

(b) Let ȷ : H × Σ ↪−→ H ×K be the inclusion, and let η = (ηH , ηK) be the canonical 3-form on

the product H ×K. Since Σ is transverse to the conjugacy classes of K,

TmMH,Σ + Tm(K ·m) = Φ−1
K∗(TkΣ+ TkO) = TmM.

It follows thatMH,Σ is transverse to the H×K-orbits onM , and therefore also to the presymplectic

leaves of the Dirac structure LM .

Let ı : MH,Σ ↪−→ M be the inclusion. By Example 1.18, transversality implies that the −Φ∗η-

twisted Dirac structure on M pulls back to a −ı∗(Φ∗η)-twisted Dirac structure LMH,Σ
on MH,Σ.

The commutative diagram

(2.4)

MH,Σ M

H × Σ H ×K

ı

Φ Φ

ȷ

shows that

−ı∗(Φ∗η) = −Φ∗(ȷ∗η) = −ΦH∗ηH ,

where the last equality follows since the restriction of ηK to Σ vanishes by Lemma 2.2. Therefore

LMH,Σ
is a −ΦH∗ηH -twisted Dirac structure on MH,Σ.

To show that LMH,Σ
is quasi-Poisson for the action of H, by (1.17) it is sufficient to show (i)

that ΦH is a forward-Dirac map and (ii) that it has the property

kerΦH∗ ∩ LMH,Σ
= 0.
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(i) Let pH : H × K −→ H be the first projection, so that ΦH = pH ◦ Φ. Since pH and Φ are

forward-Dirac, we obtain

LH = pH∗LH×Σ

= pH∗(ȷ
∗Φ∗LM )

= pH∗(Φ∗ı
∗LM ) = ΦH∗LMH,Σ

,

where the third equality follows from applying Lemma 1.19 to (2.4). Therefore ΦH is forward-Dirac.

(ii) Let pK : H ×K −→ K be the second projection, so that

LΣ = pK∗LH×Σ.

Suppose that (X, 0) ∈ LMH,Σ
is such that ΦH∗(X) = 0. In particular, it follows that (X, 0) ∈ LM .

Since LΣ is the zero Poisson by Lemma 2.2 and since pK and Φ are forward-Dirac,

ΦK∗(X) = pK∗Φ∗(X) = 0.

This implies that Φ∗(X) = 0. Therefore X ∈ kerΦ∗ ∩ LM . Since Φ satisfies condition (1.17), it

follows that X = 0.

(c) This is immediate since we have shown that the quasi-Poisson structure on MH,Σ is the

pullback of the Dirac structure LM . □

When H = 1 and K = G, Theorem 2.3 has the following corollary:

Corollary 2.5. Let (M,π,Φ) be a quasi-Poisson G-manifold. Then

(a) MΣ := Φ−1(Σ) is a smooth submanifold of M .

(b) The pullback of the twisted Dirac structure LM to MΣ is Poisson.

(c) The symplectic leaves of MΣ are the connected components of MΣ ∩S, where S varies over

all nondegenerate leaves of M ; the symplectic form on each connected component of MΣ∩S
is the restriction of the quasi-Hamiltonian 2-form ωS.

Our first example of a Steinberg slice is the group scheme of regular centralizers of G, whose

symplectic structure is constructed in essentially the same way in [FiTs, Section 2].

Example 2.6. Consider the double D(G) of Example 1.3. Recall that its moment map is

µ : D(G) −→ G×G

(a, b) ↦−→ (aba−1, b−1),

with image

(2.7) im(µ) =
{︁
(g, h) ∈ G×G | g is conjugate to h−1

}︁
.

Let

Σ∆ :=
{︁
(h, h−1) | h ∈ Σ

}︁
⊂ G×G
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be the antidiagonal embedding of the Steinberg cross-section Σ. Since two elements of Σ are

conjugate if and only if they are equal, we have

µ−1(Σ∆) = µ−1(Σ× ι(Σ)),

where ι : G −→ G is the inversion. Since Σ× ι(Σ) is a Steinberg cross-section in G×G, it follows

from Corollary 2.5 that µ−1(Σ∆) is a smooth submanifold of D(G) with an induced symplectic

structure.

The fiber of µ above an antidiagonal point (h, h−1) ∈ G × G is the G-centralizer of h, and

therefore

µ−1(Σ∆) = {(a, h) ∈ G× Σ | aha−1 = h}.

This space is the completion of the phase space of the open relativistic Toda lattice, and this sym-

plectic structure is precisely the one described in [FiTs, Lemma 2.1].

2.2. Slices and the base affine space. We may also take the preimage of the Steinberg cross-

section through only one component of the moment map (1.6). This is the analogue of the one-sided

Whittaker reduction of T ∗G, which gives the twisted cotangent bundle of the base affine space G/U .

Example 2.8. By letting M = D(G) and H = K = G in Theorem 2.3, we see that

DΣ(G) := G× ι(Σ),

has a natural nondegenerate quasi-Poisson structure for the residual G-action

g · (a, h) = (ga, h), for g ∈ G, (a, h) ∈ DΣ(G).

The corresponding group-valued moment map is

DΣ(G) −→ G

(a, h) −→ aha−1.

Remark 2.9. Consider the affine space Θ := UċU , which contains Σ. By [Ste, Section 8.9], the

conjugation action gives an isomorphism

U × Σ
∼−−→ Θ.

(The proof in loc. cit. is omitted, but more general versions of this statement are proved in [Sev,

Proposition 2.1] or [HeLu, Theorem 3.6].) Then DΣ(G) becomes a bundle of affine spaces

DΣ(G) ∼= G×U ι(Θ) −→ G/U.

The one-sided slice DΣ(G) is similar to the universal imploded cross-section of [HJS], where the

authors study real quasi-Hamiltonian manifolds under the action of compact Lie groups. Following

this analogy, we will show that the Steinberg slice MΣ can always be obtained as a quasi-Poisson

reduction of the fusion product M ⊛DΣ(G). We will need the following two preliminary lemmas.
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Lemma 2.10. Let (N, π,Φ) be a nondegenerate quasi-Poisson G-manifold with quasi-Hamiltonian

2-form ω and Dirac structure LN . Suppose that

g : M −→ N

is a map from a manifold M which has the property that g∗ω = 0. Then g∗LN = TM ⊕ 0.

Proof. Let (X, g∗γ) be any element of g∗LN , so that (g∗X, γ) ∈ LN . Then there is a 1-form

α ∈ T ∗N and a Lie algebra element ξ ∈ g such that

g∗X = π#(α) + ρ(ξ) and γ = C∗(α) + Φ∗σ(ξ),

where ρ is the infinitesimal action map, C∗ is as defined in (1.10), and σ is given by (1.16).

The assumption that g∗ω = 0 implies that

0 = g∗ω♭(π#(α) + ρ(ξ))

= g∗C∗(α) + g∗ω♭(ρ(ξ))

= g∗C∗(α) + g∗Φ∗(σ(ξ))

= g∗γ.

Here the second equality follows by taking the dual of (1.11), and the third equality follows from

the quasi-Hamiltonian moment map condition (Q2). We conclude that g∗LN ⊂ TM ⊕ 0, and since

these are vector bundles of the same rank they must therefore be equal. □

Lemma 2.11. Let (M,πM ,ΦM ) be a quasi-Poisson G-manifold with corresponding Dirac structure

LM , and let (N, πN , (ΦN ,Ψ)) be a quasi-Poisson G×H-manifold with Dirac structure LN . Suppose

that g : M −→ N is a map which satisfies

(2.12) g∗LN = TM ⊕ 0 and (ΦN ◦ g)(m) = ΦM (m)−1 for all m ∈M.

Then the embedding

f : M ↪−→M ⊛N

m ↦−→ (m, g(m))

is backward-Dirac.

Proof. Let LM⊛N be the Dirac structure associated to M ⊛N . We will show that LM = f∗LM⊛N ,

by showing that the right-hand side is contained in the left-hand side.

Write

ρM : M × g −→ TM

ρN : N × g −→ TN

τ : N × h −→ TN

ρ : G× g −→ TG
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for the infinitesimal action maps, and let

C∗
M⊛N : T ∗(M ⊛N) −→ T ∗(M ⊛N)

be the map of vector bundles defined in (1.10). By Example 1.15(3), the Dirac structure f∗LM⊛N

consists of all pairs (X, f∗γ) ∈ TM ⊕ T ∗M such that

X + g∗X = π#M (α) + π#N (β) + ψ#
M×N (α+ β) + ρM (ξ) + ρN (ξ) + τ(χ)

and

γ = C∗
M⊛N (α+ β) + (ΦMΦN )

∗σG(ξ) + Ψ∗σH(χ),

where α ∈ T ∗M , β ∈ T ∗N , ξ ∈ g, and χ ∈ h. Here σG and σH are defined as in (1.16), and

the bivector ψM×N is induced by (1.7). In particular, the second condition of (2.12) implies that

f∗ ◦ (ΦMΦN )
∗ = 0, and therefore that

(2.13) f∗γ = α+ g∗β − 1

4
β(fiN )g

∗Ψ∗(ζLi − ζRi ) + g∗Ψ∗σH(χ),

where {fi} is an orthonormal basis of h and {ζi} is the corresponding dual basis in h∗.

Summing once again over repeated indices, define

ξα :=
1

2
α(eiM )ei and ξβ :=

1

2
β(eiN )ei.

Then

X = π#M (α) + ρM (ξ − ξβ) and g∗X = π#N (β) + ρN (ξ + ξα) + τ(χ).

It then follows from the first condition of (2.12) that

g∗(C∗
N (β) + Φ∗

NσG (ξ + ξα) + Ψ∗σH(χ)) = 0.

Applying this to equation (2.13) gives

f∗γ = α+
1

4
β(eiN )g

∗Φ∗
N (θ

L
i − θRi )− g∗Φ∗

NσG(ξ + ξα)

= α+
1

4
β(eiN )Φ

∗
M (θLi − θRi ) + Φ∗

MσG(ξ + ξα).

Here the last equality follows once again from the second condition of (2.12), which implies that

g∗Φ∗
N (θ

L
i ) = −Φ∗

M (θRi ) and g∗Φ∗
N (θ

R
i ) = −Φ∗

M (θLi ).

To complete the proof, we will now show that the 1-forms α and β satisfy the symmetry relation

(2.14) α(eiM ) = −β(eiN ) for all basis elements ei ∈ g.

Since the quasi-Poisson moment maps ΦM and ΦN are G-equivariant,

RΦ−1
M
ΦM∗ρM (ξ) = RΦ−1

M
ρ(ξ)

= ξ − (AdΦM
ξ)

= −LΦM
ρ(ξ) = −LΦM

ΦN∗ρN (ξ).
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We therefore obtain

0 = (ΦMΦN )∗(X + g∗X)(2.15)

= (RΦN
ΦM∗ + LΦM

ΦN∗)(X + g∗X)

= RΦ−1
M
ΦM∗π

#
M (α) +RΦ−1

M
ρ(−ξβ) + LΦM

ΦN∗π
#
N (β) + LΦM

ρ(ξα)

We unpack the last line term-by-term. Using the quasi-Poisson moment map condition [AKSM,

Lemma 2.3],

RΦ−1
M
ΦM∗π

#
M (α)(θi) = −α ◦ ρM ◦ σ∨(θRi ) = −1

2
α((AdΦ−1

M
ei)M + eiM )

Summing over repeated indices, we conclude that

RΦ−1
M
ΦM∗π

#
M (α) = −1

2
α((AdΦ−1

M
ei)M )ei −

1

2
α(eiM )ei = −(AdΦM

ξα + ξα),

where the second equality follows from the fact that AdΦM
is an orthogonal operator. Similarly,

LΦM
ΦN∗π

#
N (β) = −(AdΦM

ξβ + ξβ).

Moreover,

LΦM
ρ(ξα) = AdΦM

ξα − ξα and RΦ−1
M
ρ(−ξβ) = AdΦM

ξβ − ξβ.

Equation (2.15) therefore becomes

ξα = −ξβ,

proving the claim (2.14).

Now we return to our computation of the pullback of γ, which in view of (2.14) gives

f∗γ = α− 1

4
α(eiM )Φ∗

M (θLi − θRi ) + Φ∗
MσG(ξ − ξβ)

= C∗
M (α) + Φ∗

MσG(ξ − ξβ).

This shows that (X, f∗γ) ∈ LM , proving the desired inclusion and implying that f is backward-

Dirac. □

Now let (M,π,Φ) be a quasi-Poisson G-manifold, and consider the embedding

f : M ↪−→M ⊛D(G)

m ↦−→ (m, 1,Φ(m)−1),

where M ⊛D(G) is given by fusing the G-action on M with the first G-action on D(G). In view

of [AMM, Remark 3.2], the pullback of the quasi-Hamiltonian 2-form on D(G) to the submanifold

{1} × G vanishes. By Lemma 2.10, f satisfies the conditions of Lemma 2.11 and is therefore a

backward-Dirac map.

The restriction of f to MΣ descends to a backward-Dirac embedding

(2.16) MΣ ↪−→M ⊛DΣ(G).
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The moment map of the right-hand side is given by

J : M ⊛DΣ(G) −→ G

(m, a, x) −→ Φ(m)axa−1,

and the image of (2.16) is contained in the fiber J−1(1) above the identity.

Proposition 2.17. The embedding (2.16) induces an isomorphism of Poisson manifolds

MΣ
∼= (M ⊛DΣ(G))�G.

Proof. Since the diagonal action of G on M ⊛ DΣ(G) is free, each G-orbit in J−1(1) contains a

unique element of the form (m, 1,Φ(m)−1). Therefore the induced map

MΣ −→ J−1(1)/G = (M ⊛DΣ(G))�G

is an isomorphism. We only need to check that it is Poisson.

Since J is a quasi-Poisson moment map, it satisfies the transversality condition (1.17). Therefore

the inclusion

(2.18) J−1(1) ↪−→M ⊛DΣ(G)

equips J−1(1) with a Dirac structure via pullback, and we get a diagram

MΣ J−1(1)

J−1(1)/G.

∼

Here the horizontal arrow is backward-Dirac because its composition with (2.18) is the backward-

Dirac map (2.16). The vertical arrow is forward-Dirac by [BuCr1, Theorem 4.11] and, since the

diagonal arrow is an isomorphism, Lemma 1.21 implies that it is forward-Dirac, and therefore Pois-

son. □

2.3. Log-nondegenerate quasi-Poisson structures. Once again let (M,π,Φ) be a quasi-Poisson

G-manifold, and let D ⊂ M be a G-stable divisor with simple normal crossings. The logarithmic

tangent sheaf is the sheaf of logarithmic vector fields onM—that is, vector fields which are tangent

to the divisor D. Because D has simple normal crossings, this sheaf is locally free. The associ-

ated vector bundle TDM is called the logarithmic tangent bundle of M , and its dual T ∗
DM is the

logarithmic cotangent bundle.

Suppose for the rest of this section that the bivector field π is logarithmic. Then it corresponds

to a natural morphism of vector bundles

π#D : T ∗
DM −→ TDM
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from the log-cotangent bundle of M to the log-tangent bundle. Similarly, any logarithmic 2-form

ω ∈ Γ(∧2T ∗
DM) corresponds to

ω♭D : TDM −→ T ∗
DM.

Since the action of G on M stabilizes the divisor D, there is also a logarithmic infinitesimal action

map

ρD : M × g −→ TDM.

Definition 2.19. The quasi-Poisson G-manifold M is log-nondegenerate if the morphism of vector

bundles

π#D ⊕ ρD : T ∗
DM ⊕ g −→ TDM(2.20)

(α, ξ) ↦−→ π#D(α) + ρD(ξ)

is surjective.

Remark 2.21. The pullback of TDM to the open dense locus M◦ := M\D is just the ordinary

cotangent bundle TM◦; similarly, the pullback of T ∗
DM to M◦ is T ∗M◦. Therefore, along M◦

the morphism (2.20) agrees with the morphism of vector bundles (1.8). In particular, if M is

log-nondegenerate then M◦ is its unique open dense nondegenerate leaf.

Viewed as an automorphism of the tangent sheaf ofM , the map defined in (1.10) takes logarithmic

vector fields to logarithmic vector fields. Therefore it defines a morphism of vector bundles

(2.22) CD : TDM −→ TDM.

Using this and [AKSM, Theorem 10.3], we give an equivalent condition for log-nondegeneracy.

Proposition 2.23. The quasi-Poisson manifold (M,π,Φ) is log-nondegenerate if and only if there

exists a logarithmic 2-form ω ∈ Γ(∧2T ∗
DM) such that

(2.24) π#D ◦ ω♭D = CD.

Proof. (⇒) First suppose that π is log-nondegenerate. Then its restriction toM◦ is a nondegenerate

quasi-Poisson bivector π◦. By [AKSM, Theorem 10.3] there is a 2-form

ω◦ ∈ Γ(∧2T ∗M◦)

which satisfies conditions (Q1), (Q2), and (Q3). If C◦ is the restriction of (2.22) to M◦, then

π◦# ◦ ω◦♭ = C◦.

Taking duals, we also obtain

(2.25) ω◦♭ ◦ π◦# = C◦∗.

If ω◦ extends to a logarithmic 2-form ω on M , then condition (2.24) is automatically satisfied by

continuity. Therefore it is enough to show that ω◦♭ : TM◦ −→ T ∗M◦ extends to a morphism of

vector bundles

ω♭D : TDM −→ T ∗
DM.
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First, define a morphism of vector bundles λD : T ∗
DM ⊕ g −→ T ∗

DM by

λD(α, ei) = C∗
D(α) +

1

2
Φ∗(θLi + θRi ),

and let λ◦ : T ∗M◦ ⊕ g −→ T ∗M◦ be its restriction to M◦. In view of condition (Q2) and equation

(2.25), this restriction descends to the morphism ω◦♭ through the commutative diagram

T ∗M◦ ⊕ g T ∗M◦

TM◦.

λ◦

π◦#⊕ρ
ω◦♭

Second, for any local section α of T ∗
DM let

ω♭D(π
#
D(α)) := C∗

D(α).

This is well-defined: if π#D(α) = 0, it follows that π◦# vanishes on the restriction α|M◦ , so that

C◦∗(α|M◦) = 0 and therefore C∗
D(α) = 0. Therefore this defines ω♭D on the image of π#D . On

the other hand, the condition (Q2) defines ω♭D on the image of ρD. By the log-nondegeneracy

assumption (2.20), this determines ω♭D entirely.

Since ω◦♭ is well-defined on the intersection of the images of π◦# and ρ, it follows that ω♭D is also

well-defined on

im(π#D) ∩ im(ρD).

Therefore the map ω♭D fits into the following commutative diagram:

T ∗
DM ⊕ g T ∗

DM

TDM.

λD

π#
D⊕ρD

ω♭
D

In particular, this implies that ω♭D is a smooth morphism of vector bundles.

(⇐) Conversely, suppose that there exists a logarithmic 2-form ω on M such that (2.24) holds,

and let v ∈ TDM be any logarithmic vector. Then, in view of (1.10),

π#D ◦ ω♭D(v) = CD(v) = v − ρD(ξ)

for some ξ ∈ g. It follows that

π#D

(︂
ω♭D(v)

)︂
+ ρD(ξ) = v,

and so π#D ⊕ ρD is surjective. Therefore π is log-nondegenerate. □

Remark 2.26. Together with [AKSM, Theorem 10.3], Proposition 2.23 implies that any log-

nondegenerate quasi-Poisson manifold comes equipped with a unique logarithmic 2-form which

satisfies logarithmic versions of conditions (Q1), (Q2), (Q3), as well as the compatibility condition

(2.24).
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In the special case that the action of G is trivial, (M,π) is log-nondegenerate if and only if π#D is

an isomorphism—that is, if and only if π is a log-symplectic Poisson structure. In this case CD is

the identity morphism and the logarithmic 2-form ωD is is exactly the corresponding log-symplectic

form.

The following proposition shows that Steinberg slices in log-nondegenerate quasi-Poisson mani-

folds are log-symplectic.

Proposition 2.27. Suppose that (M,π,Φ) is log-nondegenerate.

(a) MΣ ∩D is a simple normal crossing divisor in MΣ.

(b) The induced bivector πΣ is tangent to MΣ ∩D.

(c) (MΣ, πΣ) is a log-symplectic Poisson manifold.

Proof. (a) Let D1, . . . , Dl be the smooth irreducible components of the simple normal crossing

divisor D. Since the bivector π is tangent to D and since D is G-stable, each partial intersection⋂︂
i∈I

Di, I ⊂ {1, . . . , l}

is a union of nondegenerate leaves of (M,π). Since MΣ is transverse to these nondegenerate leaves,

it is transverse to every partial intersection of divisor components. It follows that MΣ ∩D is again

a simple normal crossing divisor.

(b) Fix a point m ∈MΣ and a covector α ∈ T ∗
mMΣ, and let ı : MΣ −→M be the inclusion map.

Write LMΣ
and LM for the twisted Dirac structures associated to MΣ and M . By Theorem 2.3,

LMΣ
= ı∗LM .

Therefore, since (π#Σ (α), α) ∈ LMΣ
, there exists some β ∈ T ∗

mM such that(︂
π#Σ (α), α

)︂
=

(︂
π#Σ (α), ı∗β

)︂
and

(︂
ı∗π

#
Σ (α), β

)︂
∈ LM .

Since (M,π) is quasi-Poisson, Example 1.15(3) then implies that

ı∗π
#
Σ (α) = π#(γ) + ρ(ξ)

for some γ ∈ T ∗
mM and ξ ∈ g. Since π is logarithmic and D is G-stable, both terms on the right-

hand side are tangent to D. It follows that π#Σ (α) is tangent to MΣ∩D, and therefore the bivector

πΣ is logarithmic.

(c) Let ω be the logarithmic 2-form onM defined by Proposition 2.23. Write ωΣ for its restriction

toMΣ, and ω
◦
Σ for its restriction toM◦

Σ :=MΣ∩M◦. Since (M◦, π◦) is nondegenerate andM◦
Σ ⊂M◦

is a Steinberg slice, it follows from Theorem 2.3 that ω◦
Σ is a symplectic form. Therefore

π◦#Σ ◦ ω◦♭
Σ : TM◦

Σ −→ TM◦
Σ

is the identity map.

There is a morphism of vector bundles

π#Σ,D ◦ ω♭Σ,D : TDMΣ −→ TDMΣ.
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For simplicity and since there is no risk of confusion, here we abuse notation to write TDMΣ for the

log-tangent bundle of MΣ relative to the normal crossing divisor MΣ ∩D. This morphism agrees

with the identity map along M◦
Σ. Therefore it agrees with the identity map everywhere, and πΣ is

log-symplectic. □

3. The multiplicative universal centralizer and the wonderful compactification

Let ZG be the center of the simply-connected, semisimple group G, and let Gad := G/ZG

be its adjoint form. A finite quotient of Example 2.6 produces a smooth, symplectic family of

centralizer subgroups of Gad over Σ. In the next sections we will compactify the centralizer fibers

of this family inside the wonderful compactification of Gad. First we recall the construction of this

universal centralizer and of the wonderful compactification.

3.1. The multiplicative universal centralizer. The natural action of G on itself by conjugation

descends to an action of Gad on G, for which we use the same notation. For every h ∈ G we define

the adjoint centralizer

Zad(h) := {a ∈ Gad | aha−1 = h}.

Note that Zad(h) = ZG(h)/ZG, where ZG is the center of G, and we have the following simple

lemma.

Lemma 3.1. Suppose that h ∈ G is a regular element. Then Zad(h) is connected.

Proof. Let h = us be the Jordan decomposition of h into a unipotent part u and a semisimple part

s. Let L = ZG(s) be the centralizer of s in G. Because G is simply-connected, the reductive group

L is connected.

Since h is regular, the unipotent element u is regular in L and by [Spr, Lemma 4.3] we have

ZG(h) = ZL(u) = ZL × ZUL
(u).

Here UL is the unique maximal unipotent subgroup of L which contains u, and the second factor

ZUL
(u) is connected by [Spr, Theorem 4.11].

Write Lad := L/ZG ⊂ Gad for the Levi subgroup of Gad which is the image of L. Let R be the

weight lattice of Gad, and let I be the simple roots which do not vanish on the center ZLad
. Then

the number of connected components of ZLad
is given by the torsion subgroup of the abelian group

R/ZI.

Since Gad is of adjoint type, R is equal to the root lattice and this torsion subgroup is trivial.

Therefore ZLad
is connected.

The center ZG is the kernel of the group homomorphism

(3.2) ZL −→ ZLad
.
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Fix an element ḡ ∈ ZLad
and let g ∈ L be a point in the preimage of ḡ. Then the set

Sg = {glg−1l−1 | l ∈ L}

is contained in ZG. Since L is connected, the set Sg is connected. Moreover, since G is a semisimple

group, the center ZG is discrete and therefore Sg consists only of the identity element. This implies

that g ∈ ZL, so the group homomorphism (3.2) is surjective. Therefore

Zad(h) = ZG(h)/ZG ∼= ZLad
× ZUL

(u)

and, since ZLad
is connected, it follows that Zad(h) is also connected. □

Definition 3.3. The (multiplicative) universal centralizer associated to G is the affine variety

Z := {(a, h) ∈ Gad × Σ | a ∈ Zad(h)} .

Remark 3.4. Consider the space of commuting pairs

C := {(a, h) ∈ Gad ×Gr | a ∈ Zad(h)}

in which the second element is regular. The group G acts on C diagonally, and via (2.1) there is an

isomorphism

Z ∼= C/G.

Here the right-hand side is the categorical quotient of C by the G-action, which is studied in

[BFM]. In Proposition 2.8 and Theorem 2.15 of loc. cit. it is shown that, when G is simply-laced,

its coordinate ring is isomorphic to the equivariant K-theory of the affine Grassmannian of the

Langlands dual group G∨.

We will consider the double

DGad
:= Gad ×G,

which is the quotient of the space D(G) in Example 1.3 by the action of the finite center ZG on

the left. The G×G-action (1.4), the bivector π (1.5), and the moment map µ (1.6) all descend to

DGad
. Keeping this notation, (DGad

, π, µ) is a nondegenerate quasi-Poisson G×G-variety.

Remark 3.5. We may view DGad
as a constant algebraic group scheme over Gad. On the other

hand, letting g be the Lie algebra of Gad and using the Killing form to identify g∗ ∼= g, the cotangent

bundle

T ∗Gad
∼= Gad × g

becomes a bundle of Lie algebras over Gad. The double

DGad
= Gad ×G

is then its simply-connected integration.

In view of Example 2.6, the multiplicative universal centralizer

Z = µ−1(Σ× ι(Σ)) = {(a, h) ∈ Gad × Σ | aha−1 = h}
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sits inside DGad
as a symplectic Steinberg slice. In particular, as in [FiTs], through isomorphism

(2.1) Z is equipped with an integrable system given by the invariant generators of C[T ]W .

3.2. The wonderful compactification. Let l be the rank of G. The wonderful compactification

Gad is a canonical, smooth, G×G-equivariant compactification of Gad which was introduced by de

Concini and Procesi [dCP]. We recall some of its structure theory, following [EvJo]. It is a smooth

projective variety which contains Gad as an open dense subset and on which G acts by extensions

of the left- and right-multiplication. The boundary

D := Gad\Gad

is a simple normal crossing divisor with irreducible components D1, . . . , Dl.

The G×G orbits on Gad are in bijection with subsets of the simple roots in the sense that, for

any I ⊂ {1, . . . , l}, the closure of the orbit OI is the corresponding partial intersection of divisor

components

OI =
⋂︂
i ̸∈I

Di.

In particular, the closure of each orbit is smooth.

The subset I ⊂ {1, . . . , l} determines a “positive” parabolic subgroup PI , generated by the

“positive” Borel B and the simple root spaces indexed by I. Write P−
I for the opposite parabolic

and LI for their common Levi component. Let U±
I ⊂ P±

I be the unipotent radicals, and denote by

p±I , u
±
I , and lI the Lie algebras of these subgroups. Each orbit OI has a distinguished basepoint

zI ∈ OI

whose G×G-stabilizer is

(3.6) StabG×G(zI) :=
{︁
(us, vt) ∈ PI × P−

I | u ∈ UI , v ∈ U−
I , s, t ∈ LI , st

−1 ∈ ZLI

}︁
.

It follows that OI is a fiber bundle over the product of partial flag varieties G/PI × G/P−
I , with

fiber isomorphic to the adjoint group LI/ZLI
. This extends to a smooth fibration

LI/ZLI
OI

G/PI ×G/P−
I

whose fiber is the wonderful compactification of LI/ZLI
.

The wonderful compactification Gad is log-homogeneous in the sense of [Bri]—that is, the loga-

rithmic infinitesimal action map

actD : Gad × g× g −→ TDGad
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is surjective. Let κ be the Killing form on g. In the short exact sequence of vector bundles over

Gad

0 −→ ker(actD) −→ Gad × g× g −→ TDGad −→ 0,

the kernel ker(actD) is Lagrangian relative to the form (κ,−κ) on the direct sum g×g [Bri, Example

2.5]. It follows that

(3.7) ker(actD) ∼= T ∗
DGad.

This identifies the log-cotangent bundle T ∗
DGad with a subbundle of the trivial bundle Gad × g× g,

extending the embedding

T ∗Gad
∼= Gad × g ↪−→ Gad × g× g

(a, x) −→ (a,Ada x, x).

Under (3.7), the fiber of the log-cotangent bundle at the orbit basepoint zI ∈ OI is

T ∗
D,zI

Gad
∼= pI ×lI p

−
I .

Remark 3.8. Via (3.7), the log-cotangent bundle T ∗
DGad is a bundle of Lie algebras over Gad. In

analogy with Remark 3.5, we will show in the next section that it integrates to a smooth subgroup

scheme of the constant group scheme

Gad ×G×G −→ Gad.

4. The logarithmic double

In this section we recall the Vinberg monoid, and we use it to construct an enlargement of the

double DGad
to a group scheme DGad

over the wonderful compactification Gad. The nondegenerate

quasi-Poisson structure on DGad
will extend to a log-nondegenerate quasi-Poisson structure on

DGad
.

4.1. Construction of DGad
. The Vinberg monoid VG, introduced in [Vin], is a normal affine

algebraic semigroup whose locus of invertible elements is the enhanced group

Genh := G×ZG
T.

There are natural projections

(4.1)

Genh

Gad T
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—the first is a principal T -bundle, and the second is the abelianization of the group Genh. The

second map extends to

α : VG −→ T ,

where

T = SpecC[tα1 , . . . , tαl ] ∼= Cl.

Here α1, . . . , αl are the simple roots and tλ ∈ C[T ] is the function on T given by the weight λ. The

space T is an abelian monoid into which the adjoint torus embeds as the group of units via the

map

t ↦−→ (α1(t), . . . , αl(t)).

The morphism α is the abelianization of the monoid VG.

The monoid VG carries an action of G×G× T that extends the natural action on the enhanced

group, and α is G×G-invariant. In particular, every fiber of α contains an open dense G×G-orbit.
The nondegenerate locus

◦
VG ⊂ VG is the quasi-affine open dense subvariety whose intersection with

each fiber of α is this maximal orbit. We obtain a diagram

◦
VG

Gad T ,

◦
τ ◦

α

whose pullback along the inclusion Genh ↪−→
◦
VG is (4.1).

Now
◦
τ and

◦
α are smooth morphisms,

◦
τ is a principal T -bundle, and the G×G-stabilizer of any

point v ∈ ◦
τ−1(zI) is

(4.2) StabG×G(v) = PI ×LI
P−
I .

Let G×G act on Gad ×G×G via

(g, h) · (a, x, y) = (gah−1, gxg−1, hyh−1)

for (g, h) ∈ G×G and (a, x, y) ∈ Gad ×G×G.

Proposition 4.3. There is a smooth, closed, G×G-stable subgroup scheme DGad
⊂ Gad ×G×G

whose fiber over the basepoint zI ∈ Gad is

PI ×LI
P−
I .

Proof. Since
◦
α is smooth, the fiber product

◦
VG ×T

◦
VG is a smooth variety. The action morphism

◦
VG ×G×G −→

◦
VG ×T

◦
VG(4.4)

(v, g, h) −→ (v, gvh−1)

is smooth and surjective, because every fiber of
◦
α is a single G × G-orbit. The preimage of the

diagonal
◦
VG ↪−→

◦
VG ×T

◦
VG
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under (4.4) is the smooth family of stabilizers

S =
{︂
(v, g, h) ∈

◦
VG ×G×G | (g, h) ∈ StabG×G(v)

}︂
,

defined for example in [DrGa, Appendix D].

Because the action of G×G commutes with the action of T , for any v ∈
◦
VG and t ∈ T we have

StabG×G(v) = StabG×G(t · v).

Therefore the group scheme of stabilizers S descends through the principal T -bundle
◦
τ to a smooth,

closed, G×G-stable subvariety

DGad
⊂ Gad ×G×G.

By (4.2), the fiber of DGad
over zI ∈ Gad is PI ×LI

P−
I . □

The group scheme DGad
, which we call the logarithmic double, integrates the bundle of Lie

algebras given by the log-cotangent bundle

T ∗
DGad ⊂ Gad × g× g.

Its fiber at the identity element 1 ∈ Gad is the diagonal subgroup

{(g, g) | g ∈ G} ⊂ G×G.

Since DGad
is G×G stable, it follows that its fiber at any point a ∈ Gad is

{(aga−1, g) | g ∈ G}.

Therefore the logarithmic double DGad
is the closure of the image of the embedding

DGad
↪−→ Gad ×G×G(4.5)

(a, g) ↦−→ (a, aga−1, g).

The diagram

DGad
DGad

Gad Gad,

is Cartesian, and DGad
is exactly the restriction of DGad

to the open dense copy of Gad which sits

inside Gad.

4.2. The quasi-Poisson structure on DGad
. In view of the previous section, the nondegenerate

quasi-Poisson variety (DGad
, π, µ) sits inside the logarithmic double DGad

as an open dense subset.

Its complement is a simple normal crossing divisor, and for simplicity we abuse notation to denote

it by D. We will show that the quasi-Poisson bivector π extends to a logarithmic bivector on DGad
,

and that this gives DGad
the structure of a log-nondegenerate quasi-Poisson manifold in the sense

of Section 2.3.
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Using the notation of Section 1 and summing over repeated indices, define a bivector on the

space Gad ×G×G by

(4.6) π =
1

2

(︁
e1Li ∧ (e3Li + e3Ri ) + e1Ri ∧ (e2Li + e2Ri ) + e2Ri ∧ e2Li + e3Li ∧ e3Ri

)︁
.

Let the morphism µ, which extends the moment map µ : DGad
−→ G×G first defined in (1.6), be

the composition

(4.7)

DGad
Gad ×G×G

G×G,

µ

where the vertical arrow is

Gad ×G×G −→ G×G

(a, g, h) ↦−→ (g, h−1).

Proposition 4.8. The bivector π is tangent to DGad
, and (DGad

, π, µ) is a quasi-Poisson variety

whose unique open dense nondegenerate leaf is (DGad
, π, µ).

Proof. It is enough to show that the restriction of π to

DGad
⊂ Gad ×G×G

agrees with π. This will imply that π is tangent to DGad
, which is the closure of DGad

. Moreover,

since π satisfies the quasi-Poisson condition (1.1) along DGad
, π will satisfy (1.1) along DGad

.

Recall that the embedding of DGad
into Gad ×G×G fits into the commutative diagram

D(G) G×G×G

DGad
Gad ×G×G,

where D(G) is as defined in Example 1.3. The top horizontal arrow is

D(G) = G×G ↪−→ G×G×G

(g, h) ↦−→ (g, gh, hg).

The bottom horizontal arrow is (4.5), and the vertical arrows are quotients by the left action of the

center ZG. Therefore, from Example 1.3, it is sufficient to check that the pushforward of

1

2

(︁
e1Li ∧ e2Ri + e1Ri ∧ e2Li

)︁
∈ Γ

(︁
∧2TD(G)

)︁
along the top arrow of this diagram agrees with (4.6).
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At the point (g, gh, hg) the vectors which constitute π push forward to

e1Li ↦−→ e1Li + (Adg ei)
2R + e3Li

e1Ri ↦−→ e1Ri + e2Ri + (Adg−1 ei)
3L

e2Li ↦−→ e2Li + (Adg−1 ei)
3L

e2Ri ↦−→ (Adg ei)
2R + e3Ri .

Therefore, at (g, gh, hg) the bivector π is half the expression

e1Li ∧ (Adgei)
2R + e1Li ∧ e3Ri + e3Li ∧ e3Ri(4.9)

+ (Adg ei)
2R ∧ e3Ri + e3Li ∧ (Adg ei)

2R

+ e1Ri ∧ e2Li + e1Ri ∧ (Adg−1 ei)
3L + e2Ri ∧ e2Li

+ e2Ri ∧ (Adg−1 ei)
3L + (Adg−1 ei)

3L ∧ e2Li .

Since Adg and Adg−1 are orthogonal operators relative to the Killing form, and since we are

summing over repeated indices, the first terms in the first and third lines simplify:

e1Li ∧ (Adg ei)
2R = (Adg ei)

1R ∧ (Adg ei)
2R = e1Ri ∧ e2Ri ;

e1Ri ∧ (Adg−1 ei)
3L = (Adg−1 ei)

1L ∧ (Adg−1 ei)
3L = e1Li ∧ e3Li .

Moreover, applying orthogonality again, the terms in the last row become

e2Ri ∧ (Adg−1 ei)
3L = (Adg ei)

2R ∧ e3Li

and

(Adg−1 ei)
3L ∧ e2Li = e3Li ∧ (Adg ei)

2L = e3Ri ∧ (Adg ei)
2R.

Therefore the second and fourth lines of (4.9) sum to zero, and we see that (4.9) agrees exactly

with (4.6). □

Proposition 4.10. The quasi-Poisson variety (DGad
, π, µ) is log-nondegenerate.

Proof. It is clear from (4.6) that π is a logarithmic bivector, because the action of G × G on Gad

preserves the boundary divisor. We will check that π satisfies condition (2.20)—that the morphism

of vector bundles

π#D ⊕ ρD : T ∗
DDGad

⊕ g⊕ g −→ TDDGad

is surjective. By G × G-equivariance, is sufficient to check this at a point of the form (zI , x, y) ∈
DGad

. We begin by making a fixed choice of orthonormal basis.

Let R0 be the set of weights of the T -action on g, with multiplicity and including 0. Write R+

for the subset of R0 consisting of positive roots. Choose a basis of generalized eigenvectors

B := {Eα | α ∈ R0} ⊂ g.

By scaling Eα if necessary, we obtain an orthonormal basis

{Eα | α = 0} ∪ {Eα ± E−α | α ∈ R+}



STEINBERG SLICES AND GROUP-VALUED MOMENT MAPS 32

of g relative to the Killing form. In this basis, the bivector π from (4.6) becomes

π = E1L
α ∧ (E3L

α + E3R
α ) + E1R

α ∧ (E2L
α + E2R

α ) + E2R
α ∧ E2L

α + E3L
α ∧ E3R

α ,

where once again we sum over the repeated index α ∈ R0.

As in (3.7), the infinitesimal action map

g× g −→ TD,zIGad

is surjective with kernel pI ×lI p−I . In particular, the vector fields {ELα , ERα | α ∈ R0} span the

log-cotangent space of Gad at every point. Therefore the image of ρD at (zI , x, y), which is spanned

by the logarithmic vectors {︁
E1L
α + E3L

α − E3R
α , E1R

α + E2L
α − E2R

α

}︁
,

contains a subspace of dimension dimG which is not parallel to the fiber.

Let {θα | α ∈ R0} be the basis of g∗ dual to B. Since the logarithmic vector fields{︁
E1L
α | Eα ∈ p−I

}︁
⊂ Γ(T ∗

DDGad
)

are linearly independent at (zI , x, y) ∈ DGad
, the corresponding 1-forms{︁

θ1Lα | Eα ∈ p−I
}︁
⊂ Γ(T ∗DGad

)

extend to logarithmic 1-forms in a neighborhood of (zI , x, y) ∈ DGad
. By the same argument, the

same is true for {︁
θ1Rα | Eα ∈ pI

}︁
⊂ Γ(T ∗DGad

).

Applying π#D to these logarithmic 1-forms at (zI , x, y) ∈ DGad
, we obtain

π#D(θ
1L
α ) =

⎧⎨⎩E3L
α + E3R

α , if Eα ∈ p−I \lI
E2L
α + E2R

α + E3L
α + E3R

α , if Eα ∈ lI

and

π#D(θ
1R
α ) =

⎧⎨⎩E2L
α + E2R

α , if Eα ∈ pI\lI
E2L
α + E2R

α + E3L
α + E3R

α , if Eα ∈ lI .

This implies that the image of π#D contains a subspace of dimension dimG which is parallel to the

fiber. It follows that, at the point (zI , x, y),

dim
(︂
im(π#D ⊕ ρD)

)︂
= 2dimG.

Therefore this morphism of vector bundles is surjective. □
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5. The relative compactification of Z

Consider the relative compactification

Z =
{︂
(a, h) ∈ Gad × Σ | a ∈ Zad(h)

}︂
.

By realizing Z as a Steinberg slice in DGad
, we will use the results of the previous sections to show

that it is a smooth algebraic variety whose boundary is a simple normal crossing divisor, and that

the symplectic structure on Z defined (up to a finite central quotient) in Example 2.6 extends to a

log-symplectic structure on Z. We will then describe the symplectic leaves of this structure.

5.1. Construction of Z. We begin by characterizing the image and fibers of the compactified

moment map µ. In Section 2 we defined the quotient map Ξ: G −→ T/W , whose fibers are the

closures of the regular conjugacy classes. In view of diagram (4.7), the map µ is proper, and we

have the following description of its image.

Lemma 5.1. The image of µ is the closed subvariety

∆ :=
{︁
(g, h) ∈ G×G | Ξ(g) = Ξ(h−1)

}︁
consisting of pairs of elements (g, h) ∈ G×G with the property that g and h−1 lie in the closure of

the same conjugacy class.

Proof. Since µ is proper, its image is closed, so it is the closure of the image of µ. As in (2.7), the

image of µ is the collection of pairs{︁
(g, h) ∈ G×G | g is conjugate to h−1

}︁
.

The closure of this set is precisely ∆. □

Lemma 5.2. The variety ∆ is normal.

Proof. Because ∆ is the image of µ, it is irreducible of dimension

2 dimG− l.

Let f1, . . . , fl ∈ C[G]G be a set of generators for the algebra of conjugation-invariant functions on

G. Then

∆ =
{︁
(g, h) ∈ G×G | fi(g) = fi(h

−1) for all 1 ≤ i ≤ l
}︁
.

In particular, ∆ is the vanishing locus of exactly l algebraically independent functions on G × G.

Therefore it is a complete intersection, and in particular it is Cohen–Macaulay.

The regular locus

∆r = {(g, h) ∈ ∆ | g and h are regular}

is a smooth open subset of ∆ because the differentials df1, . . . , dfl are linearly independent at every

point of Gr [Ste, Theorem 1.5]. Moreover, the complement of ∆r in ∆ has codimension at least

two [Ste, Theorem 1.3]. Since ∆ is a Cohen–Macaulay variety with no singularities in codimension

one, by Serre’s criterion it is normal. □
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Lemma 5.3. The fibers of µ are connected.

Proof. A general fiber of µ is the closure in DGad
of a general fiber of µ, which is connected by

Lemma 3.1. Since µ is proper, by Stein factorization it decomposes as a composition

µ = f ◦ g

where f is a finite morphism and g has connected fibers.

Because the general fiber of µ is connected, f is a birational map. Moreover, since the image

of f is normal by Lemma 5.2, it follows from Zariski’s main theorem that all the fibers of f are

connected. Therefore the fibers of µ are also connected. □

Theorem 5.4. The variety Z is smooth and has a natural log-symplectic Poisson structure whose

open dense symplectic leaf is Z.

Proof. By Propositions 4.8 and 4.10, DGad
is a log-nondegenerate quasi-Poisson variety whose open

dense leaf is the double DGad
. There is a commutative diagram of moment maps

(5.5)

DGad
DGad

G×G.

µ µ

Two elements of Σ are in the closure of the same conjugacy class if and only if they are equal.

It follows from Lemma 5.1 that

µ−1(Σ× ι(Σ)) = µ−1(Σ∆).

Since Σ × ι(Σ) is a Steinberg cross-section in G × G, Theorem 2.3 implies that the preimage

µ−1(Σ∆) is a smooth subvariety of DGad
with a natural Poisson structure whose symplectic leaves

are the intersections of µ−1(Σ∆) with the nondegenerate leaves of DGad
. This Poisson structure is

log-symplectic by Proposition 2.27. It remains only to show that µ−1(Σ∆) is isomorphic to Z.

By Lemma 5.3, the variety µ−1(Σ∆) is connected. Since it is also smooth, it is irreducible, and

therefore it is the closure in DGad
of µ−1(Σ∆) ⊂ DGad

. In particular, for any h ∈ Σ,

µ−1(h, h−1) = µ−1(h, h−1) ∼= Zad(h) ⊂ Gad.

It follows that

µ−1(Σ∆) =
{︂
(a, h, h−1) ∈ Gad ×G×G | h ∈ Σ, a ∈ Zad(h)

}︂
∼= Z.

We obtain a commutative diagram

Z Z

Σ,
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which is the pullback of (5.5) along the embedding Σ ∼= Σ∆ ↪−→ G×G. Since the horizontal arrow
in this diagram is the restriction of a backward-Dirac map, it is a Poisson morphism. In particular,

Z sits inside Z as the unique open dense symplectic leaf. □

Remark 5.6. Suppose that G is simply-laced and let G∨ be its Langlands dual group. Write K
for the field C((t)) of Laurent series, O for its ring of integers, and

GrG∨ := G∨(K)/G∨(O)

for the affine Grassmannian of G∨. In [BFM, Proposition 2.8 and Theorem 2.15], the authors prove

that there is a natural isomorphism Poisson algebras

C[Z] ∼= KG∨(O)(GrG∨)

between the coordinate ring of the multiplicative universal centralizer and the equivariant K-theory

of GrG∨ . Here the right-hand side has a ring structure given by convolution, and its Poisson bracket

comes from the one-parameter deformation KG∨(O)×C∗
(GrG∨) induced by the loop rotation.

The algebra KG∨(O)(GrG∨) has a natural filtration indexed by the weight lattice Λ of G, which

is induced by the support in G∨(O)-orbit closures. Using the Vinberg monoid realization of the

wonderful compactification, one easily shows (see [Bal, Section 5]) that the relative compactification

Z can also be obtained via relative Proj as

Z ∼= ProjΣ

(︂
ReesΛ(K

G∨(O)(GrG∨)
)︂
.

Therefore, in the simply-laced case, our relative compactification Z is an example the Rees algebra

approach to compactified Coulomb branches illustrated in [BFN, Remark 3.7].

5.2. Symplectic leaves. By Proposition 2.27, the symplectic leaves of Z are the connected com-

ponents of the intersections of Z with the nondegenerate leaves of DGad
. Therefore we first describe

the nondegenerate leaves of the quasi-Poisson variety (DGad
, π, µ). For this we need to analyze the

image of the (non-logarithmic) bundle map

π# ⊕ ρ : T ∗DGad
⊕ g⊕ g −→ TDGad

.

Fix an index set I ⊂ {1, . . . , l}, and write

cI : PI −→ PI/[PI , PI ] =: AI

for the quotient of PI by its derived subgroup. The torus AI is the “universal torus” associated to

the standard parabolic PI . We first give a criterion for when two points in the fiber of DGad
above

zI ∈ Gad are in the same nondegenerate leaf.

Proposition 5.7. Let (x, y), (x′, y′) ∈ PI ×LI
P−
I . Then (zI , x, y) and (zI , x

′, y′) are in the same

nondegenerate leaf of (DGad
, π, µ) if and only if

cI(x) = cI(x
′).
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Remark 5.8. The value of cI(x) depends only on the LI -component of the element

x ∈ PI = LI ⋉ UI .

Since points in PI ×LI
P−
I are pairs with the same Levi component, the proposition could instead

be stated in an equivalent way relative to the second coordinate and the negative parabolic P−
I .

Proof. In order to determine the intersection of the fiber {zI}×(PI×LI
P−
I ) with each nondegenerate

leaf, we will find which vectors in the image of π# ⊕ ρ are tangent to the fibers of DGad
.

By (3.6), the kernel of the infinitesimal action map

g× g −→ TzIGad

is the subalgebra of pairs

{(u+ s, v + t) ∈ pI × p−I | u ∈ uI , v ∈ u−I , s, t ∈ lI , s− t ∈ ZlI}.

We use the same notation as in the proof of Proposition 4.10. Viewed as a section of ∧2TDGad
, at

the point (zI , x, y) the value of the bivector π is

π =
∑︂

Eα∈p−I \ZlI

E1L
α ∧ (E2L

α + E2R
α ) +

∑︂
Eα∈pI\ZlI

E1R
α ∧ (E3L

α + E3R
α )

+
∑︂
α∈R0

(E2L
α ∧ E2R

α + E3R
α ∧ E3L

α ).

Therefore, the vectors in the image of π# ⊕ ρ which are parallel to the fiber of DGad
at zI ∈ Gad

are given by the span of{︁
E2L
α + E2R

α | Eα ∈ u−I
}︁
∪
{︁
E3L
α + E3R

α | Eα ∈ uI
}︁

∪
{︁
E2L
α + E2R

α + E3L
α + E3R

α | Eα ∈ lI\ZlI

}︁
.

At each point this is the tangent space to the fibers of the smooth morphism

PI ×LI
P−
I −→ AI

(x, y) −→ cI(x).

Since these fibers are connected, it follows that two points (zI , x, y) and (zI , x
′, y′) are in the same

nondegenerate leaf if and only if they have the same image under this map. □

Let DGad,I
be the preimage of OI ⊂ Gad under the structure map

DGad
−→ Gad.

Since both π and ρ are tangent to the boundary of DGad
, each orbit preimage DGad,I

is a union

of nondegenerate leaves. To extend the criterion of Proposition 5.7 to this preimage, we define the

following data.
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For any a ∈ Gad, there exist group elements g, h ∈ G such that a = gzIh
−1. We associate to this

point a corresponding “positive” parabolic subgroup

Pa := gPIg
−1,

which, in view of (3.6), depends only on the point a ∈ Gad. There is a canonical identification of

tori

Pa/[Pa, Pa] ∼= PI/[PI , PI ] = AI ,

and we denote the corresponding quotient map by

ca : Pa −→ Pa/[Pa, Pa] ∼= AI .

The preimage DGad,I
is a locally trivial G×G-equivariant fiber bundle over OI . In other words,

there is an isomorphism

DGad,I
(G×G)×StabG×G(zI) (PI ×LI

P−
I )

OI ,

∼

Moreover, the map

(G×G)×StabG×G(zI) (PI ×LI
P−
I ) −→ AI

[(g, h) : (x, y)] ↦−→ cI(x)

is well-defined. Composing it with the isomorphism above, we get a smooth morphism

DGad,I
−→ AI

(a, x, y) ↦−→ ca(x).

In the following proposition we show that its fibers are precisely the nondegenerate quasi-Poisson

leaves in DGad,I
.

Proposition 5.9. Two points (a, x, y), (b, w, z) ∈ DGad,I
are in the same nondegenerate leaf of π

if and only if

ca(x) = cb(w).

Proof. There exist points

(x′, y′), (w′, z′) ∈ PI ×LI
P−
I

such that (a, x, y) is G × G-conjugate to (zI , x
′, y′) and (b, w, z) is G × G-conjugate to (zI , w

′, z′).

Since the nondegenerate leaves of (DGad
, π) are G×G-stable, (a, x, y) and (b, w, z) are in the same

leaf if and only if their translates (zI , x
′, y′) and (zI , w

′, z′) are in the same leaf. By Proposition

5.7, this occurs if and only if

cI(x
′) = cI(w

′).

But now ca(x) = cI(x
′) and cb(w) = cI(w

′), and the statement follows. □
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The orbit stratification on Gad induces a stratification

Z =
⨆︂

ZI

on Z, where

ZI := Z ∩DGad,I
=

{︂
(a, h) ∈ Gad × Σ | a ∈ Zad(h) ∩ OI

}︂
.

By Theorem 2.3(c), each stratum ZI is a union of symplectic leaves, and Proposition 5.9 has the

following immediate corollary.

Corollary 5.10. The symplectic leaves of ZI are the fibers of the smooth morphism

ZI −→ AI

(a, h) ↦−→ ca(h).
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[Vin] E. B. Vinberg. On reductive algebraic semigroups. Translations of the American Mathematical Society,

169:145–182, 1995.

Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA

Email address: ana@math.harvard.edu


	Introduction
	1. Quasi-Hamiltonian and quasi-Poisson structures
	2. Steinberg slices
	3. The multiplicative universal centralizer and the wonderful compactification
	4. The logarithmic double
	5. The relative compactification of Z
	References

