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Abstract

We use the Springer correspondence to give a partial characterization of the irre-
ducible representations which appear in the Tymoczko dot action of the Weyl group
on the cohomology ring of a regular semisimple Hessenberg variety. In type A, we
apply these techniques to prove that all irreducible summands which appear in the
pushforward of the constant sheaf on the universal Hessenberg family have full sup-
port. We also observe that the recent results of Brosnan and Chow, which apply the
local invariant cycle theorem to the family of regular Hessenberg varieties in type A,
extend to arbitrary Lie type. We use this extension to prove that regular Hessenberg
varieties, though not necessarily smooth, always have the “Kéhler package.”

Introduction

Let G be a connected, simply connected, semisimple complex algebraic group with
Lie algebra g. Fix a Borel subgroup B with Lie algebra b, and a B-stable subspace
H of g which contains b. The Hessenberg variety associated to an element x of g is

Hess(x, H) = {gB €G/B|lg ' -xe H}.

This variety is the fiber above x of a Poisson moment map

,uH:GxBH—>g
[g:y]— g-».
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In this way, the family of Hessenberg varieties is a generalization of the
Grothendieck—Springer simultaneous resolution, which corresponds to the case H =
b.

The study of Hessenberg varieties lies at the intersection of algebraic geometry,
representation theory, and combinatorics. Examples of these varieties first appeared
in applications to numerical analysis due to De Mari and Shayman [24]. They were
then defined in full generality by De Mari, Procesi, and Shayman in [23], who
described the geometry of Hessenberg varieties corresponding to regular semisimple
elements. In this work, the authors showed that such varieties are smooth, and that
one particular case is the toric variety whose fan is given by the Weyl chambers. In the
same period, a singular Hessenberg variety known as the Peterson variety was intro-
duced by Peterson in unpublished work. It came to play a central role in the study of
the quantum cohomology rings of flag varieties in work of Kostant [22] and Rietsch
[31, 32]. More recently, Goresky, Kottwitz, and MacPherson [20] have shown that
affine Springer fibers admit pavings by affine bundles over generalized Hessenberg
varieties.

The topology of Hessenberg varieties in type A has been studied in detail by
Tymoczko. In [37], she observed that regular semisimple Hessenberg varieties are
GKM varieties, and she showed that their singular cohomology rings carry an action
of the symmetric group called the Tymoczko dot action. Subsequently, Shareshian
and Wachs [33] conjectured a relationship between the character of the dot action in
type A and a generalization of the chromatic symmetric functions introduced by Stan-
ley [34]. In particular, this conjecture gives an explicit decomposition of Tymoczko’s
action into a sum of irreducible representations of the symmetric group, building
on earlier work of Gasharov [17]. The Shareshian—Wachs conjecture was recently
proved by Brosnan and Chow [9] by applying tools from the formalism of derived
categories. The key insight of their approach is that, on the regular semisimple locus
of the Hessenberg family, the dot action is induced by monodromy.

In general Lie type, the dot action becomes an action of the Weyl group W. The
problem of determining its character is still open. Prompted by the approach of Bros-
nan and Chow, we give the following result in this direction. Recall that the classical
Springer correspondence assigns to each irreducible representation i of W a pair
(Oy, Ly) of anilpotent orbit Oy and an irreducible local system Ly, on Oy.

Theorem A Let H- C g be the annihilator of H with respect to the Killing form.
Suppose that  is an irreducible representation of W which appears as a subrepre-
sentation of the action of W on the cohomology of a regular semisimple Hessenberg
variety associated to H. Then, the intersection Oy N H L is nonempty.

In type A, the Springer correspondence identifies irreducible representations of the
symmetric group S, with nilpotent adjoint orbits in sl,,. Both of these sets are indexed
by partitions of the positive integer . In this case, Theorem A has the following more
concrete statement, which can be deduced from the results of Brosnan and Chow and
appears to be known to experts.
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Corollary B Suppose that G = SL,, and let A be a partition of n corresponding
to an irreducible representation ;. of S,. Suppose that ) appears as a subrepre-
sentation of the action of W on the cohomology of a regular semisimple Hessenberg
variety associated to H. Then, the annihilator H+ contains a nilpotent element
whose Jordan normal form is given by the conjugate partition ).

Using similar reasoning, in type A, we also prove a support theorem for the Hes-
senberg family 1y : G x8 H — g. We are motivated by the recent work of Chen,
Vilonen, and Xue [10-13], in which the authors apply the Fourier transform to study
the singular cohomology of several classes of algebraic varieties which are related to
Hessenberg varieties.

Theorem C Suppose that G = SL,. In the bounded derived category of con-
structible complexes of sheaves on g, all irreducible summands of the derived
pushfoward pg+Cg . 8y have full support.

Precup has shown that any regular Hessenberg variety admits an affine paving [26]
and has palindromic Betti numbers [28]. This makes it possible to extend a result of
Brosnan and Chow [9, Theorem 127]—which identifies the singular cohomology of
any regular Hessenberg variety with an invariant subring of the cohomology of a reg-
ular semisimple Hessenberg variety—from type A to general Lie type. We apply this
to show that regular Hessenberg varieties, though not necessarily smooth, have the
“Kihler package.” This extends certain results of [4] in the regular nilpotent case, and
gives additional evidence for the conjecture of Precup [28] that regular Hessenberg
varieties are rationally smooth.

Theorem D For any regular element x of g, the singular cohomology ring
H*(Hess(x, H)) satisfies Poincaré duality, the hard Lefschetz property, and the
Hodge—Riemann relations.

In Section 1, we review the construction of Hessenberg varieties, the definition
of the dot action, and its interpretation in terms of monodromy. In Section 2, we
recall some conventions on the decomposition theorem, the Fourier transform, and
the Springer correspondence. In Section 3, we use these tools to prove Theorems A
and C, which appear as Theorem 3.4 and Theorem 3.7. In Section 4, we show that
the results of Brosnan and Chow extend to all Lie types, and we apply them to prove
Theorem D, as Theorem 4.11. We include in an appendix some technical results about
monodromy actions on equivariant cohomology.

We are grateful to Victor Ginzburg for making us aware of the work of Chen, Vilo-
nen, and Xue, and to Martha Precup for interesting discussions. We also thank the
anonymous referees for their detailed and constructive comments. During the com-
pletion of this work, A.B. was partially supported by a National Science Foundation
MSPRF under award DMS-1902921, and P.C. was partially supported by an NSERC
Postdoctoral Fellowship under award PDF-516638.
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1 Monodromy Actions of the Weyl Group
1.1 Recollections on Hessenberg Varieties

Let G be a connected, simply connected, semisimple algebraic group over C and let
g be its Lie algebra. Fix a maximal torus 7" and a Borel subgroup B containing it, and
write b for the Lie algebra of B. Let B be the flag variety of all Borel subalgebras of
g, which we freely identify with the homogeneous space G/B.

Definition 1.1 A Hessenberg subspace of g is a B-submodule H C g that contains
b.

Given a Hessenberg subspace H, consider the associated G-equivariant vector
bundle

G x®H — G/B.

The total space of this vector bundle has a natural Poisson structure (introduced in
[1] and studied in [6]) for which the action of G is Hamiltonian. The moment map is

un: GxBH — g

[g:x] —> g - x,

where we identify g = g* via the Killing form and where g - x denotes the adjoint
action.

Remark 1.2 For any B-stable subspace V C g, the map

uy: GxBvy — g

[g:x]— g -x
factors through the closed embedding

GxBv — G/Bxg
[g:x] —> (¢B. g x).

There is a commutative diagram

GxBV —— G/Bxg

9,

where the vertical arrow is projection onto the second component. This implies that
any morphism of the form wy is projective, and in particular proper.
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Definition 1.3 The Hessenberg variety associated to the subspace H and to a point
x egis

Hess(x, H) = u;,l(x)
- |gBeG/B|g—1.er}.

We call this Hessenberg variety regular (resp. semisimple, nilpotent) if x is a regular
(resp. semisimple, nilpotent) element of g.

Example (1) When H = b, the vector bundle § = G xZ b is the total space of
the Grothendieck—Springer simultaneous resolution. Identifying the homogeneous
space G/B with the flag variety, the Hessenberg variety Hess(x, b) is precisely the
Grothendieck—Springer fiber

B, =t eB|xeb)

(2) Let A be the set of simple roots determined by 7 and B, and consider the
standard Hessenberg subspace

Hy = (Z g_a) @®b.

aEA

For any regular element x € g, the centralizer G, = {g € G | g - x = x} acts on the
corresponding Hessenberg variety Hess(x, Hp) with an open dense orbit [6]. When
s € g is regular and semisimple, Hess(s, Hp) is the toric variety corresponding to
the fan of Weyl chambers [23, Theorem 11]. When e € g is regular and nilpotent,
Hess(e, Hp) is the Peterson variety [32].

Remark 1.4 For any Hessenberg subspace H, there is a commutative diagram

g=GxBb—— GxPH

For every x € g, this gives a natural G-equivariant inclusion
B, — Hess(x, H).

When x € g is regular, the Grothendieck—Springer fiber 5, is precisely the set of
fixed points for the action of G on B. It follows that for all regular x € g,

B, = Hess(x, H)~.

We recall some features of the geometry of Hessenberg varieties. Let g" (resp.
g") denote the locus of regular (resp. regular semisimple) elements of g. Given any
subspace V C g, we write V' for the regular locus V N g" and V™ for the regular
semisimple locus V N g™. If X is a topological space, we denote by H*(X) the
singular cohomology of X with complex coefficients.
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General Properties of Hessenberg Varieties

(1) For any regular element x € g, the Hessenberg variety Hess(x, H) has
dimension equal to dim(H /b) [28, Corollary 3].

(2) When s € g is regular and semisimple, the Hessenberg variety Hess(s, H) is
smooth. The restriction

MH:GXBHrS—)grs

of g to the regular semisimple locus is a smooth morphism [23, Theorem 6].

(3) A Hessenberg subspace H is called indecomposable if it contains every nega-
tive simple root space. If H is indecomposable, then Hess(s, H) is connected
for all semisimple s € g [27]. It follows from a Zariski Main Theorem argu-
ment [6, Remark 4.6] that all Hessenberg varieties Hess(x, H) associated to an
indecomposable H are connected.

(4) Itis shown in [28] that for any regular x € g, the Hessenberg variety Hess(x, H)
has palindromic Betti numbers. In other words,

dim H* (Hess(x, H)) = dim H'’"*(Hess(x, H))  forany k € Z,

where top = 2dim(H/b). When H is indecomposable and x € g is
regular, connectedness and palindromicity imply that the top cohomology
group H™P(Hess(x, H)) has dimension 1. It follows that all regular Hessen-
berg varieties Hess(x, H) associated to an indecomposable H are irreducible
[28, Corollary 14].

(5) Itis proved in [2] and [3] that when H is indecomposable, any regular Hessen-
berg variety is reduced. When H is not indecomposable, this is not necessarily
the case—for instance, if e € g is regular and nilpotent, the Grothendieck—
Springer fiber B, = ugl(e) is not reduced [39, Section 1.3.2]. Since we
are only concerned with the topology of Hessenberg varieties, the potentially
non-reduced structure will not be relevant.

1.2 GKM Varieties and Monodromy

Let A be a complex torus. A smooth projective A-variety X is called a GKM variety
if

The set of A-fixed points on X is finite, and
e The set of one-dimensional A-orbits on X is finite.

Remark 1.5 An arbitrary projective A-variety is GKM if in addition to these con-
ditions it is equivariantly formal in the sense of [19]. Since smoothness implies
equivariant formality, and since all of our GKM varieties will be smooth, we use the
definition above for simplicity.

We write H(X) for the A-equivariant cohomology of X with complex coef-

ficients. In the rest of this section, we will use a number of standard facts about
equivariant cohomology, which we review in the first section of the appendix.

@ Springer



Perverse Sheaves and the Cohomology of Regular Hessenberg Varieties

Proposition 1.6 [19, Theorem 1.6.2] Suppose that X is a GKM variety.
1. The restriction map H;(X) — H} (X4 is injective.
2. The specialization map H3(X) — H*(X) is surjective.

Let H C g be a Hessenberg subspace and let s € g be a regular semisimple
element. The centralizer G is a maximal torus of G which acts on the associated
Hessenberg variety Hess(s, H).

Proposition 1.7 [23, Section III] The Hessenberg variety Hess(s, H) is a GKM
variety for the action of Gy.

Remark 1.8 Using Proposition 1.6, Tymoczko [37] defined an action of the Weyl
group on H*(Hess(s, H)). In the rest of this section, we will show that it is induced
by the natural monodromy action of the fundamental group 71 (g™, s).

The connection between the dot action and monodromy was established by Bros-
nan and Chow. While their paper [9] only makes this identification in type A, there
is a straightforward generalization of their argument to arbitrary Lie type. We for-
mulate it below for completeness, and we also include in the appendix a number of
details about monodromy actions on equivariant cohomology.

Let t be the Lie algebra of the maximal torus 7, and let W be the associated
Weyl group. Consider the restriction g™ = ;] (g"™) of the Grothendieck—Springer
resolution to the regular semisimple locus. There is a Cartesian diagram

grs =G ><B b's ¢
Ho

g ——— /W, (1.9)

where the top horizontal arrow is projection onto the first summand of the decompo-
sition b = t @ [b, b], and the bottom arrow is induced by the Chevalley isomorphism
[14, Theorem 3.1.38]. The smooth morphism

grs _ grs

is a Galois cover with Galois group W [14, Proposition 3.1.36]. Therefore, for every
s € g with fixed preimage 5 € g™, there is a surjective group homomorphism

mi(g®, ) — W (*)
whose kernel is the image of the natural map
71 (@%, 5) — m(g”, 5).
For every s € t*, the morphism

wr G xB H™ — g
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induces monodromy actions of (g™, s) on H*(Hess(s, H)) and on
H; (Hess(s, H)), as explained in [16, Chapter I]. These actions are described in the
following proposition, whose proof we postpone to the appendix.

Proposition 1.10 Let s € t be a regular element. The monodromy action of w1 (g’*, s)
on H*(Hess(s, H)) factors through Eq. ().

1.3 The Tymoczko Dot Action

There is a natural isomorphism Hr(pt) = C[t] [8, Example 1.2] between the T-
equivariant cohomology of a point and the algebra of polynomial functions on t. For
any regular element s € t, this gives an isomorphism

H; (By) = P Clt),
seB;

where the left-hand side is the equivariant cohomology of the Grothendieck—Springer
fiber B, on which the Weyl group acts freely and transitively. The dot action on
HJ(By) is given by

w (f) = (wf,-i;)  foranyw e W, (f;) € @ CIt,
seB;

where the action of W on C[t] is induced by its action on t.
Tymoczko originally defined this action in type A [37, Section 3.1]. She proved
that it restricts to an action of W on the image of the embedding

Hj(Hess(s, H)) <> Hj(By), (1.11)

and that it descends to an action of W on H*(Hess(s, H)) through the surjection
H7 (Hess(s, H)) —> H*(Hess(s, H)). (1.12)

These results extend to arbitrary semisimple Lie algebras [4, Section 8.3] to give a
dot action of W on the cohomology of any regular semisimple Hessenberg variety.
We will show that the dot action on H7 (By) agrees with the monodromy action
of W induced by Eq. (x). This will imply that the dot action on H*(Hess(s, H))
coincides with the monodromy action of W coming from Proposition 1.10.

Proposition 1.13 Ler s € t be a regular element. The monodromy action of W on
HZJ.(By) coincides with the dot action.
Proof There is an isomorphism of graded algebras

Hf (By) = H'(B;) ® CH],

as in Remark A.10 of the appendix. The dot action on Hj (By) is exactly the diagonal
W-action induced by the natural actions of the Weyl group on B and on t. The
conclusion now follows from Corollary A.12. O
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Corollary 1.14 Let s € t be a regular element. The monodromy action of W on
H*(Hess(s, H)) coincides with the dot action.

Proof The dot action on H*(Hess(s, H)) is induced from the dot action of W on
HZ(By) through the maps Eqs. 1.11 and 1.12. In the proof of Proposition 1.10, it
is shown that the monodromy action on H*(Hess(s, H)) is induced from the mon-
odromy action of W on Hj (By) in the same way. In view of Proposition 1.13, the
two actions agree. [

2 The Decomposition Theorem and Springer Theory
2.1 The Decomposition Theorem

For any algebraic variety X, we denote by D(X) the bounded derived category
of complexes of sheaves on X which are constructible with respect to a fixed
stratification. We write Cy for the constant sheaf on X with coefficients in C.

For any local system £ on a stratum S, write £[—] = L[dim S] for the shift of £
which is perverse. Let I Cs(L) be the unique perverse sheaf on X which is supported
on S and whose restriction to S is £[—]. Now suppose that X is smooth and that
¢ : X — Y is a proper morphism. Up to shift, proper base change gives a graded
isomorphism

(R*:Cx[=Dy = H* (9™ (»)
between the cohomology of the stalks of the derived pushforward ¢,Cy and the
singular cohomology of the fibers of ¢ [15, Fact 2.2.1].

We will use the following version of the decomposition theorem of Beilinson,
Bernstein, Deligne, and Gabber [7]. For more details on this setting, we refer to
[15, Section 1.6].

Theorem 2.1 (Decomposition Theorem) Suppose that X is a smooth algebraic vari-
ety and that ¢ : X —> Y is a proper morphism. Then, there is an isomorphism in
the derived category
0:Cx = P ICs(Ls )b,
S.b
taken over all strata S C Y and over all integers b, and where each Ls j is a
semisimple local system on the stratum S.

Fixing a basepoint s € S gives an equivalence between the category of local
systems on S and the category of finite-dimensional representations of (S, s)
[5, Theorem 13.2.3]. We write L for the fiber of the local system L at s.

Fix a stratification

g=|]s

into smooth, locally closed subvarieties such that the restriction of the proper mor-
phism pp : § —> g to the preimage of any stratum is a locally trivial fibration [38].
Without loss of generality, we take g™ to be the open dense stratum.
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The morphism up : § —> g is small. (For details see [39, Lecture I].) Therefore,
only IC complexes with full support and no shift appear in the decomposition of
Theorem 2.1, which becomes

1esCyl—1 = [Cqn (L).

Since the monodromy action of 71 (g", s) factors through Eq. * and since the restric-
tion of py to the regular semisimple locus is a topological Galois cover for the action
of the Weyl group, the semisimple local system £ corresponds to the regular repre-
sentation of W [15, Section 3.5]. Decomposing further into irreducible local systems,
we obtain

16xCql—1 = @D 1Cn (L) (22)

Here the sum is taken over all irreducible representations ¥ of W, Ly, is the local
system corresponding to the irreducible representation v, and m.; is the multiplicity
of ¢ in the regular representation, which is equal to the dimension of .

2.2 The Fourier Transform

Let V be a vector bundle over a smooth algebraic variety. A complex 7 € D(V) is
called monodromic if its cohomology sheaves are locally constant along the orbits
of the natural C*-action on V. We write Dpon(V) for the full subcategory of D(V)
consisting of monodromic complexes.

There is a notion of Fourier transform for monodromic complexes [18, Section 8]
which gives a functor

§ ¢ Dmon(V) —> Dmon(V*),

where V* is the dual vector bundle. This functor induces an equivalence between the
subcategories of monodromic perverse sheaves. In particular, if VV is a subbundle of
V and Wt C V* is its annihilator,

§ (Cwl-1) = Cype -1 (2.3)
Identifying g = g* via the Killing form, we obtain functors
S : Dmon(G/B X g) —> Dmon(G/B x @),
S 1 Dimon(9) —> Dmon(9).

Recall that the Grothendieck—Springer resolution is a vector subbundle

g=GxBb—— G/Bxg

G/B.

The annihilator of b under the Killing form is the nilradical n = [b, b], and the
annihilator of the vector bundle g is the bundle

N:GXBn—) G/B

@ Springer



Perverse Sheaves and the Cohomology of Regular Hessenberg Varieties

There is a commutative diagram

§g—— G/Bxg+—— N
Mo m Hn

Here p is projection onto the second factor, A is the nilpotent cone of g, and .y, is the
Springer resolution. The morphism p is C*-equivariant, so the derived pushforward
gives a functor

Wy : Dmon(G/B X g) —> Dmon(g).

The Fourier transform commutes with this functor [18, Claim 8.4], and Eq. 2.3
implies that

g(ﬂb*gg[_]) = UnsS (Qg[_]) = Mn*gﬂ'[_]- (2.4)

The nilpotent cone is stratified by G-orbits into smooth, locally closed, C*-stable

subvarieties along which the Springer morphism p, is locally trivial. Because py, is

semismall, the derived pushforward (. C /\7[_] is a perverse sheaf. (Once again we
refer to [39, Lecture I].) The decomposition theorem gives an isomorphism

paC i l-1= P 1o Moy,
@
where each O C N is a nilpotent G-orbit and M is a semisimple local system on
0.
Since O = G/G,, there is a long exact sequence of homotopy groups

. —> 11 (G) — 1 (0) — 719(Ge) — 7(G) — .. ..

Because the group G is connected and simply connected, this sequence gives an
isomorphism 71 (0) = mo(G,.). The fiber M . is therefore a representation of the
group 7o(G,) of connected components of the centralizer of e.

By Egs. 2.2 and 2.4,

[ —1 = @D FU Cn (L)

For each index v, the Fourier transform §(/Cgis(Ly)) is an irreducible perverse
sheaf on AV. In other words, §(/Cgrs(Ly)) = ICo M (My) for some nilpotent orbit
Oy equipped with an irreducible local system M.

The Springer correspondence is the assignment

¥ > ICo, (My), 2.5)
which associates to each irreducible representation of the Weyl group this unique

irreducible nilpotent orbital complex.

Remark 2.6 In type A, both irreducible representations of the symmetric group S,
and nilpotent orbits in s(, are indexed by partitions of n. The Springer correspon-
dence is a geometric realization of this bijection.
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Concretely, suppose that G = SL,. The actions of G on N and on N\ extend
naturally to actions of GL,,, and the morphism
MUn : N — N

is GL,-equivariant. Since the centralizer in GL, of any element in gl, is con-
nected, the monodromy action of 71 (0) = 7o(G,) on H* (B,) is trivial. It follows
that only sheaves ICp (M) with M a trivial local system appear in the Springer
correspondence in this case.

For any partition A of n, let A’ be the dual partition. Write v, for the irreducible
representation of S, corresponding to A, and O, for the orbit of nilpotent elements
whose Jordan normal form is indexed by A. The Springer correspondence Eq. 2.5
then maps

wk’ > ICV(Q)L (go)‘)
See [39, Section 1.5.16], for example, for details.

3 Applications to the Universal Family of Hessenberg Varieties

We apply the tools of the previous section to the universal family of Hessenberg
varieties. Consider once again the morphism

ug: GxBH — g,
which is proper by Remark 1.2. The decomposition theorem gives
wrxConpl—1= @ ICs (L) [-D1.
S.b

The generic fiber of u g has dimension /! = dim(H /b), and the restriction of © g to
the regular semisimple locus G x5 H™ is a smooth morphism [23, Theorem 6]. The
decomposition theorem implies that there is an isomorphism in the derived category

l

1HxC o [ =1 = @D Hpldimg — b], 3.1
b=-1

where H, is the semisimple local system on g whose fiber at s € g™ is the singular
cohomology group H?*! (Hess(s, H)).

Proposition 3.2 Each local system Hy, is a direct sum

Hy =P Ly

of local systems which appear in the decomposition Eq. 2.2 corresponding to the
Grothendieck—Springer resolution.

Proof The local system H;, decomposes as a sum of simple local systems

Hp =@./\/lj,
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with fibers M;; which are irreducible representations of 7(g",s). There is a
1(g™, s)-equivariant inclusion

M; s — H*"(Hess(s, H)).

By Proposition 1.10, the action of 71(g™, s) on H b+l (Hess(s, H)) factors through
Eq. . It follows that 771 (g™, s) acts on M ; through an irreducible W-representation
¥, and therefore M ; = Ly,. O

We will apply the Fourier transform to the vector bundle G x® H — G/B. Let
H+ C g be the annihilator of H under the Killing form. We have a commutative
diagram

GxPH—— G/Bxg+— GxPH"
BH n Pl

g=———g+——— Opy.

Since the Hessenberg subspace H contains the fixed positive Borel b, H is con-
tained in the nilradical n. Therefore, the image of the morphism 1 is contained in
the nilpotent cone. This image is irreducible and G-stable, and it is closed because
Wy is proper by Remark 1.2. Therefore, it is the closure of a single nilpotent G-orbit

Oy CcN.

Remark 3.3 Suppose that H # b. In this case, the orbit O is always non-regular.
The vector bundle G xZ H< is a subbundle of G x % n, and there is a commutative
diagram

GxBHL — 5 GxBn=N
'U‘HJ- Hn

Oy —— N.
This diagram is not Cartesian, and 1 always fails to be semismall at 0 because
codim@{O} =dimOy < dimN = 2dim B = 2dim MZ,IL 0).
Recall that the Springer correspondence Eq. 2.5 assigns to each irreducible repre-
sentation ¥ of W an irreducible nilpotent orbital complex Cp,, (My,). We use the

Fourier transform to give a necessary condition for an irreducible representation
to appear in the dot action.

Theorem 3.4 Let s € t be a regular element. Suppose that the irreducible W -

representation \ appears as a subrepresentation of H*(Hess(s, H)) under the dot
action. Then, the intersection Oy N H L is nonempty.
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Proof Suppose that i is an irreducible summand of H*(Hess(s, H)) under the dot
action. By Corollary 1.14, this action coincides with the monodromy action of W. It
follows that the local system Ly is a direct summand of H;, for some index b.

The Fourier transform gives an identification

T (nnsCoxopl=1) = nyr,Coxnprl=l,
so the complex F(ICgs(Ly)) = [Cp,(My) is a direct summand of

M1 Co 8 y1[—]. Therefore, its support is contained in Oy = G-H*.Equivalently,
Oy NH L is nonempty. O

In view of Remark 2.6, Theorem 3.4 has the following corollary in type A.

Corollary 3.5 Suppose that G = SL,,. Let A be a partition of n, and suppose that \,,
appears as a subrepresentation of H*(Hess(s, H)). Then, H* contains a nilpotent
element whose Jordan normal form corresponds to ).

Remark 3.6 Though we were unable to find a reference in the existing litera-
ture, Corollary 3.5 can also be proved combinatorially using [9, Theorem 129] and
[17, Theorem 4], and appears to be known to experts. Moreover, Martha Precup has
explained to us that its converse follows from her recent work with Ji [29, Lemma 6.1]
and Gasharov’s Schur expansion of the chromatic symmetric function [17], which is
refined in [33, Section 6].

In type A, we can also use the Fourier transform to prove a support theorem for
the universal Hessenberg family

/LHIGXBH—)Q.

Theorem 3.7 Suppose that G = SL,,. There is an isomorphism

1sCornpl—1 = @D ICes (Hp)[—b]

in the derived category, where the local systems Hy are as defined in Eq. 3.1. In
particular, every irreducible summand of uwy+«Cg 8y [—] has full support.

Proof Consider once again the G-equivariant proper morphism
pupl:GxBHY — Oy

As in Remark 2.6, the actions of G on G x® HL and on Op extend to actions of GL,,.

Let O be a nilpotent orbit with basepoint e. Since centralizers in G L, are connected,

the monodromy action of 71 (0) = 7o(G,) on H* (/L;i (e)) is trivial.

It follows that each irreducible orbital complex appearing as a summand of
M1 Co s yi[—]1is trivial. We obtain a decomposition

wit o [-1= @ 1C0o (Co) ™" [-b.
O,b
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Applying the Fourier transform, this gives
/'LH*QGXBH[—] = @ FUCo (QO)[_b])emo,b_
O,b

By Remark 2.6, every trivial orbital complex /Cx(Cp) appears in the Springer
correspondence. Therefore, the Fourier transform of any such complex has full
support. The theorem now follows from Eq. 3.1. O

Remark 3.8 Theorem 3.7 relates the irreducible summands appearing in the dot
action representation to the cohomology of the fibers of the map 1, which are a
class of ad-nilpotent Hessenberg varieties. This connection is studied in recent work
of Precup and Sommers [30], where Theorem 3.7 is extended to all Lie types.

4 The Local Invariant Cycle Theorem and the Kahler Package

Suppose that ¢ : X — Y is a proper surjective morphism between smooth algebraic
varieties, and let U C Y be an open dense subvariety so that ¢ restricts to a smooth
morphism along the preimage of U. Fix y € Y, and let Dy, C Y be a sufficiently
small Euclidean ball around y such that the restriction

H* (9~ (Dy)) — H* (¢~ () (4.1)

is an isomorphism. By the global invariant cycle theorem [15, Theorem 1.2.2], for
any u € U N Dy, the restriction map gives a surjection

H*(p~ (U N Dy)) — H*(p~ (u))"1@NPyw), 4.2)

Composing the inverse of Eq. 4.1 with the natural restriction to H* (¢~ (U N Dy))
and then with Eq. 4.2, we obtain a homomorphism of algebras

by s HY (@7 (0) — H* (o )™ 0P,

We state a version of the local invariant cycle theorem of Beilinson, Bernstein, and
Deligne [7], referring once again to [15, Section 1.4] for details.
Theorem 4.3 (Local Invariant Cycle Theorem) The map Ay is surjective.

Suppose that d = dim X — dim Y. We say that the fibers of ¢ have palindromic
Betti numbers if for every y € Y,

dim H*(¢7'(y)) = dim H***(p~'(y))  forallk € Z.

In [9], Brosnan and Chow showed that there is a remarkable connection between the

local invariant cycle map and palindromicity. We briefly recall their results.

Theorem 4.4 [9, Theorem 92 and Theorem 102] Suppose that ¢ : X — Y isa
projective, surjective morphism between smooth algebraic varieties. The following
are equivalent:

1. The fibers of ¢ have palindromic Betti numbers.
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2. Every irreducible summand appearing in the decomposition of ¢.Cx has full
support and is concentrated in a single cohomological degree.
3. Foreveryy €Y, the local invariant cycle map Ay is an isomorphism.

Remark 4.5 While the local invariant cycle theorem applies to any proper morphism,
the proof of Theorem 4.4 relies on the relative hard Lefschetz property, which only
holds when ¢ is projective.
We will consider the family
WH - GXBHr—>gr,

of regular Hessenberg varieties, which is the restriction of pg to the regular locus.
In [9], Brosnan and Chow showed that, when g is of type A, the fibers of this family
have palindromic Betti numbers. In [28], Precup generalized this to all semisimple
Lie algebras by using explicit affine pavings of regular Hessenberg varieties. In view
of Precup’s result, Theorem 4.4 has the following immediate corollary.

Corollary 4.6 The complex wp«C 5 yr has no proper supports.

Fix a regular element x € g with Jordan decomposition x = x5 + x,. Let t now be
a Cartan subalgebra containing x, and let W be the associated Weyl group. We will
prove the following consequence of Theorem 4.4, which is a straightforward gener-
alization of Theorem 127 of [9]. In the case when x is a regular nilpotent element,
this result was proved in [4] using the combinatorics of hyperplane arrangements.
Proposition 4.7 There is a regular element s € t such that
H*(Hess(x, H)) = H*(Hess(s, H))"* (4.8)

as graded algebras, where the right-hand side is equipped with the dot action and
Wy, is the stabilizer of xs in W.

Proof Fix a small Euclidean ball D, C g centered at x such that the restriction
H*(uy (Dy)) —> H*(Hess(x, H))

given by Eq. 4.1 is an isomorphism. By conjugating x if necessary, we can assume
that there exists some s € t' N Dy.

Since regular Hessenberg varieties have palindromic Betti numbers [28], Theorem
4.4 implies that the local invariant cycle theorem gives an isomorphism

H*(Hess(x, H)) —> H*(Hess(s, H))™ " "Px9),
We are then reduced to proving the following fact: the image of the composition
m1(g™ N Dy, s) —> w1 (g™, s) ﬁ> w 4.9)

is a subgroup of W conjugate to W,..
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Let b now be a Borel subalgebra containing x and ¢, and let B be the correspond-
ing Borel subgroup. Restricting the Grothendieck—Springer resolution to the regular
locus, we obtain a W-equivariant Cartesian diagram

F=GxBp —— t

g — /W (4.10)

The top horizontal arrow maps the point [1 : x] € /,LEI (x) to the semisimple part x;.

By [9, Proposition 106], the image of the composition Eq. 4.9 is a subgroup of W
conjugate to the stabilizer of [1 : x] under the action of W on g". Because Eq. 4.10 is
Cartesian, the stabilizer of [1 : x] in W is precisely Wy.. ]

We will use Proposition 4.7 to show that H*(Hess(x, H)) has the “Kihler” pack-
age. This generalizes Proposition 8.14 and Theorem 12.1 of [4], which apply in the
case when x is regular nilpotent. Compared to these results, our proofs are simplified
by the identification of the dot action with the monodromy.

Theorem 4.11 Let x € g be a regular element and let | be the dimension of the
regular Hessenberg variety Hess(x, H).

1. (Poincaré duality) The cohomology ring H*(Hess(x, H)) is a Poincaré duality
algebra.

Moreover; there is a nonzero “Kihler” class w € H?*(Hess(x, H)) satisfying the
following properties:

2. (Hard Lefschetz) Multiplication by * induces an isomorphism

H'"*(Hess(x, H)) Lk) H'"*(Hess(x, H)) forevery 0 <k <1.
3. (Hodge—Riemann) For every 0 < k <[, the symmetric bilinear form
H*(Hess(x, H)) x H*(Hess(x, H)) —C
(@ B) — (=Df f[aUBU!F

is positive-definite on the kernel of the linear map

/—k+1
Hk(Hess(x, H)) - H21_k+2(Hess(x, H)).

Proof (1)Lets € tbe the regular semisimple element of Eq. 4.8. Because Hess(s, H)
is smooth, there is a nondegenerate Poincaré duality pairing

Hk(Hess(s, H)) x HZI_k(Hess(s, H)) — Hzl(Hess(s, H)) — C.

The first arrow is given by the cup product, and the second is given by evaluating on
the homology class which is the sum of the fundamental classes of the irreducible
components of Hess(s, H).
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The monodromy action of W preserves both the cup product and this sum, so this
pairing is W-invariant. Restricting it to

H*(Hess(s, H))"s x H¥~*(Hess(s, H))"s — H (Hess(s, H))"s — C
gives a nondegenerate pairing on H*(Hess(x, H)) = H*(Hess(s, H ) Was

(2 and 3) The usual inclusions form a commutative diagram

GxBH+— GxB Qg

G/B «—— Hess(s, H),

where the left vertical arrow is the bundle map.
This gives a commutative diagram of pullbacks in cohomology

H*(G xB H) —— H*(G x? O™)

H*(G/B) —— H*(Hess(s, H)).

Since G x8 H™ — g™ is a locally trivial fibration, the image of the right vertical
arrow lies in the space H*(Hess(s, H))" of monodromy invariants. It follows that
the image of the restriction

H*(G/B) — H™*(Hess(s, H))

also lies in H*(Hess(s, H))".

Since both G/B and Hess(s, H) are smooth projective varieties, there is a Kihler
class in HZ(G/B) whose image is a Kihler class w € H?(Hess(s, H)). By the dis-
cussion above, w is W-invariant. Its preimage under Eq. 4.8 then satisfies (2) and (3)
for H*(Hess(x, H)). O

The hard Lefschetz property implies that the even-degree Betti numbers of any
regular Hessenberg variety are unimodal [25, Corollary 1.2.9]. This unimodality has
already been observed in the regular nilpotent case by Tymoczko [36, Section 9.3].

In type A, it also follows from [33, Proposition 10.2] and [9, Theorem 129].

Corollary 4.12 Let x € g be a regular element. The even Betti numbers of the
Hessenberg variety Hess(x, H) form a unimodal sequence.

Appendix. Monodromy actions on equivariant cohomology

In this appendix, we recall some fundamental background on equivariant cohomol-
ogy, and we use it to prove a series of more specialized facts about monodromy
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actions in the equivariant setting. These results, which are straightforward but which
we were unable to easily find in the literature, are needed to show in Corollary 1.14
that the Tymoczko dot action is induced by monodromy.

A.1. Background on equivariant cohomology

First we recall some standard facts about equivariant cohomology. We refer to [8,
Section 1] for more details. Let G be a connected Lie group and fix a principal G-
bundle EG —> BG whose total space is contractible. Suppose that X is a G-space—
that is, a topological space equipped with a continuous action of G. Then, the product
X x EG carries a free diagonal action of G. The G-equivariant cohomology of X is
the singular cohomology of the quotient X x¢ EG:

H:(X) = H*(X xY EG).
It is independent of the choice of EG — BG.

A continuous G-equivariant map f : X — Y between G-spaces X and Y
induces a pullback

HE:(Y) = H*(Y x% EG) — H*(X x% EG) = H(X), (A1)

which is a homomorphism of graded algebras. In particular, the map X — {pt}
induces
HG (pt) — Hg (X)),
giving HE (X) the structure of a graded H (pt)-algebra. The pullback Eq. A.1is a
homomorphism of graded H; (pt)-algebras.
Let K be any closed, connected subgroup of G. Then, EG — EG/K is a
principal K-bundle whose total space is contractible. Therefore,

H(X) = H*(X xX EG).

The pullback along X xX EG — X x¢ EG induces a homomorphism of graded
algebras

HG(X) — Hg (X)),
called a specialization map. In particular, when K = {1} is the trivial subgroup of G,
this gives a natural map

H{(X) — H*(X).

Lemma A.2 Suppose that K is a maximal compact subgroup of G. Then, special-
ization induces an isomorphism
HE(X) = H (X).
Proof The fibration
X x¥EG — X xY EG

has fiber isomorphic to G/K. Since K is a maximal compact subgroup of G, the
quotient G/K is contractible [21, Theorem 6]. It follows that the pullback

H*(X x% EG) — H*(X xX EG)

is an isomorphism. O
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A.2. Equivariant cohomology in local systems

Let G be a semisimple complex algebraic group and let g be its Lie algebra. Fix
a maximal torus 7 with Lie algebra t and Weyl group W. Suppose that X is a
smooth algebraic G-variety equipped with a smooth, G-equivariant, proper surjective
morphism ¢ : X — g". For any subset V C g, let

Xy =9 (V).

In particular, X is the fiber above a regular semisimple element s € g, and Xy is the
restriction of X to t'.

Theorem A.3 Let s € g be a regular semisimple element. For any non-negative
integer k, there exists a local system L* on g'* whose fiber at s is Hf‘;T (Xs). Therefore,
the fundamental group 71(g", s) acts on the equivariant cohomology ring Héx (Xs)
by monodromy.

Theorem A.3 will follow from the next Proposition.

Proposition A.4 For any non-negative integer k, there exists a local system on t
whose fiber at s € t" is H; (Xy).

Proof Let K be a maximal compact subgroup of G such that S = K N7 is a maximal
compact torus in 7. By Lemma A.2,
HE(Xs) = Hg(X;).

Fix n > kand n > 2dim X, and let V be a n-connected, compact manifold on
which K acts freely. (Such a manifold always exists, see for example [35, Theorem
19.6].) Then,

HY (X)) = H (X x5 V).
(See [8, Section 1].) Since ¢ : X¢ —> t" is smooth and proper, the induced map
DX xSV —
is a proper locally trivial fibration. The k-th derived pushforward R¥®,C xSy 18
therefore a local system. By proper base change
(R*®,Cy 51)s = HK (@7 1(s))
= H* (X, x5 V) = HE(X,) = HE(Xy). O

Proof of Theorem A.3 We keep the same notation as in the proof of Proposition A.4.
There is a Cartesian diagram

X x5V —— X xNe®) y

t— /W, (A.5)
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where Nk (S) is the normalizer of the compact torus S in K. All the maps above
are smooth, locally trivial fibrations, and R¥®,C xSy 1s the pullback of the local
system

L= R*®.Cy  npry- (A.6)
The Chevalley isomorphism gives a smooth surjection of algebraic varieties

x gt — g/G =W,
and the fiber at s € g of the pullback
£k — X* Ek

is exactly Hgs (Xs). Therefore, there is a monodromy action of m(g™,s) on
HE (Xy). O

Remark 4.7 Consider once again the Cartesian diagram Eq. 1.9

QI‘S ) tI‘
Mo

o s w/w

For any regular element s € t, let § € t'/W be its image under right vertical arrow
and let 5 be a fixed preimage under the top horizontal arrow.

The adjoint quotient x is a smooth morphism with fiber isomorphic to the variety
G/T, which is connected and simply connected. Taking the appropriate long exact
sequence of homotopy groups gives group isomorphisms

mi(g®, ) =EmE/W,5)  and  m(g”, 5 =m(ts). (A.8)

The vertical arrows are Galois covers with Galois group W, and in view of Eq. A.8
they induce two isomorphic short exact sequences of groups:

| — 1@, 5) — 1@ s) > W — 1 (A.9)
| — 71, 5) —> 71 (6/ W, 5) 5 W — 1.

The surjective map of Eq. A.9 is the homomorphism Eq. * of Section 1.

In particular, these short exact sequences imply that the monodromy action of
m1(g"™, s) given by Theorem A.3 coincides with the monodromy action of 7z (t'/ W)
on the fibers of the local system £ defined in Eq. A.6.

Remark A.10 (1) The natural action of W on EG/T induces an action of W on the
cohomology ring H7 (pt) = H*(EG/T). The natural isomorphism H7.(pt) = CJ[t]
[8, Example 1.2] is equivariant with respect to this action.

(2) Let s € t be a regular element. Because T acts trivially on By = ,ugl (s), the
Kiinneth theorem gives an isomorphism

Hy(By) = H*(B; x" EG) = H*(B’) ® H*(EG/T) = H°(B;) ® Hy (pv).
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The action of the Weyl group on H 0(B,) and on H}‘ (pt) gives a diagonal W-action
on H7 (By).

We will show that Remark A.10 gives concrete descriptions of the monodromy
action defined in Theorem A.3 in the case X = g™ and X = g".

Proposition A.11 Let X = ¢'*, let ¢ be the identity map, and let s € t be a regular
element. The monodromy action of m(g",s) on Hj(s) factors through Eq. » and
agrees with the W -action defined in Remark A.10.

Proof In view of Remark A.7, it is sufficient to prove the statement for the mon-
odromy action of 771 (t°/ W, 5) on the fiber of the local system £¥. Consider diagram
Eq. A.5 in this case:

xSV —— ¢ xNeO) y

P P

" 4

Since the maximal compact torus S acts trivially on t, the left vertical arrow is a
trivial fibration. It follows that the action of the monodromy factors through (e).
The resulting action of W on H k(p-! (5)) comes from the natural W-action on
the fiber
o (s) = {s} xSV = V/S.
It follows that the monodromy action is precisely the action defined in Remark
A.10(1). O

Corollary A.12 Let X = g'*, let ¢ = wp be the Grothendieck—Springer morphism,
and let s € t be a regular element. The monodromy action of m\(g", s) on Hy (By)
factors through Eq. = and agrees with the W -action defined in Remark A.10.

Proof Again, consider diagram Eq. A.5 in this case:

xSV — 5 xNeS) y

LY

The action of W on H*(®~1(5)) is induced by the action of W on the fiber o l(s) =
Bs x V /S, which is the diagonal action. It follows that the Kiinneth isomorphism

H{(By) = H*(By) ® Hi(s)

is W-equivariant. The statement now follows from Proposition A.11. O
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In the next two propositions, we show that the monodromy action defined in
Theorem A.3 is compatible with specializations and pullbacks.

Proposition A.13 Let s € g be a regular semisimple element. The specialization
map

HZ‘;S(XS) — H*(Xy) (A.14)
is equivariant with respect to the monodromy action of w1 (g, s).

Proof 1t is enough to check this for s € t". We keep the notation used in the proof of
Proposition A.4. There is a commutative diagram

X xV —25 X, x°V

t,
where « is the quotient by the diagonal action of S.
In degree k, the specialization map is given by the fibers of the adjunction
RkQ*QX{XSV — qu)*a*o(*gxtxsv = Rk(p*QXtXV'

Since it is induced by a morphism of local systems, Eq. A.14 is monodromy-
equivariant. O

Now let Y be another smooth G-variety equipped with a smooth, G-equivariant,
proper surjective morphism i : ¥ — g". Once again write Yy = ¢ (V) for
the restriction of Y to a subset V C g". Suppose that f : X — Y is a smooth,
G-equivariant morphism and that ¢ = ¢ o f.

Proposition A.15 Let s € g be a regular semisimple element. The pullback map
HE (Ys) — HG (Xs) (A.16)

is equivariant with respect to the monodromy action of wi(g’>, s).

Proof Again, it is sufficient to consider s € t'. We keep the notation of Proposition
A.4. There is a commutative diagram

X x5V L v xSy
v

gI‘S
where the horizontal arrow is induced by f and W is induced by 1. In degree k, the
pullback map is given by the fibers of the adjunction

RMU,Cy, sy — R*WL £ f*Cy sy = R\, f:Cy sy = R¥®.Cy sy,
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Since it is induced by a morphism of local systems, Eq. A.16 is monodromy-
equivariant. O

We are now ready to prove Propositon 1.10, which characterizes the monodromy
action on the singular cohomology of a regular semisimple Hessenberg variety.

Proof of Proposition 1.10 As in Theorem A.3 of the appendix, there is a monodromy
action of 71 (g™, s) on the T-equivariant cohomology of By = ugl (s). By Corollary
A.12, this action factors through Eq. *.
By Remark 1.4,
Hess(s, H)! = B;.

Since Hess(s, H) is a GKM variety, Proposition 1.6(1) implies that the restriction
map
Hj (Hess(s, H)) — Hj (By)

is injective. It is also 1 (g", s)-equivariant by Proposition A.15. It follows that the
action of 7y (g™, s) on HJ (Hess(s, H)) factors through Eq. .
At the same time, the specialization map

Hj (Hess(s, H)) —> H*(Hess(s, H))

is surjective by Proposition 1.6(2) and 1 (g™, s)-equivariant by Proposition A.13.
Therefore, the action of 771 (g™, s) on H*(Hess(s, H)) also factors through Eq. x. [
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