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Abstract
We use the Springer correspondence to give a partial characterization of the irre-
ducible representations which appear in the Tymoczko dot action of the Weyl group
on the cohomology ring of a regular semisimple Hessenberg variety. In type A, we
apply these techniques to prove that all irreducible summands which appear in the
pushforward of the constant sheaf on the universal Hessenberg family have full sup-
port. We also observe that the recent results of Brosnan and Chow, which apply the
local invariant cycle theorem to the family of regular Hessenberg varieties in type A,
extend to arbitrary Lie type. We use this extension to prove that regular Hessenberg
varieties, though not necessarily smooth, always have the “Kähler package.”

Introduction

Let G be a connected, simply connected, semisimple complex algebraic group with
Lie algebra g. Fix a Borel subgroup B with Lie algebra b, and a B-stable subspace
H of g which contains b. The Hessenberg variety associated to an element x of g is

Hess(x, H) =
{
gB ∈ G/B | g−1 · x ∈ H

}
.

This variety is the fiber above x of a Poisson moment map

μH : G ×B H −→ g

[g : y] �−→ g · y.
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In this way, the family of Hessenberg varieties is a generalization of the
Grothendieck–Springer simultaneous resolution, which corresponds to the case H =
b.

The study of Hessenberg varieties lies at the intersection of algebraic geometry,
representation theory, and combinatorics. Examples of these varieties first appeared
in applications to numerical analysis due to De Mari and Shayman [24]. They were
then defined in full generality by De Mari, Procesi, and Shayman in [23], who
described the geometry of Hessenberg varieties corresponding to regular semisimple
elements. In this work, the authors showed that such varieties are smooth, and that
one particular case is the toric variety whose fan is given by the Weyl chambers. In the
same period, a singular Hessenberg variety known as the Peterson variety was intro-
duced by Peterson in unpublished work. It came to play a central role in the study of
the quantum cohomology rings of flag varieties in work of Kostant [22] and Rietsch
[31, 32]. More recently, Goresky, Kottwitz, and MacPherson [20] have shown that
affine Springer fibers admit pavings by affine bundles over generalized Hessenberg
varieties.

The topology of Hessenberg varieties in type A has been studied in detail by
Tymoczko. In [37], she observed that regular semisimple Hessenberg varieties are
GKM varieties, and she showed that their singular cohomology rings carry an action
of the symmetric group called the Tymoczko dot action. Subsequently, Shareshian
and Wachs [33] conjectured a relationship between the character of the dot action in
type A and a generalization of the chromatic symmetric functions introduced by Stan-
ley [34]. In particular, this conjecture gives an explicit decomposition of Tymoczko’s
action into a sum of irreducible representations of the symmetric group, building
on earlier work of Gasharov [17]. The Shareshian–Wachs conjecture was recently
proved by Brosnan and Chow [9] by applying tools from the formalism of derived
categories. The key insight of their approach is that, on the regular semisimple locus
of the Hessenberg family, the dot action is induced by monodromy.

In general Lie type, the dot action becomes an action of the Weyl group W . The
problem of determining its character is still open. Prompted by the approach of Bros-
nan and Chow, we give the following result in this direction. Recall that the classical
Springer correspondence assigns to each irreducible representation ψ of W a pair
(Oψ,Lψ) of a nilpotent orbit Oψ and an irreducible local system Lψ on Oψ .

Theorem A Let H⊥ ⊂ g be the annihilator of H with respect to the Killing form.
Suppose that ψ is an irreducible representation of W which appears as a subrepre-
sentation of the action of W on the cohomology of a regular semisimple Hessenberg
variety associated to H . Then, the intersection Oψ ∩ H⊥ is nonempty.

In type A, the Springer correspondence identifies irreducible representations of the
symmetric group Sn with nilpotent adjoint orbits in sln. Both of these sets are indexed
by partitions of the positive integer n. In this case, Theorem A has the following more
concrete statement, which can be deduced from the results of Brosnan and Chow and
appears to be known to experts.



Perverse Sheaves and the Cohomology of Regular Hessenberg Varieties

Corollary B Suppose that G = SLn, and let λ be a partition of n corresponding
to an irreducible representation ψλ of Sn. Suppose that ψλ appears as a subrepre-
sentation of the action of W on the cohomology of a regular semisimple Hessenberg
variety associated to H . Then, the annihilator H⊥ contains a nilpotent element
whose Jordan normal form is given by the conjugate partition λ′.

Using similar reasoning, in type A, we also prove a support theorem for the Hes-
senberg family μH : G ×B H −→ g. We are motivated by the recent work of Chen,
Vilonen, and Xue [10–13], in which the authors apply the Fourier transform to study
the singular cohomology of several classes of algebraic varieties which are related to
Hessenberg varieties.

Theorem C Suppose that G = SLn. In the bounded derived category of con-
structible complexes of sheaves on g, all irreducible summands of the derived
pushfoward μH∗CG×BH have full support.

Precup has shown that any regular Hessenberg variety admits an affine paving [26]
and has palindromic Betti numbers [28]. This makes it possible to extend a result of
Brosnan and Chow [9, Theorem 127]—which identifies the singular cohomology of
any regular Hessenberg variety with an invariant subring of the cohomology of a reg-
ular semisimple Hessenberg variety—from type A to general Lie type. We apply this
to show that regular Hessenberg varieties, though not necessarily smooth, have the
“Kähler package.” This extends certain results of [4] in the regular nilpotent case, and
gives additional evidence for the conjecture of Precup [28] that regular Hessenberg
varieties are rationally smooth.

Theorem D For any regular element x of g, the singular cohomology ring
H ∗(Hess(x, H)) satisfies Poincaré duality, the hard Lefschetz property, and the
Hodge–Riemann relations.

In Section 1, we review the construction of Hessenberg varieties, the definition
of the dot action, and its interpretation in terms of monodromy. In Section 2, we
recall some conventions on the decomposition theorem, the Fourier transform, and
the Springer correspondence. In Section 3, we use these tools to prove Theorems A
and C, which appear as Theorem 3.4 and Theorem 3.7. In Section 4, we show that
the results of Brosnan and Chow extend to all Lie types, and we apply them to prove
Theorem D, as Theorem 4.11. We include in an appendix some technical results about
monodromy actions on equivariant cohomology.

We are grateful to Victor Ginzburg for making us aware of the work of Chen, Vilo-
nen, and Xue, and to Martha Precup for interesting discussions. We also thank the
anonymous referees for their detailed and constructive comments. During the com-
pletion of this work, A.B. was partially supported by a National Science Foundation
MSPRF under award DMS–1902921, and P.C. was partially supported by an NSERC
Postdoctoral Fellowship under award PDF–516638.
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1 Monodromy Actions of theWeyl Group

1.1 Recollections on Hessenberg Varieties

Let G be a connected, simply connected, semisimple algebraic group over C and let
g be its Lie algebra. Fix a maximal torus T and a Borel subgroup B containing it, and
write b for the Lie algebra of B. Let B be the flag variety of all Borel subalgebras of
g, which we freely identify with the homogeneous space G/B.

Definition 1.1 A Hessenberg subspace of g is a B-submodule H ⊂ g that contains
b.

Given a Hessenberg subspace H , consider the associated G-equivariant vector
bundle

G ×B H −→ G/B.

The total space of this vector bundle has a natural Poisson structure (introduced in
[1] and studied in [6]) for which the action of G is Hamiltonian. The moment map is

μH : G ×B H −→ g

[g : x] �−→ g · x,

where we identify g ∼= g∗ via the Killing form and where g · x denotes the adjoint
action.

Remark 1.2 For any B-stable subspace V ⊆ g, the map

μV : G ×B V −→ g

[g : x] �−→ g · x

factors through the closed embedding

G ×B V −→ G/B × g

[g : x] �−→ (gB, g · x).

There is a commutative diagram

where the vertical arrow is projection onto the second component. This implies that
any morphism of the form μV is projective, and in particular proper.
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Definition 1.3 The Hessenberg variety associated to the subspace H and to a point
x ∈ g is

Hess(x, H) = μ−1
H (x)

=
{
gB ∈ G/B | g−1 · x ∈ H

}
.

We call this Hessenberg variety regular (resp. semisimple, nilpotent) if x is a regular
(resp. semisimple, nilpotent) element of g.

Example (1) When H = b, the vector bundle g̃ = G ×B b is the total space of
the Grothendieck–Springer simultaneous resolution. Identifying the homogeneous
space G/B with the flag variety, the Hessenberg variety Hess(x, b) is precisely the
Grothendieck–Springer fiber

Bx = {b′ ∈ B | x ∈ b′}.
(2) Let � be the set of simple roots determined by T and B, and consider the

standard Hessenberg subspace

H0 =
(∑

α∈�

g−α

)
⊕ b.

For any regular element x ∈ g, the centralizer Gx = {g ∈ G | g · x = x} acts on the
corresponding Hessenberg variety Hess(x, H0) with an open dense orbit [6]. When
s ∈ g is regular and semisimple, Hess(s, H0) is the toric variety corresponding to
the fan of Weyl chambers [23, Theorem 11]. When e ∈ g is regular and nilpotent,
Hess(e, H0) is the Peterson variety [32].

Remark 1.4 For any Hessenberg subspace H , there is a commutative diagram

For every x ∈ g, this gives a natural Gx-equivariant inclusion

When x ∈ g is regular, the Grothendieck–Springer fiber Bx is precisely the set of
fixed points for the action of Gx on B. It follows that for all regular x ∈ g,

Bx = Hess(x, H)Gx .

We recall some features of the geometry of Hessenberg varieties. Let gr (resp.
grs) denote the locus of regular (resp. regular semisimple) elements of g. Given any
subspace V ⊂ g, we write V r for the regular locus V ∩ gr and V rs for the regular
semisimple locus V ∩ grs. If X is a topological space, we denote by H ∗(X) the
singular cohomology of X with complex coefficients.
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General Properties of Hessenberg Varieties

(1) For any regular element x ∈ g, the Hessenberg variety Hess(x, H) has
dimension equal to dim(H/b) [28, Corollary 3].

(2) When s ∈ g is regular and semisimple, the Hessenberg variety Hess(s, H) is
smooth. The restriction

μH : G ×B H rs −→ grs

of μH to the regular semisimple locus is a smooth morphism [23, Theorem 6].
(3) A Hessenberg subspace H is called indecomposable if it contains every nega-

tive simple root space. If H is indecomposable, then Hess(s, H) is connected
for all semisimple s ∈ g [27]. It follows from a Zariski Main Theorem argu-
ment [6, Remark 4.6] that all Hessenberg varieties Hess(x, H) associated to an
indecomposable H are connected.

(4) It is shown in [28] that for any regular x ∈ g, the Hessenberg variety Hess(x, H)

has palindromic Betti numbers. In other words,

dim Hk(Hess(x, H)) = dim H top−k(Hess(x, H)) for any k ∈ Z,

where top = 2 dim(H/b). When H is indecomposable and x ∈ g is
regular, connectedness and palindromicity imply that the top cohomology
group H top(Hess(x, H)) has dimension 1. It follows that all regular Hessen-
berg varieties Hess(x, H) associated to an indecomposable H are irreducible
[28, Corollary 14].

(5) It is proved in [2] and [3] that when H is indecomposable, any regular Hessen-
berg variety is reduced. When H is not indecomposable, this is not necessarily
the case—for instance, if e ∈ g is regular and nilpotent, the Grothendieck–
Springer fiber Be = μ−1

b
(e) is not reduced [39, Section 1.3.2]. Since we

are only concerned with the topology of Hessenberg varieties, the potentially
non-reduced structure will not be relevant.

1.2 GKM Varieties andMonodromy

Let A be a complex torus. A smooth projective A-variety X is called a GKM variety
if

• The set of A-fixed points on X is finite, and
• The set of one-dimensional A-orbits on X is finite.

Remark 1.5 An arbitrary projective A-variety is GKM if in addition to these con-
ditions it is equivariantly formal in the sense of [19]. Since smoothness implies
equivariant formality, and since all of our GKM varieties will be smooth, we use the
definition above for simplicity.

We write H ∗
A(X) for the A-equivariant cohomology of X with complex coef-

ficients. In the rest of this section, we will use a number of standard facts about
equivariant cohomology, which we review in the first section of the appendix.



Perverse Sheaves and the Cohomology of Regular Hessenberg Varieties

Proposition 1.6 [19, Theorem 1.6.2] Suppose that X is a GKM variety.

1. The restriction map H ∗
A(X) −→ H ∗

A(XA) is injective.
2. The specialization map H ∗

A(X) −→ H ∗(X) is surjective.

Let H ⊂ g be a Hessenberg subspace and let s ∈ g be a regular semisimple
element. The centralizer Gs is a maximal torus of G which acts on the associated
Hessenberg variety Hess(s, H).

Proposition 1.7 [23, Section III] The Hessenberg variety Hess(s, H) is a GKM
variety for the action of Gs .

Remark 1.8 Using Proposition 1.6, Tymoczko [37] defined an action of the Weyl
group on H ∗(Hess(s, H)). In the rest of this section, we will show that it is induced
by the natural monodromy action of the fundamental group π1(g

rs, s).
The connection between the dot action and monodromy was established by Bros-

nan and Chow. While their paper [9] only makes this identification in type A, there
is a straightforward generalization of their argument to arbitrary Lie type. We for-
mulate it below for completeness, and we also include in the appendix a number of
details about monodromy actions on equivariant cohomology.

Let t be the Lie algebra of the maximal torus T , and let W be the associated
Weyl group. Consider the restriction g̃rs = μ−1

b
(grs) of the Grothendieck–Springer

resolution to the regular semisimple locus. There is a Cartesian diagram

(1.9)

where the top horizontal arrow is projection onto the first summand of the decompo-
sition b = t⊕ [b, b], and the bottom arrow is induced by the Chevalley isomorphism
[14, Theorem 3.1.38]. The smooth morphism

g̃rs −→ grs

is a Galois cover with Galois group W [14, Proposition 3.1.36]. Therefore, for every
s ∈ grs with fixed preimage s̃ ∈ g̃rs, there is a surjective group homomorphism

π1(g
rs, s) −→ W (�)

whose kernel is the image of the natural map

π1(g̃
rs, s̃) −→ π1(g

rs, s).

For every s ∈ tr, the morphism

μH : G ×B H rs −→ grs
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induces monodromy actions of π1(g
rs, s) on H ∗(Hess(s, H)) and on

H ∗
T (Hess(s, H)), as explained in [16, Chapter I]. These actions are described in the

following proposition, whose proof we postpone to the appendix.

Proposition 1.10 Let s ∈ t be a regular element. The monodromy action of π1(g
rs, s)

on H ∗(Hess(s, H)) factors through Eq. (�).

1.3 The Tymoczko Dot Action

There is a natural isomorphism HT (pt) ∼= C[t] [8, Example 1.2] between the T -
equivariant cohomology of a point and the algebra of polynomial functions on t. For
any regular element s ∈ t, this gives an isomorphism

H ∗
T (Bs) ∼=

⊕
s̃∈Bs

C[t],

where the left-hand side is the equivariant cohomology of the Grothendieck–Springer
fiber Bs , on which the Weyl group acts freely and transitively. The dot action on
H ∗

T (Bs) is given by

w · (fs̃) = (wfw−1 s̃ ) for any w ∈ W, (fs̃) ∈
⊕
s̃∈Bs

C[t],

where the action of W on C[t] is induced by its action on t.
Tymoczko originally defined this action in type A [37, Section 3.1]. She proved

that it restricts to an action of W on the image of the embedding

(1.11)

and that it descends to an action of W on H ∗(Hess(s, H)) through the surjection

H ∗
T (Hess(s, H)) −→ H ∗(Hess(s, H)). (1.12)

These results extend to arbitrary semisimple Lie algebras [4, Section 8.3] to give a
dot action of W on the cohomology of any regular semisimple Hessenberg variety.

We will show that the dot action on H ∗
T (Bs) agrees with the monodromy action

of W induced by Eq. (�). This will imply that the dot action on H ∗(Hess(s, H))

coincides with the monodromy action of W coming from Proposition 1.10.

Proposition 1.13 Let s ∈ t be a regular element. The monodromy action of W on
H ∗

T (Bs) coincides with the dot action.

Proof There is an isomorphism of graded algebras

H ∗
T (Bs) ∼= H 0(Bs) ⊗ C[t],

as in Remark A.10 of the appendix. The dot action on H ∗
T (Bs) is exactly the diagonal

W -action induced by the natural actions of the Weyl group on Bs and on t. The
conclusion now follows from Corollary A.12.
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Corollary 1.14 Let s ∈ t be a regular element. The monodromy action of W on
H ∗(Hess(s, H)) coincides with the dot action.

Proof The dot action on H ∗(Hess(s, H)) is induced from the dot action of W on
H ∗

T (Bs) through the maps Eqs. 1.11 and 1.12. In the proof of Proposition 1.10, it
is shown that the monodromy action on H ∗(Hess(s, H)) is induced from the mon-
odromy action of W on H ∗

T (Bs) in the same way. In view of Proposition 1.13, the
two actions agree.

2 The Decomposition Theorem and Springer Theory

2.1 The Decomposition Theorem

For any algebraic variety X, we denote by D(X) the bounded derived category
of complexes of sheaves on X which are constructible with respect to a fixed
stratification. We write CX for the constant sheaf on X with coefficients in C.

For any local system L on a stratum S, write L[−] = L[dim S] for the shift of L
which is perverse. Let ICS(L) be the unique perverse sheaf on X which is supported
on S and whose restriction to S is L[−]. Now suppose that X is smooth and that
ϕ : X −→ Y is a proper morphism. Up to shift, proper base change gives a graded
isomorphism

(R∗ϕ∗CX[−])y ∼= H ∗(ϕ−1(y))

between the cohomology of the stalks of the derived pushforward ϕ∗CX and the
singular cohomology of the fibers of ϕ [15, Fact 2.2.1].

We will use the following version of the decomposition theorem of Beilinson,
Bernstein, Deligne, and Gabber [7]. For more details on this setting, we refer to
[15, Section 1.6].

Theorem 2.1 (Decomposition Theorem) Suppose that X is a smooth algebraic vari-
ety and that ϕ : X −→ Y is a proper morphism. Then, there is an isomorphism in
the derived category

ϕ∗CX
∼=

⊕
S,b

ICS(LS,b)[−b],

taken over all strata S ⊂ Y and over all integers b, and where each LS,b is a
semisimple local system on the stratum S.

Fixing a basepoint s ∈ S gives an equivalence between the category of local
systems on S and the category of finite-dimensional representations of π1(S, s)

[5, Theorem 13.2.3]. We write Ls for the fiber of the local system L at s.
Fix a stratification

g =
⊔

S

into smooth, locally closed subvarieties such that the restriction of the proper mor-
phism μb : g̃ −→ g to the preimage of any stratum is a locally trivial fibration [38].
Without loss of generality, we take grs to be the open dense stratum.
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The morphism μb : g̃ −→ g is small. (For details see [39, Lecture I].) Therefore,
only IC complexes with full support and no shift appear in the decomposition of
Theorem 2.1, which becomes

μb∗Cg̃[−] ∼= ICgrs(L).

Since the monodromy action of π1(g
rs, s) factors through Eq. � and since the restric-

tion of μb to the regular semisimple locus is a topological Galois cover for the action
of the Weyl group, the semisimple local system L corresponds to the regular repre-
sentation of W [15, Section 3.5]. Decomposing further into irreducible local systems,
we obtain

μb∗Cg̃[−] ∼=
⊕

ICgrs(Lψ)⊕mψ . (2.2)

Here the sum is taken over all irreducible representations ψ of W , Lψ is the local
system corresponding to the irreducible representation ψ , and mψ is the multiplicity
of ψ in the regular representation, which is equal to the dimension of ψ .

2.2 The Fourier Transform

Let V be a vector bundle over a smooth algebraic variety. A complex F ∈ D(V) is
called monodromic if its cohomology sheaves are locally constant along the orbits
of the natural C∗-action on V . We write Dmon(V) for the full subcategory of D(V)

consisting of monodromic complexes.
There is a notion of Fourier transform for monodromic complexes [18, Section 8]

which gives a functor
F : Dmon(V) −→ Dmon(V∗),

where V∗ is the dual vector bundle. This functor induces an equivalence between the
subcategories of monodromic perverse sheaves. In particular, if W is a subbundle of
V and W⊥ ⊂ V∗ is its annihilator,

F
(
CW [−]) ∼= CW⊥[−]. (2.3)

Identifying g ∼= g∗ via the Killing form, we obtain functors

F : Dmon(G/B × g) −→ Dmon(G/B × g),

F : Dmon(g) −→ Dmon(g).

Recall that the Grothendieck–Springer resolution is a vector subbundle

The annihilator of b under the Killing form is the nilradical n = [b, b], and the
annihilator of the vector bundle g̃ is the bundle

Ñ = G ×B n −→ G/B.
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There is a commutative diagram

Here μ is projection onto the second factor, N is the nilpotent cone of g, and μn is the
Springer resolution. The morphism μ is C∗-equivariant, so the derived pushforward
gives a functor

μ∗ : Dmon(G/B × g) −→ Dmon(g).

The Fourier transform commutes with this functor [18, Claim 8.4], and Eq. 2.3
implies that

F
(
μb∗Cg̃[−]) ∼= μn∗F

(
Cg̃[−]) ∼= μn∗CÑ [−]. (2.4)

The nilpotent cone is stratified by G-orbits into smooth, locally closed, C∗-stable
subvarieties along which the Springer morphism μn is locally trivial. Because μn is
semismall, the derived pushforward μn∗CÑ [−] is a perverse sheaf. (Once again we
refer to [39, Lecture I].) The decomposition theorem gives an isomorphism

μn∗CÑ [−] ∼=
⊕
O

ICO (MO) ,

where each O ⊂ N is a nilpotent G-orbit and MO is a semisimple local system on
O.

Since O ∼= G/Ge, there is a long exact sequence of homotopy groups

. . . −→ π1(G) −→ π1(O) −→ π0(Ge) −→ π0(G) −→ . . . .

Because the group G is connected and simply connected, this sequence gives an
isomorphism π1(O) ∼= π0(Ge). The fiber MO,e is therefore a representation of the
group π0(Ge) of connected components of the centralizer of e.

By Eqs. 2.2 and 2.4,

μn∗CÑ [−] ∼=
⊕

F(ICgrs(Lψ))⊕mψ .

For each index ψ , the Fourier transform F(ICgrs(Lψ)) is an irreducible perverse
sheaf on N . In other words, F(ICgrs(Lψ)) = ICOψ

(Mψ) for some nilpotent orbit
Oψ equipped with an irreducible local system Mψ .

The Springer correspondence is the assignment

ψ �−→ ICOψ
(Mψ), (2.5)

which associates to each irreducible representation of the Weyl group this unique
irreducible nilpotent orbital complex.

Remark 2.6 In type A, both irreducible representations of the symmetric group Sn

and nilpotent orbits in sln are indexed by partitions of n. The Springer correspon-
dence is a geometric realization of this bijection.
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Concretely, suppose that G = SLn. The actions of G on Ñ and on N extend
naturally to actions of GLn, and the morphism

μn : Ñ −→ N

is GLn-equivariant. Since the centralizer in GLn of any element in gln is con-
nected, the monodromy action of π1(O) ∼= π0(Ge) on H ∗ (Be) is trivial. It follows
that only sheaves ICO(M) with M a trivial local system appear in the Springer
correspondence in this case.

For any partition λ of n, let λ′ be the dual partition. Write ψλ for the irreducible
representation of Sn corresponding to λ, and Oλ for the orbit of nilpotent elements
whose Jordan normal form is indexed by λ. The Springer correspondence Eq. 2.5
then maps

ψλ′ �−→ ICOλ
(COλ

).

See [39, Section 1.5.16], for example, for details.

3 Applications to the Universal Family of Hessenberg Varieties

We apply the tools of the previous section to the universal family of Hessenberg
varieties. Consider once again the morphism

μH : G ×B H −→ g,

which is proper by Remark 1.2. The decomposition theorem gives

μH∗CG×BH [−] ∼=
⊕
S,b

ICS

(
LS,b

) [−b].

The generic fiber of μH has dimension l = dim(H/b), and the restriction of μH to
the regular semisimple locus G ×B H rs is a smooth morphism [23, Theorem 6]. The
decomposition theorem implies that there is an isomorphism in the derived category

μH∗CG×BH rs[−] ∼=
l⊕

b=−l

Hb[dim g − b], (3.1)

where Hb is the semisimple local system on grs whose fiber at s ∈ grs is the singular
cohomology group Hb+l(Hess(s, H)).

Proposition 3.2 Each local system Hb is a direct sum

Hb =
⊕

L⊕mψ,b

ψ

of local systems which appear in the decomposition Eq. 2.2 corresponding to the
Grothendieck–Springer resolution.

Proof The local system Hb decomposes as a sum of simple local systems

Hb =
⊕

Mj ,
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with fibers Mj,s which are irreducible representations of π1(g
rs, s). There is a

π1(g
rs, s)-equivariant inclusion

By Proposition 1.10, the action of π1(g
rs, s) on Hb+l (Hess(s, H)) factors through

Eq. �. It follows that π1(g
rs, s) acts on Mj,s through an irreducible W -representation

ψ , and therefore Mj
∼= Lψ .

We will apply the Fourier transform to the vector bundle G ×B H −→ G/B. Let
H⊥ ⊂ g be the annihilator of H under the Killing form. We have a commutative
diagram

Since the Hessenberg subspace H contains the fixed positive Borel b, H⊥ is con-
tained in the nilradical n. Therefore, the image of the morphism μH⊥ is contained in
the nilpotent cone. This image is irreducible and G-stable, and it is closed because
μH⊥ is proper by Remark 1.2. Therefore, it is the closure of a single nilpotent G-orbit
OH ⊂ N .

Remark 3.3 Suppose that H �= b. In this case, the orbit OH is always non-regular.
The vector bundle G ×B H⊥ is a subbundle of G ×B n, and there is a commutative
diagram

This diagram is not Cartesian, and μH⊥ always fails to be semismall at 0 because

codimOH
{0} = dimOH < dimN = 2 dimB = 2 dim μ−1

H⊥(0).

Recall that the Springer correspondence Eq. 2.5 assigns to each irreducible repre-
sentation ψ of W an irreducible nilpotent orbital complex ICOψ

(Mψ). We use the
Fourier transform to give a necessary condition for an irreducible representation ψ

to appear in the dot action.

Theorem 3.4 Let s ∈ t be a regular element. Suppose that the irreducible W -
representation ψ appears as a subrepresentation of H ∗(Hess(s, H)) under the dot
action. Then, the intersection Oψ ∩ H⊥ is nonempty.
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Proof Suppose that ψ is an irreducible summand of H ∗(Hess(s, H)) under the dot
action. By Corollary 1.14, this action coincides with the monodromy action of W . It
follows that the local system Lψ is a direct summand of Hb for some index b.

The Fourier transform gives an identification

F
(
μH∗CG×BH [−]) ∼= μH⊥∗CG×BH⊥[−],

so the complex F(ICgrs(Lψ)) = ICOψ
(Mψ) is a direct summand of

μH⊥∗CG×BH⊥[−]. Therefore, its support is contained in OH = G·H⊥. Equivalently,
Oψ ∩ H⊥ is nonempty.

In view of Remark 2.6, Theorem 3.4 has the following corollary in type A.

Corollary 3.5 Suppose that G = SLn. Let λ be a partition of n, and suppose that ψλ

appears as a subrepresentation of H ∗(Hess(s, H)). Then, H⊥ contains a nilpotent
element whose Jordan normal form corresponds to λ′.

Remark 3.6 Though we were unable to find a reference in the existing litera-
ture, Corollary 3.5 can also be proved combinatorially using [9, Theorem 129] and
[17, Theorem 4], and appears to be known to experts. Moreover, Martha Precup has
explained to us that its converse follows from her recent work with Ji [29, Lemma 6.1]
and Gasharov’s Schur expansion of the chromatic symmetric function [17], which is
refined in [33, Section 6].

In type A, we can also use the Fourier transform to prove a support theorem for
the universal Hessenberg family

μH : G ×B H −→ g.

Theorem 3.7 Suppose that G = SLn. There is an isomorphism

μH∗CG×BH [−] ∼=
⊕

ICgrs(Hb)[−b]
in the derived category, where the local systems Hb are as defined in Eq. 3.1. In
particular, every irreducible summand of μH∗CG×BH [−] has full support.

Proof Consider once again the G-equivariant proper morphism

μH⊥ : G ×B H⊥ −→ OH .

As in Remark 2.6, the actions of G on G×BH⊥ and on OH extend to actions of GLn.
Let O be a nilpotent orbit with basepoint e. Since centralizers in GLn are connected,

the monodromy action of π1(O) ∼= π0(Ge) on H ∗
(
μ−1

H⊥(e)
)

is trivial.

It follows that each irreducible orbital complex appearing as a summand of
μH⊥∗CG×BH⊥[−] is trivial. We obtain a decomposition

μH⊥∗CG×BH⊥[−] ∼=
⊕
O,b

ICO
(
CO

)⊕mO,b [−b].
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Applying the Fourier transform, this gives

μH∗CG×BH [−] ∼=
⊕
O,b

F(ICO(CO)[−b])⊕mO,b .

By Remark 2.6, every trivial orbital complex ICO(CO) appears in the Springer
correspondence. Therefore, the Fourier transform of any such complex has full
support. The theorem now follows from Eq. 3.1.

Remark 3.8 Theorem 3.7 relates the irreducible summands appearing in the dot
action representation to the cohomology of the fibers of the map μH⊥ , which are a
class of ad-nilpotent Hessenberg varieties. This connection is studied in recent work
of Precup and Sommers [30], where Theorem 3.7 is extended to all Lie types.

4 The Local Invariant Cycle Theorem and the Kähler Package

Suppose that ϕ : X −→ Y is a proper surjective morphism between smooth algebraic
varieties, and let U ⊂ Y be an open dense subvariety so that ϕ restricts to a smooth
morphism along the preimage of U . Fix y ∈ Y , and let Dy ⊂ Y be a sufficiently
small Euclidean ball around y such that the restriction

H ∗(ϕ−1(Dy)) −→ H ∗(ϕ−1(y)) (4.1)

is an isomorphism. By the global invariant cycle theorem [15, Theorem 1.2.2], for
any u ∈ U ∩ Dy , the restriction map gives a surjection

H ∗(ϕ−1(U ∩ Dy)) −→ H ∗(ϕ−1(u))π1(U∩Dy,u). (4.2)

Composing the inverse of Eq. 4.1 with the natural restriction to H ∗(ϕ−1(U ∩ Dy))

and then with Eq. 4.2, we obtain a homomorphism of algebras

λy : H ∗(ϕ−1(y)) −→ H ∗(ϕ−1(u))π1(U∩Dy,u).

We state a version of the local invariant cycle theorem of Beilinson, Bernstein, and
Deligne [7], referring once again to [15, Section 1.4] for details.

Theorem 4.3 (Local Invariant Cycle Theorem) The map λy is surjective.

Suppose that d = dim X − dim Y . We say that the fibers of ϕ have palindromic
Betti numbers if for every y ∈ Y ,

dim Hk(ϕ−1(y)) = dim H 2d−k(ϕ−1(y)) for all k ∈ Z.

In [9], Brosnan and Chow showed that there is a remarkable connection between the
local invariant cycle map and palindromicity. We briefly recall their results.

Theorem 4.4 [9, Theorem 92 and Theorem 102] Suppose that ϕ : X −→ Y is a
projective, surjective morphism between smooth algebraic varieties. The following
are equivalent:

1. The fibers of ϕ have palindromic Betti numbers.
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2. Every irreducible summand appearing in the decomposition of ϕ∗CX has full
support and is concentrated in a single cohomological degree.

3. For every y ∈ Y , the local invariant cycle map λy is an isomorphism.

Remark 4.5 While the local invariant cycle theorem applies to any proper morphism,
the proof of Theorem 4.4 relies on the relative hard Lefschetz property, which only
holds when ϕ is projective.

We will consider the family

μH : G ×B H r −→ gr,

of regular Hessenberg varieties, which is the restriction of μH to the regular locus.
In [9], Brosnan and Chow showed that, when g is of type A, the fibers of this family
have palindromic Betti numbers. In [28], Precup generalized this to all semisimple
Lie algebras by using explicit affine pavings of regular Hessenberg varieties. In view
of Precup’s result, Theorem 4.4 has the following immediate corollary.

Corollary 4.6 The complex μH∗CG×BH r has no proper supports.

Fix a regular element x ∈ g with Jordan decomposition x = xs + xn. Let t now be
a Cartan subalgebra containing xs, and let W be the associated Weyl group. We will
prove the following consequence of Theorem 4.4, which is a straightforward gener-
alization of Theorem 127 of [9]. In the case when x is a regular nilpotent element,
this result was proved in [4] using the combinatorics of hyperplane arrangements.

Proposition 4.7 There is a regular element s ∈ t such that

H ∗(Hess(x, H)) ∼= H ∗(Hess(s, H))Wxs (4.8)

as graded algebras, where the right-hand side is equipped with the dot action and
Wxs is the stabilizer of xs in W .

Proof Fix a small Euclidean ball Dx ⊂ gr centered at x such that the restriction

H ∗(μ−1
H (Dx)) −→ H ∗(Hess(x, H))

given by Eq. 4.1 is an isomorphism. By conjugating x if necessary, we can assume
that there exists some s ∈ tr ∩ Dx .

Since regular Hessenberg varieties have palindromic Betti numbers [28], Theorem
4.4 implies that the local invariant cycle theorem gives an isomorphism

H ∗(Hess(x, H)) −→ H ∗(Hess(s, H))π1(g
rs∩Dx,s).

We are then reduced to proving the following fact: the image of the composition

π1(g
rs ∩ Dx, s) −→ π1(g

rs, s)
(�)−−→ W (4.9)

is a subgroup of W conjugate to Wxs .
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Let b now be a Borel subalgebra containing x and t, and let B be the correspond-
ing Borel subgroup. Restricting the Grothendieck–Springer resolution to the regular
locus, we obtain a W -equivariant Cartesian diagram

(4.10)

The top horizontal arrow maps the point [1 : x] ∈ μ−1
b

(x) to the semisimple part xs.
By [9, Proposition 106], the image of the composition Eq. 4.9 is a subgroup of W

conjugate to the stabilizer of [1 : x] under the action of W on g̃r. Because Eq. 4.10 is
Cartesian, the stabilizer of [1 : x] in W is precisely Wxs .

We will use Proposition 4.7 to show that H ∗(Hess(x, H)) has the “Kähler” pack-
age. This generalizes Proposition 8.14 and Theorem 12.1 of [4], which apply in the
case when x is regular nilpotent. Compared to these results, our proofs are simplified
by the identification of the dot action with the monodromy.

Theorem 4.11 Let x ∈ g be a regular element and let l be the dimension of the
regular Hessenberg variety Hess(x, H).

1. (Poincaré duality) The cohomology ring H ∗(Hess(x, H)) is a Poincaré duality
algebra.

Moreover, there is a nonzero “Kähler” class ω ∈ H 2(Hess(x, H)) satisfying the
following properties:

2. (Hard Lefschetz) Multiplication by ωk induces an isomorphism

Hl−k(Hess(x, H))
ωk−−→ Hl+k(Hess(x, H)) for every 0 ≤ k ≤ l.

3. (Hodge–Riemann) For every 0 ≤ k ≤ l, the symmetric bilinear form

Hk(Hess(x, H)) × Hk(Hess(x, H)) −→ C

(α, β) �−→ (−1)k
∫

α ∪ β ∪ ωl−k

is positive-definite on the kernel of the linear map

Hk(Hess(x, H))
ωl−k+1−−−−−→ H 2l−k+2(Hess(x, H)).

Proof (1) Let s ∈ t be the regular semisimple element of Eq. 4.8. Because Hess(s, H)

is smooth, there is a nondegenerate Poincaré duality pairing

Hk(Hess(s, H)) × H 2l−k(Hess(s, H)) −→ H 2l (Hess(s, H)) −→ C.

The first arrow is given by the cup product, and the second is given by evaluating on
the homology class which is the sum of the fundamental classes of the irreducible
components of Hess(s, H).
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The monodromy action of W preserves both the cup product and this sum, so this
pairing is W -invariant. Restricting it to

Hk(Hess(s, H))Wxs × H 2l−k(Hess(s, H))Wxs −→ H 2l (Hess(s, H))Wxs −→ C

gives a nondegenerate pairing on H ∗(Hess(x, H)) ∼= H ∗(Hess(s, H))Wxs .
(2 and 3) The usual inclusions form a commutative diagram

where the left vertical arrow is the bundle map.
This gives a commutative diagram of pullbacks in cohomology

Since G ×B H rs −→ grs is a locally trivial fibration, the image of the right vertical
arrow lies in the space H ∗(Hess(s, H))W of monodromy invariants. It follows that
the image of the restriction

H ∗(G/B) −→ H ∗(Hess(s, H))

also lies in H ∗(Hess(s, H))W .
Since both G/B and Hess(s, H) are smooth projective varieties, there is a Kähler

class in H 2(G/B) whose image is a Kähler class ω ∈ H 2(Hess(s, H)). By the dis-
cussion above, ω is W -invariant. Its preimage under Eq. 4.8 then satisfies (2) and (3)
for H ∗(Hess(x, H)).

The hard Lefschetz property implies that the even-degree Betti numbers of any
regular Hessenberg variety are unimodal [25, Corollary 1.2.9]. This unimodality has
already been observed in the regular nilpotent case by Tymoczko [36, Section 9.3].
In type A, it also follows from [33, Proposition 10.2] and [9, Theorem 129].

Corollary 4.12 Let x ∈ g be a regular element. The even Betti numbers of the
Hessenberg variety Hess(x, H) form a unimodal sequence.

Appendix. Monodromy actions on equivariant cohomology

In this appendix, we recall some fundamental background on equivariant cohomol-
ogy, and we use it to prove a series of more specialized facts about monodromy
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actions in the equivariant setting. These results, which are straightforward but which
we were unable to easily find in the literature, are needed to show in Corollary 1.14
that the Tymoczko dot action is induced by monodromy.

A.1. Background on equivariant cohomology

First we recall some standard facts about equivariant cohomology. We refer to [8,
Section 1] for more details. Let G be a connected Lie group and fix a principal G-
bundle EG −→ BG whose total space is contractible. Suppose that X is a G-space—
that is, a topological space equipped with a continuous action of G. Then, the product
X × EG carries a free diagonal action of G. The G-equivariant cohomology of X is
the singular cohomology of the quotient X ×G EG:

H ∗
G(X) = H ∗(X ×G EG).

It is independent of the choice of EG −→ BG.
A continuous G-equivariant map f : X −→ Y between G-spaces X and Y

induces a pullback

H ∗
G(Y ) = H ∗(Y ×G EG) −→ H ∗(X ×G EG) = H ∗

G(X), (A.1)

which is a homomorphism of graded algebras. In particular, the map X −→ {pt}
induces

H ∗
G(pt) −→ H ∗

G(X),

giving H ∗
G(X) the structure of a graded H ∗

G(pt)-algebra. The pullback Eq. A.1 is a
homomorphism of graded H ∗

G(pt)-algebras.
Let K be any closed, connected subgroup of G. Then, EG −→ EG/K is a

principal K-bundle whose total space is contractible. Therefore,

H ∗
K(X) ∼= H ∗(X ×K EG).

The pullback along X ×K EG −→ X ×G EG induces a homomorphism of graded
algebras

H ∗
G(X) −→ H ∗

K(X),

called a specialization map. In particular, when K = {1} is the trivial subgroup of G,
this gives a natural map

H ∗
G(X) −→ H ∗(X).

Lemma A.2 Suppose that K is a maximal compact subgroup of G. Then, special-
ization induces an isomorphism

H ∗
G(X) ∼= H ∗

K(X).

Proof The fibration
X ×K EG −→ X ×G EG

has fiber isomorphic to G/K . Since K is a maximal compact subgroup of G, the
quotient G/K is contractible [21, Theorem 6]. It follows that the pullback

H ∗(X ×G EG) −→ H ∗(X ×K EG)

is an isomorphism.
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A.2. Equivariant cohomology in local systems

Let G be a semisimple complex algebraic group and let g be its Lie algebra. Fix
a maximal torus T with Lie algebra t and Weyl group W . Suppose that X is a
smooth algebraic G-variety equipped with a smooth, G-equivariant, proper surjective
morphism ϕ : X −→ grs. For any subset V ⊂ g, let

XV = ϕ−1(V ).

In particular, Xs is the fiber above a regular semisimple element s ∈ g, and Xt is the
restriction of X to tr.

Theorem A.3 Let s ∈ g be a regular semisimple element. For any non-negative
integer k, there exists a local systemLk on grs whose fiber at s isHk

Gs
(Xs). Therefore,

the fundamental group π1(g
rs, s) acts on the equivariant cohomology ring H ∗

Gs
(Xs)

by monodromy.

Theorem A.3 will follow from the next Proposition.

Proposition A.4 For any non-negative integer k, there exists a local system on tr

whose fiber at s ∈ tr is Hk
T (Xs).

Proof Let K be a maximal compact subgroup of G such that S = K∩T is a maximal
compact torus in T . By Lemma A.2,

Hk
T (Xs) = Hk

S (Xs).

Fix n ≥ k and n ≥ 2 dim X, and let V be a n-connected, compact manifold on
which K acts freely. (Such a manifold always exists, see for example [35, Theorem
19.6].) Then,

Hk
S (Xs) = Hk(Xs ×S V ).

(See [8, Section 1].) Since ϕ : Xt −→ tr is smooth and proper, the induced map


 : Xt ×S V −→ tr

is a proper locally trivial fibration. The k-th derived pushforward Rk
∗CXt×SV is
therefore a local system. By proper base change

(Rk
∗CXt×SV )s ∼= Hk(
−1(s))

∼= Hk(Xs ×S V ) ∼= Hk
S (Xs) ∼= Hk

T (Xs).

Proof of Theorem A.3 We keep the same notation as in the proof of Proposition A.4.
There is a Cartesian diagram

(A.5)
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where NK(S) is the normalizer of the compact torus S in K . All the maps above
are smooth, locally trivial fibrations, and Rk
∗CXt×SV is the pullback of the local
system

L̄k = Rk
̄∗CXt×NK(S)V . (A.6)

The Chevalley isomorphism gives a smooth surjection of algebraic varieties

χ : grs −→ grs/G ∼= tr/W,

and the fiber at s ∈ grs of the pullback

Lk = χ∗L̄k

is exactly Hk
Gs

(Xs). Therefore, there is a monodromy action of π1(g
rs, s) on

Hk
Gs

(Xs).

Remark 4.7 Consider once again the Cartesian diagram Eq. 1.9

For any regular element s ∈ t, let s̄ ∈ tr/W be its image under right vertical arrow
and let s̃ be a fixed preimage under the top horizontal arrow.

The adjoint quotient χ is a smooth morphism with fiber isomorphic to the variety
G/T , which is connected and simply connected. Taking the appropriate long exact
sequence of homotopy groups gives group isomorphisms

π1(g
rs, s) ∼= π1(t

r/W, s̄) and π1(g̃
rs, s̃) ∼= π1(t

r, s). (A.8)

The vertical arrows are Galois covers with Galois group W , and in view of Eq. A.8
they induce two isomorphic short exact sequences of groups:

1 −→ π1(g̃
rs, s̃) −→ π1(g

rs, s)
(�)−−→ W −→ 1; (A.9)

1 −→ π1(t
r, s) −→ π1(t

r/W, s̄)
(•)−−→ W −→ 1.

The surjective map of Eq. A.9 is the homomorphism Eq. � of Section 1.
In particular, these short exact sequences imply that the monodromy action of

π1(g̃
rs, s) given by Theorem A.3 coincides with the monodromy action of π1(t

r/W)

on the fibers of the local system L̄k defined in Eq. A.6.

Remark A.10 (1) The natural action of W on EG/T induces an action of W on the
cohomology ring H ∗

T (pt) = H ∗(EG/T ). The natural isomorphism H ∗
T (pt) ∼= C[t]

[8, Example 1.2] is equivariant with respect to this action.
(2) Let s ∈ t be a regular element. Because T acts trivially on Bs = μ−1

b
(s), the

Künneth theorem gives an isomorphism

H ∗
T (Bs) = H ∗(Bs ×T EG) = H ∗(Bs) ⊗ H ∗(EG/T ) = H 0(Bs) ⊗ H ∗

T (pt).
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The action of the Weyl group on H 0(Bs) and on H ∗
T (pt) gives a diagonal W -action

on H ∗
T (Bs).

We will show that Remark A.10 gives concrete descriptions of the monodromy
action defined in Theorem A.3 in the case X = grs and X = g̃rs.

Proposition A.11 Let X = grs, let ϕ be the identity map, and let s ∈ t be a regular
element. The monodromy action of π1(g

rs, s) on H ∗
T (s) factors through Eq. � and

agrees with the W -action defined in Remark A.10.

Proof In view of Remark A.7, it is sufficient to prove the statement for the mon-
odromy action of π1(t

r/W, s̄) on the fiber of the local system L̄k . Consider diagram
Eq. A.5 in this case:

Since the maximal compact torus S acts trivially on t, the left vertical arrow is a
trivial fibration. It follows that the action of the monodromy factors through (•).

The resulting action of W on Hk(
̄−1(s̄)) comes from the natural W -action on
the fiber


−1(s) = {s} ×S V ∼= V/S.

It follows that the monodromy action is precisely the action defined in Remark
A.10(1).

Corollary A.12 Let X = g̃rs, let ϕ = μb be the Grothendieck–Springer morphism,
and let s ∈ t be a regular element. The monodromy action of π1(g

rs, s) on H ∗
T (Bs)

factors through Eq. � and agrees with the W -action defined in Remark A.10.

Proof Again, consider diagram Eq. A.5 in this case:

The action of W on H ∗(
̄−1(s̄)) is induced by the action of W on the fiber 
−1(s) =
Bs × V/S, which is the diagonal action. It follows that the Künneth isomorphism

H ∗
S (Bs) = H ∗(Bs) ⊗ H ∗

S (s)

is W -equivariant. The statement now follows from Proposition A.11.
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In the next two propositions, we show that the monodromy action defined in
Theorem A.3 is compatible with specializations and pullbacks.

Proposition A.13 Let s ∈ g be a regular semisimple element. The specialization
map

H ∗
Gs

(Xs) −→ H ∗(Xs) (A.14)
is equivariant with respect to the monodromy action of π1(g

rs, s).

Proof It is enough to check this for s ∈ tr. We keep the notation used in the proof of
Proposition A.4. There is a commutative diagram

where α is the quotient by the diagonal action of S.
In degree k, the specialization map is given by the fibers of the adjunction

Rk
∗CXt×SV −→ Rk
∗α∗α∗
CXt×SV = Rkϕ∗CXt×V .

Since it is induced by a morphism of local systems, Eq. A.14 is monodromy-
equivariant.

Now let Y be another smooth G-variety equipped with a smooth, G-equivariant,
proper surjective morphism ψ : Y −→ grs. Once again write YV = ψ−1(V ) for
the restriction of Y to a subset V ⊂ grs. Suppose that f : X −→ Y is a smooth,
G-equivariant morphism and that ϕ = ψ ◦ f .

Proposition A.15 Let s ∈ g be a regular semisimple element. The pullback map

H ∗
Gs

(Ys) −→ H ∗
Gs

(Xs) (A.16)

is equivariant with respect to the monodromy action of π1(g
rs, s).

Proof Again, it is sufficient to consider s ∈ tr. We keep the notation of Proposition
A.4. There is a commutative diagram

where the horizontal arrow is induced by f and � is induced by ψ . In degree k, the
pullback map is given by the fibers of the adjunction

Rk�∗CYt×SV −→ Rk�∗f∗f ∗
CYt×SV = Rk�∗f∗CXt×SV = Rk
∗CXt×SV ,
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Since it is induced by a morphism of local systems, Eq. A.16 is monodromy-
equivariant.

We are now ready to prove Propositon 1.10, which characterizes the monodromy
action on the singular cohomology of a regular semisimple Hessenberg variety.

Proof of Proposition 1.10 As in Theorem A.3 of the appendix, there is a monodromy
action of π1(g

rs, s) on the T -equivariant cohomology of Bs = μ−1
b

(s). By Corollary
A.12, this action factors through Eq. �.

By Remark 1.4,
Hess(s, H)T = Bs .

Since Hess(s, H) is a GKM variety, Proposition 1.6(1) implies that the restriction
map

H ∗
T (Hess(s, H)) −→ H ∗

T (Bs)

is injective. It is also π1(g
rs, s)-equivariant by Proposition A.15. It follows that the

action of π1(g
rs, s) on H ∗

T (Hess(s, H)) factors through Eq. �.
At the same time, the specialization map

H ∗
T (Hess(s, H)) −→ H ∗(Hess(s, H))

is surjective by Proposition 1.6(2) and π1(g
rs, s)-equivariant by Proposition A.13.

Therefore, the action of π1(g
rs, s) on H ∗(Hess(s, H)) also factors through Eq. �.
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15. de Cataldo, M.A.A.: Perverse sheaves and the topology of algebraic varieties. In: Geometry of moduli

spaces and representation theory. IAS/park city mathematics series (2017)
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