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Bikebot (i.e., bicycle-based robot) is a class of underactuated balance robotic systems that
require simultaneous trajectory tracking and balance control tasks. We present a tracking
and balance control design of an autonomous bikebot. The external-internal convertible
structure of the bikebot dynamics is used to design a causal feedback control to achieve both
the tracking and balance tasks. A balance equilibrium manifold is used to define and capture
the platform balance profiles and coupled interaction with the trajectory tracking
performance. To achieve fully autonomous navigation, a gyrobalancer actuation is
integrated with the steering and velocity control for stationary platform balance and
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1 Introduction

Bicycle-based robot, here called bikebot, is a representative
example of underactuated balance robot. Motion control of under-
actuated balance robots includes simultaneous trajectory tracking
and platform balance. Considering planar motion, a bikebot has
three degrees-of-freedom (DOFs), that is, the planar position and the
roll motion of the body frame, while the available two control inputs
include steering and velocity actuation. One major challenge of
control of underactuated balance robots lies in the nonminimum
phase, unstable internal subsystem, and its coupled dynamics with
trajectory tracking of the external subsystem [1].

Modeling and control of single-track bikebots attracts extensive
attention in past decades [2—6] and several autonomous bikebots
have been developed [7-10]. With limited steering control
capability, trajectory tracking and platform balancing are two
competing tasks. To deal with the coupled dynamics, an external and
internal convertible (EIC) structure of the bikebot dynamics was
proposed in Refs. [4] and [6]. Under the EIC-based control, the
target profiles of the internal subsystem are captured by the balance
equilibrium manifold (BEM). The trajectory tracking control is first
designed for the external subsystem, and the designed tracking
control input is updated by enforcing the roll motion onto the BEM
[11]. The work in Ref. [12] presented the calculation of the feasible
motorcycle motion trajectory for aggressive, high-performance
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maneuvers. The motorcycle dynamics models were used to estimate
the maximum velocity profiles for high-performance maneuvers. In
Refs. [13] and [14], dynamics model-based motion control was
developed for motorcycle aggressive maneuvers. Tire-road inter-
actions play an important role for the motion planning and velocity
profile estimation for aggressive maneuvers.

When the bikebot stays stationary or moves at a low speed, the
steering-induced balance torque is limited, and it becomes
extremely difficult to balance the platform [15,16]. To assist the
balance control, various actuation devices have been added and
installed on the bicycle platform. Those devices include gyroscopic
balancer [3,11,17], reaction wheel [9,18,19], inverted pendulum
balancer [20,21], and movable counterweight [5,22], etc. Most of the
above-mentioned control designs focus on the platform balance
while the trajectory tracking is not among the main tasks. The work
in Ref. [19] uses the interconnection and damping assignment
passivity-based control method for an autonomous bikebot with an
assistive flywheel. In Ref. [23], a backstepping technique and an
optimal control method were used for the tracking and balance
control of external and internal subsystems, respectively. Simulation
results were included to demonstrate the autonomous bicycles.

In this paper, we present a motion and balance control systems
design for the autonomous bikebot. The planar motion of the bikebot
is built on the kinematics model (with the nonholonomic constraint),
while the roll motion is based on the dynamics model. The focus of the
control design covers both the bikebot navigation for given
trajectories and stationary or low-speed balance tasks. For bikebot
navigation, steering and velocity control is the main actuation, while at
stationary, a gyrobalancer is primarily used to provide balance
actuation. Instead of regulating roll motion to one (upright) position,
we present an energy shaping-based orbital stabilization approach for
stationary balance control using the gyrobalancer. The main
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advantage of using the energy-shaping technique [24,25] lies in
reduction of the magnitude of the needed gyroscopic balance torque
and also relaxed gyrobalancer design constraints [17]. A coordination
between the steering/velocity and gyrobalancer controls is also
presented. The trajectory tracking control design is mainly built on
the EIC structure of the bikebot dynamics and the stability and
convergence analyses are presented. Extensive experiments are
conducted to demonstrate the performance of the integrated control
systems. Although the presented work mainly focuses on the
autonomous bikebot, it is of interests to compare the motion control
performance by the autonomous controller with the human rider
control (e.g., Refs. [26] and [27]). Therefore, we include and discuss
experimental comparison of the autonomous bikebot with the human
riding performance.

The main contribution of this work lies in the extended EIC-based
trajectory tracking and balance control of autonomous bikebots with
experimental demonstration. To our best knowledge, few experi-
mental demonstrations have been reported for the control of single-
track mobile robots with only steering and velocity control. The
experiments in Refs. [7] and [8] showed only the platform balance
and trajectory tracking was not among the control tasks. The
tracking experiments in Refs. [18-22] required assistive devices.
Moreover, the comparison between the autonomous design and the
rider control confirms similar strategies with the used BEM concept.
The autonomous controller design of the bikebot navigation
complements the human rider control strategies that were studied
in Refs. [26-29]. Compared with the previous conference
presentation [11,30,31], this work presents a more comprehensive
design of bikebot system for both trajectory tracking and stationary
balance control. We present a systemic way for stationary control
and stationary-moving switching control. Convergence and stability
are also guaranteed with additional experiments.

The rest of the paper is organized as follows. We present the
bikebot-rider dynamics and introduce the EIC-based control in
Sec. 2. Section 3 presents the gyrobalancer-enhanced tracking
control, stationary balance, and stationary-to-moving switching.
Experimental results and discussion are presented in Sec. 4. Finally,
we summarize the concluding remarks in Sec. 5.

2 Bikebot-Rider Dynamics and Control

2.1 System Dynamics. Figure 1(a) shows the prototype of the
autonomous bikebot, and Fig. 1(b) shows the human riding
experiment setup. Although the main focus of this work is riderless
bikebot control, we present a bikebot-rider dynamic model for
human riding performance comparison purpose. Figure 1(c) shows
the kinematic configuration of the bikebot and a rider’s trunk. When
human subjects riding the bikebot, their hands hold the handlebar,
and the pitch motion of the human trunk is negligible. Therefore, we
only consider the roll motion of the rider trunk.

- | Steering
motor

Embedded
system

A ground-fixed frame (X, Y, Z) (with the Z-axis downward) and
a bikebot body frame B(x, y, z) are used. The roll and yaw angles of
the bikebot are denoted as ¢, and V, respectively. We denote the
front and rear wheel contact points as C; and C, respectively. The
origin of B is located at C,, and frame B is obtained from A first by
rotating around the Z-axis by { and then by rotating around the X-
axis by ¢,. The human trunk is modeled as a point mass H on a
massless rod that is pinned at seat position S. The distance from H to
S is denoted as /,,, and the trunk roll angle is denoted as ¢,,. The mass
center G of the bikebot and point S are located at [, 0 — A" and
[1,0 — k)" in B, respectively. The bikebot wheelbase length, caster
angle, bikebot and human trunk mass are denoted as /, ¢, m,,, and m,,
respectively. /,is the steering trail. The mass moment of inertia of the
bikebot along the x-axis passing through G is denoted as J,,.

The bikebot’s planar motion is based on the kinematic model, and
the bikebot-rider roll motion control is built on the dynamic model.
Denoting the velocity of C, as v, and with the nonholonomic
constraint at C,, we calculate the yaw rate as [27]

: c
W = v, tan ¢ —
lcy,

where ¢ is the steering angle and ¢, = cos &(s, = sin¢) for ¢ and
other angles. The ground is assumed to be flat and the pitch motion of
the platform is neglected. Denoting the planar position of C, as

ey

re, = X Y]T in A/, we obtain the kinematics model of the bikebot
motion as
0 x® ey sy | |y v,.l/}cl/, + 2v,8y l//
= Y(3) Sy VrCy W Vrl/-/sllz - 2\},-C¢ ’
_— _—
Ry, ¥
= R'/,u ¥

where r(cr? denotes the m-th order derivative of r¢,, m € IN, and the

same notation is used for other variables, input u = [t4r u\/,f, U = v,
and uy, = 1// The reason for taking the third derivative in Eq. (2) is to
incorporate balance torque by the yaw angular acceleration.

Letg = [0, (ph]T and the equations of roll motion are obtained as
[32]

M(q)§+C(q.q) +G(q) =T+ B(q)u 3)

where t = [07;)" and 7, is the torque that is applied by the rider
along the roll motion direction; see Fig. 1(c). Matrices M(q),
C(q.q), and G(q) denote the moment of inertia, Coriolis and
gravitational effects, respectively. B(q) is the input matrix. The
explicit form of these matrices are given in Eq. (4) on the top of the
next page with M), = myhy + myhg, Jo = Jp, + mphi + my, (h2 + h)
+2myhshycy,, Sy = mbhﬁ + mhhf, and g=9.8 m/s” is the gravita-
tional constant.

(a)

Fig. 1 (a) The Rutgers bikebot system, (b) human riding experiments with wearable IMUs, and (c) a kinematic schematic of the
bikebot-rider systems. The rider trunk is modeled as an inverted pendulum mounted at seat position S.
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Ju myhy(hy + hsCy, )

. Cle.q9) =
mhh;,(hh + hscr/)/,) :| (q q)

M(q) = {

2
m;,hh

G(q) = —~MygSp, — MihngSe,+p, — (Mply + myly)cy, glicoy,
—mghySp, 1,
Letting u = R, (¥ + uy) and uy € R? as the controlled jerk, we

rewrite Egs. (2) and (3) into the following EIC form

Tew i TE) = my (5a)

S i =M (q) [B@)R;"¥ — C(q.4) — G(q)

+t+B(q)R, uy]

(5b)

Remark 1. The input u, = v, is the controlled linear jerk (i.e., the
derivative of acceleration v,). In experimental implementation, the
designed input u, is integrated twice to obtain the velocity v, that is
the control command for the driving motor. The other input u,, = 1//
is the controlled yaw acceleration of the bikebot. The input uy, is first
integrated to obtain the controlled yaw angular rate 1// Then, by
relationship (1) between np and ¢, we obtain the controlled steering

le, . .
angle command ¢ = tan™! (?f”) Therefore, control input u is
implemented by the driving and steering actuation in experiments.

2.2 Balance Equilibrium Manifold and Bikebot-Rider Con-
trol. In this subsection, we present the tracking and balance control
design using the EIC model by Eq. (5). Given the desired trajectory
T : (X4(1),Y4(2)) in NV, the first step is to design a tracking controller
for Xy, without considering the balance control task. Therefore, we
consider

ext 3)

uy =uy =r; —bé, —bie, — bhe, (6)

where r; = [X4(t) Y4()]" and e, =rc, —rq. The constants b; > 0,
i=0, 1, 2 are chosen such that polynomlal §% 4 bas® + bys + by is
Hurwitz. By Eq. (6), the control input is designed as

u=u™ =R, (¥+u) @)

Under Eq. (7), we define a nominal external vector field as

Next = (8)

2
— Zb,eg})
i=0
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7mhhshhs<ph (zq)h + ¢h)¢h -

(Jm S‘/‘bc(ﬁh
2 2
+mphySp,+0,Co,+0, + MuhshyS2g,10,)Y
+(th<p,, + mhhhcqa,,)"rlp

“

_mhhhhssrph PPy — mhhh(hhsff’/,Jr‘/’l,

o .
+hfswh)c¢h+whl// "‘mhhhcwz,"r‘p

0 m;,lhh,,s(,,h + mhlshxsq,h + mhlshhcq,bﬂ,h

, B(q)={0
|

We now consider the roll angle equilibrium, denoted as ¢,, by setting
q=¢q =0 in Eq. (5b) under control (7). We define an implicit
function of ¢ as F(q,u,t) = B(q)u + 1 — C(q,0) — G(q) and let
4. = q.(u, ) be the solution of the algebraic equation F(q,, u, 1)

0 for given u and 7. The BEM under #**' and t, denoted by & (u*',
is defined as

mhhhlsc(p,l

0,

Ew™, 1) = {(x,0) | g = ¢, (™, 7),4 = 0} )

T
_ | o our
where x = [rc2 fe, rcz]

and o = [qTi] } The BEM &(u, 1) is
viewed as a time-dependent graph of Xy, that is evolved with Ny
under z**" and t. The value of g, (#®*', t) in £(u**", 1) also depends on
x implicitly through control #*'.

For internal subsystem by Eq. (5b), we need to stabilize the roll
angle to ¢,. Noting u = [u, ul/,]T, we plug Eq. (7) into Eq. (5b) and
obtain

§=M"(q) BHEZ; ?}u ~Clg.4) ~ G(g)

B.(q)

where ™ = [y rh]T and B,»j(q) is element of B(q) at the ith row and
Jjth column, i,j = 1,2. Note that u, does not appear in the above
equation because the first column in B(q) is zero. From the above
equation, the balance control of Zj, is

ﬁim — B;l (q) C(q

4) +G(q) + (10)

M(q)vimj|
with v = L2 4. — a1, — apey, where constants ag,a; > 0,
e, =q—4¢,, eq =q—q,~q—Ly,q,. We approximate ¢, and
g, by using directional derivatives along N due to their
dependence on the external subsystems and u®, i.e., Ly, q, =

Ly,q,+Zcand [}, q, = Ly, Ly, q,. The form of Ly,_g, is,
P 2G+0)\
q, ~Lyq, = u"”n AR (K —O—BiNum),
0q,
Lvu Z(R: l\l’ d R €Xl +R; lL uexl
nu d v v v Ly
X —boéx — biéy — by <“16vx}( - X((13)>
L ucxt
N ()
b()€y —biéy — by (uf\;“y Yd\ )

where K denotes a collection term of the derivative of G, C, B, T with
respective to variables other than ¢,, and uy x and uy y denotes the
components of control u$X' in X and Y dimension. The form of L%, e
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Fig. 2 The flowchart of the EIC control scheme with gyroba-
lancer enhancement. The dashed line indicates the design flow
and the solid line indicates the control flow.

is obtained similarly. The overall control of the bikebot-rider system
by Eq. (5) combines the controllers in Egs. (7) and (10) as u, = u™
and uy, = uf/f“, where u:/‘/“ is the first element of #™ in Eq. (10).

Remark 2. Although the above-developed control includes the
human trunk motion and actuation, the design can be simplified for
riderless autonomous control by reducing the roll motion and
setting © = 0 in Eq. (5b). In the following section, we will use the
above developments to present the riderless autonomous control to
further illustrate the design.

Figure 2 illustrates and summarizes the above EIC-based control
scheme. For a given trajectory 7, the control system is first to

T
specify the external systems controller u™' = [uﬁ"‘ uf//"‘} that is

given by Eq. (7). Then, we compute the external vector field Ny by
Eq. (8) and the BEM by Eq. (9). The final controller is updated by roll
stabilization by Eq. (10) and given as u, = u* and u,, = ui/j“. In
Sec. 3, we will discuss the gyrobalancer-enhanced control design.

3 Gyro-Balancer Enhanced Control

In this section, we mainly present the gyrobalancer control of
bikebot and then discuss how to use the gyrobalancer to assist the
stationary bikebot. Finally, the switching strategy between station-
ary balance and tracking control is briefly discussed.

3.1 Bikebot Model With the Gyro-Balancer. Figure 3(a)
illustrates the gyrobalancer configuration, and Fig. 3(b) shows the
schematic of the riderless bikebot with the gyrobalancer. The
gyrobalancer’s flywheel rotates at high (constant) spinning speed

'A
i Ws
Pu Q.'->
,[ ------ - A
A
L -».H' ':‘!"‘! -
7/ [
i .I‘LA!‘SO““".,»!
i ( y ‘_ 2 Y s
é/,r',, [
(a)

Fig. 3 (a) The configuration of the gyrobalancer setup and (b) a
kinematic schematic of the bikebot systems with the
gyrobalancer

101002-4 / Vol. 145, OCTOBER 2023

ws, and the flywheel’s pivoting angle is denoted as ¢,,. The
gyroscopic torque along the roll motion is calculated as

1 1. o
Ty = —1:Cy, (w.‘v T3 PvSe. T 5 ‘//Crﬂhcfﬂw) (9"w + ‘Psw) (In

where /. is the mass moment of inertia of the flywheel about its
rotating center.

To simplify the modeling process, the pivoting angular velocity is
considered as the input u,, = ¢,, and, similar to Eq. (3), the riderless
roll dynamics model is obtained as

Zin : Py = [F(@0) + 8y (@1)uy + it ] (12)
where J; = m;,h,% +J, +0.51, (1 + Sim)’ 8y (Pp) = —mphplpcy,,

f(@b) = fm;,h;,cwv,-g.b + mbhicwhswt’ﬁz + mphpgs,,

+ Izcwwcwh‘.p (a’x —0.5¢s,, — 0‘5¢Cw/,cww>
mpglily tan ¢egc,,
; ,
8w(Pp) = —I:Co, (ws —0.5084, — 0'5‘2/%“%“‘)

Together with Eq. (5a), the above dynamics in Eq. (12) satisfies the
EIC property.

3.2 Enhanced Tracking Control With the Gyro-Balancer.
We first consider the case that the gyrobalancer control is not used,
that is, u,, = 0. The control design follows the discussion in Sec. 2.2.
Under #** in Eq. (7), the balance equilibrium angle ¢ in Eq. (9)
satisfies the following relationship

f(5) + &y (oh)ug* =0 (13)

From Eq. (10), the roll motion stabilization control is chosen as

' = 55" (on) (S (02) + 03" (14)

with vt = L%,ex‘(pfi —aiey, — apey,, where e, = @, — @, €y, =
@y — @y ~= @, — Ly, ¢}, and constants ag,a; > 0. The overall
control design combines Eqgs. (7) and (14) as

C:iur =u™, uy = uf/‘,",uw =0 (15)

Remark 3. Under controller C in Eq. (15), both the position
tracking error e, and roll motion error e, are shown to
exponentially converge to neighborhoods around zero simulta-
neously. The stability and convergence proofs are obtained by using
the EIC properties and a technical assumption about the BEM
approximation error in the closed-loop dynamics [4]. A similar
proof is given in Ref. [26] and we omit here.

We now derive the gyrobalancer control u,, and steering control
ﬁfl‘}‘ to further improve the trajectory tracking performance. By the

EIC-based design, under u*', the bikebot position converges to the
desired trajectory 7 exponentially. For the balance task, the steering

input u:l'/“ is different from ufp“ and thus introduces tracking errors e),.

On the other hand, ub‘/“ has to drive ¢, to ¢}. The goal of the
gyrobalancer control u,, is to help balance the platform under IZ{;“.
Under u,, and ﬁ}/l}t, the balancing capability is assumed to be the same

as ui;‘ with u,, =0, namely, the right-hand sides of Eq. (12) are the

same and thus, we obtain

F(@p) + 8o (@p)u)" = F(9p) + 80 (Pp)iHy" + guw(@p)tw  (16)
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If the external control by Eq. (6) is used, we have
rY — byé, — bré, — boe, = W + Ryu™

By inputs Egs. (14) and (15), the actual planar motion is then
AT
r(gz) =Y +Ryu, u= [uﬁ’“ u:ﬂ . The tracking error due to the

balance control is

o 0
e + by, + bié, +boe, = d, =Ry [“wt - “fft} (17)

Using Eq. (13), we obtain an alternative formulation for uew’“

0y = =g, (@})f (95) (18)

ext

as

Substituting uy" in and u$)

perturbation term d), as

in Egs. (18) into (17), we obtain the error

0
dp:Rw[dJ (19)

where dy = “ip —uyt = *g‘zl(q’h)f(ﬂob) +g;1(<ﬂ2)f(902) +g$l

(qo,,)],v‘“t Under the new control ﬁ:;‘, we obtain a similar error

perturbation d,, as

d,=R 0 =R 0 20
p — &y gO =y ﬁi;tiuewxl ( )

=8, (@) (20)+ 85 () (05) + 8 (9n) Ty — 83!

(Pb)8w(p)w- From Eq. (20), if u‘“‘ = u;’“, then d = 0 and errors
e, converge by Eq. (17). However, glven Eq. (16) and the restrictive
pivoting motion, the magnitude of it ’:;“ cannot be arbitrarily chosen.

We design u,, and u:j}‘ by considering the physical constraints of
the gyrobalancer actuation, namely,

where dy =

|Pu| < @ [Pl < w0y < 0 @n

m’IX de max

where @} ,and ;)" are, respectively, the maximum pivoting
angle, angular Velocny, and angular acceleration. By these
constraints, we define the upper— and lower-bound functions for
u,,, that is,f‘;c( Pw) <ty < e ((pu) where

+ o M:Zlax gomﬂx < (g < D1
we(Pw) = max\/w’ Pt < Py < O
()?

fV;F (('DW) = 2ymax
w

—fv:;(—QDM) Pyw1 = (p‘v]vux -

The above bounds are calculated by the pivoting motion kinematics
with the constraints in Eq. (21). If |dy| > ¢, for a given eqg >0, we

design the rolling torque in the direction of gy (¢,) ( v~ ui’“) and

given constraints f,! (¢,,) and f,_(¢,,), that is,

ul, = sign(uy) min Ig, ()80 () (o] = ). 5 ()] ) @2)

where sign(u,,) = sign <g;1((ph)g¢,((ph)d0) If \do\ < g4, we choose

ll'l[

= 0. From Eg. (16), the steering control iy

' =g, (o) [Jer},“ —f(op) — gw(%)uﬂ (23)

The overall control with gyrobalancer assistance is then

C:up =u uy = IZE}I, wy = ud) (24)

Journal of Dynamic Systems, Measurement, and Control

Under controllers C in Eq. (15) and C in Eq. (24), the position
tracking errors are denoted as e, and e,,, respectively. It can be shown
that under C, the magnitude of the tracking errors is reduced. We first
present the following result. _

Lemva 1. The error disturbance d, under controller C is not
greater than that of d,, under controller C.

Proof . See Appendix A. |

Under C, the EIC structure is still held, and thus, as shown in
Refs. [4] and [26], the closed-loop errors e, and e, asymptotically
converge to bounded regions near the origin. Similar to Eq. (17), we
obtain the error dynamics for e, as

e + bye, + bie, + boe, = d, (25)
. T T T T — -T ;T ;T T . .
Defining e, = [ep e, ep] and e, = [ep €, ep] , similar to Ref.

[26], we obtain that the magnitudes of d,, and 3,, are assumed to be
affine functions of e, and e,, respectively,

[dp]| < ko + Kuf[ex|> [|dp|| < Ko+ ki|fey| (26)

where ko, k1, ko, k; > 0 are constants. Given the result in Lemma 1,
we assume that ko < ko, k; < k;. We have the following results
about errors e, and e),.

TueorREM 1. Under controllers C and C, ep( ) and e,(t)
exponentially converge to regions near the origin. Moreover,
denoting the error bounds ¢’(t) and ep( ), ie., |le,(1)]] < e;:(t) and
lle,(1)]] < éz(t), we obtain éjj(l) ( )for t > 0.

Proof . See Appendix B. |

From Eq. (16), under C the balancing control effect is the same as
that of C. The closed-loop error dynamics of Xy is

E‘Ph + alé(ﬂh + oy, = d‘Ph (27)

where d,, = @ — L}, @f + a1 (9§ — Ln,,¢;), which is bounded
by the norms of the desired trajectory [4]. Because of the unchanged
internal error dynamics by Eq. (27) under C and C, the stability and
tracking performance for the BEM is the same.

3.3 Stationary Balance With Gyro-Balancer Control. When
the bikebot is stationary, v.=0 and u, =0 and we consider
balancing the bikebot by using the gyrobalancer. One constraint of
the gyrobalancer is the lack of continuously supplied, large balance
torque due to its working principle, that is, a constant pivoting rate u,,
is needed but an increased pivoting angle would reduce the output
torque. Therefore, instead of regulating the roll angle at the upright
position, we stabilize the platform at a designed orbit to further help
avoid saturation of the output balance torque. We define the state
variables as & = [£; &, 53]T = [0y Py s(,,w}T. From Eq. (12), the roll
motion dynamics reduces to

él = 62, éz :f;q(&) + gg(a)ugv &3 = Ug (28)

s _
where u, = ¢y, f,(§) = M , 8.(&) = % The equi-

librium of Eq. (28) is §, =0 under u,=0.Given I. < J, < m;,hh
and |&,| < oy, Eq. (28) is simplified to

S Ly
_5, u
< hy ©! +m1,h,2, 8

=0 (29)

We plan to stabilize the motion governed by Eq. (29) on an
oscillation orbit O, given by

b
2 & + =0 (30)
where b >0 is constant. Plugging Eqgs. (30) into (29), we have
&= htiﬂfk” & = —Lé,, where L = (ﬁ?mhhh The correspond-

ing orbital trajectory for {5 is given by O, : &3 = —L&,.
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We consider an energy-like function E(&) = 2m;,h 52 +mphyb
(1 — c¢,). The maximum angle &} on orbit O, is obtained at &, = 0.
By Eq. (30), if (&,&) is on Oy, E(E) is conserved at
E;= mhhhb(l — cﬁ). Therefore, define AE = E(&) — E; and the

control law is given as

(se, + 12vg(8)), v4(&) = HAE + yi (& + LE)  (31)

Uy = o
where y = b, > 0, and k1, k2 > 0. We have the following result.
Lemma 2. Under conn ol (31), the system by Eq. (28) converges to
the invariant set S(§ {§|\{g = O} asymptotically, and the
closed-loop trajectories of & are on orbits O, and O,
simultaneously.
Proof . See Appendix C. |

3.4 Stationary-Moving Control Switch Strategy. Noting that
|@y] < wgand |I:p,s,, | < -y, the gyroscopic balance torque (11)
is simplified as 1, = —Lwsu,. The maximum instantaneous

gyroscopic balance torque is then estimated as 1, = L o™

We compare the above gyroscopic balance torque with the steering-
induced balance torque. Using the condition ¢, ~0 and at
constant ¢, we simplify Eq. (12) and collect all terms
related with the steering angle. The steering-induced balance torque
is T, = mphpcy, Vih — w my % tan q&(h;,v - gl,lh)

is clear that with increasing steering angle ¢ and velocity v,, T, value
grows. It is however difficult to analyze and directly compare the
magnitudes of t, and 7, from the above calculations. We here
illustrate the comparison numerically. Using the bikebot prototype
parameters, Fig. 4 illustrates the balance torque 7, as varying
velocity and steering angle. When velocity v, is small, the value of
is small. In this case, it is extremely challenging to only use steering
actuation to balance the platform.

From the above discussion, for the stationary platform or at low-
velocity motion, the bikebot balance is maintained by the
gyrobalancer control only, while at large velocity, steering control
is mainly used. Therefore, a switching strategy is needed between
the gyrobalancer and steering controls. Stability under the switched
control follows the design that the state under the current controller
is within the region of attraction of the switched target controller. By

40 ‘ ;
’
50 X2
s0f| — — 10° i
3 :
- =20 ‘,"
v
=201 d 3
~— ’ -
K10 | e -
/" - .
0 ':—:..T-_T_T":-‘&:/
-5 L L L
0 0.4 0.8 1.2 1.6 2
vr (m/s)

Fig.4 Steering-induced balance torque tsas function of velocity
v, for the bikebot prototype model under different steering angles
¢ =5,10, and 20 deg

doing so, the stability of the switched control is guaranteed. For
simplicity, velocity magnitude is chosen as the switching condition.
The controlled torque is 1y = gy (@)U y = ”’h”[”" [vi( seci(ﬁ
+¢, tan ¢ tan ¢,,) + v, tan @]. Clearly, to achieve effective steering
control, the velocity needs to reach a certain value v}, at which the
bikebot roll motion state is within the region of attraction of the
steering control. Similarly, when switching back to stationary
balance control the by gyrobalancer, the effective design is to reduce
the velocity below v; at which the steering effect is negligible and
the gyrobalancer can safely take over the balance task to stop the
bikebot.

4 Experimental Results

4.1 Experimental System. The bikebot prototype shown in
Fig. 1(a) was modified from a mountain bicycle with a set of sensors
and actuators. A high-resolution inertial measurement unit (IMU)
(model 801; Motion Sense, Inc.) was used to obtain the roll angle ¢,
and yaw angle / and their rates. Optical encoders were used to
measure the velocity (from the rear wheel) and steering angle. A
real-time kinematic (RTK) GPS unit (Novatel, Inc.) was used to
obtain the bikebot position. The gyrobalancer was mounted on the
rear rack. The flywheel and pivoting motion were each driven by a
DC motor with encoders for feedback control; see Fig. 3(a). The
steering actuation was driven by a DC motor (with an encoder for
position feedback) and the bikebot velocity was driven by the hub
motor at the rear wheel. A real-time embedded system (cRIO model
9082; National Instruments, Inc.) was used to collect all measure-
ments and compute the control inputs at a frequency of 100 Hz. The
positioning information from the GPS unit was updated at around
20 Hz. Table 1 lists the values of the physical parameters of the
bikebot system. The following control gains and parameters were
used in implementation: ay =25, a; = 180, by =3, by = 6,
b, = 10 for the EIC controller; =1 for the orbital stabilization
controller. The gyrobalancer physical constraints were glven as:
Q™ = Zrad, upy™ = 6radfs, g9 = 2 rad/sz, and Y™ =6 rad/s>.

We conducted human-riding experiments to compare with the
autonomous control. As shown in Fig. 1(b), the rider operated the
bikebot similar to a regular bicycle with manual steering and
regulating the velocity. Trajectory lines were marked on the ground
so that the human subjects rode the bikebot to follow the trajectory as
closely as possible. A 6DOF force/torque sensor (JR3, Inc.) was
installed underneath the bikebot seat to obtain the rider’s trunk
torque 7,. An IMU (model 605; Motion Sense, Inc.) was mounted on
the human trunk to obtain the rider trunk roll angle. The embedded
system was used to collect and store the motion data at a frequency of
100 Hz. The subjects were experienced bicycle riders, and they rode
the bikebot for about 10 min before experiments were recorded. An
informed consent form was signed by human subjects and the testing
protocol was approved by the Institutional Review Board (IRB) at
Rutgers University.

4.2 Experimental Results. We first present the validation
results for the bikebot-rider model by Eq. (3) using human riding
experiments. Figure 5(a) shows the trajectory of the bikebot
following an “87-shape trajectory (with a radius of 3m). The
subject rodes the bikebot with a velocity of around 2 to 2.5 m/s.
Figure 5(b) illustrates the validation of the two equations in Eq. (3).
The plots compare the calculations of term G(q), and the rest of the
other terms in the dynamics equation is neglected. We chose this
comparison method because the magnitude of G(g) dominates the
values of other terms. These results clearly show a close match

Table 1 The values of the bikebot physical parameters

my(kg)  my(kg)  Jy(kgm?)  L(kgm®)  Jy(m)  hy(m)

ly(m) — hg(m)  [(m)  I(m)  [(m)  e(deg)  ,(rpm)

51 35 2.5 0.036 0.30 0.64

0.27 0.85 0.32 1.1 0.06 20 1500
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Fig.5 (a) Human riding experiments trajectory of following an “8”-shape trajectory (radius of 6 m). (b) Validation of the bikebot-
rider dynamics model in Eq. (3). The top plot shows the comparison of the first equation and the bottom plot is for the second
equation in Eq. (3). (¢) Bikebot roll angle ¢, and the calculated BEM for ¢, (d) Rider trunk roll angle ¢, and the calculated BEM for
¢p- (€) Rider-controlled steering angle ¢ and EIC-based controlled ¢. (f) Rider-controlled bikebot velocity v, and EIC-based v,.

These plots were previously presented in Ref. [26].

between the model prediction and the experiments. Figures 5(c) and
5(d) show the bikebot and rider trunk roll angles, respectively. Using
the steering angle, human trunk driving torque, and velocity
measurements, we computed and plotted the BEM (i.e., ¢j and
¢3). The actual angles followed closely with these equilibria. We
also computed the EIC-based control design, and Figs. 5(e) and 5(f)
show these control inputs (i.e., steering angle ¢ and velocity v,)

together with the actual human inputs. The velocities labeled “EIC”
in Figs. 5(e) and 5(f) were calculated using the system model, and the
difference with the rider experiments is due to the modeling errors
and variations of human riding behavior.

To demonstrate the influence of the moving velocity on trajectory
tracking performance, we ran experiments by first regulating
velocity v, at a constant value and using only the steering control.

--- Desired
— Exp

— Exp

Desired

25 30 35 -12

s (m)
(e)

Fig.6 Bikebot path following results with desired trajectories. Planar positions for (a) straight-line, (b) circular, and (c) “8”-shape

trajectories. Bikebot roll angle results for the (d) straight-line,
(d)—(f) represent the calculated BEM values.
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(e) circular, and (f) “8”-shape trajectories. The dashed curves in
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Fig.7 Bikebot path tracking error distributions (mean values as
the centers and one standard deviation value as the major and
minor axes of each ellipse). Left: straight-line tracking; middle:
circular tracking; and Right: “8”-shape trajectory tracking. In the
middle and right subfigures, the “A” markers at the center
indicate the 6-m radius trajectory and circular “»” markers for 4-m
radius trajectory.

Five sets of experiments were conducted: the straight-line, circular,
and “8”-shape trajectories (radii 4 and 6m) under velocity
v, = 1.7,2.1, and 2.6 m/s. Figure 6 shows an example of tracking
results of the straight-line, circular, and “8”- shape (with radius 6 m)
trajectories at v, = 2.1 m/s. As shown in Fig. 6(«a), the position
tracking errors are less than 0.15 m for the straight-line tracking. For
both the circular (Fig. 6(b)) and “8”-shape (Fig. 6(c)) trajectory
tracking, the position errors are less than 0.8 m. Figures 6(d)—6(f)

show the roll angle tracking results of these three trajectories. The
roll angle errors for the straight-line tracking control are plotted over
the horizontal position, while for circular and “8”-shape trajectories,
they are plotted over the arc-length. It is clear that roll motion
followed the calculated BEM closely.

We computed the mean and standard deviation values of the
tracking errors under different trajectories and velocities setups.
Under each set of those conditions, we repeated four testing runs
similar to those shown in Fig. 6 to calculate the statistics. Figure 7
shows the calculated means and standard deviations of the tracking
errors (i.e., ||ey||—|ey, |). Under the same velocity, the straight-line
tracking always has the smallest position errors and roll angle errors,
while the errors under the circular tracking are smaller than those
under the “8”-shape trajectory. The roll angle reference (i.e., BEM)
displays a sudden change when the robot turning direction changes;
see Figs. 6(c) and 6(f). This motion requirement can bring a larger
tracking error for the “8”-shape trajectory than the circular
trajectory. It is clear that the tracking errors for the large-radius
trajectory are smaller than those of the small-radius trajectory. With
large velocity, both the position and roll motion errors increase. The
position tracking error and roll motion error are related to each other,
that is, both errors change in the same trend under velocity and
trajectory radius variations. B

We further implemented controllers C and C for straight-line and
circular trajectories. Figures 8(a) and 8(b) show the position
trajectory and the tracking errors, respectively. Figure 8(c) shows
the roll angle profiles. Under both controllers, the bikebot
successfully followed the straight line. Under C, the bikebot reached
the desired trajectory in a smoother fashion and with smaller errors
than those under C. This is clearly reflected by the control inputs in
Figs. 8(e) and 8(d). Without using the gyrobalancer, after crossing
the desired trajectory, the bikebot continued to turn (at 865 in
Fig. 8(d)). In contrast, the gyrobalancer helped to generate
additional torques to assist balance tasks (e.g., at t=103s in
Fig. 8(e)). Figure 9 shows the results for tracking a circular
trajectory. Compared with trajectory under C in Fig. 9(a), a larger
steering effect is shown in Fig. 9(b) right after the bikebot entered the
circular trajectory (around ¢ = 82 s). This sharp turn is also observed
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Fig.8 Performance comparison of the two controllers C and C for a straight-line trajectory: (a) The position trajectories in the X-Y
plane, (b) position tracking errors, (c) bikebot roll angles under C and C, (d) control inputs under C, and (e) control inputs under C

101002-8 / Vol. 145, OCTOBER 2023

Transactions of the ASME

€20z Jequieoaq z| uo IA Buebuir ‘Ausieaiun s1ebiny Aq 1pd-z00L0L~ 0L Gl SP/0L8SE0./200L0L/0L/SYL/pd-spoie/swalsAsolweudp/Bio swse uonos|jooleybipswse;/:dny woly pspeojumoq



16 /—\ 16 O
‘ &
. 14 =
<
12 S-
s = Under C 7 12 = Under C
~ 10 * Desired traj ~ = =Desired traj 5
> >~ 10
8 4
g 3
8 =
6 E )
1
2 10 s 4 N 10 20 40 60 80
X Fm) Time (s)

b (deg) C

llepll (m)
¢ (deg)

(c)

10 20 30 40 50 60 70 80 10 20
Time (s)

(d)

) 40 60 80 0 20 40 60 80 90
Time (s) Time (s)
(e) (U]
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angle under C, and (e) and () control inputs under C and C, respectively.

from the roll angle in Fig. 9(c). The steering effort to balance the
platform was reduced and smoothed by the gyrobalancer. The
magnitude of tracking error |e,|| (Fig. 9(d)) is smaller than ||e,||
(Fig. 9(¢)). The control inputs under C and C are illustrated in
Figs. 9(e) and 9(f), respectively.

We now demonstrate the stationary balance results. Figure 10
shows the phase portraits of the bikebot roll angle (Fig. 10(a)) and
the pivoting angle (Fig. 10(b)) when the bikebot was stationary. The
bikebot was released at ¢, (0) = —1.2 degand ¢,,(0) = 0deg/s with
¢,,(0) = 0 deg. From the figure, the desired roll angle orbit reached
*2deg and roll angular rate to *£5deg/s. From Fig. 10(a), after
several periods, the bikebot roll angle was controlled to near the
desired rolling orbit around *2 deg. Once the roll motion reached
the desired orbit, the flywheel pivoting motion was also near the
pivoting orbit within the range of =50 deg as shown in Fig. 10(b).

Figure 11 shows the results under the stationary-moving switch
control. The bikebot was controlled from stationary to moving and
back to stationary again to track a straight-line trajectory. As shown
in the figure, the stationary stages were from = 66.2 to 81.6 s and
from ¢ =104.7 to 118.5 s. The switching velocities were set as vj =
1.2 m/s and v; = 1.9 m/s. Figures 11(a) and 11(b) show the roll
angle ¢,, velocity v,, and steering angle ¢ and flywheel pivoting
angle ¢,,, respectively. Figure 11(c) shows the bikebot planar
position, and the position errors are held within 0.4 m. The bikebot
was first released at a small ¢, and under the gyrobalancer orbital
regulation control, the roll motion was within the range of *1 deg.
After v, > v], the bikebot moved around v, =2 m/s, and ¢,, was set
to zero, and the platform was stabilized by steering control. From
t=104.7s (i.e., v, <V}), the bikebot moved into the stationary
phase under the gyrobalancer control. After a 5 s transition duration,
the roll angle followed a periodical motion, and the steering angle
was set to zero.

We further compare the autonomous control results with human
riding experiments. The results under controller C (i.e., without
using the gyrobalancer) are compared with these under the human
steering control. Figure 12 shows comparison results of tracking an

Journal of Dynamic Systems, Measurement, and Control

“8”-shape trajectory (radius of 6 m) with velocity v, = 2.1 m/s.
From Fig. 12(a), the control performance under the human rider and
the autonomous control is in general similar though the former
maintains smaller tracking errors than the latter. Figure 12(b) shows
the steering and roll angles under the two types of controllers. It is
clear that under autonomous control, the roll motion experienced
less oscillation than that under the rider control. The high-frequent
steering actuation by the rider might result in small position errors.
Figure 13(a) further shows the position comparison of tracking a
smaller “87-shape trajectory (with a radius of 3m). The motion
velocity was selected at a value under which emergency protection
can be provided by a human operator immediately to avoid any
damage in experiments. Figure 13(b) shows the comparison of
velocity and the steering angle profiles under the human riding and
controller C. In this case, the tracking errors under C are in general
smaller than those under human control. The human balance motor
control might be similar to those under C. This observation can be
found in the velocity and steering angle comparison plots in
Figs. 13(b) and 13(c). The overall velocity and steering actuation
trends under human control and C are also similar. Indeed, the results
in Ref. [32] have shown that the EIC-based control by Eq. (10) has
the same mathematical structure as the human neuro-controller that
was empirically built on the human riding experiments.

4.3 Discussion. In this work, the planar motion of the bikebot is
built on the kinematics model (with the nonholonomic constraint),
while the roll motion is based on the dynamics model. This paper
mainly extends the EIC-based trajectory tracking and balance
control of autonomous bikebots with given desired trajectories. The
motion control only uses the steering and velocity actuation as
the basic design. With an additional gyrobalancer assistive device,
the motion is extended to include the stationary balance. The
influence of the steering on bikebot dynamics was developed
through the balance torque as explained in Ref. [33]. A similar
model has been used to analyze and demonstrate that bikebot riders
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Fig. 11 Switching balancing control result: (a) bikebot roll angle ¢, and velocity v, and (b) gyropivoting angle ¢, and steering
angle ¢. The first and the third sections are for the gyro balancer control, and the middle section is for the steering balancing
control. (¢) Bikebot trajectory on XY plane. The vertical lines indicate the time when the control actuation is switched.

would prefer to use steering actuation than the upper-body leaning
motion to overcome any perturbations [26]. For most experimental
examples in this work, the bikebot speeds were mild (e.g., 1-3 m/s),
and the steering-induced balance torque was not significant
compared with these in the high-speed cases.

As we explained previously, the work in Refs. [12] and [13]
considered a dynamic model for the motorcycle planar motion, and
tire-road interactions are among the important part of the model for
aggressive velocity planning. Compared to the dynamic model for
planar motion, the kinematic model used in this paper is simple and
maintains critical properties such as nonholonomic constraints for
relatively mild velocity navigation. The trajectory planning and
aggressive maneuvers are not among the main design goals of this
work. This is the main difference with the work in Ref. [12]. In order
to plan the motion trajectory and maximum velocity profile, we do

need to know the tire-road interactions properties (e.g., friction
circles, etc.) This would bring complex dynamic model for the
bikebot planar motion, such as those in Refs. [12—14]. It would be
helpful to incorporate the motion planning as part of an extension for
future development.

Following the above discussion, the existence of the BEM by
Eq. (9) is based on the assumption that the bikebot roll motion can be
realized. That implies that the algebraic equation F(g,u™', 1) =
B(q)u™ +1—C(q,0) — G(q) = 0 has a feasible solution that
satisfies the roll motion dynamics under given u®' and t. The
solution of this equation depends on the external controller u'. If
for a given trajectory, such as a sharp turn, under the designed u*,
there is no feasible roll motion and then a revised trajectory-tracking
controller or replanning the trajectory is needed. Since the
demonstrated experiments took smooth trajectories and reasonable

20 T T T T T r T r T T T T
15F 1
) ——Under C
>~ == Human
10F = = =Desired 1
5

Fig. 12 Path following (“8”-shape trajectory) comparison of the bikebot control and rider experiments:
(a) horizontal position and (b) steering angle ¢ and rolling angle ¢,
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Fig.13 Performance comparison of humanriding and the controller C to follow an “8”-shape trajectory: (a) The tracking trajectory
under a human riding control. The solid circular dot indicates the starting location. (b) Controller inputs under human control and

C. (c) Balancing roll angles.

velocity profiles, the control design always found the equilibrium
solution of Eq. (9). For a given desired trajectory, we can also design
a path-following controller, instead of trajectory tracking control as
shown in this paper, by taking a time suspension technique to tune
the bikebot velocity with the path-following errors [34]. This
approach would help design a feasible velocity profile to follow a
given path for the bikebot control.

5 Conclusion

We presented a set of gyroscopic balancer-enhanced control
strategies for the autonomous bikebot for simultaneous trajectory
tracking and platform balance. The control design was built on the
EIC structure of the bikebot dynamics. The balance equilibrium
manifold played a critical role to build the interconnection of the
trajectory tracking and the balance roll motion profiles. When
the platform was stationary, the gyrobalancer mainly provided the
balancing torque. A switching strategy between the velocity and
steering control laws was proposed to interconnect to the trajectory
tracking controller. We presented extensive experiments to validate
and demonstrate the autonomous control performance and also
compared them with the human riding experiments. It was
confirmed that the human riding and autonomous control strategies
shared a similar steering and velocity actuation for tracking
trajectory and maintaining balance. As an ongoing future work
direction, incorporating the bikebot dynamics model and tire-road
interactions into the trajectory planning would help design motion
controllers for high-performance agile maneuvers.
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Appendix A: Proof of Lemma 1

_From Egs. (19) and (20), this lemma is equivalent to prove
|do| < |do|. For the case of |dy| < &4, we have u =0, thus
|do| = |do|. Therefore ||dy|| = ||dp||. For the case |do| > &a, we have

do —do = U — @' = g, (0p) 8w (Pp) (A1)

From the sign and amplitude definition of u,, we conclude the
following relationships: sign(dy) = sign (gdjl(<p,,)gw((p,,)uw> and
|gl;1 (95)8w(Pp)uw| < |do| — 4 < |do|. Thus, we take the absolute
value of Eq. (Al) without changing the form and obtain
|do| — |do| = |gdj' (95)8w(®p)tw| > 0. This completes the proof.
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Appendix B: Proof of Theorem 1

We prove the result through the Lyapunov stability theorem [35].
T
Using variable e, = [eT el eT] , we rewrite the error dynamics by

»°p
Eq. (17) as
e, =Ae,+d,

with A = Ay ® I,, where operator ® represents the Kronecker
product, I, is the n x n identity matrix, and

0 I
Aoz{_bo bz} b=[-b —b]

We consider the Lyapunov candidate function V = e_‘T.Pex, where
positive matrix P = PT € R®® satisfying ATP 4+ PA = —I,.
Following the stability of the perturbed systems [35] and Eq. (26),

we obtain
. 2 \%
V< (——Iq ’“2)V+2;sz0,/7 (B1)
42 A1 A1
where 11,7, > 0 are the minimum and maximum eigenvalues of P,

respectively. Defining W = v/V, we write Eq. (B1) as

2/L2 ko
Vi

W< —oW + (B2)

where v = % <4172 —ky 2)%) > 0, namely, & < 2% Considering
- 2

W(t) = /V(t) > V71||ex(t)|| and by comparison lemma [35],
from Eq. (B2), we obtain

2/L k() b

llex@)I| < Are™"[|e(0)]| + == =: ¢,(7) (B3)

where A, = /2. Similarly, for the error dynamics under controller
C, we obtain

2A ko b

llex(D)l| < Zve™"|[e(0)]] + == =: &,(r) (B4)

P
(B4), it is straightforward to obtain that bc;th erTors exponentially
converge to the regions near the origin with bounds 2 )k" and 2;‘;k°,
respectively. Given ||e,(0)|| = ||&,(0)|| and © > v, e™" < "' for
any ¢ and k“ <% and thus é”( 1) <e (t) for >0 given

ko < ko ky < kl. This completes the proof. | |

where D:%(i—lg 2)2) >0 and i <
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Appendix C: Proof of Lemma 2

We consider the Lyapunov candidate function as
1, , 1 5
Vi(x) = EAE 5K (& +LE)

Obviously, V;(x) > 0. Taking derivative of V; and using Eq. (31),
we obtain

Vi(&) = —mphyica(g + b)va(E) < 0

By LaSalle theory [35], the system states converge to the invariant
set S(§) asymptotically. In S(x), v¢(§) = 0 and then control input

Uy = % s¢, - Plugging the above u, into system dynamics in Eq. (29),
we obtain that the closed-loop dynamics for & are on orbit Oy, and O,.
This completes the proof.
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