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Abstract—Underwater remotely operated vehicles (ROVs) are
commonly operated with joystick-style controllers, but users with
upper limb disabilities may find using a joystick either difficult
or impossible due to partial or complete loss of function of their
hands. Eye gaze control is a method that allows individuals
to control a vehicle, device, or application without the use of
their hands. It is often intended for those with a disability,
but the method can also be used by those without a disability
for hands-free operation. Past work on vehicle gaze control has
focused primarily on land and aerial vehicles, and has yet to
be extended into the field of maritime robotics. This paper
discusses a method for gaze controlled underwater ROVs based
on ArduSub and MAVLink, with transferability to other vehicle
types using ArduPilot. The result of this method is a single
script that provides the ability to control a tethered ROV via
eye gaze in the directions of ‘up,” ‘down,’ ‘left yaw,” ‘right yaw,’
‘forward,” and ‘reverse,” in addition to controlling the vehicle’s
lights and arming/disarming the vehicle. In-water demonstrations
show successful operation of a gaze controlled ROV with no
perceptible time delay.

Index Terms—ROVs, maritime robotics, accessible control, eye
tracking, gaze control, ArduPilot

I. INTRODUCTION

Even modern autonomous vehicles typically require some
degree of human-in-the-loop or human-on-the-loop control.
Eye gaze controllers [1] have been quality of life enablers for
people with mobility challenges. Recent advances driven by
the gaming and e-sports industries have significantly reduced
costs of eye gaze controllers [2]. At present, this has resulted
in a rich range of applications for eye tracking and eye
gaze control, from serving individuals with speech and motor
impairments [3], [4] to telepresence [5] and teleoperated [6]
robots to unmanned aerial vehicle (UAV) control [7] and
immersion [8]. The aim of this work is to promote accessibility
in the use of unmanned maritime vehicles for environmental,
coastal, and biological research regardless of the scientist
user’s physical constraints.

In 2022, 12% of the US civilian noninstitutional population
reported having a disability [9]. For persons with a disability
who are aged 16-64, the employment to population ratio
was 34.8% and the unemployment rate was 8.2% [9]. In
comparison, for persons without a disability who were aged
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16-64, the employment to population ratio was 74.4% and the
unemployment rate was 3.5% [9]. The aim of this work is to
provide an alternate method of control, that would facilitate
use of remotely operated vehicles (ROVs) for individuals with
upper limb disabilities and participate in fields where they are
used. Furthermore, we recognize that decreasing barriers to
access with intuitive control methods improves usability by
all.

Eye gaze control is a method that allows individuals to
control a vehicle, device, or application without the use of
their hands. It is often intended for those with a disability, but
the method can also be used by those without a disability for
hands-free operation. Gaze control is implemented using an
eye tracker, offered as a webcam, screen-based, or wearable
device, and eye tracking algorithms. A study by Mgllenbach
et al. [10] describes the different eye movements and gaze in-
teractions involved in gaze control. Eye movements, fixations,
saccades, and smooth pursuits, combined with static, dynamic,
or absent graphic display objects (GDOs), lead to the various
gaze interactions that enable gaze control. Fixations are when
the eyes are still and fixed on a feature, whereas saccades are
the movements from one fixation to the next [10]. Smooth
pursuits are when the eyes are following a moving target [10].

Past work on vehicle gaze control has focused primarily
on land and aerial vehicles, such as mobile robots [5], [6],
[11], wheelchairs [12], and drones [7], [13] and has yet to be
extended substantively into the field of maritime robotics. For
webcam or screen-based eye trackers, a control screen is either
overlaid atop a first-person video feed, as in [6], [11], [13], or
in the case of [12], where the user is in the wheelchair, there is
no video feed and only the control screen is present. The four
aforementioned works couple fixations with static GDOs, and
served as guidance for the proposed method to be discussed
later.

This paper presents a method for gaze control of underwater
ROVs using a BlueROV2 [14], Tobii Pro Fusion eye tracker
[15], ArduSub [16], MAVLink [17], and Python’s multipro-
cessing module [18]. This approach is transferable to other
vehicle types that use ArduPilot [19]. A python script was
created which captures eye gaze data using the eye tracker,
allowing the user to control the lights, arm/disarm the ROV,
and send manual control commands to the vehicle.
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II. IMPLEMENTED SYSTEM

The implemented system leverages a BlueROV2 and ex-
isting software, ArduSub and QGroundControl (QGC) [20],
while incorporating an eye tracker and the gaze control script,
the main contribution of this work, to the user side. ArduSub is
the vehicle’s autopilot software and QGC is the ground station
where the user can manage the vehicle, plan missions, monitor
the video feed, etc. A diagram of the system overview can
be seen in Fig. 1. On the user side, the eye tracker collects
and sends gaze data to the python script, wherein the correct
control message is identified and sent to QGC. QGC then
sends that control information to the Raspberry Pi on the ROV,
which eventually becomes a voltage signal sent to the thrusters
and propels the vehicle in the intended direction. A more
detailed diagram of the BlueROV2’s software components and
their interactions can be found at [21]. Further discussion on
the eye tracker, gaze control script, and gaze data will be in
Sections II-A, II-B, and II-C, respectively.

A. Eye Tracker

The system hardware is comprised of a BlueROV2, Tobii
Pro Fusion eye tracker, and 14” laptop running Windows
OS. A BlueROV2 from Blue Robotics (R1 version with a
Pixhawk and Companion Software [22]) was used as the
vehicle platform due to its modularity and open-source soft-
ware. Among the options for an eye tracker, the Tobii Pro
Fusion was selected for its range of sampling frequencies,
high precision and accuracy, and price point. A summary
of key specifications for the Tobii Pro Fusion and other
systems considered is provided in Table I. The main software
components include QGC, ArduSub, pymavlink [23], Python
3.8, Python’s multiprocessing module, and Tobii Pro Software
Development Kit (SDK) [24].

B. Gaze Control Script

To make the ROV capable of gaze control, three soft-
ware solutions were evaluated; altering ArduSub, adding to

ArduSub, or creating a stand-alone script. To mitigate risks
associated with editing or adding to ArduSub, and its intricate
set of supporting libraries and files, it was decided that a
stand-alone script rather than modifying ArduSub would be
optimal. Furthermore, creation of a standalone script enables
dissemination of this work by relaying a single file rather than
describing embedded edits.

Because MAVLink is already used for communication be-
tween QGC and the ROV, the script was written in Python
so that the python implementation of MAVLink, pymavlink,
could be used to communicate to the vehicle. To establish
communication, a new mavproxy server at port 14660 was
added to the ROV’s mavproxy settings and another endpoint
was created in the script. The new server was required to be
at an unused port otherwise there would be conflicts between
QGC and the script. Additionally, pymavlink has a library of
functions that were utilized, such as one that sends manual
control messages that mimic input from the joystick [33].
These messages are sent to QGC based on where the user
is looking on the screen, ultimately “tricking” QGC to believe
that these inputs are coming from a joystick. There is a failsafe
in QGC where if a manual control message is not received at
least every five seconds, then manual control is lost and the
vehicle is disarmed. Due to this, every space of the screen
was used for sending commands, otherwise looking in a non-
command section of the screen could trigger the failsafe. The
control screen, represented in Fig. 2, includes commands for
yaw, forward/reverse, up/down, and lights brighter/dimmer.
Additional commands could be incorporated, such as ones for
camera tilt or gripper arm control (if installed), but it can
become increasingly difficult for users to remember where
each command is located on the screen. For this reason,
only the commands that are essential for ROV operation were
included. The script was written and tested in three stages,
discussed in Section III-A.

User
II-A: Eye
Tracker
II-C: Gaze Data
Computer
I1-B: Gaze
G dControl
Control Script Manual QGroundContro
Command

Pilot
t Control |

Underwater ROV
ESCs Thrusters
T PWA
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PWN
lelemet lT Pilot Contrc
Raspberry Pi USB Camera

Fig. 1. Overview of the gaze control system with corresponding sub-sections identified.
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TABLE I
COMPARISON OF SCREEN-BASED EYE TRACKERS.

Eye Tracker Brand Sampling Frequency (Hz) | Precision (°) | Accuracy (°) (O}

GP3 [25], [26] Gazepoint 60 or 150 -2 0.5-1 ‘Windows

Fusion [15] Tobii Pro 30, 60, 120, or 250 0.2 0.3 Windows, Mac, or Linux
X0 [27] Smart Eye 30 or 60 - - Windows

Aurora [28], [29] | Smart Eye 30, 60, 120, or 250 0.1 0.3 ‘Windows

Pro [30] Smart Eye 60 or 120 - 0.5 ‘Windows

Encore [31] Eyegaze 50 - <0.4 ‘Windows
Advantage [32] Eyegaze 50 - <0.4 ‘Windows

2 “.” means the data was unavailable.

Lights Dimmer

Lights Brighter

Left Yaw Forward Right Yaw

Fig. 2. QGC window overlaid with the eight commands.

C. Gaze Data

To get data on the location of the user’s gaze, the Tobii
Pro SDK (version 1.10.1) was used. The SDK has libraries
of pre-existing functions that enabled connecting to the eye
tracker, starting data collection, and stopping data collection.
A significant constraint with the eye tracker and SDK was that
while collecting gaze data, the script could not progress. To
resolve this issue for real-time use, multiprocessing was used
so that gaze data could be collected and used as control inputs
essentially simultaneously.

Three separate processes were created; the first for logging,
the second for collecting gaze data, and the third for vehicle
control, referred to herein as the logging process, gaze process,
and vehicle process, respectively. The logging process is
created to help the user with testing and debugging processes,
and is initiated first amongst the three processes. In the gaze
process, launched second, the eye tracker is connected, begins
collecting data, and relays the collected data through a queue
to the vehicle process. The vehicle process does not begin until
the gaze process has collected the first data array. This delay
is necessary so as to ensure there is data available in the queue
for the vehicle process.

The eye tracker can collect a wide range of data types, such
as gaze origin, gaze point, pupil diameter, pupil validity, and
time stamps. The data collected for use in this system was
the gaze point on the screen and the pupil validity for the left
and right eyes. The gaze point is a set of x and y coordinates

from zero to one, where the upper left corner of the screen is
(0,0) and the lower right corner is (1,1) [34]. The pupil validity
checks whether the pupil data is valid (e.g. if each eye is open),
and is either a zero for invalid (eye closed) or one for valid
(eye open and pupil discernible) [35]. In this implementation,
pupil validity is used to arm/disarm the vehicle such that a left
eye closure or right eye closure can be used to arm or disarm
the vehicle.

Once the gaze data is retrieved from the queue in the vehicle
process, the gaze point for the left and right eyes are averaged
together. The pupil validity is then used to check for a left
eye closure or a right eye closure for arming or disarming,
respectively. Since the eye tracker is collecting data at 60 Hz
frequency, an eye closure is one that lasts for one second or
more. The duration of a blink ranges from 200-400 ms and
thus would not accidentally trigger an arm/disarm command.
Once the vehicle is armed, the average gaze points are used to
determine which command section the eyes are in (see Fig. 2),
and the corresponding control message is sent to the vehicle.
A step-by-step overview of the Gaze and Vehicle Processes is
below.

Gaze Process

1. Find eye tracker
2. Connect to eye tracker
3. Start data collection at 60 Hz frequency
Left gaze point on screen = (x;, y;)
Right gaze point on screen = (z;, y;)
Left/Right pupil validity = 0 or 1
4. Eye tracker collecting data = True
5. Data placed in an array
data = [left gaze point, right gaze point, left pupil validity,
right pupil validity]
Array put into the queue
Repeat steps 3, 5, & 6 until the ‘space’ key is pressed
8. Stop data collection

N

Vehicle Process

1. Create the connection to the vehicle
2. Retrieve a heartbeat message from the vehicle
3. Check the message for correct flight mode
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a) Switch to manual mode if not currently in it

4. Bring QGC window to the front
5. Grab the data from the queue
6. Average the gaze points for the left and right eyes
Tavg = (i + 25)/2
Yavg = (Yi +Y;)/2
7. Send a heartbeat to the vehicle at 1 Hz frequency
. Check for lights brighter or dimmer command
9. If disarmed
a) Check for arming command: left eye closure for > 1
sec
10. If armed
a) Check for disarming command: right eye closure for
> 1 sec
b) Check for left yaw, right yaw, forward, reverse, up, and
down commands

oo

11. Repeat steps 5-10 until the ‘space’ key is pressed
12. Disarm vehicle if currently armed

After the processes, including the logging process, are
stopped, they are joined and the script terminates. Joining
each process ensures that it is safely shut down before the
script is terminated. The main block of code waits for each
process to complete all code, log all messages, and remove all
data from the queue, and then resumes to terminate the script.
Although not completely hands free due to the space key
press for stopping the script, the keyboard press was chosen
instead of eye input, such as a double eye closure or double
blink, in order to prevent accidental interruption of the script.
The interaction between the main block of code and the three
processes is presented in Fig. 3.

III. TESTING

Testing was conducted in three stages; bench testing, lab-
oratory testing, and open water testing. Bench testing was
primarily focused on code verification, whereas laboratory and
open water testing assessed in-water performance. Laboratory
testing permitted testing the system in an enclosed water tank,
while open water testing was performed to test the system in
a real-world setting.

A. Bench Testing

The gaze control script was written and tested in three
stages: (1) connection to and manipulation of data from the
eye tracker, (2) connection and relay of commands to the
vehicle, and (3) facilitating arming/disarming of the vehicle.
Testing of the eye tracker connection confirmed that data
could be obtained from the eye tracker and manipulated.
Testing the connection to the ROV ensured that a heartbeat
data stream could be regularly sent to the vehicle and that
messages could be received by the top-side computer. Testing
the arming/disarming of the vehicle provided a dry land verifi-
cation that the two prior steps were successfully integrated, as
arming/disarming is controlled by a left or right eye closure,
which requires a connection to the vehicle and data from the
eye tracker. As noted previously, while a spacebar is used as a
tactile input to terminate the script, being able to arm/disarm
the vehicle with the eyes optimized usage of the eye tracker
and reduced delays that would be inherent in using two control
input sources. Furthermore, arming/disarming by eye gaze is
a way for the user to confirm that command messages are
successfully received by the vehicle.

Main Code Block

Start Gaze Process

Collecting data = True

Gaze Process

Initiation: Steps 1-2

/\D:la

L— Step4 collection:

Executed first

Start Vehicle Process

—> Join Processes

Terminate script

Vehicle Process

Initiation: Steps 1-4 =

l

Vehicle control: Loop

Loop through
steps 3,5, & 6

Stop data collection:
Steps 7-8

Logging | Messages

Logging Process

through steps 5-10

JSpﬂcc key

Stop vehicle control:
Steps 11-12

Gaze Data

Logging Messages
Log File

Fig. 3. Overview of the interaction between the main code block and the three processes.

Authorized licensed use limited to: George Mason University. Downloaded on December 08,2023 at 16:46:28 UTC from IEEE Xplore. Restrictions apply.



B. Laboratory Testing

After bench testing, laboratory testing was conducted in the
3.8 m diameter water tank at the maritime robotics laboratory
located at George Mason University’s (GMU) College of
Engineering and Computing ‘Innovation Drive’ facility. Tests
were conducted over a three-week period. During this testing
phase, fine-tuning of the script focused upon identifying the
optimal motor speed, i.e. one that is not so fast that the
vehicle overshoots the intended position or so slow that it
becomes difficult to keep the gaze on the intended position.
This was determined iteratively based on visual feedback using
the code developer as the test subject and their determination
of what felt most intuitive and natural as testing progressed.
As discussed in Section 4.0, this is an area ripe for future
research with human subjects testing. The time from when
the eyes look in a command section versus when the vehicle
moves was not calculated, but there is no perceptible time
delay. Video showing gaze control of the ROV can be found
in [36] with a screenshot from the video in Fig. 4.

C. Open Water Testing

Following successful laboratory testing, the system was
tested in open waters in order to obtain practical results.
The system was loaded onto a Parker 2530 boat and tested
in Mallows Bay, approximately 45 minutes from GMU’s
Potomac Science Center. Mallows Bay, a ship graveyard for
WWI era wooden ships, is located on the Maryland side of
the Potomac River [37]. The original goal of this test was
to navigate to a sunken wreck, obtain video footage of the
outside of it, and navigate back to the boat. After arriving and
anchoring the boat, the BlueROV2 was launched and testing
began. Unfortunately, water conditions were not favorable, as
seen in Fig. 5, with strong currents and water clarity limited
to approximately six inches of visibility.

Therefore, the test plan pivoted to imaging the host boat, in
essence emulating an underwater inspection activity, as shown
in Fig. 6 where one can clearly assess the state of the boat’s
submerged trim tabs. The gaze control worked as intended
lending evidence that this system would provide a viable
option for underwater inspection and in other scenarios like
environmental, coastal, and biological research. As discussed
further in Section IV, there are opportunities to refine the
visual display to improve usability.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, in order to improve accessibility in maritime
robotics, the design and testing of a gaze control system
was discussed. The implemented system uses a BlueROV2,
Tobii Pro eye tracker, and a laptop running Windows 10. A
script was created that utilizes pymavlink, Tobii Pro SDK,
and multiprocessing in order to retrieve eye gaze data and
send commands to the ROV according to the location of the
user’s gaze on the screen. To overcome the script pausing
while collecting data, separate processes were created for data
collection and vehicle control.

Fig. 4. Testing of gaze control using a BlueROV2.

Fig. 5. Testing of gaze control using a BlueROV2 in Mallows Bay.

Fig. 6. Underwater image of Parker 2530 trim tab.

Preliminary testing reported on here includes bench, con-
fined laboratory in-water testing, and open water testing. Of
note, in open water testing it was observed that should the
ROV driver wish to refer to the artificial horizon included in
the QGC software (visible in Fig. 2), they would inadvertently
relay a control command. This may result in guidance that the
system be utilized solely in clear water, where the user is not
reliant on an artificial horizon.
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Selecting the BlueROV2 as the vehicle platform was par-
tially due to its open-source software, ArduSub, which is
part of the ArduPilot project. This allows the system to be
transferrable to other vehicles with ArduPilot based software,
such as surface boats running ArduRover or aerial vehicles
running ArduCopter or ArduPlane. Additionally, communica-
tion using pymavlink lets additional endpoints to be created,
such as endpoints to additional vehicles, which would allow
for multi-vehicle control. Lastly, the use of a script allows for
less experienced developers to alter the script themselves, such
as when support for a different eye tracker needs to be added,
instead of trying to alter ArduSub.

Future work for the implemented system includes conduct-
ing a user study comparing joystick control to gaze control.
Ease of operation, comfortability, optimal command speed,
and number of errors would be assessed and compared to
joystick control to determine accuracy and device preference.
Feedback from participants will be used to identify shortcom-
ings of the system and areas for improvement. In addition,
gaze control will be tested on a surface boat to prove the
transferability of the system. This will lead into work on
multi-vehicle control where a fleet of autonomous maritime
vehicles supported by machine learning will be following a
gaze-controlled vehicle, such as the BlueROV2.
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