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We study the entanglement dynamics
of quantum automaton (QA) circuits in
the presence of U(1) symmetry. We find
that the second Rényi entropy grows dif-
fusively with a logarithmic correction as
Vtilnt, saturating the bound established
by Ref.[1]. Thanks to the special feature
of QA circuits, we understand the entan-
glement dynamics in terms of a classical
bit string model. Specifically, we argue
that the diffusive dynamics stems from
the rare slow modes containing extensively
long domains of spin Os or 1s. Additionally,
we investigate the entanglement dynamics
of monitored QA circuits by introducing
a composite measurement that preserves
both the U(1) symmetry and properties of
QA circuits. We find that as the measure-
ment rate increases, there is a transition
from a volume-law phase where the second
Rényi entropy persists the diffusive growth
(up to a logarithmic correction) to a criti-
cal phase where it grows logarithmically in
time. This interesting phenomenon distin-
guishes QA circuits from non-automaton
circuits such as U(1)-symmetric Haar ran-
dom circuits, where a volume-law to an
area-law phase transition exists, and any
non-zero rate of projective measurements
in the volume-law phase leads to a ballistic
growth of the Rényi entropy.

1 Introduction

Entanglement is an important measure of corre-
lations between different degrees of freedom in
many-body quantum systems. In a typical sys-
tem with local interactions, quantum information
propagates ballistically, resulting in linear growth
of entanglement over time [2]. This physics can
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be understood through random circuit models,
which offer a minimal model for investigating en-
tanglement dynamics and information scrambling
[3, 4, 5, 6, 7].

However, the above-described picture changes
slightly when an additional continuous symme-
try is present in the dynamics. If U(1) symme-
try is imposed, it can lead to diffusive transport
of the conserved charges. It has been demon-
strated that although the von-Neumann entan-
glement entropy continues to grow linearly, the
growth of higher Rényi entropies is limited by
the diffusive transport and therefore exhibits sub-
ballistic growth [1, 8, 9, 10]. Mathematically it is
rigorously proven that the growth of S(>1) is at
most diffusive, with a logarithmic correction [1],
ie.,

§n>1) < Llowt Int). (1)

n—

Motivated by these findings, this paper inves-
tigates the entanglement dynamics in the U(1)-
symmetric quantum automaton (QA) circuits
with a focus on the second Rényi entropy S"=2).
In QA circuits, the quantum state is always an
equal-weight superposition of all the allowed ba-
sis states with the phases carrying the quantum
information. Due to this special property, S(™=2)
can be mapped to a quantity of a classical bit
string model [11, 12, 13]. Such a mapping en-
ables us to study the entanglement dynamics an-
alytically and also provides an efficient method
We show that the
growth of S("=2) is governed by the presence of
the rare bit strings that contain extensively long
domains comprising consecutive spin Os or 1s,
consistent with the physical picture introduced in
Ref. [1, 8]. Additionally, we present numerical ev-
idence demonstrating that the dynamics of S("=2)
actually saturates the upper bound defined in
Eq. (1). This saturation is caused by the diffusive
transport (up to a logarithmic correction) of the
boundary of these long domains. Furthermore,

for numerical simulation.
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for charge-fixed states, we study the coefficient in
front of the diffusive scaling of S("=2)(t) and find
that it is linearly dependent on the charge filling
factor v when v is small.

In addition, we are interested in the impact
of U(1) symmetry on the entanglement dynam-
ics of monitored QA circuits. Notably, recent re-
search has revealed that monitored quantum dy-
namics give rise to a measurement-induced en-
tanglement phase transition (MIPT) [14, 15, 16].
This occurs as a result of the interplay between
random unitary evolution and local non-unitary
measurements, driving the system from a highly-
entangled volume-law phase to a disentangled
area-law phase [14, 15, 16, 17, 18, 19, 20|, or
even to other quantum phases, such as the criti-
cal phase, depending on the symmetry and type
of measurements imposed |21, 22, 23, 24, 25, 11].
When U(1)-symmetry is introduced in monitored
Haar random circuits, it is found that any non-
zero rate of single-qubit projective measurements
will eliminate the rare slow modes containing ex-
tensively long domains, and the Rényi entropy
grows linearly in time for 0 < p < p,. and exhibits
z = 1 dynamical scaling at the critical point p.
[26].

With these insights in mind, our paper also in-
vestigates the entanglement dynamics of U(1)-
symmetric QA circuits under specific measure-
ments that preserve U(1) symmetry and keep the
wave function as an equal weight superposition
of basis states. Interestingly, different from Haar
random circuits, the measurements leave these
extensively long domains untouched and the sec-
ond Rényi entropy still exhibits diffusive growth
in the volume-law phase. As the measurement
rate p increases, we observe a phase transition to
a critical phase where the entanglement entropy
grows logarithmically in time. The critical phase
that we observe is a result of both the unique
properties of QA circuits and the presence of U(1)
symmetry. It is worth noting that similar behav-
ior has also been observed in the monitored Zo
symmetric QA circuits [11].

2 U(1)-symmetric hybrid QA circuits
and two-species particle model
In this paper, we consider 1+1d U(1)-symmetric

hybrid QA circuits. The dynamics consists of
local QA unitary operators and composite mea-

surements, which are chosen to preserve the total
charge

L
Q=) o, whereo; = (1-2;)/2  (2)

and Z; is the Pauli Z matrix acting on the ith site
of a chain with L qubits. A QA unitary operator
permutes states in the computational basis up to
a phase, i.e.,

Uln) = ¢ |n(n)), 3)

where m € Sy is an element of the permutation
group on a computational basis with cardinality
N. Here we take the initial state

o) = 3 j% (4)

to be an equal-weight superposition of two differ-
ent sets of basis states: (i) {|n) = |o102...01) :
0; = {0,1}} is all the allowed Pauli Z basis with
cardinality N = 2% so that

1
V2

(ii) {|n) = |o102...01) 1 0; = {0,1}, 3,00 = Q}
is the subset of the Pauli Z basis with a fixed
extensive charge filling v = Q/L, so that N =
(6) = LV/I(L - Q)Q!.

Fig.1 depicts a brickwork-patterned U(1) sym-
metric hybrid QA circuit. Each time step con-
sists of three layers of QA unitary operators inter-
spersed with composite measurements with prob-
ability p. For the unitary part, we consider Fred-
kin gates and SWAP gates, along with CZ gates
which assign a 7 phase to the spin configuration
|11). The Fredkin gates are three-qubit gates
that interchange qubits i — 1 and 7 + 1 according
to the value of the middle (control) qubit, i.e.,
loiliv10i42) = |oirolip104) and [0;0;110412) —
|0i0i+10i+2). Meanwhile, the SWAP gates inter-
change two neighboring qubits. Together with
CZ gates, they scramble the quantum informa-
tion and increase the entanglement entropy of the
state until it saturates to the volume-law scal-
ing. As illustrated in Fig.1, in the first/ second/
third layer of each time step, the Fredkin gates
are applied on sites {35 — 2,35 — 1,35}/{3j —
1,34,3j +1}/{34,3j + 1,35 + 2} for j € [1,L/3],
while the SWAP and CZ gates are applied on
sites {25 — 1,25}/{27,2j + 1}/{2j — 1,25} for

o) = | +a)®F = [—=(l0) + [1)]*. (5)
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Figure 1: The setup of the U(1)-symmetric hybrid QA
circuit of one time step. The dashed box encloses the
gates within a single layer. Each time step involves three
layers of Fredkin gates, SWAP gates, and CZ gates, in-
terspersed with composite measurements. The Fredkin
and SWAP gates are applied in each layer with prob-
ability p, < 1, and the measurement appears in each
measured sublayer with probability p. The Fredkin and
SWAP gates determine the dynamics of bit string |n)
and can be replaced by other QA gates preserving U(1)
symmetry.

j € [1,L/2]. Specifically, we set the occurring
probability of the Fredkin and SWAP gates to be
P, and we take p, < 1 throughout the paper.

Constructing the measurement gates can be
quite tricky. To ensure that [¢;) remains an
equal-weight superposition of basis states, we in-
troduce a charge-preserving two-qubit composite
measurement My, = Ro Pjy. Here Pi and P
are the Kraus operators,

1
7 00 0
0 1.0 0
Pr=1y9 00 o]
1
R
5 00 0
0 00 0
P=1ly 01 o]l
1
000 %

followed by a two-site rotation operator,

1 0 0 0
o L L o
R= 0 f _\/i ol (7)
V2 V2
0 O 0 1

which maps [01) ~— (|01) +[10))/v/2 and |10) —
(]01) — |10))/v/2 %, and acts trivially on |00) and

Tn numerical simulations, we omit the extra m phase

|11), so as to rotate the wave function back to
equal weight (up to a phase) superposition of
the computational basis. In general, the mea-
surement disentangles the system by discarding
the phase information of a quarter of the basis
states. However, considering it is a two-qubit
operator as required by the U(1) symmetry, as
we will see later, the measurements together with
phase gates can actually induce entanglement in
certain circumstances. As shown in Fig.1, each
measured layer contains two rows of composite
measurements, with each row containing Mj /o
randomly distributed with probability p on sites
{2j —1,25}/{25,25 + 1} fori € [1,L/2].
Throughout the paper, we focus on the entan-
glement dynamics between subsystems A and B
that the system is bi-partitioned into. Specifi-
cally, we consider the second Rényi entropy of A,

SO (1) = —In e[ (1)),

(8)
pa(t) = Trp|ir) (4]

where [1p¢) = Uyltho) is the wave function of the
quantum trajectory with U, representing the cir-
cuit evolution up to time ¢. We first consider the
initial condition (i), where |1o) = |+z)®%. In our
earlier work, we discovered an efficient algorithm
to compute 51(42) (t) from this initial state [13].
Additionally, we presented a classical stochastic
model to elucidate the entanglement dynamics
[11]. In the following, we will provide a brief
overview of them and apply these methods to our
QA circuit with U(1) symmetry.

The purity can be expressed as the expectation
of the SWAP 4 operator over double copies of the
system [27],

Tr[p% (1)] = (2@ (1|1 SWAP 4|01 @ [1e)2. (9)

The SWAP 4 operator swaps the configurations
of the copies within region A. Since QA circuits
preserve the computational basis that spans |¢),
we can insert into Eq.(9) two sets of complete
basis which are acted upon by the circuit in a

in front of |10) obtained from the rotation of My. This is
because it is equivalent to applying Ms without the extra m
phase followed by a controlled phase gate. As shown later,
such a phase gate will not affect the entanglement phase
transition from the volume-law phase to the critical phase.
The location of the phase transition is only determined by
the corresponding bit string dynamics.
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Figure 2: The cartoon of the two-species particle model.
We use o to denote h(z) = 0 and e to denote h(z) =1,
where the black dots represent X particles and the red
dots represent Y particles, and X (Y) represents the
rightmost X (leftmost Y') particle. At ¢ =0, the X and
Y particles are distributed in region A and B respec-
tively. As time evolves, both species begin to expand
and intrude into each other’s territory.

time-reversed order,

Tr[ph ()] = Y (Wrl2 (v 1ISWAP 4|n1)|no)

ni,n2

(nal(nilve)1|ve)2
_ 4% Z e—ien,l (t)e—i@nIQ(t)ei®n1(t)ei@n2(t)?
ni,n2
(10)
where ‘ ~
"Oni () = /2L (n; | Uy o), (11)
and
) [nh) = SWAP 4]y ) ng)
= SWAP 4|1 1) |aeBe)  (12)

= |azf1)]a1f2),

where |o;) and |3;) are the spin configurations in
subsystems A and B of |n;). Therefore, in the nu-
merical simulation, instead of evolving the wave
function |v;), we can apply the circuit on the bit
strings in a time-reversed order. When evaluating
Eq. (11) from left to right, although the compos-
ite measurement M is non-unitary, we can still
derive the effective action on the bit string (n|.
For bit strings that have anti-parallel spins on the
sites where M is applied, they are all forced to be
either (...01...|or (...10...]| after the measure-
ment.

With a few modifications, the above equations
used to compute the purity can also be applied to
the initial condition (ii). When [t¢g) is a charge-
fixed state of filling factor v, only the bit string
pairs that share the same filling factor both before
and after the SWAP, i.e., {|n1),|n2),|n}), |nb)}
with the same v, will have nonzero overlap with
|1p) and hence contribute to the purity.

Eq. (10) not only offers a numerical method but
also helps us to understand the entanglement dy-
namics through the classical bit string dynamics.

It is worth noting that this equation sums up the
accumulated phase ©, = _@"'1 —®n/2 +0,,+6n,
for each bit string pair {|n1),|n2)}. Under ran-
dom time evolution, ©, can become a nonzero
random number, and we expect the sum over
these phases to be zero. Therefore only the con-
figurations with ©, = 0 contribute to the pu-
rity. This observation leads to a stochastic parti-
cle model in which there are two particle species
X and Y representing the bit string difference

h(z,t) = |n1(x,t) — na(z,t)] (13)

initially distributed in subregion A and B re-
spectively [11, 12|, as illustrated in Fig. 2. As
time evolves, the two species originally located
in subregions A and B gradually expand. It is
shown that only the configurations in which X
and Y particles have never met up to time ¢ sat-
isfy ©,(t) = 0 and hence contribute to the purity,
ie.,

No(t)
4L

Sf) (t) = —InTrp%(t) ~ —In = —In P(t),

(14)
where Ny(t) is the number of bit string pairs in
which the two species never encounter each other
up to time ¢. Such an approximation has been
numerically verified in Ref.[12] (For more details,
see Appendix.A).

From the above analysis, the growth of the sec-
ond Rényi entropy is determined by the dynam-
ics of the endpoint X and Y particles of each bit
string pair, i.e., the rightmost X particle and the
leftmost Y particle. Let us first consider the sys-
tem without any symmetry. Under unitary dy-
namics, the X and Y particles move ballistically
toward each other at roughly the same speed, i.e.,
the distance that an endpoint particle travels over
time ¢ scales as Al(t) o t. Therefore, only the
configurations whose initial rightmost X and left-
most Y particles are situated a distance of at least
2Al(t) apart can contribute to the purity. This
leads to P(t) = [22410) x 4L=2A8l0)] /4L = O(e 1),
which explains the linear growth of entanglement
entropy in the absence of U(1) symmetry.

3 Unitary dynamics

We first study the U(1)-symmetric QA circuit
without measurements, i.e., p = 0, and take the
unitary rate p, = 0.5. The classical bit string
model allows for numerical simulations of the
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Figure 3: 51(42)(15) and —In P(¢) in the QA circuit with
p = 0. We consider two different initial conditions: the
charge-mixed state and the charge-fixed state with the
filling factor v = 1/3. We take the unitary rate p, =
0.5 in each layer with the system size L = 120 and
subsystem size Ly = L/2 = 60. Both the early-time

Sf) (t) and —1In P(t) for the two initial conditions have

Vtint scaling.

second Rényi entropy for relatively large system
sizes. To be more specific, we prepare a large sam-
ple of randomly generated bit strings which can
have either unfixed or fixed charge filling, and es-

(2)

timate SA2 using Eq.(10). In both cases, we find

that the ensemble-averaged early-time Sf)(t) ex-
hibits a sub-ballistic power-law growth with the
exponent close to 1/2. We also evaluate P(t) by
calculating the fraction of the bit string config-
urations whose corresponding X and Y particles
never meet up to time ¢. The numerics indicates
that —In P(t) exhibits the same scaling as the
one obtained using Eq.(10). Hence we conclude
that —1In P(t) provides a reliable approximation
for evaluating Sf) in U(1)-symmetric QA circuit.
By studying the dynamics of the classical parti-
cle model, we can obtain valuable insights into

the underlying physics.

More careful examination of —In P(t) and

Sf) (t) reveals that the power law growth expo-
nent is slightly larger than 1/2, which has also
been observed in the previous study [28]. Since
the growth is constrained by Eq.(1), the power
law exponent cannot exceed 1/2. We propose
that the deviation of the exponent from 1/2 ob-
served in the numerics is due to the logarithmic
correction. As shown in Fig.3, both quantities
are linearly proportional to v/t Int. Therefore, in

Domain length = O(1)

my - PHLEUEEELEL -0t -
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Figure 4: The illustration of the initial bit string config-
uration of (a) fast modes and (b) slow modes with the
same particle representation. For convenience, we con-
sider the bit strings {|n1), |n})} whose difference repre-
sents the particle configuration where there are only X
particles located in the region A initially.

our QA circuit,

SP(t) = AgpViint. (15)

To explain the above results, we study the dy-
namics of the two-species particle model. Since
the dynamics of the X and Y particles are anal-
ogous, we will focus on the displacement Al(t) of
the X particle. Different from the case without
U(1) symmetry where the particles move ballisti-
cally, in the presence of U(1) symmetry, there are
two distinct modes of X particles depending on
the corresponding bit string configuration to the
right of X particle. As illustrated in Fig. 4(a),
in typical random bit strings whose domains are
of O(1) length, the X particle moves ballistically
with a constant velocity. In contrast, in Fig. 4(b),
for the bit string configurations with domains of
O(L) length, the X particle only moves diffu-
sively (up to some logarithmic correction). Such
configurations are rare and only comprise O(e~%)
of the bit string ensemble. To verify the existence
of the slow modes, in numerical simulations, we
consider the extreme case where the initial bit
string configurations in subsystem B are a single
domain of spin 0’s which is called “dead region”,
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Figure 5: The distance that an endpoint particle travels
Al(t) over time t under U(1)-symmetric QA unitaries
for the initial configurations (a) without the dead region
and (b) with the dead region. Without loss of generality,
we take the probability of Fredkin and SWAP gates to
be p, = 0.5 in each layer, the system size L = 600,
and the number of spin 1's to be L/3 in (a) and L4/3
in (b), both of which have v = 1/3. We find that (a)
Al o< t and (b) Al o< VtInt before saturation.

B — 0)) = Ja1) @ 0)%12,

=0)) = |as) ® |0)*I7.

We also study Al(t) without the dead region for
comparison.

As shown in Fig. 5, for the configurations
without the dead region, Al grows linearly in
This is responsible for the ballistic in-
formation spreading observed in the out-of-time-
ordered correlator (OTOC) in a similar U(1) sym-
metric QA circuit [21]. On the other hand, for
configurations with the dead region, Al exhibits
diffusive growth over time, with a logarithmic cor-
rection, that is,

(16)

time.

Al = \Vtint. (17)

The diffusive motion of the X particle comes from
the diffusive dynamics of the rightmost charge
(spin 1) located at the boundary of the dead re-
gion. In the simple symmetric exclusion process,
one of the most basic models with U(1) symme-
try, it is analytically proven that the displacement
of the rightmost charge expands as vtInt [29].
Despite the greater complexity of our model in-
volving the Fredkin gate, we believe that the un-
derlying physics remains fundamentally the same.
In Appendix.B, we examine a simple QA circuit
with the kinetic constraint set by SWAP gates
only, enabling an exact mapping of the bit string

1.25

1.00

0.75

0.50

0.25

0.00

Figure 6: The coefficient Agg of Sff) = AggpVtint
vs the filling factor v. In the inset, we present \; of the
endpoint displacement Al = \;v/tInt of the slow modes
with dead region vs the filling factor v4 in subsystem A.

dynamics to the simple symmetric exclusion pro-
cesses. In addition, we also investigate another
QA circuit involving a four-qubit gate. For both
models, we provide numerical evidence confirm-
ing the existence of logarithmic corrections in
both Eq.(17) and Eq.(15).

Based on this analysis, the bit string pairs that
contribute to the purity (See Eq.(14)) can be di-
vided into two parts, P(t) = P (t)+P%(t), where
PF(t) and P5(t) are the fractions of fast modes
and slow modes respectively whose X and Y par-
ticles have not encountered each other up to time
t. Since the distance between the endpoint X
and Y particles decreases by 2Al(t) over time ¢,
only the configurations whose initial two species
are located a distance 2Al(t) apart contribute to
P(t). Therefore, both PF(t) and P°(t) decay

as exp(—Al(t)), whereas P (t) o« exp(—t) and
PS(t) o exp(—\/tlnt). In the absence of U(1)

symmetry, the bit string ensemble comprises only
fast modes, which account for the linear growth

of Sf) (t) as explained earlier. In the presence
of U(1) symmetry, slow modes consisting of the
bit string pairs with identical long domains with
length O(L) between X and Y emerge. There-
fore it takes O(L?) time for X particle to reach
Y particle. For ,5'1(42) (t) ~ —In[PF(t) + PS(1)],
PT(t) vanishes at time O(L), leaving a diffusive
growth of 51(42) (t) caused by the slow modes up to
time O(L?).

Similar reasoning can also be applied to the
charge-fixed state. In particular, we can also an-
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alyze the dependence of the coefficient Aggp in
Eq.(15) on the filling factor v. As shown in Fig. 6,
Agg « v for v 5 0.3. To understand this behav-

C[(r-2a1\ /{L\]®  [(L-2ADL - vI))?
PS_K vL )/(M)] _[(L—ZAZ—VL)!L! ‘

Q

—InP°

— _4Alln (1— vl ) —wLln (1—

L —2Al
~ 8vAl+ O(InAl) + O(InvL).

As time evolves, the entanglement entropy is
dominated by the slow modes and has the scaling
51(42) (t) =~ —In P5(t) o< vAl. We further investi-
gate the dependence of Al on v. We examine the
displacement of X particle of the bit string con-
figurations with the dead region as illustrated in
Fig. 4(b). Specifically, we define v4 to be the fill-
ing factor in subsystem A. As shown in Fig. 6,
Al remains largely unaffected by changes in v4.

Combining these findings, we can explain the
numerical observation of the linear dependence of
Arpg on v when v is small. In addition, we also
observe similar linear dependence on 1 — v for
v Z 0.7 (not presented in the figure), which can
be understood in a similar way.

4 Hybrid dynamics

Now we introduce the composite measurements
into the circuit and examine its impact on the
entanglement dynamics. As shown in Fig.7, our
finding indicates that when p is small, the entan-
glement still grows diffusively with a logarithmic
correction, as described in Eq.(15). This can be
explained by the fact that our composite mea-
surement only acts non-trivially on anti-parallel
neighboring sites, while leaving the bit strings
with extensively long domains unaffected. We ex-
pect that this scaling behavior persists through-
out the entire volume-law phase. This is differ-
ent from the single-qubit projective measurement
which quickly destroys the slow modes with dead

regions and leads to the linear growth of 51(42)

L—vL

ior, we investigate the dependence of P° on v,
given by

(18)

If v < 1—2Al/L, we can approximate as follows:

—2[(L —2Al)In(L —2Al)+ (L—vL)In(L —vL) — (L —2Al —vL)In (L —2Al —vL) — LIn L]

241 ) + O(InAl) + O(InvL)

(19)

in the volume-law phase of the non-unitary U(1)
symmetric Haar random circuit|26].

As p increases, we observe a decrease in the co-
efficient A for 5’5‘2) (t). Eventually, this diffusive
growth is replaced by logarithmic growth. To ex-
pand the tuning range for the ratio p/p,, we fix
p to be a finite constant and reduce p,. Sur-
prisingly, we find that even when p, approaches
zero, the logarithmic scaling persists. This ob-
servation suggests that there is an entanglement
phase transition from a volume-law phase to a
critical phase in our model.

Such a transition to a critical phase is a spe-
cial feature of QA circuits and a similar transi-
tion has also been observed in the hybrid QA cir-
cuit with discrete Zo symmetry [11]. To under-
stand this phase transition, we can analyze the
dynamics of the particles characterizing the bit
string pairs difference, in particular, the particle
density n(t) = >, h(z,t)/L [11, 12, 13]. In the
Zo symmetric QA circuit, it is shown that the
particles perform branching-annihilating random
walks (BAW) with an even number of offspring:

W 3W, W+ W & 0. (20)

The first process arises from unitary dynamics,
while the second annihilation process occurs due
to the measurement. The competition between
these processes gives rise to a phase transition
at a critical value p., which falls into the parity-
conserving (PC) universality class. In the absorb-
ing phase with p > p., the dynamics are primarily
governed by the random walking particles, which
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Figure 7: (a) Sf) vs Vtint for p = 0.1 and p = 0.3
with the unitary rate p, = 0.5. (b) Sff) vs Int for
p = 0.6, 0.8 and 1 with p, = 0.1. For both phases,
we take the system size L = 120 and the filling factor
v = 1/3, under the periodic boundary condition (PBC).

annihilate in pairs upon meeting. This partic-
ular dynamics leads to an algebraic decay with
n(t) ~ t%5 resulting in a power-law decay of
P(t). This, in turn, leads to a critical quantum
phase characterized by logarithmic entanglement
dynamics and a dynamical exponent of z = 2.

In our model, the particle dynamics is simi-
lar and still preserves parity, but is more com-
plicated. For example, for the bit string pair
{|011),]001)}, under the Fredkin gate, it be-
comes {|110),]001)} and the particle represen-
tation o e 0 — e e e i.e., the particles branch
from 1 to 3. However, for the bit string pair
{|111),]101)} which has the same particle rep-
resentation as the previous one, it will remain
invariant under the Fredkin gate. On the other
hand, the SWAP gate enables particles to diffuse
oo > oe regardless of the bit string configura-

tion. Similarly, under the composite measure-
ment, the particles will experience pair annihi-
lation ee — oo only when the bit string pair is
{|10),]01)} instead of {|00),|11)}. This leads to
a phase transition belonging to a different univer-
sality class.

We first focus on the absorbing phase. In the
limit p, = 0, we observe that the particle density
follows a power law behavior n(t) ~ ¢t~ with
a = 0.28 for all measurement rates p > 0, which
is significantly smaller than the exponent of 0.5.
This is because particle annihilation only occurs
upon measurement based on specific bit string
pairs, as illustrated earlier. More detailed data
analysis suggests that n(t) for different system
sizes can be collapsed onto the function

n(t) =t~ f(t/L7), (21)

where z = 1.95, close to that of the critical phase
observed in Zs symmetric QA circuits. We also
take a small but finite p, and similar scaling be-
havior is observed. For instance, in Fig.8(b), we
present the data collapse for p, = 0.1 and p =1,
yielding exponents @ = 0.27 and z = 2. This
absorbing phase with algebraic decay is responsi-
ble for a power law decay of P(t), which further
leads to a quantum critical phase with a loga-
rithmic entanglement scaling. Notice that in this
phase, P(t) is mainly determined by the fraction
PF(t) without extensively long domains.

We further analyze the transition point. By fix-
ing the unitary rate at p, = 0.1 and decreasing
the measurement rate p, we can numerically iden-
tify the critical point. In Fig.8(c), it is observed
that the critical point occurs at approximately
p = 0.4, with o = 0.26 and z = 2.5. The exis-
tence of the phase transition persists as the uni-
tary rate p, increases, until it reaches p, = 0.4.
At this point (as illustrated in Fig.8(d)), the crit-
ical point is found at the maximum allowed mea-
surement rate p = 1. It is worth emphasizing that
this phase transition does not fall into the PC uni-
versality class, where the critical exponents are
zP¢ =1.744 and of® = 0.286.

5 Discussions and outlook

In this paper, we investigate the entanglement
dynamics of U(1) symmetric QA circuits. We
show that the second Rényi entropy saturates
the upper bound introduced in Eq.(1), namely
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Figure 8: The finite-size data collapse n(t)t* vs t/L* at: (a) p, = 0, p = 0.5, with the dynamical exponent z = 1.95
and o =0.28. (b) p, = 0.1, p=1, with z =2 and a« = 0.27. (c) p, = 0.1, p=0.4. (d) p, = 0.4, p= 1. Both (c)
and (d) have the same critical exponents z = 2.5 and a = 0.26. The data are calculated over a variety of system

sizes with the filling factor v = 1/3 under PBC.

Sff) (t) o< Vtint. To understand this behavior,
we map the entanglement dynamics to a classical
bit string model and demonstrate that the diffu-
sive dynamics of 51(42) (t) is caused by bit strings
containing extensively long domains.

Additionally, we explore the monitored en-
tanglement dynamics under U(1) symmetry and
identify a phase transition from a volume-law
phase to a critical phase as the measurement rate
p increases. Within the volume-law phase, 51(42) (t)
continues to exhibit diffusive growth due to the
presence of bit strings with long domains that re-
main unaffected by the introduced measurements.
On the other hand, the critical phase is character-
ized by logarithmic scaling of the entanglement,
and its stability is ensured by both the U(1) sym-
metry and the basis-preserving nature of QA cir-
cuits.

The analysis of the second Rényi entropy can

be extended to higher integer Rényi indices n.
By making slight modifications to Eq.(10), it can
be shown straightforwardly that the evolution of
51(4”) is mapped to a classical dynamics that en-
compasses n copies of bit strings. In particular,
the volume-law phase exhibits diffusive dynamics
in the presence of a logarithmic correction. This
behavior is governed by these bit string configu-
rations with extensive long domains.

Notably, in both the volume-law phase and
critical phase, the spin transport exhibits dif-
fusive dynamics and fails to capture the entan-
glement phase transition. This is because this
measurement-induced transition is visible solely
in the non-linear observable of the density matrix.
We confirm this diffusive transport by numeri-
cally computing the correlation functions and the
detailed results are presented in Appendix.C.

It has been established that the volume-law
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phase can be alternatively understood as a quan-
tum error correcting code [18, 30, 31, 32, 33]. Pre-
viously in Ref. [12], we presented an interpreta-
tion of the quantum error correction property of
the volume-law phase of a generic QA circuit, re-
lating it to the dynamics of classical bit strings.
Furthermore, we demonstrated a connection be-
tween quantum error-correcting codes and classi-
cal linear error-correcting codes. In the case of
the QA circuit with U(1) symmetry, we expect
that the volume-law phase continues to exhibit
the characteristics of a quantum error-correcting
code. In particular, the dynamics of the asso-
ciated classical bit strings reveal that the differ-
ence between bit string pairs still preserves clas-
sical information in a non-local manner, thereby
functioning as a classical error-correcting code. It
is worth noting that, unfortunately, this classical
error-correcting code is no longer linear. We leave
this for future study.
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A Two-species particle model

In Ref. [11] and Ref. [12], we proposed a two-
species particle model which maps the entangle-

ment dynamics of hybrid QA circuits under dif-
ferent symmetries to a classical two-species parti-
cle model. Before introducing the particle model,
we will first give an overview of the classical bit
string dynamics.

Since the charge-mixed state |¢g) = | + z)”
has already been discussed in the main text,
in this section we will focus on a charge-fixed
initial state [¢g) = \/Lﬁznm% where {|n) =
|oroa...oL) : 0; = {0,1},>, 0 = Q} is the set
of basis states with a fixed filling factor v, and
N = (g) = LY/[L - QQ.

Then, the wavefunction at time ¢ can be
represented as [¢) = Uylg), where U; =
MU M; U1 - -+ represents the hybrid QA cir-
cuit of depth ¢ as an alternating combination of
layers of measurements and unitary evolution.
Recall that the second Rényi entropy 51(42) =
—log, Tr(p%). The purity Tr(p%) equals the ex-
pectation value of the SWAP 4 operator over two
copies of the state [27, 34],

Te[p%(£)] = (V]2 ® (e ISWAPA[th)1 @ [¢)a.
(22)
The wave function can be partitioned into subre-
gions A and B

. 1 .
1he) = Uilbo) = TN Y ePilai)alBi)e, (23)
1,

The SWAP 4 operator exchanges the spin config-
urations |«) within subsystem A of the double
copies of |¢;). Then, we insert two sets of com-
plete basis which we call “bit strings” [13],

Tr[pf(t)) = > (Welo (Wil 1SWAP alna)[ng) (na|(na[the)1]¢br)2

ni,n2

= > (oL Tf [nh) (w0 2 Uy In) (1 | T o)1 (na | U o)

ni,n2

where
[n1)[n) = SWAP 4|n1)|n2)
= SWAP 4|a1 1) |2 B2) (25)
= |azfB1)|a1B2)-

Since the dynamics preserves the total charge

(24)

of the state, only the bit string configurations
{In1),|n2),|n}), |nh)} with the same filling factor
v will have non-zero overlap with (¢g|. We rep-
resent this subset of bit strings as
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La L

L
{ni,na2}’ ={ln1) = |0'(1) . ..O'%), |ng) = |0% . ..O'i) : Zaf = VL,ZJf—i— Z 02-17“ =vL,Vue{0,1}}.
=1 7

i—1 i=La+1
(26)
\
Therefore, Eq.(24) becomes
|
1 -0,/ (t) —i0,, ; ;
Tr[p‘%‘(t)]:ﬁ Z ¢ O () 710 (1) iey, () iy (1) (27)

{n1,n2}?

Strictly speaking, there does not exist UtT since
the projective measurements are nonunitary op-
erators. However, we can still deduce the effec-

(n| My o) = {(n\ibo) N

tive action of the composite measurement M /o
on sites 7 and i+1 of the bit string |n) € {ny,na}",

if o0, = Oi+1

07, ) . (28)
(T1/2(n)|bo) = ﬁe N2 oy £ 0449
\
difference at ¢ = 0 in subregion A (subregion

where (7' /5| stands for the bit string (n| with
the spins on sites ¢ and ¢ + 1 forced to be in
the |01)/[10) state. Hence, instead of following
the quantum trajectory of [¢;), we can study the
bit string dynamics in a time-reversed order, i.e.,
evaluate (n|Uy|1o) from left to right,

(n|Utlbo) = (n(t' = 0)|MyUMy—1 Uy - - - [1bo)
= (n(t' = 1)|UMy—1Us—1 - - - |¢bo)
= =0 (n(t' = 1)| My Upy - - [tho)

= enw=1)gn=2) ... W¥n=t)

VN

_ L e
\/N )
(29)
where €©(®) is one of the accumulated phase

terms under time evolution that are multiplied
and summed up over the ensemble of {|nq), |n2) }”
in Eq. (27) to evaluate Trp%.

In order to understand the dynamics of the rel-
ative phase ©, = _Gnll — ®n’2 + Oy, + Oy, we
consider the evolution of the difference between a
bit string pair {|n1), |n2)},

h(z,t) = |ni(x,t) — na(z,t)|. (30)

It is then natural to use the particle represen-
tation where the empty site symbol o denotes
h(z) = 0 and the occupied site symbol e de-
notes h(x) = 1. Specifically, we represent the

B) by X (Y) particles. Let X/Y denote the
rightmost X (leftmost Y') particle and z/y de-
note their positions. As shown in Fig. 2, under
the time evolution, the particles start to evolve
according to the update rule. As mentioned in
the main text, to determine the update rule of
the particles under the U(1)-symmetric circuit,
one should always refer to the corresponding bit
string dynamics. The detailed update rule is
listed in Table.l1 and Table.2. Before the two
species encounter each other, the phase generated
by each layer of unitary evolution on |n) is 6, =
HLLI} + G%x’y) + GEJ’L}, i.e., the sum of phases gen-
erated within the regimes [1,z], (x,y) and [y, L].
The bit string configurations within [1,z] occu-
pied by X particles always satisfy nq([1,z]) =
nh([1,z]) and na([1,2]) = nj([1,2]). Therefore,
ohy" = 01 and 03" = ol Similarly, for the
regime ocgupied by Y particles, since nq([y, L]) =
n([y, L]) and na([y, L]) = nb([y, L]), we always
have BEJ{L] = GEJ,’L} and 6?7[%/2’]:] = HEJ,’L]. At the
same time, since 1there is no bit stririg difference
within the regime (x,y), 97({7;”) = 97(5;’1’) = 952’3’) =
. Therefore, the phase difference along the
lattice vanishes: =0y — 0y +0ny +0n, = 0. If for
a bit string pair {|n1),|n2)}, X and Y particles
do not meet each other up to time ¢, then the ac-
cumulated relative phase ©,(t) is zero and such

9(:;/5,y)
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Before ny |110) | |110) | |110) | |110) | |110) | |110) | |110) | |101) | |101) | |101) | |101)
(after) 2 |101) | |011) | |100) | |010) | |001) | |111) | |000) | [100) | |010) | |0O1) | |111)
Fredkin [ny —ng| | cee | ece | ceo | @00 | eee | CO® | @80 | CO® | eee | @00 | OO
After ny |011) | |011) | |011) | |011) | |011) | |011) | |011) | |101) | |101) | |101) | |101)
(before) 9 |101) | |110) | |100) | |010) | |001) | |111) | |000) | [100) | [010) | |0O1) | |111)
Fredkin [ng —ng2| | ®eo | ece | eee | cOe | 000 | e00 | Cee | CO® | eee | @00 | OO
Before n1 |101) | [100) | |100) | |100) | [100) | |010) | |010) | |010) | |0O1) | |001) | |111)
(after) 9 |000) | |010) | |001) | |111) | |000) | |001) | [111) | [000) | [111) | |000) | |00O)
Fredkin [ny —ng| | ece | eeo0 | ece | cee | e00 | Cee | 06 | CeO | €80 | OO | o0
After n1 |101) | [100) | |100) | |100) | [100) | |010) | |010) | |010) | |001) | |001) | |111)
(before) 9o |000) | |010) | |001) | |111) | |000) | |001) | [111) | [000) | [111) | |000) | |00O)
Fredkin [ny —ng| | ece | eeo0 | ece | cee | e00 | Cee | @06 | CeO | €80 | OO | eee

Table 1: The update rule of the particle configurations under the Fredkin gate |0;_11,0,11) — |oit11i05-1). The
Fredkin gate only acts nontrivially on bit strings with o; = 1 and 0;,_1 # 0;4+1. For bit string pairs containing
such configurations, the corresponding particles either branch/annihilate in pairs, i.e., ® ® @ <> 0 @ 0, or diffuse i.e.,
O..(—)..O, Or @00 <> 008e,

i | 10y | [10) [ 10y | [oL) | [o1) | [11)
Bef
vl me oty | [11) | Joo) | [11) | Joo) | Jo0)
1/2 [ny —na| | ee oe e0 °0 oe oo
i | 0Ly | oLy |01y | o1) | [o1) | [i1)
ter ne | Jo1) | 11) | ooy | 11} | [00) | Joo)
! |ny —mna| | oo ®0 ce e0 ce oo
i | 10y | [10) | [10) | [10) | [10) | [11)
My o) | 1) | foo) | [11) | joo) | [oo)
2 |ny —mnal| | oo ce ®0 ce °0 oo

Table 2: The update rule of the particle configurations under the composite measurement M,/ = Ro P /. Note
that the composite measurement only acts nontrivially on bit string configurations with anti-parallel neighboring spins.
For bit string pairs containing such configurations, under the measurement, the corresponding particle representation
either annihilates in pairs, i.e., e — oo, or diffuses, i.e., ®o < oe.

pair contributes 1/4% to the purity Tr[p% (¢)].

Once the rightmost X particle comes across

7. The accumulated phase terms €©" of such
configurations will add up to zero and make no

contribution to Eq. (27). Therefore, we have

the leftmost Y particle, the two-qubit phase gate
acting on sites z and y will generate a nonzero
relative phase. For example, if we apply the
CZ gate on ee with a possible corresponding bit
string configuration {|ni),|n2),|n}),|n5) ey =
{|10), |01), |00}, |11)}, a relative phase 04+0—0—
m = —7 is generated. If we apply the CNOT
gate on sites z and y, {|n1), [n2), |n}), [nh) 2y —
{|11),]01), |00}, |10)}, i.e., another type of “parti-
cle” different from the two species with bit string
configuration |nj), = |n2), # |n})y = [nh), ap-
pears on site y and will spread along the lattice
under further evolution. As time evolves, the con-
figurations for which the two species have met
will generate random accumulated phases, half of
which are composed of odd numbers of 7, while
the other half are composed of even numbers of

where P(t) is the fraction of particle configura-
tions in which X and Y particles never encounter
one another up to time ¢. This quantum-classical
correspondence has been numerically verified in

Ref. [11].
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Figure 9: The arrangement of gates of the SWAP model
in a time step. The dashed box encloses the gates within
a single layer. Each time step involves two layers of
SWAP gates with probability p, = 0.5, and CZ gates.

B Entanglement dynamics of U(1)
symmetric QA circuits with other kinetic
constraints

B.1 The SWAP Model

We study the entanglement dynamics under the
kinetic constraint determined by SWAP gates
solely, so that our circuit is a U(1l) symmetric
Clifford QA circuit, which can be efficiently sim-
ulated at large system sizes using stabilizer for-
malism [35]. We will only consider the unitary
dynamics as the composite measurements can
not be simulated by stabilizer formalism. As il-
lustrated in Fig.9, we consider a circuit where
each time step involves two layers of SWAP gates
and CZ gates, with each applying on odd/even
sites. To achieve enough randomness, we take
the SWAP rate to be p, = 0.5 < 1. In addi-
tion, we consider |1)9) = | + 2)®F as the initial
state and take L = 600. As shown in Fig.10(a),
the entanglement entropy grows diffusively with

a logarithmic correction, i.e., Sf) x Vtint.

On the other hand, we examine the endpoint
displacement Al(t) of the bit strings with the
dead region with a charge filling factor of vy =
1/3. The numerics in Fig.10(b) indicates that
Al(t) o< VtInt as well. This scaling can be ex-
plained by exactly mapping the spin dynamics of
the SWAP model to the simple symmetric exclu-
sion processes. In this process, each charge un-
dertakes a symmetric random walk, while being
prohibited from jumping to an already occupied
site. It has been analytically shown in Ref. [29]
that the position of the rightmost charge expands
as Vtint.

It is worth noting that Clifford circuits with
U(1) symmetry are highly restricted. For exam-
ple, all Rényi entropies are equal for Clifford cir-
cuits, which fails to capture the ballistic growth

(a)
200
C p=20
150F
3 100F
50F
0 with dead region
1 A A
0 100 200
Viint
(b)

Figure 10: (a) Sf)(t) of the SWAP model simulated
using the stabilizer formalism. (b) The X particle dis-
placement Al(t) of the slow modes. It is found that

both Sf)(t) and Al(t) scale as vtInt. We take the
system size L = 600 and |¢)g) = | + x)®F for (a) and
the bit strings with dead regions with the charge filling
va = 1/3 in subsystem A for (b).
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Four-qubit CSWAP gate
[G— CZ gate

Myp=RePyp

Figure 11: The arrangement of gates of the Four-qubit
CSWAP model in a time step. The dashed box encloses
the gates within a single layer. Each time step involves
four layers of the four-qubit CSWAP gates with proba-
bility p,,, and CZ gates, interspersed with measurements
with probability p.

of von Neumann entropy for generic U(1) sym-
metric random circuits. Nevertheless, the SWAP
model enables us to verify at a large system size
that the second Rényi entropy indeed saturates
the upper bound in Eq. (1) and is dominated by
rare slow modes with extensively long domains.

B.2 The Four-qubit CSWAP model

Now we consider the entanglement dynamics of
the U(1) symmetric QA circuits with the kinetic
constraint determined by a four-qubit gate, which
swaps the spins o9 and o3 if the first spin o9 = 0
or the fourth spin o4 = 1. It is also called Fred-
kin gate in other works [28, 36|, to distinguish
it from the Fredkin gate in the main text, we
call it the Four-qubit CSWAP gate. As shown
in Fig.11, each time step of the circuit consists
of four layers of gates under PBC and in each
layer, the Four-qubit CSWAP gates are applied
on sites {47 — 3,45 — 2,45 — 1,45} /{45 — 2,45 —
1,45,45+1} /{45 — 1,45,45 + 1,45+ 2} /{47,45 +
1,47 42,45 + 3} for j € [1, L/4] with probability
Py, = 0.5, and the CZ gates are applied on sites
12— 1,27}/124, 2+ 1} /{25 1,2} {2). 2 + 1},
interspersed with composite measurements with
probability p applied on both odd and even sites.

To simplify the numerical simulation, we can
fix the position of Y particle to be the bound-
ary between subsystems A and B. This is equiv-
alent to focusing on the single species picture
where there are only X particles and considering
a subset of the phase difference in Eq. (27), i.e.,
the phase difference of |n1) and |n}) restricted in

20 40
Vvtint
(a)
3'01_49*1):0‘70 /-
2.5:— p =090 /
o 20F /
115k 4
1.0F
0.5F
[ RN B
0 2 4 6
Int
(b)

Figure 12: —In Q@ of the Four-qubit CSWAP model at
the measurement rate (a) p = 0 and p = 0.1, and (b)
p=0.7 and p = 0.9. We observe that —In Q « vtInt
for (a) and —In @ o Int for (b). We take the system
size L = 120, p,, = 0.5, and charge filling v = 1/2.

200
150 F
<1 100F
50F

0 with dead region

c

0 100 200

Vitint

Figure 13: The endpoint displacement Al(t) of the bit
strings with the dead region of the Four-qubit CSWAP
model vs vtInt at p = 0 and p = 0.1. We take the
system size L = 600, p, = 0.5, and vy = 1/2.

Accepted in (Yuantum 2023-11-29, click title to verify. Published under CC-BY 4.0. 14



regime B, denoted as

716)3, +z@B

Q=— Z (32)

_~

where M is the number of bit string pairs
{In1),|n})}. With this approximation, the con-
figurations which contribute to Q) are those whose
X particles never reach the middle cut.

We numerically simulate —InQ(t) for an en-
semble of bit strings {|n1), |n})} with system size
L = 120 and charge filling v = 1/2. As shown
in Fig.12, there exists a similar phase transition
from a volume-law phase to a critical phase: when

p < pe, —InQ x Vtint, and when p > p,
—In@ o« Int. We believe that this applies to

S(A2) (t) as well.

Finally, we study the endpoint displacement
Al(t) of the bit strings with the dead region
|

C(z,t) =

n

n

where Z,, ;) .. is the spin value at site = of the bit
string |n(t)) at time ¢. The correlation function
for different system sizes can be collapsed onto
the scaling form

Cla,t) =t~ Y2f(x/tV/7). (35)

Here we will only focus on the correlation in
the time direction C(0,t) for the Fredkin-SWAP
model and the Four-qubit CSWAP model, and
observe the dynamical exponents as we vary the
measurement rate p.

As shown in Fig.14(a), for the Fredkin-SWAP
model, C(0,t) o t~'/* with z = 2 for all p.
The spin transport is diffusive with and without
the measurements and hence fails to reflect the
measurement-induced entanglement phase tran-
sition. This is because MIPTs are only visible in
observables that are nonlinear in the density ma-
trix. Similar diffusive dynamics is observed for
all p > 0 in the Four-qubit CSWAP model, as
shown in Fig.14(b). Interestingly, when p = 0,
the dynamical exponent z = 2.44 > 2, consistent
with z = 8/3 as discovered in previous literature

1
= N Z Zn(t),mZn,O - W Z Zn(t
n

evolved under the Four-qubit CSWAP gates. The
numerics in Fig.13 confirms that Al o V/tInt
for pure unitary dynamics and small measure-
ment rate p = 0.1. We believe that this diffusive
growth persists in the whole volume-law phase.

C Spin transport of hybrid QA circuits
with U(1) symmetry

In this section, we consider the transport proper-
ties of the conserved charges which can be char-
acterized by the spin correlation function

(Zx(t)20(0)) — (Z:(t))(Z0(0)), (33)

where site 0 is in the middle of the system. If we
consider a charge-fixed state [ig) = \/% >onln)

C(x,t) =

with the filling factor v, then the correlator of
our QA circuit can be sampled using the classical
bit strings via

S (0[] Z(O) 0 Zo(0) m) — <= S~ (0l 22 (0)Tlm) 5 S m| Z0(0) )
),xZZm,Oa

(34)

[28, 36]. Nevertheless, the spin at the boundary
of the extensively long domain still exhibits dif-
fusive dynamics with a logarithmic correction.
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