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In this work, we present a simple interpolation methodology for spectroscopic time series, based
on conventional interpolation techniques (random forests) implemented in widely-available libraries.
We demonstrate that our existing library of simulations is sufficient for training, producing inter-
polated spectra that respond sensitively to varied ejecta parameter, post-merger time, and viewing
angle inputs. We compare our interpolated spectra to the AT2017gfo spectral data, and find pa-
rameters similar to our previous inferences using broadband light curves. However, the spectral
observations have significant systematic short-wavelength residuals relative to our models, which
we cannot explain within our existing framework. Similar to previous studies, we argue that an
additional blue component is required. We consider a radioactive heating source as a third compo-
nent characterized by light, slow-moving, lanthanide-free ejecta with Mth = 0.003 M⊙, vth = 0.05c,
and κth = 1 cm2/g. When included as part of our radiative transfer simulations, our choice of
third component reprocesses blue photons into lower energies, having the opposite effect and fur-
ther accentuating the blue-underluminosity disparity in our simulations. As such, we are unable to
overcome short-wavelength deficits at later times using an additional radioactive heating component,
indicating the need for a more sophisticated modeling treatment.

I. INTRODUCTION

The detection of the joint gravitational- and
electromagnetic-wave emission from binary neutron star
merger GW170817 [38] and its electromagnetic counter-
part AT2017gfo [37] has initiated an era of precision kilo-
nova observations. Several studies interpreted the obser-
vations of AT2017gfo shortly after detection by compar-
ing to simple kilonova models [9, 29, 39] consisting of
one or more groups of homologously-expanding material.
Motivated both by binary merger simulations and the in-
ability to fit observations with one component, at least
two components are customarily employed, with prop-
erties loosely associated with two expected features of
merger simulations: promptly ejected material (the “dy-
namical” ejecta), associated with tidal tails or shocked
material at contact; and material driven out on longer
timescales by properties of the remnant system (the
“wind” ejecta) [34]. However, many of these simple kilo-
nova models lack important physical features expected
from neutron star merger simulations, including full ra-
diative transfer and opacities, as well as anisotropic out-
flow and emission. More recent modeling efforts increas-
ingly incorporate these features, including sophisticated
treatments of relevant kilonova microphysics [7, 8, 16, 32].

Due to the high simulation cost, many groups have re-
sorted to surrogate models for the kilonova outflow, to
reduce the computational cost associated with inference
with these more complex models [3, 14, 22, 33].
Despite the increasingly sophisticated models being

brought to bear to interpret AT2017gfo, the shorter-
wavelength g-band flux that was observed in AT2017gfo
cannot be easily described using only a conventional two-
component model [4, 16, 17, 33]. While a “third com-
ponent” could resolve this underluminosity, as yet many
physical processes are being investigated to drive such an
outflow and thereby specify how its properties relate to
other system parameters, including ejecta shock breakout
[26] and central engine sources [2, 21, 23, 25, 31, 45, 47].
Of course, this underluminosity could also in part reflect
insufficiently well-understood kilonova systematics; see,
e.g., [6, 17, 40, 48].
Most interpretations of kilonova observations have re-

lied on broadband photometry, in part owing to the
relative sparsity of available spectra for AT2017gfo
(and other kilonovae). Fast interpolated models for
(anisotropic) kilonova spectra, computed with state of
the art opacities, could provide a new avenue to resolve
key uncertainties about AT2017gfo and other kilonovae.
Several recent projects have demonstrated the high po-
tential return of comparing AT2017gfo to kilonova spec-
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tral models [12, 36]. In this work, we present a detailed
interpolation scheme for kilonova spectra which allows
for continuous spectral modeling across time and viewing
angle. We showcase our ability to produce interpolated
spectra outputs at various ejecta parameters, times, and
angles. In accordance with previous studies, we iden-
tify the need for a third component in order to partially
match our model’s g-band spectral energy density to that
of AT2017gfo. Our method can be easily applied to any
modestly-sized archive of adaptively-learned astrophysi-
cal transient spectra simulations.

The paper is organized as follows. Section II discusses
our simulation training library and associated spectra in-
terpolation methodology. In Section III, we compare our
interpolated spectra to those observed for the kilonova
AT2017gfo and present the best-fitting ejecta parameters
that reproduce the AT2017gfo spectra assuming a two-
component model. In Section IV, we explore the effects of
including a third, low-opacity component to supplement
shorter wavelength (g-band) flux in our simulations. We
summarize our findings in Section V.

II. INTERPOLATION METHODOLOGY

A. Simulation Description

Unless noted otherwise, we consider a two-component
kilonova model with a lanthanide-rich equatorial dynam-
ical ejecta component and a lanthanide-poor axial wind
ejecta component as described in [20, 46] and motivated
by numerical simulations [15, 34]. Each component is pa-
rameterized by a mass and velocity such that Md, vd and
Mw, vw describe the dynamical and wind components’
masses and velocities, respectively. The morphology
for the dynamical component is an equatorially-centered
torus, whereas the wind component is represented by an
axially-centered peanut component; Figure 1 of [46] dis-
plays the torus-peanut, or “TP,” schematic correspond-
ing to the morphologies employed in this work [see 20,
for detailed definition]. The lanthanide-rich dynami-
cal ejecta is a result of the r-process nucleosynthesis
from a neutron-rich material with a low electron fraction
(Ye ≡ np/(np +nn)) of Ye = 0.04 with elements reaching
the third r-process peak (A ∼ 195), while the wind ejecta
originates from higher Ye = 0.27 which encapsulates ele-
ments between the first (A ∼ 80) and second (A ∼ 130)
r-process peaks. The detailed breakdown of the elements
in each component can be found in Table 2 of [46].

We use SuperNu, a Monte Carlo code for simulation
of time-dependent radiation transport with matter in lo-
cal thermodynamic equilibrium, to create simulated kilo-
nova spectra Fλ,sim assuming the aforementioned two-
component model [43]. Both components are assumed
to have fixed composition and morphology for the dura-
tion of each simulation. SuperNu uses radioactive power
sources calculated from decaying the r-process composi-
tion from the WinNet nuclear reaction network [19, 41].

These radioactive heating contributions are also weighted
by thermalization efficiencies introduced in [5] [see 44, for
a detailed description of the adopted nuclear heating].
We use detailed opacity calculations via the tabulated,
binned opacities generated with the Los Alamos suite of
atomic physics codes [10, 11, 27]. Our tabulated, binned
opacities are not calculated for all elements; therefore,
we produce opacities for representative proxy elements
by combining pure-element opacities of nuclei with simi-
lar atomic properties [10]. Specifics of the representative
elements for our composition are given in [46].
The SuperNu outputs are anisotropic simulated spec-

tra Fλ,sim, post-processed to a source distance of 10 pc,

in units of erg s−1 cm−2 Å−1. The spectra are binned
into 1024 equally log-spaced wavelength bins spanning
0.1 ≤ λ ≤ 12.8 microns. For the purposes of this work,
we consider the spectral evolution across 60 equally log-
spaced times between 0.125 and 20.75 days post-merger.
However, many of the spectra in our training library
extend out to even later times. As we only consider
anisotropic simulations in this study, we extract simu-
lated spectra using 54 angular bins, uniformly spaced as
−1 ≤ cos θ ≤ 1 for the angle θ between the line of sight
and the symmetry axis.

B. Training Set Generation

The follow description describes the approach taken
to generate the simulation library in [33]. Our training
library of 412 kilonova spectra and light-curve simula-
tions was constructed using iterative simulation place-
ment guided by Gaussian process variance minimiza-
tion. In previous work, we focused solely on light-
curve interpolation; as such, new simulations were placed
with parameter combinations that were identified as
having the largest bolometric luminosity variance by
our Gaussian process regression approach. In other
words, we placed new simulations in regions of param-
eter space where our bolometric luminosity interpolation
root-mean-square uncertainty was largest. Equation 1
shows the Gaussian process variance s(x⃗)2

s(x⃗)2 = k(x⃗, x⃗)− k(x⃗, x⃗a)k(x⃗a, x⃗a′)−1
aa′k(x⃗a′ , x⃗) (1)

where x⃗ is the vector of input parameters, x⃗a is the train-
ing data vector, s(x⃗)2 is the variance of the Gaussian
process prediction, the function k(x⃗, x⃗′) is the kernel of
the Gaussian process, and the indices a, a′ are used to
calculate the covariance between inputs x⃗ and training
data x⃗a, x⃗a′ such that if a = a′, the variance is 0.
In the context of this work, the only relevance of the

aforementioned light curves is to explain the process of
constructing the original simulation library. The spectra
used in this work have the same parameters as the light
curves used for our light-curve interpolation approach in
[33]. No additional simulations were produced for the
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purposes of this work; all training data came from the
simulation library presented in [33].

The original training data library consists of 412 to-
tal simulations calculated at 60 times (54 angles) each
for a total of 24720 (22248) spectra evaluated at 1024
wavelength bins. Due to the sheer volume of data in our
training set, we do not perform any coordinate transfor-
mations, but rather interpolate directly in our ejecta pa-
rameter space and time or angle. However, the large data
volume incurs a high computational cost, most notably
high memory usage during training. For the remainder
of the work, unless otherwise noted, we downsample our
data to only include spectra evaluated between 1.4 and
10.4 days for wavelengths above 0.39 microns (the lower
limit of the g-band) and below 2.39 microns (the upper
limit of the K-band). Downsampling reduces the dataset
to 412 total simulations calculated at 24 times for a total
of 9888 spectra evaluated at 384 wavelength bins. The
angular bins can be similarly downsampled from 54 to
27 to get a comparable data volume. For simplicity, all
subsequent discussion will refer to interpolation in time;
however, all instances of time as an interpolation param-
eter can be directly replaced with angle.

C. Spectrum Interpolation Approach

Our spectrum simulation setup and interpolation
scheme presented in this work differ slightly from the
approach described in Section II B. As before, our in-
puts are the four ejecta parameters describing our two-
component kilonova model, with the addition of post-
merger time in days, such that we have a five-dimensional
input x⃗ = (Md, vd,Mw, vw, t). For completeness, the an-
gle θ can remain unfixed, allowing a six-dimensional in-
put x⃗ = (Md, vd,Mw, vw, t, θ) at greater computational
cost. For each fixed viewing angle, our interpolation out-
put is the spectral energy density Fλ associated with that
viewing angle in units of erg s−1 cm−2 Å−1. We favor a
random forest interpolation scheme due to its enhanced
recovery of detailed spectral features compared to the
Gaussian process approach. This choice comes at the
cost of losing an inherent uncertainty prediction that is
associated with Gaussian process interpolation output.
We recognize the existence of random forest uncertainty
calculation modules, but have been unable to successfully
incorporate them in our study.

Random forests are a sub-class of grouped decision-
tree structures that can be used for regression appli-
cations. The following summary is adapted from the
scikit-learn documentation on decision trees [28]1.
An individual tree in a random forest recursively par-
titions the spectral flux density samples Fλ for a set
of five-dimensional input parameters x⃗ from the train-
ing set via a series of decisions, commonly referred to as

1 https://scikit-learn.org/stable/modules/tree.html

branches, based on a randomly-selected threshold value.
This threshold value ti can be thought of as a piecewise
function that divides the samples into two groups, or leaf
nodes, Qi: one where all of the samples meet the branch

threshold, Qleft
i , and another where none of the samples

meet the branch threshold, Qright
i ,

Qleft
i = {Fλ | Fλ ≤ ti} (2)

Qright
i = Qi \ Qleft

i . (3)

These thresholds are generated recursively, with each

subsequent leaf node Q
left/right
i being re-partitioned un-

til a specified recursion termination step is reached. The
tree is then left with a total of m leaf nodes, each of
which contains nm spectral flux density values Fλ from
the original dataset. The predicted spectral flux density
for each leaf node is given by

Fλ,m =
1

nm

∑
Fλ∈Qm

Fλ (4)

with an associated likelihood for each node defined by a
mean-squared error

L(Qm) =
1

nm

∑
Fλ∈Qm

(Fλ − Fλ,m)2 , (5)

where m represents the given random forest node, Fλ,m

is the learned mean value for node m, nm is the number
of samples in node m, Qm is the training data in node m,
and L(Qm) is the probability of the learned mean value
Fλ,m given partitioned training data Qm. The learned
mean value predictions in each node are weighted by their
nodes’ likelihoods to produce an individual tree’s predic-
tion for a given input x⃗. The random forest considers the
outputs of all decision trees and uses majority voting to
create the final interpolation prediction Fλ,intp for each
angular bin. Using the independent random-forest esti-
mates for each angular bin, we can interpolate, as needed,
these predictions versus viewing angle, reconstructing a
continuous estimate for the flux as a function of simu-
lation parameters, time, and viewing angle. Conversely,
we can repeat the procedure described above, exchanging
time and angle, to produce a random-forest interpolation
versus simulation parameters and angle, which we can in-
terpolate in time as needed.
As previously mentioned, time and angle can be inter-

changeably included as interpolation parameters in our
framework. Figure 1 showcases examples of using one of
these parameters as an interpolation parameter and keep-
ing the other fixed. The ejecta parameters in both panels
were fixed to match those in Figure 2; as such, all vari-
ations in Figure 1 are due solely to the fixed parameter,
θ or t, displayed in the figure legend. For convenience,
we also overplot colored wavelength regions correspond-
ing to the LSST grizy, 2MASS JHK, and the Spitzer 4.5
micron “S” broadband filters.

https://scikit-learn.org/stable/modules/tree.html
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FIG. 1. Off-sample interpolated spectra at different viewing
angles at a fixed time of 10.4 days (top) and different times
at a fixed viewing angle of 0 degrees (bottom) with the same
ejecta parameters as in Figure 2. The spectra in the top fig-
ure exhibit the characteristic lanthanide-curtaining effect at
shorter wavelengths as the dynamical ejecta becomes domi-
nant at larger angles. The spectra in the bottom figure show
the expected shift toward brighter spectral energy density in
infrared wavelengths at later times.

The top panel displays spectra at a fixed time of 10.4
days and the changes in spectral features as the viewing
angle is increased from 0 (axial) to 90 degrees (equato-
rial). In general, Fλ tends to decrease as the viewing an-
gle increases, moving away from the jet axis toward the
plane in which the accretion disk lies. This behavior is
expected as our low Ye dynamical ejecta component, con-
centrated in a torus near the plane, synthesizes heavier
elements that contribute to higher opacity as θ increases,
commonly referred to as lanthanide curtaining.

The bottom panel, in a similar fashion, indicates how
the spectra at a fixed viewing angle of 0 degrees evolve
over time between 1.43 and 10.4 days. The flux at the
earliest times peaks in the lower-wavelengths bands be-
fore the system has had a chance to lose energy via expan-
sion and thermal emission. At later times, as the system
cools, the peak flux migrates to redder wavelengths and
in some cases distinct spectral features begin to form.

Figure 2 compares the predictions of our interpolation
technique to a single out-of-sample simulation, evaluated
at all simulation wavelengths at a specific time and view-
ing angle. The random forest prediction agrees remark-
ably with the underlying simulation data. The full wave-
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FIG. 2. Off-sample comparison of simulation data, in black,
compared to an interpolated spectrum generated using the
simulation input parameters, in red. The simulation was
evaluated for input parameters Md = 0.0013, vd = 0.053,
Mw = 0.0349, vw = 0.206, and t = 10.4 assuming a fixed
viewing angle bin θ ≤ ∼16◦ and source distance of 10 pc.
Masses, velocities, time, and angle are in units of M⊙, c,
days, and degrees, respectively. Top: The off-sample predic-
tion, in red, from a random forest interpolator trained without
hyperparameter constraints and significantly higher compu-
tational resource cost. The unbounded computational cost
allows for particularly accurate feature recovery, especially at
wavelengths past 5 microns. Bottom: Same as above, except
with hyperparameter constraints resulting in a much more
computationally inexpensive model. The model prediction
is noticeably smoother, however it still captures the general
profile of the spectrum and the tops of the peak features past
5 microns.

length range was considered in this instance due to the
sharp, pronounced features past λ > 5 microns. The
panels of Figure 2 show the same off-sample prediction
using a more (less) computationally expensive approach
during training in the top (bottom) panel.
Our spectra interpolation tool, as well as sample use

cases, can be found at https://github.com/markoris/
rf_spec_intp.

III. TWO-COMPONENT ANALYSIS

A. AT2017gfo Observational Dataset

In addition to serving as an interpolation training
set, our simulated spectra can also inform us about

https://github.com/markoris/rf_spec_intp
https://github.com/markoris/rf_spec_intp
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which model parameters recreate the observed spectra for
AT2017gfo. We use an observational dataset consisting of
the ten X-shooter spectra originally published in [30] and
[35], which have been re-reduced and recalibrated by the
ENGRAVE collaboration [1]. The details of the spectral
data cleaning, including an additional flux calibration
step, are described in [13]. Throughout this work, unless
specified otherwise, we use the flux-corrected, smoothed,
joined spectra Fλ,obs obtained from the ENGRAVE data
release2. The data span a wavelength range of roughly
0.33 to 2.4 microns, with a couple of spectra having a
slightly shorter wavelength range.

B. Fitting SuperNu Simulations to AT2017gfo

As described in Section IIA, SuperNu outputs kilo-
nova spectra Fλ,sim at a distance of 10 pc across 1024
log-spaced wavelength bins λk for k = 0, 1, ..., 1023 be-
tween 0.1 and 12.8 microns. The subscript k notation
hereafter refers to these 1024 SuperNu wavelength bins.
For comparison between simulated and observed data,
we scale the simulated spectra to a distance of 40 Mpc
to match the distance at which AT2017gfo was observed.
We fix the viewing angle to the first simulation angular
bin (θ ≤ ∼16◦).
We also downsample the observational data Fλ,obs such

that each new observational wavelength bin corresponds
to a SuperNu wavelength bin λk and contains a new ob-

servational flux value F̂λ,obs,k defined as

F̂λ,obs,k =
1

Nk

∑
i

Fλ,obs,i for λk ≤ λi < λk+1, (6)

where Nk is the number of original observational wave-
length data points λi that are downsampled into the rele-
vant SuperNu wavelength bin λk. From this point on, we
refer to the rebinned, downsampled observational data
as F̂λ,obs. Due to the difference in wavelength ranges
between our observed and simulated data sets, we are
only able to compare the observed data to at most 361
SuperNu wavelength bins between 0.33 and 2.4 microns.
Our only other observational data processing involves
removing portions of the observed spectra that exhibit
telluric effects or artifacts from the stitching process.
The gaps corresponding to the removed data are located
around 0.6, 1, 1.4, and 1.9 microns. The data prepro-
cessing described here is independent of the data-volume
reduction steps described in Section II B.
We identify the best-fitting parameters at each obser-

vation time t using a simple χ2 goodness-of-fit statistic
defined as

2 http://www.engrave-eso.org/AT2017gfo-Data-Release

FIG. 3. Interpolated, two-component kilonova spectra fitted
to AT2017gfo observed spectra at t = 1.43 (top), t = 4.4 (up-
per middle), t = 7.4 (lower middle), and t = 10.4 (bottom)
days. Each fit was calculated using Equation 7 by only consid-
ering spectra at the relevant observation time. The best-fit
parameters for the interpolated spectrum at each time are
presented in Table III B. Vertical lines with endcaps indicate
a subset of observational errors which are included for further
insight into the χ2 fit results.

http://www.engrave-eso.org/AT2017gfo-Data-Release
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χ2 =
1023∑
k=0

(
Fλ,intp,k − F̂λ,obs,k

σF̂λ,obs,k

)2

, (7)

where k represents the SuperNu wavelength bins, Fλ,intp,k

is the interpolated spectral energy density scaled to 40
Mpc, F̂λ,obs,k is the rebinned observed spectral energy
density, and σF̂λ,obs,k

is the uncertainty on the observed

spectral energy density. To assess the relative distribu-
tion of different model parameters x⃗, we use a likelihood
exp(−χ2/2) and a uniform prior over ejecta parameters
x⃗. The samples x⃗ are iteratively drawn using Monte
Carlo sampling (e.g., [42]), and models are evaluated and
compared to all wavelengths at each observation epoch.
From our posterior-weighted Monte Carlo samples, we
use a maximum-likelihood estimate as the preferred value
for x⃗, with statistical error bars on each component de-
rived from the posterior distribution.

t log10 Md vd log10 Mw vw χ2/Nt

[days] [M⊙] [c] [M⊙] [c]

1.43 −1.47+0.11
−0.22 0.20+0.00

−0.00 −2.04+0.12
−0.00 0.10+0.01

−0.01 8538

2.42 −2.05+0.00
−0.01 0.15+0.00

−0.00 −1.98+0.07
−0.12 0.18+0.00

−0.00 904

3.41 −2.06+0.02
−0.03 0.19+0.10

−0.01 −1.91+0.03
−0.13 0.05+0.04

−0.00 539

4.4 −1.52+0.00
−0.00 0.11+0.00

−0.00 −1.51+0.00
−0.00 0.21+0.00

−0.00 957

5.4 −1.71+0.00
−0.00 0.25+0.00

−0.00 −1.80+0.00
−0.00 0.09+0.00

−0.00 389

6.4 −1.73+0.03
−0.00 0.14+0.01

−0.01 −1.81+0.00
−0.00 0.05+0.00

−0.00 238

7.4 −1.61+0.07
−0.04 0.29+0.00

−0.01 −1.80+0.01
−0.00 0.06+0.00

−0.01 385

8.4 −2.05+0.11
−0.05 0.07+0.02

−0.00 −1.57+0.00
−0.01 0.09+0.00

−0.00 137

9.4 −1.47+0.01
−0.04 0.30+0.00

−0.01 −1.80+0.01
−0.00 0.25+0.00

−0.00 155

10.4 −1.32+0.01
−0.00 0.30+0.00

−0.00 −2.05+0.07
−0.06 0.21+0.01

−0.00 45

TABLE I. Best-fit parameters, with 1-σ uncertainties, derived
from the comparison of interpolated spectra Fλ,intp to each of

the ten X-shooter observational spectra F̂λ,obs. Each set of
parameters was separately identified and compared only to
the spectrum taken at the observation time. Entries in bold
have their spectra plotted in Figure 3. All fits to spectra
assume only a two-component model without the inclusion of
the additive thermal component.

Our two-component model fits to the AT2017gfo obser-
vational data are presented in Figure 3. Early-time fits
match well, especially at 1.43 days where the spectrum ef-
fectively behaves like a blackbody. A notable discrepancy
in the fit occurs at 1.43 days in the g-band where our sim-
ulations are slightly underluminous around 0.4 microns.
At later times, this discrepancy becomes more exagger-
ated as the fit is increasingly underluminous in the g- and
even r-bands at 7.4 days. However, as time increases,
our models nominally fit the data better, simply because
of the relatively large measurement uncertainties at late
times. This nominally better statistical fit should not be
taken as necessarily a more reliable parameter estimate,
as for example at late times the local thermodynamic

1

2

3 md

1

2

3 mw

0.050

0.175

0.300

vd

1.4 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4 10.4
0.050

0.175

0.300

vw

FIG. 4. Visual representation of the best-fit recovered param-
eters and their uncertainties presented in Table III B. The
masses are fairly consistent across observation epochs, with
wind mass slightly more stable than dynamical mass. Veloci-
ties are highly variable across observation epochs and can gen-
erally be considered poorly constrained. However, the wind
velocity shows some consistency between 5-8 days, with a sim-
ilar pattern seen in the wind mass at these times.

equilibrium assumption for our simulations becomes less
applicable.

In Table III B we present the best-fitting model pa-
rameters, calculated using Equation 7, for the observed
spectrum F̂λ,obs (labeled Fλ,AT2017gfo in the plot legend)
at each respective time. We also present the recovered
parameters along with their uncertainties visually in Fig-
ure 4 for clearer understanding of the parameter recovery
differences at individual times. The χ2/Nt values come
directly from Equation 7; Nt is a normalizing factor rep-
resenting the number of wavelength bins used for com-
parison (up to 361) for the observation at time t. The
Nt normalizing factor accounts for the variable number
of wavelength bins considered during the residual cal-
culation for each observation time. The χ2/Nt values
shown in Table III B quantify the poor fit between data
and our models seen in Figure 3 and elsewhere. These
large scaled residuals reflect the small observational un-
certainties, as shown in Figure 3, but as noted are also
computed by completely neglecting any systematic er-
ror associated with either our interpolation or modeling.
While we cannot thoroughly propagate our systematics
at present, we estimate, based on small changes in our
result to operating-point choices, as seen in Figure 2,
that incorporation of systematic error could account for
much of the variation between our models and the data
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FIG. 5. Corner plot showing parameter recovery results from
[33] when omitting the K-band. The parameter means re-
ported at the top of each parameter column represent the
posterior distributions and their 90% confidence intervals.
Overlaid in red are weighted-average parameters calculated
from the per-observation recovered parameters presented in
Table III B.

apparent at most wavelengths longer than 0.5 microns.
The maximum systematic uncertainty for wavelengths
less than 0.5 microns is ∆Fλ ∼ 10−20, calculated as
the maximum difference between predictions for the two
models presented in Figure 2. Therefore, we are confident
that the underluminosity in the blue bands is indeed real
and not simply due to modeling uncertainty. Decreasing
χ2/Nt at later times also not necessarily indicate bet-
ter agreement between predictions and observations, but
rather larger observational errors as spectra get increas-
ingly noisier at these times. The non-uniformity of the
recovered parameters is due to each set of parameters
being identified at its relevant observation time without
regard to information from other times. As such, it is dif-
ficult to make any explicit claims; however some trends
do arise.

In particular, the dynamical mass tends to be greater
than the wind mass for approximately half of the spec-
tra. The wind mass is the most consistent across observa-
tion epochs. We interpret our less variable constraints on
wind mass as reflecting the wind ejecta radiation being
prominent at earlier times where our fits to the spectra
are better. Due to high opacity in the region, dynam-
ical ejecta photons are expected to be emitted at later
times; however, the data and our fit quality degrade at
these times, leaving the dynamical ejecta properties more
prone to variation compared to those of the wind ejecta.
Velocities are overall highly variable across observations.

To determine an aggregate set of ejecta parameters
informed by inference at all observational times, we cal-
culate an overall residual from all spectra weighted by
the number of points Nt in each fit. We report weighted-
average parameters x such that x =

∑
t Ntxt/

∑
t Nt,

where each parameter x is determined by the weighted
sum of the recovered parameter at each time xt, with Nt

serving as the weighting factor. The averaged parameters
are presented in Figure 5, overlaid on top of parameter
recovery posteriors from the [33] analysis, which excludes
the K-band. The average parameters with uncertainties
at the top of each posterior correspond to the [33] results.
We find similar agreement for recovered parameters be-
tween the two analyses, with the understanding that the
overlaid parameters are subject to the uncertainties from
Table III B.

IV. THREE-COMPONENT ANALYSIS

The blue-wavelength underluminosity displayed in Fig-
ure 3 confirms that our detailed self-consistent radiative
transfer simulations underpredict the shortest optical-
wavelength radiation at late times, both spectroscopi-
cally and photometrically [18, 33]. This underprediction
serves as a clear indicator that our modeling approach is
missing an energy source that will sustain blue emission
to late times without affecting the rest of the spectrum.
With the hypothesis that our two-component model com-
position assumptions are currently insufficient, we con-
sider a third radioactive heating component as a natural
extension of our existing model. To guide our parameter
choices for the third component, we consider the effects of
adding the flux from the simple kilonova model presented
in [24] to our spectra.

A. Simple Model for Parameter Guidance

The kilonova model by [24], hereafter referred to as
M19, calculates the blackbody spectral energy density at
some time t given an ejecta mass Mej, velocity vej, and
opacity κej. In the context of our study, a low-opacity
third component is most preferable as it increases the
likelihood of emission of blue photons rather than scat-
tering or absorption. Likewise, a slow-moving component
ensures that the blue-photon emitting ejecta does not dif-
fuse too quickly, allowing for sustained blue emission at
late times. Finally, the mass parameter acts as a scale
factor for the overall brightness of the blackbody’s spec-
tral energy density.
Based on our fits to the spectra at all times, a sub-

set of which is presented in Figure 3, we identify that a
gray-opacity model with κ = 1 cm2/g and ejecta param-
eters Mej = 0.003M⊙ and vej = 0.005c produces enough
flux in the g- and r-bands to remedy the underluminosity
without boosting the longer-wavelength flux, which our
models match well. The spectral energy density Fλ,M19
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emitted by this component is simply added to our best-
fit spectra Fλ,intp as a post-processing step, ignoring any
potential photon reprocessing effects which may occur
during radiative transfer.

Figure 6 displays our best-fit interpolated spectra when
including the additive thermal component from M19 dur-
ing the residual calculation. The very-early and very-
late spectra at 1.43 and 10.4 days exhibit little change
with the addition of the third component in our rele-
vant bands. The most obvious improvement occurs at
4.4 days where the fit almost perfectly matches observa-
tions, but the g- and r-band underluminosity reappears
in the 7.4 day spectra. It is likely that the drop-off at 7.4
days and later occurs due to the simplified approach of
just adding the third component’s spectral energy density
to our existing best-fit spectra. In order to understand
the realistic, fully physical inclusion of the third compo-
nent, we require a full radiative transfer calculation of
our three-component model using SuperNu.

B. SuperNu Third Component

The post-facto addition of a third component’s flux
contribution neglects important emission effects that can
arise as a result of photon reprocessing in the ejecta. To
consider the full physicality of including a third compo-
nent, we present a SuperNu simulation involving a three-
component model.

Our three-component SuperNu setup is an extension of
our two-component approach. Our dynamical and wind
component compositions remain unchanged and retain
the properties described in Section IIA. We incorporate
the third component by mixing it into the dynamical and
wind components. For the third component, rather than
considering a simple gray opacity as in the toy model, we
use the detailed line-binned opacities described in Sec-
tion IIA, associated with a low-opacity, lanthanide-free
composition shown by the green line in Figure 7. Due
to the similarity between the dynamical and wind ejecta
heating rates, we employ the dynamical ejecta heating
rate to both the dynamical and wind components for
computational simplicity. The composition and heating
rate for the third component were generated using the
WinNet nuclear reaction network for a homologously ex-
panding ejecta with a velocity of 0.05c and characterized
by electron fraction Ye = 0.50.
The averaged, aggregate parameters for the dynami-

cal and wind components for the original two-component
model are taken from Figure 5. The mass of the third
component is fixed to Mej = 0.003 as in Section IVA.
The third component velocity vej is increased to 0.05c
to match the lowest allowed value in the SuperNu ve-
locity space. Increasing vej from 0.005 to 0.05 also pre-
vents ejecta fallback onto the remnant. As discussed in
[45], ejecta fallback would require an additional energy
source treatment and remove our assumption of a single
radioactive-heating energy source.

FIG. 6. All spectral fits considered in this work. Fλ,2c are the
same two-component fits as in Figure 3. The Fλ,3cMetzger fits
show the two-component fits with an additional third com-
ponent flux contribution from the [24] model with Mej =
0.003M⊙, vej = 0.005c, and κ = 1 cm2/g. The Fλ,3cSuperNu

fit shows the SuperNu radiative transfer calculation of the M19
third component with closest-matching parameters Mej =
0.003, vej = 0.05 and composition as shown in Figure 7.
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FIG. 7. Mass fractions X as a function of element number Z
for the dynamical, wind, and third component compositions
as described in Section IVB. The primary contribution of
the third component comes from the large amount of iron
(Z = 26) and nickel (Z = 28) which are not as prevalent in
the other two components.

Figure 6 shows all of the different spectra modeling ef-
forts considered in this work compared to the AT2017gfo
observed spectra. The “2c” spectra match the two-
components fits presented in Figure 3, the “3cMetzger”
spectra are the best-fit “2c” spectra, which include the
additive thermal component from M19, and the “3cSu-
perNu” spectra present fits from the SuperNu run that
uses the third component described in the preceding
paragraph. Starting as early as 4.4 days, it is obvious
that the self-consistent implementation of the third com-
ponent in SuperNu does not provide nearly as much short-
wavelength flux as the Metzger additive thermal compo-
nent.

In fact, for the majority of observation times, the
“3cSuperNu” model is even less luminous than the “2c”
model, instead shifting spectral energy density from blue
wavelengths to redder ones. This shift seems to indicate
that the inclusion of the third component is reprocessing
photons to longer wavelengths instead of amplifying the
emission at shorter ones. At 10.4 days, the massive spike
in flux at 1.5 microns also indicates that our third com-
ponent is not optimally suited to matching the features
of the AT2017gfo spectra.

Given the results of Figure 6, we find that an addi-
tional radioactive component is not sufficient to amplify,
or even match, the required flux to match our models
to the AT2017gfo data. The reprocessing of photons to
lower energies in the additional component introduces an
unwanted flux boost around 1.5 microns, which results in
even worse-fitting spectra than those using only two com-
ponents. As such, future studies should explore detailed
composition analysis to achieve an increase in blue emis-
sion within the constraints of the two-component model.
Likewise, Figure 6 is an illustrative example that an ad-
ditional modeling component may not necessarily be a
radioactive heating source.

A notable caveat is that our third component was ini-
tially chosen to have a slow velocity in order to boost late-
time blue emission; a similar radioactive-heating compo-

nent with a velocity faster than that of the wind ejecta
may exhibit fewer photon reprocessing effects to longer
wavelengths by virtue of the photons not having to in-
teract with the wind component as they escape.

V. CONCLUSIONS

We have demonstrated that a straightforward ap-
proach can accurately interpolate between simulated
spectra derived from radiative-transfer simulations of
kilonova ejecta across a high-dimensional model param-
eter space. In this proof-of-concept study, motivated by
the relative scarcity of spectral observations, we fix the
spectra viewing angle (time) and only interpolate over
ejecta properties spanning four dimensions and time (an-
gle) spanning one dimension, applicable in both scenarios
given our assumption of axisymmetry.
Although this work focused specifically on kilonova

spectra, the interpolation scheme should be broadly ap-
plicable to all astrophysical spectra of similar dimension-
ality. While our initial highly non-parsimonious approach
produces accurate spectra, we find that its large memory
footprint and computational cost can be substantially re-
duced. The nature of the large dataset would make it
well-suited for conventional machine-learning techniques,
such as neural networks.
We have used our interpolated spectra to recover the

closest-matching model parameters that replicate the ob-
served spectra of kilonova AT2017gfo. We present mul-
tiple modeling approaches, including a standard two-
component approach, a three-component approach using
an additive third component, and a three-component ap-
proach implemented in the Monte Carlo radiative trans-
fer code SuperNu. In accordance with our previous pa-
rameter inference study [33], as well as other studies of a
similar nature [2, 21, 23, 25, 26, 31, 45, 47], we find that
an additional modeling component is necessary to over-
come early-time underluminosity in the g- and r-bands.
With the inclusion of the relatively light, slow-moving,
lanthanide-free component, the short-wavelength spec-
tral energy distribution remains underluminous at later
times, with a clear discrepancy already present at a week
post-merger. The persistent g- and r-band disagreement
at late times implies that an additional radioactive com-
ponent is not a suitable modeling approach, indicating
the need for a more sophisticated treatment of the blue-
wavelength flux contribution in further studies.
Finally, in this paper, our analysis highlights future

studies which will expand our composition assumptions
in order to better understand the impact of ejecta com-
position on the blue flux contribution. However, there
are many other uncertainties associated with the models,
such as mass and composition distributions as a function
of velocity and angle, atomic physics results assuming lo-
cal thermodynamic equilibrium, and the finer treatment
of energy deposition into the ejecta via different decay
channels. As we learn about new sensitivities from these
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uncertainties, it becomes increasingly clear that it will
be difficult to create a fine grid of models covering all of
these effects. Our method is useful for the applications
outline in this paper, but also because it can ultimately
be scaled to adapt to the wider parameter space of model
uncertainties, using a limited number of simulations to
intelligently map between results.
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et al. 2017, The Astrophysical Journal, 848, L27, doi: 10.
3847/2041-8213/aa90b6

[38] The LIGO Scientific Collaboration, the Virgo Collabo-
ration, Abbott, B. P., et al. 2017, Astrophysical Journal
Letters, doi: 10.3847/2041-8213/aa91c9

[39] Villar, V. A., Guillochon, J., Berger, E., et al. 2017, The
Astrophysical Journal Letters, 851, L21, doi: 10.3847/
2041-8213/aa9c84

[40] Watson, D., Hansen, C. J., Selsing, J., et al. 2019, Nature
(London), 574, 497, doi: 10.1038/s41586-019-1676-3
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