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Understanding uncertainties in contemporary and
future extreme wave events for broad-scale impact and
adaptation planning

Joao Morim1*, Thomas Wahl1, Sean Vitousek2, Sara Santamaria-Aguilar1, Ian Young3,

Mark Hemer4

Understanding uncertainties in extreme wind-wave events is essential for offshore/coastal risk and adaptation

estimates. Despite this, uncertainties in contemporary extreme wave events have not been assessed, and pro-

jections are still limited. Here, we quantify, at global scale, the uncertainties in contemporary extreme wave

estimates across an ensemble of widely used global wave reanalyses/hindcasts supported by observations.

We find that contemporary uncertainties in 50-year return period wave heights (H50
s ) reach (on average)

~2.5 m in regions adjacent to coastlines and are primarily driven by atmospheric forcing. Furthermore, we

show that uncertainties in contemporary H50
s estimates dominate projected 21st-century changes in H50

s
across ~80% of global ocean and coastlines. When translated into broad-scale coastal risk analysis, these uncer-

tainties are comparable to those from storm surges and projected sea level rise. Thus, uncertainties in contem-

porary extreme wave events need to be combined with those of projections to fully assess potential impacts.
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INTRODUCTION

Extreme waves are a key driver of coastal change (1) and loss of
natural coastal wetlands (2) and a major contributor to coastal
flooding over multiple time scales (3, 4), with wave run-up often
representing up to ~50% of extreme total water levels along many
coastlines (3, 5). These events can also disrupt shipping (6) and are
critical to establish design limits for offshore and coastal infrastruc-
ture (e.g., natural gas and oil drilling platforms, aquaculture farms,
renewable energy projects, and coastal defenses) (7, 8), which are
forecasted to expand by up to ~50% within less than a decade (9,
10). Thus, estimating and understanding uncertainties in extreme
wave events for the present-day climate is critical to support
global offshore and coastal developments (10), assess hazards and
adaptation measures (11), and substantiate projections under
future climate scenarios (12).

At broad spatial scales, multidecadal wave reanalysis and hind-
cast model products are needed for impact assessments as wave
buoy records are sparsely distributed globally and have limited
length, and satellite altimetry observations suffer from relatively
low temporal resolution (13). The contribution of extreme waves
to structural design loads, erosion, and flooding (via wave setup
and/or run-up) is usually determined as a function of deep-water
significant wave height (Hs) (14 20). Now, multiple contemporary
global wave reanalysis and hindcast products, generated using dif-
ferent calibration data, numerical spectral wave models, and/or at-
mospheric (reanalysis) forcing, are being used to generate such
estimates (16 21). Comparative analyses show that offshore/
coastal hazard modeling estimates can change significantly depend-
ing on datasets and models adopted (22), which can affect policy

and adaptation measures (22). Some former analyses, comparing
specific historical years and/or specific hindcast data, suggest that
extreme wave heights could also vary considerably depending on
the global wave product (23 25). Nevertheless, a comprehensive
global-scale uncertainty analysis of contemporary extreme Hs esti-
mates across multiple widely used wave reanalysis/hindcast prod-
ucts is still missing, as previously acknowledged (22, 26).

In addition, increasing evidence suggests that extreme waves are
likely to considerably change across many global ocean areas and
coastlines due to climate change (27 29), and such changes need
to be accounted for when determining offshore and coastal
impacts (30). For example, in the Southern Hemisphere, low-prob-
ability extreme wave events obtained using annual maxima
(AMAX) Hs have been projected to increase by up to ~15% by
the end of the century (31 34). However, existing projections of
extreme Hs rely on single-method wave ensembles (27, 28, 31, 33,
34) and thus neglect any uncertainties between different statistical
and/or dynamical wave simulations (26), which are known to
account for up to ~50% of the total projection uncertainty (26).
These projections have also been substantiated on the basis of dif-
ferent global wave reanalysis and hindcast model datasets (35).
Thus, there is a need for an all-encompassing analysis of projected
changes in extreme Hs events.

Understanding uncertainties in extreme wave events for the
present-day climate and comparing them to potential future
changes and associated uncertainties due to global climate
warming are thereby critical to support planning and adaptation
strategies (22, 36). Here, we quantify present-day uncertainties in
extreme Hs estimates using a novel ensemble of state-of-the-art
global wave model products (37) and compare such estimates
against those obtained from 64 wave buoys around the world. Fur-
thermore, we compare the present-day uncertainties in extreme Hs
estimates to projected future changes in extreme Hs and associated
uncertainties obtained from the most comprehensive ensemble of
global wave projections developed to date.
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RESULTS

Extreme value analysis

To characterize extreme wave events, we use the AMAX approach
and apply the generalized extreme value (GEV) and Gumbel
(GUM) extreme value distributions, which are widely used to esti-
mate the n-year return period Hs (henceforward Hn

s ) required for
offshore and coastal engineering designs (31 34). Other extreme
value analysis (EVA) methods exist (e.g., peaks over threshold, r-
largest, and conditional average exceedance rate) (38 40) but
require hourly or sub-daily time series Hs data, which are not ar-
chived (and/or accessible) across the full global wave product en-
sembles (Materials and Methods; tables S1 to S3) due to
computational and storage constraints. We estimate present-day
Hn

s values and their confidence intervals by fitting these two
extreme value distributions to the time series of AMAX Hs (GEV-
AMAX and GUM-AMAX for GEV and GUM, respectively) from
12 global wave model products that span the analysis period of 35
years (1980 to 2014) (Materials and Methods). Two global wave
products are wind-wave reanalyses derived using fully coupled at-
mosphere-wave models that assimilate satellite wave data (from
1991 onward) to adjust model predicted wave spectra. The other
products are global wave hindcasts generated, at different research
institutes, by directly forcing global spectral wave models with
surface winds from different atmospheric reanalyses (table S1).
Through this analysis, we use GUM-MAX (as reference) because
it provides an overall, more suitable model for the AMAX Hs data-
bases from both observations and model products over most of the
global ocean (Materials and Methods), consistent with previous
work (33). However, we still consider GEV-AMAX to assess uncer-
tainties associated with the extreme value model used, as later
discussed.

Comparison with observations

Model estimates ofHn
s (from GUM-AMAX) are compared with the

estimates derived from 64 moored wave-buoy stations with suitable
locations, record lengths, and completeness (Materials and
Methods; fig. S1). In this analysis, we limit estimates to 50-year
return period events (orH50

s ) to avoid large uncertainties associated
with extrapolation to return periods far beyond the length of the
wave observational records and global wave datasets used (tables
S1 and S2). The comparison of return levels from observations
and products shows that the spread in present-day Hn

s estimates
(from different global wave model products) can be considerable
and is highly variable depending on ocean regions and locations,
as shown for six representative (extra-tropical and tropical) sites
near major coastal cities (Fig. 1). Furthermore, spread values in
present-day Hn

s product estimates become particularly larger for
those events with relatively lower probability and higher-risk poten-
tial, such asH20

s and longer. For instance, estimates forH50
s differ by

nearly 5 m off Boston, Port Canaveral, and Yokohama and 3 m off
Hawaii, San Francisco, and Sydney. We also find similar spread at
other representative sites (fig. S2).

When the central estimates from the global wave products are
compared to the 95% confidence intervals of the GUM-AMAX es-
timates from the observations, we find a significant percentage of
sites where 6 or more models lie within observational limits for
the 50-year events (~45%) and a small percentage of sites where
10 or more models fall within the observational intervals (~7%)

(Fig. 2). Furthermore, we find that no individual global wave
model product leads to the lowest or highest errors compared to
the observations at all sites or even within specific regions (figs.
S3 and S4). Such results, along with the sparsity of global wave
buoy records, preclude any weighting of individual ensemble
model products based on their relative skill (Materials and
Methods). Although there is a general tendency of global wave
products to underestimate H50

s (figs. S5 and S6), consistent with
spectral wave models underestimating storm peak Hs (23, 24, 41),
absolute errors relative to wave observations change significantly
depending on product and location. However, some products
result in smaller mean absolute errors across all locations and fall
within the 95% confidence intervals of the observational records
across many more locations (Fig. 2). For instance, all Climate Fore-
cast System Reanalysis (CFSR) based global wave products show
much smaller mean absolute errors (~10%) and also lie within
the observational limits far more often (~60%) compared to
ECMWF-ERAI (23 and 18%), IORAS-MERRA2 (19 and 30%),
and GOW1-NCEPNCAR (18 and 37%), respectively. The overlap
between confidence bounds of GUM-AMAX estimates from
model products and observational records was also assessed.
However, at many locations, the confidence bounds estimated
from both datasets are relatively large and therefore do not
provide a faithful measure of how well model products represent
observations.

Clustering analysis

We show that extreme H50
s estimates from different global wave

products (fig. S6) are clustered by atmospheric reanalysis forcing
(Fig. 3). Our cluster analysis (see Materials and Methods) defines
three key groups (Fig. 3A) with products using the same reanalysis
forcing falling within the same cluster regardless of global wind-
wave modeling method used (e.g., source-term wave parameteriza-
tion, numerical resolution, and/or spectral frequency). Hence,
global wave products generated using the same atmospheric reanal-
ysis forcing lead to estimates of similar magnitude and spatial
pattern (fig. S7), highlighting the strong influence of surface
winds on extreme ocean wave estimates (41, 42). For example, all
CFSR-based wave model products lead to higher estimates, almost
everywhere, compared to ERAI-driven products (see Fig. 3B). The
sample space available within each cluster (see Fig. 3) precludes
from quantifying within-cluster similarities and separates the influ-
ence of different global wind-wave modeling methods on extreme
wave estimates. However, we still show that, even within each cluster
or subcluster based on the same reanalysis forcing (e.g., CFSR or
ERAI cluster), differences in contemporary H50

s estimates due to
wave modeling methodology (e.g., numerical scheme, resolution,
spectral frequency, and/or source-term wave parameterizations)
can reach up to ~3 m across widespread ocean regions (Fig. 3C).

Uncertainty analysis

We calculate the weighted ensemble mean (by forcing) of contem-
porary H50

s (Materials and Methods) across all the global wave
model products (Fig. 4A) and quantify its associated uncertainty
using the ensemble interquartile range (IQR) (Fig. 4B). Our
results show that IQR values exceed 1 m (and 2 m) for 50 and
79% (32 and 13%) of global ocean and coastlines, respectively
(Table 1). Spatially, IQR values can extend from less than ~1 m

Morim et al., Sci. Adv. 9, eade3170 (2023) 11 January 2023 2 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E



within tropical areas up to ~3 m across widespread extratropical
cyclone (ETC) areas and 5m across tropical cyclone (TC) dominat-
ed areas (Fig. 4B). The maximum difference between ensemble es-
timates ranges from ~3 up to ~7 m across most nontropical areas
(fig. S8). Attributing the potential underlying causes for these un-
certainties across the globe is beyond the analysis. However, we
believe that they are largely associated with the representation of
ETC and TC systems within the reanalysis datasets, given that atmo-
spheric forcing is the major source of uncertainty among contem-
porary extreme Hs estimates (Fig. 3). Although ETC and TC
intensities are generally underrepresented within most atmospheric
reanalysis datasets relative to observational datasets, particularly TC
events (43, 44), specific atmospheric reanalyses can capture and

resolve certain features of ETC and TC systems, such as cyclone
storm tracks and/or frequency (e.g., owing to improved model res-
olution, data assimilation, and/or bias-correction methods) (43
47). Hence, some reanalysis-forced global wave products are more
capable of resolving specific features of ETC- and/or TC-generated
wave events than others (fig. S9), leading to a considerable spread
among extreme wave estimates across such regions (Fig. 4B).

To date, much research has been conducted to assess uncertain-
ties associated with EVA models used to parameterize extreme
events. For example, 100-year storm surge estimates can vary by
more than 0.5 m (48) and 100-year Hs estimates by up to ~0.5 to
1 m depending on location (38). Comparison of present-day H50

s
uncertainty due to global wave product differences with those

Fig. 1. Return period significant wave height (Hn
s ) estimates for representative wave buoy sites off major coastal cities. (A to F) The plotting positions ( + ) were

obtained from the observed AMAX for each site and are hence directly comparable to the GUM-AMAX fit from the different global wave products (see circles). Shaded
pink (gray) bands represent the 95% confidence limits of GUM-AMAX (GEV-AMAX) method applied to the wave observations, and the dashed line is the GUM-AMAX s
central estimate. The ID code for each wave buoy station is provided within each subpanel (table S2).
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Fig. 2. Number of global wave product estimates falling within the 95% confidence limits of the observations for H50
s at all wave buoy sites. (A) North Pacific

(east), (B) North Pacific (west), (C) North Atlantic and Gulf of Mexico, and (D) South Pacific (west). The column chart colors (within each subplot) are consistent with the
legend of Fig. 1. The percentage of sites with more than 2, 6, and 10 model estimates falling within the observational confidence intervals (CI) is also provided within
brackets along the color bar scale. For each respective basin, the mean absolute error across all locations and all products is shown along with the percentage of sites that
each product falls within the observational bounds.

Table 1. Uncertainty comparison across existing marine-built infrastructure sites, global ocean area and coastline length. See Materials and Methods for
calculation of uncertainties.

Percentage of

Constructed offshore and coastal infrastructure

Gas and oil Wind farms Ports
Global coastline length Global ocean area

(267) (26) (1045)

Present-day uncertainty (IQR)
> 1 m (2 m)

41.2% (7.9%) 78.13% (0%) 49.6% (11.3%) 50.1% (12.5%) 79.7% (31.5%)

Projection uncertainty (IQR)
> 1 m (2 m)

49.8% (4.9%) 36.0% (4.0%) 41.3% (6.4%) 43.6% (7.1%) 56.1% (24.5%)

Combined uncertainty
> 1 m (2 m)

67.0% (22.1%) 100.0% (11.5%) 73.0% (27.9%) 75.0% (26.9%) 74.9% (48.9%)

Present-day uncertainty (IQR) >
Projected absolute changes (∆)

69.0% 85.0% 80.0% 79.0% 81.4%

Present-day uncertainty (IQR) >
Projection uncertainty (IQR)

48.3% 69.0% 61.0% 58.8% 52.0%
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from the selection of EVA model (here by comparing GEV-AMAX
and GUM-AMAX) shows that the former dominates over the latter
(almost everywhere) across the globe (fig. S10). We note, however,
that we only considered two commonly used EVA methods within
our analysis as previously discussed, and extending this analysis to
samplemoremethods, such as r-largest, peak over threshold, and/or
conditional average exceedance rate, could result in an increase in
the EVA-related uncertainty (and exacerbate the combined uncer-
tainties presented in this analysis).

Extreme value projections

So far, we analyzed present-day uncertainty associated with con-
temporary extreme Hs estimates from global wave reanalysis/hind-
cast products forced with atmospheric reanalysis winds. Next, we
compare this uncertainty to projected future changes in extreme
wave events and associated uncertainties due to global warming, ob-
tained using statistical and dynamical wave simulations forced with
climate model wind projections. To do this, and for consistency, we
assess changes in Hn

s using AMAX Hs data extracted from the most
comprehensive ensemble of global wave projections containing a
total of 39 global wave simulations (49) developed for the high-
risk representation concentration pathway RCP8.5 (Materials and
Methods) (50). In contrast to past analyses, which calculated pro-
jected changes in extreme wave events based on single-method

ensembles (27, 31 33, 35), our ensemble (26, 49) covers different
climate model, global climate models (GCM), forcing and wave-
modeling methods, hence providing the most complete assessment
of uncertainty to date (49). The projected future changes are ob-
tained using a weighted multimember ensemble mean and its asso-
ciated uncertainty (Fig. 4, C and D) quantified by bootstrapping the
ensemble IQR (Materials andMethods).We find thatH50

s values are
projected to increase by ~5 to 15% across the Southern Ocean,
eastern Pacific Ocean, and northeastern Pacific Ocean and also
across localized regions (e.g., Arabian Sea, Gulf of Bengal, Aleutian
Sea, or China Sea). In contrast, there is a widespread projected de-
crease of up to −15% across the northern and central Atlantic
Ocean, northwestern Pacific Ocean, Indian Ocean, and southern
Pacific Ocean. In general, the overall spatial patterns of change in
H50

s shown are consistent with those of past analyses based on
CMIP5-based dynamical wave ensembles (27, 33).

When we compare the present-day uncertainties to projected
changes for the 50-year event, we find that the former dominates
over the latter across ~81% of the global ocean and ~79% of the
coastline (Table 1 and Fig. 4E). The exceptions are localized tropical
areas where the present-day uncertainty values are almost negligible
(Fig. 4B) and a few particular areas within the Southern Ocean
where projected future changes are large enough to exceed the
present-day uncertainties (see fig. S4). In addition, we find that

Fig. 3. Cluster analysis of H50
s estimates obtained from global wave model products. (A) Cluster diagram (dendrogram) resulting from Euclidean distance based

Ward s minimum variance clustering using global pairwise H50
s (Materials and Methods) with the vertical axis representing the distance or dissimilarity between clusters

and cluster members presented as log scale for clarity. Shading represents defined clusters and subclusters. Note that gray shading on the cluster diagram represents
subcluster(s) with different atmospheric forcing within one of the main clusters (B to D) Mean estimate of each cluster, or subcluster, based on the same atmospheric
reanalysis, as per colors, minus the weighted ensemble mean. (E to G) Maximum difference between estimates within each respective cluster or subcluster.
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the present-day uncertainties exceed the uncertainties in the projec-
tions across ~52% of the global ocean area and ~59% of the coastline
(Table 1). These areas are predominantly TC-dominated regions
(Fig. 4F) but extend to specific extratropical areas (e.g., central-
northern Atlantic Ocean, Southern Ocean, and southeastern
Pacific Ocean) and to some localized regions (e.g., Gulf of

Guinea). In all remaining regions, the uncertainties in the future
projections exceed the present-day uncertainties.

The projected future changes and future uncertainties presented
within regions directly affected by TC activity need to be considered
carefully. We attribute the low ratio (<0.25) shown within TC-dom-
inated regions (see Fig. 4, E and F) to the limited representation of
intense TC systems within standard GCM simulations. So far, only a

Fig. 4. Comparison of present-day uncertainty, projected future changes, and projection uncertainty for H50
s . (A) Weighted ensemble mean of contemporary

ensemble (hindcasts and reanalysis products) estimates (H50
s ). (B) Interquartile range (IQR) of contemporary ensemble (hindcasts and reanalysis products) estimates

(IQR H50
s ). (C) Weighted ensemble mean of projected future changes (ΔH50

s RCP8:5) using climate model driven wave simulations. (D) IQR of ensemble projections (IQR

ΔH50
s RCP8:5). (E) Weighted ensemble mean (C)/(B) [and rather than weighted ensemble mean (C) over (B)]. (F) Weighted ensemble mean (D)/(B) [and rather than weighted

ensemble mean (D) over (B)].
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few GCM-driven global wave simulations have been forced with at-
mospheric forcing high-resolution models (51), instead being
forced with GCMs that tend to underestimate TC intensity and/or
frequency due to their coarser resolutions (52). Therefore, most
GCM-driven global wave simulations underestimate extreme Hn

s
patterns produced by TC events (fig. S11) and cannot sufficiently
resolve their potential future change due to global warming (53,
54). In addition, although our ensemble of projections exhibits no
robust (or statistically significant) changes in the shape of the un-
derlying distribution (fig. S12) (33), GUM-AMAX usually underes-
timates TC-driven wave extremes (Materials and Methods), which
are generally characterized by heavy-tailed distributions (fig. S9)
and more adequately resolved using a nonzero shape distribution
(such as GEV-AMAX). Now, there is no consensus on anthropo-
genic influences on major TC events (55) and TC-driven wave ex-
tremes simulated using high-resolution atmospheric forcing (53,
54). However, if proven that global warming could drive a signifi-
cant increase in major TC events not resolved within existing sim-
ulations, then this could potentially affect the shape of the
underlying distribution and make projected future changes and
projection uncertainties potentially comparable, or even exceed,
the present-day uncertainties within those TC areas (further exac-
erbating the combined uncertainties discussed within this analysis).

To further contextualize our findings, we present results at exist-
ing global offshore oil and gas platforms, offshore wind projects,
and coastal seaports (see Fig. 5). Figure 5 (A and B) shows that
present-day uncertainties for the 50-year events exceed projected
future changes (dark and light orange marks), sometimes by
more than 50% (dark orange marks), at more than ~70% of the in-
frastructure locations (Table 1). However, at 30% of the offshore and
gas platform sites, projected changes exceed present-day uncertain-
ties, highlighting that many existing infrastructure supporting the
offshore energy production industry are at greater risk of being af-
fected by changes in extreme waves due to global climate warming.
Figure 5 (C and D) shows that present-day uncertainties exceed the
uncertainties in global wave projections (purple and blue marks) at
a significant percentage of infrastructure sites (48% of offshore oil
and natural gas platforms, 69% of offshore wind farms, and 61% of
open-coast seaports). The combined uncertainties are shown to be
considerable at many sites (Fig. 4, C and D), exceeding more than 1
m (and 2 m) at 67% (22.1%) of the global offshore platform loca-
tions and 73% (27%) of coastal seaport sites (Table 1). Consistent
with Fig. 4, we find that results have strong regional dependence.
For example, most sites in Africa and South America exhibit a rel-
atively low combined uncertainties (<1 m) (yet still dominated by
present-day uncertainties), while sites in Europe and North
America have relatively higher uncertainties (>2 to 3 m).

Fig. 5. Relative importance of present-day H50
s uncertainties and projected H50

s changes, and associated uncertainties, at existing offshore and coastal infra-

structure locations. (A) Relative importance of projected absolute changes relative to present-day climate uncertainties at offshore oil and natural gas platforms (circles)
and offshorewind farms (squares). (B) Relative importance of projected absolute changes relative to present-day climate uncertainties at open-coast sea ports. (C) Relative
importance of projection uncertainty relative to present-day climate uncertainties at offshore oil and gas platforms (circles) and offshore wind farms (squares) and (D)
relative importance of projection uncertainty relative to present-day uncertainties at open-coast sea ports. In all panels, combined uncertainties are indicated by the circle
sizes according to the legends of (A) and (C).
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DISCUSSION

Our analyses have shown large uncertainties associated with
present-day extreme Hn

s estimates determined from many global
wave products that are widely used for broad-scale offshore and
coastal infrastructure design and hazard/risk assessments. Conse-
quently, findings drawn from any single global wave product need
to be treated carefully and/or contextualized. In addition to showing
that atmospheric (reanalysis) forcing is the major driver of uncer-
tainties in present-day extreme Hn

s estimates, our analysis also indi-
cates that differences in global wave modeling methods can lead to
significant discrepancies between present-day Hn

s estimates. This
analysis also highlight that no individual product can represent
the observational records across all wave buoy locations even
within specific regions. Instead, within each region or basin with
available buoy observations, some specific products lead to a
more reliable representation of the regional buoy records
than others.

Our analysis assesses projected changes in Hn
s using a large

CMIP5-coordinated ensemble of wave projections across climate
models and global wave modeling methods (49), thus allowing a
much improved sampling of uncertainty relative to past analyses
(27, 28, 31, 33, 34). We show that present-day extreme Hn

s uncer-
tainties largely outpace climate-driven changes in Hn

s almost every-
where, even when considering a high-emission scenario (5°C
warming by 2100) with no stringent climate mitigation (RCP8.5)
(50). In addition, present-day Hn

s uncertainty levels are found to
be comparable to and/or exceed the uncertainties associated with
projected future Hn

s changes across widespread areas. These
results suggest that present-day uncertainties are evenmore relevant
when considering milder future warming climate scenarios
(ranging 2° to 4°C) that consider stricter climate mitigation policies.

The uncertainties in present-day extreme Hn
s estimates shown

have wide-reaching implications for structural designs loads,
coastal erosion, and flooding. For example, although different
wave setup parameterizations have been used (18, 19, 56), some
large-scale coastal flood risk analyses simply approximate wave
setup contribution as ~20% of offshore extreme Hs (16, 17, 57
60). On the basis of our results, which show that present-day H50

s
uncertainty owing to global wave model product differences can
reach ~2.5 m when averaged across data offshore of coastal areas
and up to 5 m at specific locations, this could lead to uncertainties
of 0.5 m and up to 1 m at specific sites. This exceeds or is compa-
rable to other uncertainties that are considered critical for current
and future coastal hazard flooding and adaptation assessments (22),
such as global tide-storm surge hindcast models, digital elevation
model datasets, and sea level rise scenarios (22, 48). For instance,
contemporary extreme storm surge estimates (e.g., 100-year
events) differ on average by 0.5 m, depending on the global hindcast
model used (48). Although broad-scale assessments are now begin-
ning to consider potential changes in extreme wave climate due to
climate change (16 19), assessments to date have not accounted for
present-day uncertainties in extreme wave events, which are essen-
tial to fully assess potential hazards and adaptation needs.

Expansion of the existing buoy networks and remote sensing da-
tasets will improve assessment of extreme ocean wave events from
global wave model products and potentially enhance future prod-
ucts (13, 61). The Sofar network of globally distributed drifting
surface weather buoys has expanded rapidly to more than 600

buoys (62). Maintaining such networks to enable climate relevant
over time will provide data with greatly improved spatial resolution
to complement the network of fixed observation platforms. Improv-
ing representation of TC and ETC systems within global atmospher-
ic reanalyses with more data assimilation (63, 64) and development
of new globally downscaled atmospheric reanalysis data (65) would
also help to further constrain uncertainties. Expanding the limited
number of dynamical global wave simulations forced by high-reso-
lution downscaled climate models (0.25° or less) that are more
capable of resolving TC-driven waves (relative to coarse CMIP-
driven global wave simulations) (53, 54) might also help to under-
stand and reduce uncertainties in ETC and TC areas. As previously
discussed, our community-based ensemble of global wave projec-
tions [and any other ensembles based on standard GCM model
data; see (27, 31 34)] may not sufficiently represent potential
future TC changes, suggesting that further research on TC projec-
tions and regional-scale TC-produced ocean wave extremes (e.g.,
using regional high-resolution GCMs and regional synthetic TC
events) is needed.

In conclusion, we highlight that present-day uncertainties in
extreme wave height derived from the existing ensemble of global
wave hindcasts/reanalysis exceed and/or are comparable to that of
global wave model projections (and associated uncertainties).
Hence, uncertainties inherent to both future projections and
present-day estimates need to be accounted for and combined in
comprehensive offshore and coastal risk assessments relying on
extreme wave data. Otherwise, incorporating ongoing improve-
ments in climate modeling without addressing uncertainties in
the wave climate system may provide little benefit for many
broad-scale impact and adaptation assessments.

MATERIALS AND METHODS

Contemporary global wave reanalysis and hindcasts

AMAX Hs data were taken from the first coordinated multiproduct
ensemble of global wave reanalysis/hindcast product (37). This re-
cently assembled dataset was compiled under a standardized re-
search framework (37) and provides general and extreme wave
statistics (including AMAX Hs calculated from sub-daily time
series) for 14 global wave products produced using third-, fourth-
, and fifth-generation atmospheric reanalyses as forcing (37). In this
analysis, we use all the global wave products (two reanalysis and
nine hindcasts) that cover the full temporal record length available
of 35 years (between 1980 and 2014) (37). To further expand our
sampling space, we also included a JRA55-forced global wave hind-
cast (KU-JRA55) that spans 32 years (between 1980 and 2012). The
full description of all global wave product datasets (including their
validation) is extensively provided elsewhere (37), and hence, we
only provide a brief summary of their key characteristics along
with respective acronyms (table S1).

Global wave buoy measurements

In situ wave buoy stations with long-term data records are relatively
scarce worldwide. Hence, wave buoy selection was based on a com-
promise between buoy availability and data suitability. We used
time series of AMAX Hs calculated from (hourly to 3-hourly) mea-
surements extracted from all available wave buoy record networks
that meet a number of previously adopted quality requirements (33)
to ensure robust estimates and a suitable comparison against
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reanalysis and hindcasts across a maximum number of suitable lo-
cations. We used all buoy stations that are: (i) moored at water
depths of less than 45 m to ensure that ocean waves are not
heavily affected to shallow-water nonlinear processes unresolved
by current global wave models; (ii) sufficiently far from land so
that corresponding wave model output data are located at sea;
and (iii) resultant time series of AMAX Hs must comprise at least
20 values chosen on the basis of (33): (i) AMAX values for buoys
sited above 40°N or below 40°S (extratropical region) are selected
from all years with >60% of sub-daily data available during boreal
(January, February, and December) and austral (June, July, and
August) winter seasons (respectively), and (ii) AMAX values for
buoys located below 40°N or above 40°S (subtropical and tropical
regions) are selected from all years with >60% of sub-daily data
available. In total, we assembled a network of 64 wave buoys,
which we use to estimate Hn

s (fig. S1 and table S2).

Comparison against model estimates

The global wave model products used provide continuous time
series of AMAX Hs for 35 years (see "Contemporary global wave re-
analysis and hindcasts" section). Nonetheless, our quality-con-
trolled buoy records are often shorter (table S2). Therefore, to
provide a coherent comparison between Hn

s estimated from
model and buoys, we removed any years from product time series
of AM data that are missing within the observational records when
comparing buoys and models (while always ensuring a 20-year
record length) before calculating return periods.

Statistical extreme value models

Applying EVA approaches to observed (or modeled) extreme Hs
data allows the quantification of return periods that are longer
than available records (38, 39). Now, there is an existing range of
statistical EVA methods that can be used to derive Hn

s (38). Al-
though specific methods could be favored when certain criteria
are fulfilled (e.g., sufficient data length and availability of sub-
daily data), there is no universally accepted standard method for
extreme wave analysis (21, 38). Two reference extreme value distri-
butions (GEV and GUM maxima) have been widely used to esti-
mate Hn

s from AMAX series (33, 34) and are used here

Hn
s GEV� AMAX ¼ μ � σ

k
1 � � log 1 � 1

n

� �� �� k
 !

ð1Þ

where μ is the location parameter, σ is the scale parameter, and k is
the shape parameter, with k > 1 representing a heavy-tailed distri-
bution (Fréchet family) and k < 1 representing a bounded upper
limit tailed distribution (Weibull family). The GUM (maxima) dis-
tribution assumes that k = 0 and represents a two-parameter light
tailed distribution

Hn
s GUM� AMAX ¼ μ � σ log � log 1 � 1

n

� �� �
ð2Þ

In this analysis, we assumed a conservative approach and con-
strain estimates to 50-year return events (H50

s ) to prevent unreliable
extrapolation periods. In all cases, the statistical distribution param-
eters were calculated using the asymptotically optimal maximum
likelihood estimator. Alternative parameter estimation methods

exist (e.g., method of moments or L-moments), but we have not
considered them because their influence would be insignificant rel-
ative to the key uncertainties discussed.

Suitability of underlying data and statistical model fit

To have a consistent comparison of the different uncertainties
across the global ocean, the same extreme value distribution must
be adopted (33, 66). There is a range of accepted methods that can
be used to assess how well extreme value models fit a given climate
dataset. We compared the suitability and the fit of GEV-AMAX and
GUM-AMAX using different methods.
Anderson-Darling statistical test
We used the Anderson-Darling test (67) at 5% confidence level to
determine whether the time series of AMAX Hs follow a GUM dis-
tribution (our null hypothesis) versus any other (extreme) distribu-
tion. The results show that the null hypothesis is not rejected (i.e.,
there is no significant departure from the GUM distribution) across
more than ~85% of the global ocean regardless of the global wave
model product used (fig. S13). The regions where the null hypoth-
esis is rejected (P < 0.05) are limited to specific TC dominated as
explained below.
Significance of shape parameter fit
We assessed the statistical significance of the fit of the GEV-AMAX
shape parameter k at 95% confidence level using its estimated con-
fidence limits. The results show that the fit of k is not statistically
significant from zero across more than ~85% of the global ocean
(fig. S9). The areas where k is found to provide a significant fit
(less than 15%) (fig. S9) are specific TC-dominated areas, typically
characterized by heavy-tailed distributions, where the suitability of
the GUM distribution is compromised on the basis of the Ander-
son-Darling test (fig. S13). These results are consistent with previ-
ous global-scale analyses (33), which used GUM-AMAX after
showing that such model provides an overall more suitable fit com-
pared to GEV-AMAX when applied to global wave hindcast data
(GOW2) and CMIP5-driven global wave simulations.
Akaike information criterion
To further support our results, we determined the Akaike informa-
tion criterion (corrected for small samples) (AICc) (68) for both
GUM-AMAX and GEV-AMAX. The AICc is an estimator of pre-
diction error used across different scientific research fields (69, 70),
which asymptotically selects the extreme value distribution that
minimizes the mean squared errors of the estimation. The AIC cor-
rected for small sample sizes (N/W < 40) is provided by

AICc ¼ � 2logLðθ̂Þ þ 2W þ 2WðW þ 1Þ
N � W � 1

ð3Þ
with Lðθ̂Þ representing the maximized log-likelihood,W represent-
ing the number of estimated parameters used to achieve that log-
likelihood, and N representing the sample size. The AICc is calcu-
lated on the basis of a compromise between goodness of fit and
model complexity with lower AICc values indicating a better-fit
model. The results are provided in fig. S14.
Bayesian information criterion
We also determined the Bayesian information criterion (BIC)

BIC ¼ � 2logLðθ̂Þ þWlogðNÞ ð4Þ
which selects the model that maximizes the posterior model prob-
ability. The comparison of the AICc and BIC values for GUM-
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AMAX and GEV-AMAX shows that GUM-AMAX provides a
better-fit model across 70 to 78% and 78 to 86% of the global
ocean, respectively (depending on the global wave product used)
(figs. S14 and S15). The only areas where GEV-AMAX lends a
better-fit model correspond to specific TC-dominated regions
(less than 15 to 20%) where GUM-AMAX could result in an under-
estimation of heavy-tailed distributions (and associated estimates).
These results (combined with the fact that our ensemble projections
of k exhibit no robust or statistically significance changes over most
of the global ocean) support using GUM-AMAX as reference in this
analysis, consistent with previous research (33).

Clustering methodology

We used an agglomerative hierarchical clustering analysis, with the
similarity criterion defined by Ward s analysis of variance
(ANOVA) basedminimum variance algorithm (71). The clustering
method was used without imposing any restrictions on the number
and size or any a priori assumptions of clusters. The initial cluster
distances (used within theWard s minimum variancemethod) were
obtained using a multidimensional approach, where the pairwise
Euclidean distance (D) among model products is derived at every
grid node, rather than spatially averaged, thus clustering products
with high similarity regarding spatial pattern and magnitude (26)

Di;j;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXw
k¼1

ðxi;k � xj;kÞ2
s

ð5Þ

where xi,k and xj,k are the H50
s estimates derived from two given

global wave products i and j, respectively, at grid point k with w
equal to the number of ocean grid nodes. We tested alternative clus-
tering distance metrics and obtained consistent results.

Weighted ensemble mean of global wave hindcasts and

reanalyses

The findings of our skill analysis (figs. S2 and S3), along with the
sparsity of global wave buoys records (fig. S1), preclude weighting
individual ensemble models based on their relative skill. Neverthe-
less, we show that present-day Hn

s estimates are strongly dependent
on reanalysis forcing (fig. S3), and therefore, a weighted multiprod-
uct ensemble mean was calculated by applying weighting factor to
each global wave product

Hn
s k ¼

X12
v¼1

ðHn
s v;k �Wv;kÞ

X12
v¼1

Wv;k

ð6Þ

whereHn
s v;k represents the estimate ofHn

s according to the ensemble
model product v at each grid point k andWTj,k its weighting factor
representing the number of ensemble products with that same at-
mospheric reanalysis forcing among all products available.

Global wave model projections

Time series of AMAX Hs were taken from the largest ensemble of
CMIP5-based global ocean wave projections available to date (span-
ning different global climate model forcings and global wave down-
scaling methods) (table S3). This ensemble and its members have
been extensively described and validated (26, 37). The data were

extracted over two available representative time slices: a reference
historical period (1980 to 2005) and a future climate period (2080
to 2100) that assumes a high-end warming scenario (RCP8.5). In
total, AMAXHs extracted from 38 simulations were used to estimate
projected future changes and associated uncertainties.

Calculation of projected future changes

The projected relative change in Hn
s was calculated as percentage

change (and absolute change) for each ensemble model member
following (26)

ΔHn
s k ¼

ðHn
s
Future
j;k � Hn

s
Present
j;k Þ

Hn
s
Present
j;k

ð7Þ

where ΔHn
s j;k represents the projected future changes according to

the ensemble member j at each grid point k. We determined a
weighted multimember ensemble mean of projected future
change by applying weighting factors to each ensemble member
(table S3) on the basis that projected changes are strongly depen-
dent on climate model forcing (26, 72)

ΔHn
s k ¼

X39
j¼1

ðΔHn
s j;k �Wj;kÞ

X39
j¼1

Wj;k

ð8Þ

whereWj,k is theweighting factor for the ensemblemodel member j,
calculated as the number of ensemble members with that same
climate model forcing among all members available.

Calculation of uncertainty

Present-day uncertainty
The uncertainty associated with using different global wave reanal-
ysis/hindcast products (here, present-day uncertainty) is calculated
using the IQR of the entire ensemble estimates of Hn

s (Fig. 4B). The
IQR is considered to be the most suitable measure of variability for
nonnormal or skewed data distributions and/or datasets with outli-
ers. We also calculate the max-min difference between ensemble es-
timates, and the results are consistent (fig. S6).
Projection uncertainty
For consistency, the uncertainty related to global extreme wave pro-
jections (future uncertainty) is calculated using the IQR of the pro-
jected change estimates in Hn

s from the different members. In this
case, we apply a bootstrapping procedure to the IQR values (i.e., we
subsampled 12 ensemble members at the time, for 1000 times, and
calculated the mean of the 1000 IQR values) to match the number of
samples when comparing the present-day and future uncertainties.
The results are consistent with those obtained without applying any
bootstrapping.
Combined uncertainty
The different uncertainties discussed (that is, IQRs associated with
contemporaryHn

s estimates and those associated with global projec-
tions of extremewaves) are here combined using the root of the sum
of their respective IQR values as follows

CombinedIQR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN¼2

j
ðIQRjÞ2

vuut ð9Þ
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where N is the number of individual uncertainties (here, N = 2) that
are being combined.

Offshore and coastal infrastructure data

The exact locations of the offshore wind farm projects were extract-
ed from a publicly available global remote sensing based offshore
wind turbine database obtained from Sentinel-1 synthetic aperture
radar extensively validated time-series images (73). Because the
dataset contains all the existing wind turbines deployed, we consid-
ered each aggregation of turbines as a single farm project based on
their central coordinates (73). The locations of the global deep off-
shore oil and natural gas platforms were extracted from a global
dataset that was published as part of a global analysis of the project-
ed footprint of marine-built structures (9). The global open-coast
seaports were obtained from a published global-scale analysis (74)
based on a refined version of the World Port Index database (pro-
vided by the National Geospatial-Intelligence Agency).

Supplementary Materials
This PDF file includes:

Supplementary Information
Figs. S1 to S16
Tables S1 and S2
References

REFERENCES AND NOTES
1. P. L. Barnard, A. D. Short, M. D. Harley, K. D. Splinter, S. Vitousek, I. L. Turner, J. Allan,

M. Banno, K. R. Bryan, A. Doria, J. E. Hansen, S. Kato, Y. Kuriyama, E. Randall-Goodwin,
P. Ruggiero, I. J. Walker, D. K. Heathfield, Coastal vulnerability across the Pacific dominated
by El Niño/Southern Oscillation. Nat. Geosci. 8, 801 807 (2015).

2. N. Leonardi, N. Ganju, S. Fagherazzi, A linear relationship betweenwave power and erosion
determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl. Acad. Sci.
U.S.A. 113, 64 68 (2015).

3. A. Melet, B. Meyssignac, R. Almar, G. Le Cozannet, Under-estimated wave contribution to
coastal sea-level rise. Nat. Clim. Change 8, 234 239 (2018).

4. C. Storlazzi, S. B. Gingerich, A. van Dongeren, O. M. Cheriton, P. W. Swarzenski, E. Quataert,
C. I. Voss, D. W. Field, H. Annamalai, G. A. Piniak, R. M. Call, Most atolls will be uninhabitable
by the mid-21st century because of sea-level rise exacerbating wave-driven flooding. Sci.
Adv. 4, eaap9741 (2018).

5. K. A. Serafin, P. Ruggiero, H. F. Stockdon, The relative contribution of waves, tides, and
nontidal residuals to extreme total water levels on U.S. West Coast sandy beaches. Geophys.
Res. Lett. 44, 1839 1847 (2017).

6. Z. Zhang, X.-M. Li, Global ship accidents and ocean swell-related sea states. Nat. Hazards
Earth Syst. Sci. 17, 2041 2051 (2017).

7. DNVGL, Offshore standards DNVGL-OS-C201 - Structural design of offshore units (2016).

8. ISO/TC 67/SC 7 Offshore structures, ISO 19901-1:2015 Petroleum and natural gas indus-
tries Specific requirements for offshore structures Part 1: Metocean design and op-
erating considerations (2015).

9. A. B. Bugnot, M. Mayer-Pinto, L. Airoldi, E. C. Heery, E. L. Johnston, L. P. Critchley, E. M. A. S-
train, R. L. Morris, L. H. L. Loke, M. J. Bishop, E. V. Sheehan, R. A. Coleman, K. A. Dafforn,
Current and projected global extent of marine built structures. Nat. Sustain. 4,
33 41 (2021).

10. S. Gourvenec, F. Sturt, E. Reid, F. Trigos, Global assessment of historical, current and
forecast ocean energy infrastructure: Implications for marine space planning, sustainable
design and end-of-engineered-life management. Renew. Sustain. Energy Rev. 154,
111794 (2022).

11. A. Toimil, I. J. Losada, R. J. Nicholls, R. A. Dalrymple, M. J. F. Stive, Addressing the challenges
of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 156,
103611 (2020).

12. A. J. Dowdy, G. A. Mills, B. Timbal, Y. Wang, Fewer large waves projected for eastern Aus-
tralia due to decreasing storminess. Nat. Clim. Change 4, 283 286 (2014).

13. F. Ardhuin, J. E. Stopa, B. Chapron, F. Collard, R. Husson, R. E. Jensen, J. Johannessen,
A. Mouche, M. Passaro, G. D. Quartly, V. Swail, I. Young, Observing sea states. Front. Mar. Sci.
6, 124 (2019).

14. J. P. Sierra, M. Casas-Prat, Analysis of potential impacts on coastal areas due to changes in
wave conditions. Clim. Change 124, 861 876 (2014).

15. DNVGL, Class Guideline DNVGL-CG-0130 - Wave loads (2018).

16. R. Almar, R. Ranasinghe, E. W. J. Bergsma, H. Diaz, A. Melet, F. Papa, M. Vousdoukas,
P. Athanasiou, O. Dada, L. P. Almeida, E. Kestenare, A global analysis of extreme coastal
water levels with implications for potential coastal overtopping. Nat. Commun. 12,
3775 (2021).

17. M. I. Vousdoukas, L. Mentaschi, E. Voukouvalas, M. Verlaan, S. Jevrejeva, L. P. Jackson,
L. Feyen, Global probabilistic projections of extreme sea levels show intensification of
coastal flood hazard. Nat. Commun. 9, 2360 (2018).

18. S. Vitousek, P. L. Barnard, C. H. Fletcher, N. Frazer, L. H. Erikson, C. D. Storlazzi, Doubling of
coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 7, 1399 (2017).

19. E. Kirezci, I. R. Young, R. Ranasinghe, S. Muis, R. J. Nicholls, D. Lincke, J. Hinkel, Projections of
global-scale extreme sea levels and resulting episodic coastal flooding over the 21st
century. Sci. Rep. 10, 11629 (2020).

20. J. B. Shope, L. H. Erikson, P. L. Barnard, C. D. Storlazzi, K. Serafin, K. Doran, H. Stockdon,
B. Reguero, F. Mendez, S. Castanedo, A. Cid, L. Cagigal, P. Ruggiero, Characterizing storm-
induced coastal change hazards along the United States West Coast. Sci. Data 9,
224 (2022).

21. S. Caires, A. Sterl, 100-Year return value estimates for ocean wind speed and significant
wave height from the ERA-40 data. J. Climate 18, 1032 1048 (2005).

22. J. Hinkel, L. Feyen, M. Hemer, G. Le Cozannet, D. Lincke, M. Marcos, L. Mentaschi,
J. L. Merkens, H. de Moel, S. Muis, R. J. Nicholls, A. T. Vafeidis, R. S. W. van de Wal,
M. I. Vousdoukas, T. Wahl, P. J. Ward, C. Wolff, Uncertainty and bias in global to regional
scale assessments of current and future coastal flood risk. Earth s Future 9,
e2020EF001882 (2021).

23. J. E. Stopa, K. F. Cheung, Intercomparison of wind and wave data from the ECMWF re-
analysis interim and the NCEP Climate Forecast System Reanalysis. Ocean Model. 75,
65 83 (2014).

24. J. E. Stopa, F. Ardhuin, A. Babanin, S. Zieger, Comparison and validation of physical wave
parameterizations in spectral wave models. Ocean Model. 103, 2 17 (2016).

25. V. D. Sharmar, M. Y. Markina, S. K. Gulev, Global ocean wind-wave model hindcasts forced
by different reanalyzes: A comparative assessment. J. Geophys. Res. Oceans 126,
e2020JC016710 (2021).

26. J. Morim, M. Hemer, X. L. Wang, N. Cartwright, C. Trenham, A. Semedo, I. Young, L. Bricheno,
P. Camus, M. Casas-Prat, L. Erikson, L. Mentaschi, N. Mori, T. Shimura, B. Timmermans,
O. Aarnes, Ø. Breivik, A. Behrens, M. Dobrynin, M. Menendez, J. Staneva, M. Wehner, J. Wolf,
B. Kamranzad, A. Webb, J. Stopa, F. Andutta, Robustness and uncertainties in global
multivariate wind-wave climate projections. Nat. Clim. Change 9, 711 718 (2019).

27. A. Meucci, I. R. Young, M. Hemer, K. Ebru, R. Roshanka, Projected 21st century changes in
extreme wind-wave events. Sci. Adv. 6, eaaz7295 (2020).

28. L. Mentaschi, M. I. Vousdoukas, E. Voukouvalas, A. Dosio, L. Feyen, Global changes of
extreme coastal wave energy fluxes triggered by intensified teleconnection patterns.
Geophys. Res. Lett. 44, 2416 2426 (2017).

29. L. M. Bricheno, J. Wolf, Future wave conditions of Europe, in response to high-end climate
change scenarios. J. Geophys. Res. Oceans 123, 8762 8791 (2018).

30. M. Casas-Prat, X. L. Wang, Projections of extreme ocean waves in the arctic and potential
implications for coastal inundation and erosion. J. Geophys. Res. Oceans 125,
e2019JC015745 (2020).

31. A. Patra, S.-K. Min, P. Kumar, X. L. Wang, Changes in extreme ocean wave heights under 1.5
°C, 2 °C, and 3 °C global warming. Weather Clim. Extremes 33, 100358 (2021).

32. X. L. Wang, Y. Feng, V. R. Swail, Changes in global ocean wave heights as projected using
multimodel CMIP5 simulations. Geophys. Res. Lett. 41, 1026 1034 (2014).

33. H. Lobeto, M. Menendez, I. J. Losada, Future behavior of wind wave extremes due to
climate change. Sci. Rep. 11, 7869 (2021).

34. J. G. O Grady, M. A. Hemer, K. L. McInnes, C. E. Trenham, A. G. Stephenson, Projected in-
cremental changes to extreme wind-driven wave heights for the twenty-first century. Sci.
Rep. 11, 8826 (2021).

35. J. Morim, M. Hemer, N. Cartwright, D. Strauss, F. Andutta, On the concordance of 21st
century wind-wave climate projections. Glob. Planet. Change 167, 160 171 (2018).

36. M. Collins, M. Sutherland, L. Bouwer, S.-M. Cheong, T. Frölicher, H. Jacot Des Combes,
M. Koll Roxy, I. Losada, K. McInnes, B. Ratter, E. Rivera-Arriaga, R. D. Susanto, D. Swinge-
douw, L. Tibig, Extremes, abrupt changes and managing risk, in IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate (Cambridge University Press, 2019), pp. 589
655. https://doi.org/10.1017/9781009157964.008.

Morim et al., Sci. Adv. 9, eade3170 (2023) 11 January 2023 11 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E



37. J. Morim, L. H. Erikson, M. Hemer, I. Young, X. Wang, N. Mori, T. Shimura, J. Stopa,
C. Trenham, L. Mentaschi, S. Gulev, V. D. Sharmar, L. Bricheno, J. Wolf, O. Aarnes, J. Perez,
J. Bidlot, A. Semedo, B. Reguero, T. Wahl, A global ensemble of ocean wave climate sta-
tistics from contemporary wave reanalysis and hindcasts. Sci. Data 9, 358 (2022).

38. E. Vanem, Uncertainties in extreme value modelling of wave data in a climate change
perspective. J. Ocean Eng. Mar. Energy. 1, 339 359 (2015).

39. S. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer Series in Sta-
tistics book series (SSS), 2001).

40. S. Caires, JCOMM Technical Report No. 57 - Extreme value analysis: Wave data (2011).

41. R. M. Campos, J. H. G. M. Alves, C. Guedes Soares, L. G. Guimaraes, C. E. Parente, Extreme
wind-wave modeling and analysis in the south Atlantic ocean. Ocean Model. 124,
75 93 (2018).

42. A. Meucci, I. R. Young, Ø. Breivik, Wind and wave extremes from atmosphere and wave
model ensembles. J. Climate 31, 8819 8842 (2018).

43. K. Hodges, A. Cobb, P. L. Vidale, How well are tropical cyclones represented in reanalysis
datasets? J. Climate 30, 5243 5264 (2017).

44. M. Rohrer, S. Brönnimann, O. Martius, C. C. Raible, M. Wild, G. P. Compo, Representation of
extratropical cyclones, blocking anticyclones, and alpine circulation types in multiple re-
analyses and model simulations. J. Climate 31, 3009 3031 (2018).

45. Z. S. Aarons, S. J. Camargo, J. D. O. Strong, H. Murakami, Tropical cyclone characteristics in
the MERRA-2 reanalysis and AMIP simulations. Earth Space Sci. 8, e2020EA001415 (2021).

46. G.-F. Bian, G.-Z. Nie, X. Qiu, Howwell is outer tropical cyclone size represented in the ERA5
reanalysis dataset? Atmos. Res. 249, 105339 (2021).

47. K. I. Hodges, R. W. Lee, L. Bengtsson, A comparison of extratropical cyclones in recent
reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate 24,
4888 4906 (2011).

48. T. Wahl, I. D. Haigh, R. J. Nicholls, A. Arns, S. Dangendorf, J. Hinkel, A. B. A. Slangen, Un-
derstanding extreme sea levels for broad-scale coastal impact and adaptation analysis.Nat.
Commun. 8, 16075 (2017).

49. J. Morim, C. Trenham, M. Hemer, X. L. Wang, N. Mori, M. Casas-Prat, A. Semedo, T. Shimura,
B. Timmermans, P. Camus, L. Bricheno, L. Mentaschi, M. Dobrynin, Y. Feng, L. Erikson, A
global ensemble of oceanwave climate projections from CMIP5-drivenmodels. Sci. Data 7,
105 (2020).

50. Z. Hausfather, G. P. Peters, Emissions The business as usual story is misleading. Nature
577, 618 620 (2020).

51. R. J. Haarsma, M. J. Roberts, P. L. Vidale, C. A. Senior, A. Bellucci, Q. Bao, P. Chang, S. Corti,
N. S. Fučkar, V. Guemas, J. von Hardenberg, W. Hazeleger, C. Kodama, T. Koenigk,
L. R. Leung, J. Lu, J.-J. Luo, J. Mao, M. S. Mizielinski, R. Mizuta, P. Nobre, M. Satoh,
E. Scoccimarro, T. Semmler, J. Small, J.-S. von Storch, High resolution model intercom-
parison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185 4208 (2016).

52. S. J. Camargo, Global and regional aspects of tropical cyclone activity in the CMIP5models.
J. Climate 26, 9880 9902 (2013).

53. T. Shimura, N. Mori, H. Mase, Future projections of extreme ocean wave climates and the
relation to tropical cyclones: Ensemble experiments of MRI-AGCM3.2H. J. Climate 28,
9838 9856 (2015).

54. B. Timmermans, D. Stone, M. Wehner, H. Krishnan, Impact of tropical cyclones on modeled
extreme wind-wave climate. Geophys. Res. Lett. 44, 1393 1401 (2017).

55. C. M. Patricola, M. F. Wehner, Anthropogenic influences on major tropical cyclone events.
Nature 563, 339 346 (2018).

56. R. K. Hoeke, K. L. McInnes, J. C. Kruger, R. J. McNaught, J. R. Hunter, S. G. Smithers, Wide-
spread inundation of Pacific islands triggered by distant-source wind-waves. Glob. Planet.
Change 108, 128 138 (2013).

57. M. Marcos, J. Rohmer, M. I. Vousdoukas, L. Mentaschi, G. le Cozannet, A. Amores, Increased
extreme coastal water levels due to the combined action of storm surges and wind waves.
Geophys. Res. Lett. 46, 4356 4364 (2019).

58. M. I. Vousdoukas, J. Clarke, R. Ranasinghe, L. Reimann, N. Khalaf, T. M. Duong, B. Ouweneel,
S. Sabour, C. E. Iles, C. H. Trisos, L. Feyen, L. Mentaschi, N. P. Simpson, African heritage sites
threatened as sea-level rise accelerates. Nat. Clim. Change 12, 256 262 (2022).

59. M. I. Vousdoukas, L. Mentaschi, E. Voukouvalas, M. Verlaan, L. Feyen, Extreme sea levels on
the rise along Europe s coasts. Earth s Future 5, 304 323 (2017).

60. G. Dodet, A. Melet, F. Ardhuin, X. Bertin, D. Idier, R. Almar, The contribution of wind-
generated waves to coastal sea-level changes. Surv. Geophys. 40, 1563 1601 (2019).

61. I. A. Houghton, C. Hegermiller, C. Teicheira, P. B. Smit, Operational assimilation of spectral
wave data from the Sofar Spotter network. Geophys. Res. Lett. 49, e2022GL098973 (2022).

62. J. E. Stopa, Wind forcing calibration and wave hindcast comparison using multiple re-
analysis and merged satellite wind datasets. Ocean Model. 127, 55 69 (2018).

63. W. Sasaki, Impact of satellite data assimilation in atmospheric reanalysis on the marine
wind and wave climate. J. Climate 29, 6351 6361 (2016).

64. P. Malakar, A. P. Kesarkar, J. Bhate, A. Deshamukhya, Appraisal of data assimilation tech-
niques for dynamical downscaling of the structure and intensity of tropical cyclones. Earth
Space Sci. 7, e2019EA000945 (2020).

65. J.-E. Kim, S.-Y. Hong, A global atmospheric analysis dataset downscaled from the
NCEP DOE reanalysis. J. Climate 25, 2527 2534 (2012).

66. S. Muis, M. Verlaan, H. C. Winsemius, J. C. J. H. Aerts, P. J. Ward, A global reanalysis of storm
surges and extreme sea levels. Nat. Commun. 7, 11969 (2016).

67. T. W. Anderson, D. A. Darling, A test of goodness of fit. J. Am. Stat. Assoc. 49,
765 769 (1954).

68. H. Akaike, Canonical correlation analysis of time series and the use of an information cri-
terion, inMathematics in Science and Engineering, R. K. Mehra, D. G. Lainiotis, Eds. (Elsevier,
1976), vol. 126, pp. 27 96. www.sciencedirect.com/science/article/pii/
S0076539208608693.

69. F. J. Méndez, M. Menéndez, A. Luceño, I. J. Losada, Analyzing monthly extreme sea levels
with a time-dependent GEV model. J. Atmos. Oceanic Tech. 24, 894 911 (2007).

70. J. G. O Grady, A. G. Stephenson, K. L. McInnes, Gauging mixed climate extreme value
distributions in tropical cyclone regions. Sci. Rep. 12, 4626 (2022).

71. B. S. Everitt, Cluster Analysis (Wiley Series in Probability and Statistics, ed. 5, 2011).

72. J. Morim, S. Vitousek, M. Hemer, B. Reguero, L. Erikson, M. Casas-Prat, X. L. Wang,
A. Semedo, N. Mori, T. Shimura, L. Mentaschi, B. Timmermans, Global-scale changes to
extreme ocean wave events due to anthropogenic warming. Environ. Res. Lett. 16,
074056 (2021).

73. T. Zhang, B. Tian, D. Sengupta, L. Zhang, Y. Si, Global offshore wind turbine dataset. Sci.
Data 8, 191 (2021).

74. C. Izaguirre, I. J. Losada, P. Camus, J. L. Vigh, V. Stenek, Climate change risk to global port
operations. Nat. Clim. Change 11, 14 20 (2021).

75. B. G. Reguero, M. Menéndez, F. Méndez, R. Mínguez, I. Losada, A global ocean wave (GOW)
calibrated reanalysis from 1948 onwards. Coast. Eng. 65, 38 55 (2012).

76. G. A. Smith, M. Hemer, D. Greenslade, C. Trenham, S. Zieger, T. Durrant, Global wave
hindcast with Australian and Pacific Island focus: From past to present. Geosci. Data J. 8,
24 33 (2021).

77. J. Perez, M. Menendez, I. Losada, GOW2: A global wave hindcast for coastal applications.
Coast. Eng. 124, 1 11 (2017).

78. J. E. Stopa, F. Ardhuin, E. Stutzmann, T. Lecocq, Sea state trends and variability: Consistency
between models, altimeters, buoys, and seismic data (1979 2016). J. Geophys. Res. Oceans
124, 3923 3940 (2019).

79. B. W. Timmermans, C. P. Gommenginger, G. Dodet, J.-R. Bidlot, Global wave height trends
and variability from new multimission satellite altimeter products, reanalyses, and wave
buoys. Geophys. Res. Lett. 47, e2019GL086880 (2020).

80. J.-R. Bidlot, G. Lemos, A. Semedo, 2nd International Workshop on Waves, Storm Surges, and
Coastal Hazards incorporating 16th International Workshop on Wave Hindcasting and Fore-
casting (2019), Melbourne, Australia, 10 to 15 November 2019.

81. T. Shimura, N. Mori, High-resolution wave climate hindcast around Japan and its spectral
representation. Coast. Eng. 151, 1 9 (2019).

82. D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae,
M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot,
N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy,
H. Hersbach, E. V. Hólm, L. Isaksen, P. Kållberg, M. Köhler, M. Matricardi, A. P. M. Nally,
B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.-
N. Thépaut, F. Vitart, The ERA-Interim reanalysis: Configuration and performance of the
data assimilation system. Q. J. Roy. Meteorol. Soc. 137, 553 597 (2011).

83. H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas,
C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo,
P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee,
M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger,
S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu,
G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.-N. Thépaut, The ERA5 global
reanalysis. Q. J. Roy. Meteorol. Soc. 146, 1999 2049 (2020).

Acknowledgments: We acknowledge the CMIP5 and COWCLIP projects for making data
available. We also acknowledge A. Bugnot for providing the global dataset of offshore and
coastal infrastructure and P. Camus and C. Izaguirre for providing the global database of open-
coast ports. We also thank T. Shimura for providing the Japanese wave buoy dataset. Funding:
J.M. acknowledges support of the University of Central Florida (UCF) Pre-eminent Postdoctoral
Program (P3) and the NASA Sea Level Change Team, SLCT. T.W. acknowledges support of the
National Science Foundation (NSF) (through grant number 2141461). S.V. acknowledges
support by the U.S. Geological Survey (USGS). I.Y. acknowledges the financial support of the
Australian Research Council (grant number DP210100840). M.H. is supported by the Australian
Commonwealth National Environmental Science Program (NESP) and CSIRO s Climate Science

Morim et al., Sci. Adv. 9, eade3170 (2023) 11 January 2023 12 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E

https://sciencedirect.com/science/article/pii/S0076539208608693
https://sciencedirect.com/science/article/pii/S0076539208608693


Centre. Author contributions: J.M. conceived the analysis. J.M. and T.W. conducted the
technical analysis with contributions from S.V. and S.S.-A. J.M. wrote the manuscript with input
from all coauthors, including I.Y. and M.H. Competing interests: The authors declare that they
have no competing interests. Data and materials availability: The raw climate datasets used
in the analysis are availablewithin the CSIRO data servers (COWCLIP datasets) at https://thredds.
aodn.org.au/thredds/catalog/CSIRO/Climatology/COWCLIP2/catalog.html. Thewave buoy data
are available from the European Union s (EU) Earth observation Programme Copernicus online
database (see www.copernicus.eu/en/access-data), the National Data Buoy Center (NDBC) (see
www.ndbc.noaa.gov/obs.shtml), and the Australian Integrated Marine Observing System

(IMOS): https://imos.org.au/facilities/nationalmooringnetwork/wave-buoys. All data needed to
evaluate the conclusions in the paper are present in the paper and/or the Supplementary
Materials.

Submitted 8 August 2022
Accepted 9 December 2022
Published 11 January 2023
10.1126/sciadv.ade3170

Morim et al., Sci. Adv. 9, eade3170 (2023) 11 January 2023 13 of 13

SC I ENCE ADVANCES | R E S EARCH ART I C L E

https://thredds.aodn.org.au/thredds/catalog/CSIRO/Climatology/COWCLIP2/catalog.html
https://thredds.aodn.org.au/thredds/catalog/CSIRO/Climatology/COWCLIP2/catalog.html
http://www.copernicus.eu/en/access-data
http://www.ndbc.noaa.gov/obs.shtml
https://imos.org.au/facilities/nationalmooringnetwork/wave-buoys


Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS. 

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Understanding uncertainties in contemporary and future extreme wave events for
broad-scale impact and adaptation planning
Joao Morim, Thomas Wahl, Sean Vitousek, Sara Santamaria-Aguilar, Ian Young, and Mark Hemer

Sci. Adv. 9 (2), eade3170.  DOI: 10.1126/sciadv.ade3170

View the article online
https://www.science.org/doi/10.1126/sciadv.ade3170
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 12, 2023

https://www.science.org/content/page/terms-service

	INTRODUCTION
	RESULTS
	Extreme value analysis
	Comparison with observations
	Clustering analysis
	Uncertainty analysis
	Extreme value projections

	DISCUSSION
	MATERIALS AND METHODS
	Contemporary global wave reanalysis and hindcasts
	Global wave buoy measurements
	Comparison against model estimates
	Statistical extreme value models
	Suitability of underlying data and statistical model fit
	Anderson-Darling statistical test
	Significance of shape parameter fit
	Akaike information criterion
	Bayesian information criterion

	Clustering methodology
	Weighted ensemble mean of global wave hindcasts and reanalyses
	Global wave model projections
	Calculation of projected future changes
	Calculation of uncertainty
	Present-day uncertainty
	Projection uncertainty
	Combined uncertainty

	Offshore and coastal infrastructure data

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

