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Abstract— We consider a multi-agent system in which a
decentralized team of agents controls a stochastic system in
the presence of an adversary. Instead of committing to a fixed
information sharing protocol, the agents can strategically decide
at each time whether to share their private information with
each other or not. The agents incur a cost whenever they
communicate with each other and the adversary may eavesdrop
on their communication. Thus, the agents in the team must
effectively coordinate with each other while being robust to
the adversary’s malicious actions. We model this interaction
between the team and the adversary as a stochastic zero-
sum game where the team aims to minimize a cost while the
adversary aims to maximize it. Under some assumptions on
the adversary’s capabilities, we characterize a min-max control
and communication strategy for the team. We supplement this
characterization with several structural results that can make
the computation of the min-max strategy more tractable.

I. INTRODUCTION

In multi-agent systems, the agents may not be able to fully
observe the system state and the actions of other agents. A
multi-agent system is said to have an asymmetric information
structure when different agents have access to different
information. Each agent must select its actions based only
on the limited information available to it. Decision-making
scenarios with information asymmetry arise in a range of
domains such as autonomous driving, power grids, trans-
portation networks, cyber-security of networked computing
and communication systems, and competitive markets and
geopolitical interactions (see, for example, [1]-[5]).

Based on the nature of interactions between the agents,
multi-agent systems can broadly be classified into three
types: (i) teams, (ii) games and (iii) team-games. In teams,
all the agents act in a cooperative manner to achieve a
shared objective. In games, each agent has its own objective
and is self-interested. In team-games, agents within a team
are cooperative but the team as a whole is non-cooperative
with respect to other teams. For agents in the same team,
sharing information with each other aids coordination and
improves performance. Various information sharing mecha-
nisms [4] arise depending on the underlying communication
environment. For instance, if the agents have access to
a perfect, costless communication channel, they can share
their entire information with each other. On the other hand,
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if communication is too expensive, the agents may never
share their information. In this paper, instead of fixing the
information sharing mechanism for agents in a team, we
consider a model in which the agents can strategically decide
whether to share their information with other agents or not.
By doing so, the agents in the team can balance the trade-off
between the control cost and the communication cost. This
joint design of control and communication strategies was
considered in [6] and a team-optimal solution was provided
using the common information approach [4].

In some scenarios (e.g. a battlefield), the team of agents
may be susceptible to adversarial attacks. Also, the adversary
may have the capability to intercept the communication
among the agents. This makes the information sharing
mechanism substantially more complicated. While sharing
information with teammates may be beneficial for intra-
team coordination, it can reveal sensitive information to
the adversary. The adversary may exploit this information
to inflict severe damage on the system. Such interactions
between a team of cooperative agents and an adversary can
be modeled as a zero-sum team-game [7].

In this paper, our focus is on a zero-sum game between
a team of two agents and an adversary in which the team
aims to minimize the control and communication cost while
the adversary aims to maximize it. The system state in this
game has three components: a local state for each agent
in the team and global state. The adversary controls the
global state and each of the agents control their respective
local states. We restrict our attention to models in which the
agents in the team are more informed than the adversary. Our
model allows us to capture several scenarios of interest. For
example, the adversary in our model can affect the quality
of and the cost associated with the agents’ communication
channel and the agents can perfectly or imperfectly encrypt
their communication. We analyze a family of such zero-sum
team vs. adversary game and provide a characterization of
an optimal (min-max) control and communication strategy
for the team. This characterization is based on common
information belief based min-max dynamic program for team
vs. team games discussed in [7].

a) Related Works: There is a large body of prior
work on decision-making in multi-agent systems. In this
section, we discuss related works on cooperative teams and
team-games. In decentralized stochastic control literature,
a variety of information structures (obtained from different
information sharing protocols) have been considered [3]-[6].
Another well-studied class of multi-agent teams with asym-
metric information is the class of Decentralized Partially Ob-
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servable Markov Decision Processes (Dec-POMDPs). Sev-
eral methods for solving such generic Dec-POMDPs exist in
the literature [8]-[13].

Dynamic games among teams have received some atten-
tion over the past few years. Two closely related works are
[14] and [7]. In [14], a model of games among teams where
players in a team internally share their information with
some delay was investigated. The authors of [14] characterize
Team-Nash equilibria under certain existence assumptions. In
[7], a general model of zero-sum games between two teams
was considered. For this general model, the authors provide
bounds on the upper and lower values of the zero-game. A
relatively specialized model was also studied in [7] and for
this model, a min-max strategy for one of the teams was
characterized in addition to the min-max value. In [15], the
authors formulate and solve a particular malicious intrusion
game between two teams of mobile agents.

The works that are most closely related to our work are [6]
and [7]. In [6], the authors consider a team problem in which
the agents can strategically decide when to communicate
with each other. While our model is inspired by the model in
[6], our model is substantially more general and complicated
because of the presence of an adversary. In team problems,
the agents can use deterministic strategies without loss of
optimality, whereas in games, the agents can benefit with
randomization. Due to the randomness in agents’ strategies
and the need to solve a min-max problem as opposed to
a simpler minimization problem, different techniques are
required for analyzing and solving the team-game. Our game
model is a special case of one of the models studied in [7]
and hence, we can use the results in [7] to characterize a min-
max strategy for the team. While we borrow some results
from [7], our results on private information reduction in this
paper are novel.

b) Notation: Random variables are denoted by upper
case letters, their realizations by the corresponding lower
case letters. In general, subscripts are used as time index
while superscripts are used to index decision-making agents.
For time indices t; < t9, Xy, ., 1S the short hand notation
for the variables (Xy,, Xy, 11, .., Xt,). Similarly, X2 is the
short hand notation for the collection of variables (X!, X?).
Operators P(-) and E[-] denote the probability of an event,
and the expectation of a random variable respectively. For
random variables/vectors X and Y, P(:|Y = y), E[X|Y = y]
and P(X = 2 | Y = y) are denoted by P(-|y), E[X|y] and
P(x | y), respectively. For a strategy g, we use P9(-) (resp.
E?[-]) to indicate that the probability (resp. expectation)
depends on the choice of g. For any finite set A, AA denotes
the probability simplex over the set 4. For any two sets .4
and B, F(A, B) denotes the set of all functions from A to
B. We define RAND to be mechanism that given (i) a finite
set A, (ii) a distribution d over A and a random variable
K uniformly distributed over the interval (0, 1], produces a
random variable X € A with distribution d, i.e.,

X =RAND(A,d, K) ~ d. (1)

II. PROBLEM FORMULATION

Consider a discrete-time control system with a team of two
agents (agent 1 and agent 2) and an adversary. The system
comprises of a global state and local states for each agent
in the team. Let X € X denote the global state and let
X} € X% denote the local state of agent i. X; := (X}, X?)
represents the local state of both agents in the team. The
initial global state and the initial local states of both agents
are independent random variables with state X! having the
probability distribution Py, ¢ = 0,1, 2. Each agent perfectly
observes its own local state and the global state is perfectly
observed by all agents (including the adversary). Let U} €
U’ denote the control action of agent i at time t. U; :=
(U},U?) denotes the control actions of both agents at time
t. Further, let U € U® denote the control action of the
adversary at time ¢. The global and local states of the system
evolve according to

XD = R(XP, U W), (2)
th+1:k1zt(Xt07thv tl’th)v 1=1,2, (3)

where Wi € Wi, i = 0,1,2 is the disturbance in dy-
namics with probability distribution Py . The initial states
X0, X}, X? and the disturbances {W/}£2,, i = 0,1,2, are
independent random variables. Note that the next local state
of agent ¢ depends on the current local state and control
action of agent ¢ and the global state. The next global
state depends on the current global state and the adversary’s
action.

In addition to deciding the control actions at each time,
the two agents in the team need to decide whether or not
to initiate communication at each time. We use the binary
variable M; to denote the communication decision taken by
agent i. Let M{" := max(M}, M?) and let Z{" represent
the information exchanged between the agents at time ¢. In
this model when global state X = x, agents lose packets or
fail to communicate with probability p.(z) even when one
(or both) of the agents decides to communicate, i.e. when
M¢™ = 1. Here, p. : X° — [0,1] maps the global state
to a failure probability. Based on the communication model
described above we can define variable Z{" given that X =
T as:

th’Q, w.p. 1 —pe(x) if Mf" =1.
Zi" =< ¢, w.p. pe(x) it M{" =1. 4)
o, if M7 =0.

At time ¢, the adversary observes a noisy version Y; of the
variable Z;" given by

Yt:lt(ZfTaMt7Xt0aWty)7 (5)

where W/ is the observation noise.

Information structure and decision strategies: At the
beginning of the ¢-th time step, the information available to
agent ¢ is given by (i) history of global states and its local
states, (ii) its control actions, (iii) communication actions and
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messages and (iv) adversary’s action and observation history:
Il = (6)
0 A , 1.2
{Xlztv Xi:ta U{:t—la M1:t71v Zle:rt—lv Uf:t—la Yl:tfl}'

Agent ¢ can use this information to make its communication
decision at time t. We allow the agent to randomize its
decision. Thus, agent ¢ first selects a distribution (5Mf over
{0,1} based n its information and then it randomly picks
M} according to the chosen distribution:

SM{ = f{(I});  Mj=raND({0,1},6M}, K{) (7

where K} i =1,2,t > 1, are independent random variables
uniformly distributed over the interval (0,1] that are used
for randomization (these variables are also independent of
initial states and all noises/disturbances). The function f; is
referred to as the communication strategy of agent ¢ at time
t. At this point, the adversary does not take any action. After
the communication decisions are made and the resulting
communication (if any) takes place, the information available
to agent i is I'y = {I}, Z¢", M, V).

I denotes the adversary’s information just before the
communication at time ¢ and I} denotes the adversary’s
information after communication at time ¢*. Our model
allows for different scenarios of adversary’s information
which will be described later.

Agent 7 and the adversary choose their control actions
based on their post-communication information according to

SU} = gi(I}y) ©)
U} = RAND(U, 8U}, KL), i=1,2,a, 9)

where KtiJr,i = 1,2,t > 1, are independent random vari-
ables uniformly distributed over the interval (0, 1] that are
used for randomization (these variables are also independent
of all other randomization variables, initial states and all
noises/disturbances). The functions g! and g¢ are referred to
as the control strategy of agent ¢ and the adversary at time
t. The tuples f*:= (f{, f4,..., f&) and ¢' := (g%, g3, ..., g}r)
are called the communication and control strategy of agent
i respectively. The collection f := (f!, f2), g := (g%, ¢°)
of communication and control strategies of both agents are
called the communication and control strategy of the team.
Similarly, ¢* := (¢¢, 99, ..., g%) is called the control strategy
of the adversary.

We can split the information available to the agents into
two parts — common information and private information.
Common information at a given time is the information
available to all the decision-makers (including the adversary)
at the given time. Private information of an agent includes
all of its information at the given time except the common
information.

1) At the beginning of time step ¢, before the communica-

tion decisions are made, the common (C}) and private
information (Py) is defined as

2) After the communication decisions are made and the re-
sulting communication (if any) takes place, the common
and private information is defined as

CtJr = t1+ m[t2+ n f_{.
Pl =1, \Cy Vie{l,2,a}.

12)
13)

Assumption 1. We assume that the following conditions are
satisfied:
1) Monotonicity: The adversary’s information grows with
time. Thus, I C I C I¢,, for every t.
2) Nestedness: The adversary’s information is common
information and each agent in the team has access to
adversary’s information, i.e.,

Cy=1If CI}NI} = O™
Ct+ = ItaJr g It1+ N It2+ = EEAM
Therefore, P = P, = &

3) Common Information Evolution: (i) Let Z;+ = Cy+ \ C
and Zi1 = Ciq1 \ Cy+ be the increments in common
information at times t* and t + 1, respectively . Thus,
Ct+ = {Ct, Zt+} and Ct+1 = {Ct+, Zt+1}~ The
common information evolves as

Zgv = G+ (Ptl:Qv Mtl:Qﬂ Zter7 Yt)?
Ly = Ct+1(Pt1-¢:—2, Ut1:2, X?fl)

(14
(15)
where (i1 and (4+ are fixed transformations.

4) Private Information Evolution: The private information
evolves as

tiJr = 'f;Jr (Pt1:2a Mtl:Qv Zterﬁ Y;)
i i 1:2 771:2 10:2
PtZ+1 = E;+1(Pt+ 7Ut 7Xt+1)

(16)
a7)

where §f+ and & 11 are fixed transformations and i =
1,2

Due to the nestedness condition in Assumption 1, the team is
always more-informed than the adversary. Scenarios where
the adversary has some private information are beyond the
scope of this paper. The third and fourth conditions in
Assumption 1 on the evolution of common and private
information are very mild [4], [16] and most information
structures of interest satisfy these conditions.

Strategy optimization problem: At time ¢, the system
incurs a cost ¢ (X}, Xy, Us, U?) that depends on the global
state, the team’s state, control actions of both agents and the
adversary’s action. Whenever agents decide to share their
states with each other, they incur a state-dependent cost
p(X?, X;). The system runs for a time horizon T". The total
expected cost over the time horizon T associated with a

strategy profile ((f, g),g%) is:
J((f.9),9") =

T
E((f:9):9%) {Z (X2, Xy, Uy, UR) + p(Xg,Xt)]l{JW{’““:l} .

t=1

(18)

7l 2 a
Cf = I; NI NI (10)  The objective of the team is to find communication and
P/ :=I;\C; Vie{l,2,a}. (11)  control strategies (f, g) for the team in order to minimize the
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worst-case expected total expected cost maxga J((f,g), g%).
This min-max optimization problem can be viewed as a zero-
sum game between the team and the adversary. We denote
this zero-sum game with Game ¢. We denote the min-max
value of this game ¢ with S*(¥), i.e.,

S“¥) = minmax J((f,9),9%)-
(f.9) 9°

)

19)

III. PRELIMINARY RESULTS AND SIMPLIFIED GAME ¥

In this section we show that agents in the team can
ignore parts of their information without losing optimality.
This removal of information narrows the search for optimal
strategies to a class of simpler strategies and is a key step in
our approach for finding optimal strategies.

Let us define the team’s common private information D,
before communication at time ¢ and D;+ after communica-
tion at time t* as

D, := P! n PZ; Dy :=PL NP (20)

The variables Cy, D; (resp. Cy+, Dy+) constitute the team’s
common information at time t (resp. t1), i.e.,

C;UDy =1} NI =CreM (1)
Cy+ UDyw = Iy NIZ = CIEM. (22)

Notice that C; and D, depend on the adversary’s information
structure. However, since the team’s information structure is
fixed, Ct, D; combined do not depend on the adversary’s
information structure. The following lemma establishes a key
conditional independence property that will be critical for our
analysis.

Lemma 1 (Conditional independence property). At any
time t, the two agents’ local states and control actions
are conditionally independent given the team’s common
information (Cy, D) (before communication) or Cy+, Dy+
(after communication). That is, if ci,di,ci+,d+ are the
realizations of the common information and common private
information before and after communication respectively,
then for any realization x1.t,u1.t—1 of states and actions,
we have
2

P21, urs—1ler, di) = [[ P2l uly o lende),  (23)
=1
P(x1:t7 ul:tlct+7dt+) = H P(‘/Ei:h ui:t|ct+adt+)' (24)

i=1

Further, P(z%.,,ul.,_1|ci, dy) and P(xi,, ul,|ci+,dps) de-
pends on only on agent i’ strategy.

Proof. The proof of this lemma is very similar to the proof
of Lemma 1 in [6]. For a detailed proof, see Appendix I in
[17]. O

The following proposition shows that agent ¢ at time ¢
and t* can ignore its past states and actions, i.e. X{,, ; and
Ui, _,, without losing optimality. This allows agents in the
team to use simpler strategies where the communication and

control decisions are functions only of the current state and
the team’s common information.

Proposition 1. Agent i, i = 1,2, can restrict itself to
strategies of the form below

Mtl ~ fti(XtiaCth)
UtZ ~ gz(Xtiact‘*'aDt"')

(25)
(26)

without loss of optimality. In other words, at time t and
tT, agent i does not need the past local states and actions,
X1.,_1,U{_4, for making optimal decisions.

Proof. See Appendix II in [17]. O

Proposition 1 leads to a simplified game in which the
information used by the players in the team is substantially
reduced. We will refer to this game as Game ¥;. Game ¥
has the same dynamics and cost model as Game ¥. The
key difference between these two games lies in the team’s
information structure and strategy spaces. In Game ¥, the
information used by player i in the team at time ¢ and ¢+
respectively is

Il = {X]}uD;UC,
Iti+ = {XZ} U Dt+ U Ct+.

27
(28)

Therefore, the common information in the simplified game
¥, is the same as in the original game ¥¢. In the simplified
game ¥, the private information! P} = X} U D;.

Corollary 1. If (f*,g*) is a min-max strategy in Game 9,
then it is a min-max strategy in Game 4. Further, the min-
max values of games 4 and Y are identical.

Henceforth, we make the following mild assumption on
the information structure of agents in the simplified game ¥;.
Several examples that satisfy this assumption are provided in
[17].

Assumption 2. The information structure in the simplified
game 9Ys with reduced private information satisfies Assump-
tion 1.

Remark 1. The reduced information in equations (27) and
(28) is unilaterally sufficient information (see Definition 2.4
in [18]) for each player in the team. Proposition 1 can
alternatively be shown using the concept of unilaterally
sufficient information and Theorem 2.6 in [18].

IV. DYNAMIC PROGRAM CHARACTERIZATION OF A
MIN-MAX STRATEGY

It was shown in [7] that for certain zero-sum game
models with a special structure, a virtual game ¥, can be
constructed based on the simplified Game ¥, and this virtual
game can be used to obtain the min-max value and a min-
max strategy for the minimizing team. In our game model
described in Section II, the adversary does not have any
private information at any given time and hence, this model

'With a slight abuse of notation, we use the same letter for denoting
private information in both games ¢ and ¥;.
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can be viewed as a special case of the game model described
in paragraph (a), Section IV-A of [7]. Therefore, we can use
the result in [7] to obtain the min-max value and a min-
max strategy for our original Game ¢. The virtual game ¥,
involves the same underlying system model as in game ¥;.
The main differences among games ¥; and ¥, lie in the
manner in which the actions used to control the system are
chosen. In the virtual game ¥, all the players in the team
of game ¥; are replaced by a virtual player (referred to as
virtual player b) and the adversary is replaced by a virtual
player (referred to as virtual player a). These virtual players
in Game ¥, operate as described in the following sub-section.

A. Virtual Game 9,

Consider virtual player a associated with the adversary.
At each time t*, virtual player a selects a distribution
I'¢ over the space Uf*. The set of all such mappings is
denoted by B = Alf. Consider virtual player b associated
with the team. At each time ¢ and for each ¢ = 1,2,
virtual player b selects a function I'! that maps private
information P to a distribution §M; over the space {0, 1}.
Thus, 6M} = Ti(P}). The set of all such mappings is
denoted by Bi = F(P},A{0,1}). We refer to the tuple
Iy = (T'},T'%) as virtual player b’s prescription at time t.
The set of all possible prescriptions for virtual player b at
time ¢ is denoted by B, = B} x BZ. At each time ¢+ and
for each © = 1,2, virtual player b selects a function Ai that
maps private information P}, to a distribution U, over
the space U;. Thus, 6U; = Ai{(P{,). The set of all such
mappings is denoted by B}, = F(P;,,AU}). We refer to
the tuple A; = (A}, A?) as virtual player b’s prescription
at time t*. The set of all possible prescriptions for virtual
player b at time ¢* is denoted by B+ = B} x B2 . Once
virtual players select their prescriptions at times ¢ and ¢+,
the corresponding actions are generated as

M} = ranD({0, 1}, T%L(P}), K}) (29)
U = RAND(U{, A{(P)), K} ) (30)
U = RAND(U, T, K2 ). S

In virtual game ¥., virtual players’ information I} at
time ¢ comprises of the common information C; and the
past prescriptions of both players I'1.;—1, (., _;, A1.—1. At
time ¢, Virtual player b selects its prescription according to
a control law x?, ie. I'y = x%(I?). Note that at time t,
Virtual player a does not take any action. At time tT, the
virtual players information I, comprises of C+ and all the
past prescriptions of both players I'y.;, I'{., _;, A1.4—1. Virtual
player a selects its prescription according to a control law x¢,
ie., I'f = x¢ (1) and virtual player b selects its prescription
according to a control law X, ie. Ay = xb(I%). For
virtual player a, the collection of control laws over the entire
time horizon x* = (x{,..., x%) is referred to as its control
strategy. Similarly for virtual player b. Let H¢ be the set of
all possible control laws for virtual player a at time ¢ and
let H® be the set of all possible control strategies for virtual
player a, i.e. H* = H{ x --- x H%. For virtual player b,

the collection of control laws over the entire time horizon
b = (Xl{7xll’+ ...,XbT,XbTJ,) is referred to as its control
strategy. Let H? (resp. Hiﬁr) be the set of all possible control
laws for virtual player b at time ¢ (resp. t*) and let H® be
the set of all possible control strategies for virtual player b.
The total cost associated with the game for a strategy profile
(x*,x") is
T x") = (32)
a b T
RO [th(Xf,Xt,Ut,Ut“) +p(XP, X)L parprony |-
t=1
where the functions ¢; and p are the same as in games ¢ and
¥,. In this virtual game, virtual player a aims to maximize
the cost while virtual player b aims to minimize the cost.
The upper value of Game ¥, is denoted by S*(¥.).

B. Common Information Belief and the Dynamic Program

1) Common Information Belief: Before communication at
time ¢, the CIB is given as:

;(2°, z,d) = P[X? = 2°, X, = 2, D, = d|I}].  (33)

After the communication decisions are made and Z;" is
realized, the CIB is given as:

My (2°, 2, d) = P[X? = 2% X; = o, Dys = d|I}y]. (34)

The CIB satisfies two key properties: (i) the CIB can be
computed without using the virtual players’ strategies x®
and x?; (ii) since the adversary does not have any private
information at any given time, the CIB does not depend on
the adversary’s prescriptions (see Section IV-A and Appendix
VI of [7]). This can be stated formally as the following
lemma.

Lemma 2. I1; (29, 21,dy) is the belief P(X{ = 29, X; =
x1,D1 = dy) and for each t > 1,

Ht-‘rl = Bt (Ht+ ) At7 Zt-i—l)a

where 1, 3: are fixed transformations derived from the
system model using Bayes’ rule (see Appendix VI of [7]).

M+ = (104, Ty, Zy+ )

We now describe the dynamic program that provides us
with the value of the game ¢ and an algorithm to compute
a min-max strategy for the team.

2) Dynamic Program: Define the value function
Vrsi(m) = 0 for all = at time T + 1. The cost-to-go
functions w; (resp. wy+) and value functions V; (resp. V;+)
fort =1T,...,2,1, are defined as follows:

wy (M, A, 7%) 1=

E [(X?, X0, Us, UP) + Vesa (Bulm, A, Zeg) | 9,
Vit () := m/\in MaX We+ (m), (35)
wi(m,7) =

E [p(X?, X)L azgrony + Ve (ne(m2, 7, Z0s)) | 7,9,
Vi(w) = minw (x, 7). (36)
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Algorithm 1 Strategies f*, g** for Player i in the Team

Input: Z;(7), 24+ (7) obtained from DP for all ¢ and all 7
fort=1to 7T do
Before communication:
Current  information:
{Cu-1y+, Ze}}
Update CIB Ht = /Btfl(H(t_l)‘F y E%t_l)Jr (Ht—1+>7 Zt)
{If t = 1, Initialize CIB II; using C}}
Get prescription I'y = (I'},T'?) = Z;(1;)
Get distribution 6M; = I';(P}) and select action M; =
RAND({0, 1}, M}, K})
After communication decisions are made:
Current information: Cy+, Pg}r {where
[CiuZes )}
Update CIB TT,+ = n;(IT;, ZL(I1,), Z,+ )
Get prescription Ay = (A}, A?) = Z,+ (T+)
Get distribution 6U; = A}(P}) and select action U} =
RAND(U{, 6U, Ki\)
end for

Ct ) ‘Ptz Ct -

{where

Ct+ =

Let Zi(m) (resp. Z+ (7)) be a minimizer (resp. minmaxi-
mizer) of the cost-to-go function in (36) (resp. (35)).

Theorem 1. The min-max value of games ¢, 9s and 4,
are identical, i.e., we have S*(¥4) = S*(¥9,) = E[V1(I11)].
Further, the strategy pair f*, g* described by Algorithm 1 is
a min-max strategy for the team in the original game 9.

Proof. Because of our assumption on the information struc-
ture of Game ¥, (Assumption 2), the evolution of CIB in
Game ¥, does not depend virtual player a’s prescription.
This property allows us to use Theorems 4 and 5 in [7] and
obtain our result. O

The dynamic program is helpful for characterizing the
min-max value and a min-max strategy in a general setting.
However, solving the dynamic program involves computa-
tional challenges. The main cause of these challenges is
that the private information (X; U D;) space can be very
large even after the private information reduction in the
simplified game ¥;. In [17], we discuss some special cases
in which the private information is small or can be reduced
further to a manageable size. Once the private information
has been reduced sufficiently, one can use the computational
methodology discussed in Appendix X of [7] to solve the
dynamic program.

V. CONCLUSIONS

We considered a zero-sum game between a team of two
agents and a malicious agent. The agents can strategically
decide at each time whether to share their private information
with each other or not. The agents incur a cost whenever
they communicate with each other and the adversary may
eavesdrop on their communication. Under certain assump-
tions on the system dynamics and the information struc-
ture of the adversary, we characterized a min-max control
and communication strategy for the team using a common

information belief based min-max dynamic program. For
certain specialized information structures, we proved that
the agents in the team can ignore a large part of their
private information without losing optimality. This reduction
in private information substantially simplifies the dynamic
program and hence, improves computational tractability.
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