
Optimal Communication and Control Strategies for a Multi-Agent

System in the Presence of an Adversary

Dhruva Kartik, Sagar Sudhakara, Rahul Jain and Ashutosh Nayyar

Abstract— We consider a multi-agent system in which a
decentralized team of agents controls a stochastic system in
the presence of an adversary. Instead of committing to a fixed
information sharing protocol, the agents can strategically decide
at each time whether to share their private information with
each other or not. The agents incur a cost whenever they
communicate with each other and the adversary may eavesdrop
on their communication. Thus, the agents in the team must
effectively coordinate with each other while being robust to
the adversary’s malicious actions. We model this interaction
between the team and the adversary as a stochastic zero-
sum game where the team aims to minimize a cost while the
adversary aims to maximize it. Under some assumptions on
the adversary’s capabilities, we characterize a min-max control
and communication strategy for the team. We supplement this
characterization with several structural results that can make
the computation of the min-max strategy more tractable.

I. INTRODUCTION

In multi-agent systems, the agents may not be able to fully

observe the system state and the actions of other agents. A

multi-agent system is said to have an asymmetric information

structure when different agents have access to different

information. Each agent must select its actions based only

on the limited information available to it. Decision-making

scenarios with information asymmetry arise in a range of

domains such as autonomous driving, power grids, trans-

portation networks, cyber-security of networked computing

and communication systems, and competitive markets and

geopolitical interactions (see, for example, [1]–[5]).

Based on the nature of interactions between the agents,

multi-agent systems can broadly be classified into three

types: (i) teams, (ii) games and (iii) team-games. In teams,

all the agents act in a cooperative manner to achieve a

shared objective. In games, each agent has its own objective

and is self-interested. In team-games, agents within a team

are cooperative but the team as a whole is non-cooperative

with respect to other teams. For agents in the same team,

sharing information with each other aids coordination and

improves performance. Various information sharing mecha-

nisms [4] arise depending on the underlying communication

environment. For instance, if the agents have access to

a perfect, costless communication channel, they can share

their entire information with each other. On the other hand,
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if communication is too expensive, the agents may never

share their information. In this paper, instead of fixing the

information sharing mechanism for agents in a team, we

consider a model in which the agents can strategically decide

whether to share their information with other agents or not.

By doing so, the agents in the team can balance the trade-off

between the control cost and the communication cost. This

joint design of control and communication strategies was

considered in [6] and a team-optimal solution was provided

using the common information approach [4].

In some scenarios (e.g. a battlefield), the team of agents

may be susceptible to adversarial attacks. Also, the adversary

may have the capability to intercept the communication

among the agents. This makes the information sharing

mechanism substantially more complicated. While sharing

information with teammates may be beneficial for intra-

team coordination, it can reveal sensitive information to

the adversary. The adversary may exploit this information

to inflict severe damage on the system. Such interactions

between a team of cooperative agents and an adversary can

be modeled as a zero-sum team-game [7].

In this paper, our focus is on a zero-sum game between

a team of two agents and an adversary in which the team

aims to minimize the control and communication cost while

the adversary aims to maximize it. The system state in this

game has three components: a local state for each agent

in the team and global state. The adversary controls the

global state and each of the agents control their respective

local states. We restrict our attention to models in which the

agents in the team are more informed than the adversary. Our

model allows us to capture several scenarios of interest. For

example, the adversary in our model can affect the quality

of and the cost associated with the agents’ communication

channel and the agents can perfectly or imperfectly encrypt

their communication. We analyze a family of such zero-sum

team vs. adversary game and provide a characterization of

an optimal (min-max) control and communication strategy

for the team. This characterization is based on common

information belief based min-max dynamic program for team

vs. team games discussed in [7].

a) Related Works: There is a large body of prior

work on decision-making in multi-agent systems. In this

section, we discuss related works on cooperative teams and

team-games. In decentralized stochastic control literature,

a variety of information structures (obtained from different

information sharing protocols) have been considered [3]–[6].

Another well-studied class of multi-agent teams with asym-

metric information is the class of Decentralized Partially Ob-
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servable Markov Decision Processes (Dec-POMDPs). Sev-

eral methods for solving such generic Dec-POMDPs exist in

the literature [8]–[13].

Dynamic games among teams have received some atten-

tion over the past few years. Two closely related works are

[14] and [7]. In [14], a model of games among teams where

players in a team internally share their information with

some delay was investigated. The authors of [14] characterize

Team-Nash equilibria under certain existence assumptions. In

[7], a general model of zero-sum games between two teams

was considered. For this general model, the authors provide

bounds on the upper and lower values of the zero-game. A

relatively specialized model was also studied in [7] and for

this model, a min-max strategy for one of the teams was

characterized in addition to the min-max value. In [15], the

authors formulate and solve a particular malicious intrusion

game between two teams of mobile agents.

The works that are most closely related to our work are [6]

and [7]. In [6], the authors consider a team problem in which

the agents can strategically decide when to communicate

with each other. While our model is inspired by the model in

[6], our model is substantially more general and complicated

because of the presence of an adversary. In team problems,

the agents can use deterministic strategies without loss of

optimality, whereas in games, the agents can benefit with

randomization. Due to the randomness in agents’ strategies

and the need to solve a min-max problem as opposed to

a simpler minimization problem, different techniques are

required for analyzing and solving the team-game. Our game

model is a special case of one of the models studied in [7]

and hence, we can use the results in [7] to characterize a min-

max strategy for the team. While we borrow some results

from [7], our results on private information reduction in this

paper are novel.

b) Notation: Random variables are denoted by upper

case letters, their realizations by the corresponding lower

case letters. In general, subscripts are used as time index

while superscripts are used to index decision-making agents.

For time indices t1 ≤ t2, Xt1:t2 is the short hand notation

for the variables (Xt1 , Xt1+1, ..., Xt2). Similarly, X1:2 is the

short hand notation for the collection of variables (X1, X2).
Operators P(·) and E[·] denote the probability of an event,

and the expectation of a random variable respectively. For

random variables/vectors X and Y , P(·|Y = y), E[X|Y = y]
and P(X = x | Y = y) are denoted by P(·|y), E[X|y] and

P(x | y), respectively. For a strategy g, we use P
g(·) (resp.

E
g[·]) to indicate that the probability (resp. expectation)

depends on the choice of g. For any finite set A, ∆A denotes

the probability simplex over the set A. For any two sets A
and B, F(A,B) denotes the set of all functions from A to

B. We define RAND to be mechanism that given (i) a finite

set A, (ii) a distribution d over A and a random variable

K uniformly distributed over the interval (0, 1], produces a

random variable X ∈ A with distribution d, i.e.,

X = RAND(A, d,K) ∼ d. (1)

II. PROBLEM FORMULATION

Consider a discrete-time control system with a team of two

agents (agent 1 and agent 2) and an adversary. The system

comprises of a global state and local states for each agent

in the team. Let X0
t ∈ X 0 denote the global state and let

Xi
t ∈ X i denote the local state of agent i. Xt := (X1

t , X
2
t )

represents the local state of both agents in the team. The

initial global state and the initial local states of both agents

are independent random variables with state Xi
1 having the

probability distribution PXi

1
, i = 0, 1, 2. Each agent perfectly

observes its own local state and the global state is perfectly

observed by all agents (including the adversary). Let U i
t ∈

U i denote the control action of agent i at time t. Ut :=
(U1

t , U
2
t ) denotes the control actions of both agents at time

t. Further, let Ua
t ∈ Ua denote the control action of the

adversary at time t. The global and local states of the system

evolve according to

X0
t+1 = k0t (X

0
t , U

a
t ,W

0
t ), (2)

Xi
t+1 = kit(X

0
t , X

i
t , U

i
t ,W

i
t ), i = 1, 2, (3)

where W i
t ∈ Wi, i = 0, 1, 2 is the disturbance in dy-

namics with probability distribution PW i . The initial states

X0
1 , X

1
1 , X

2
1 and the disturbances {W i

t }
∞

t=1, i = 0, 1, 2, are

independent random variables. Note that the next local state

of agent i depends on the current local state and control

action of agent i and the global state. The next global

state depends on the current global state and the adversary’s

action.

In addition to deciding the control actions at each time,

the two agents in the team need to decide whether or not

to initiate communication at each time. We use the binary

variable M i
t to denote the communication decision taken by

agent i. Let Mor
t := max(M1

t ,M
2
t ) and let Zer

t represent

the information exchanged between the agents at time t. In

this model when global state X0
t = x, agents lose packets or

fail to communicate with probability pe(x) even when one

(or both) of the agents decides to communicate, i.e. when

Mor
t = 1. Here, pe : X 0 → [0, 1] maps the global state

to a failure probability. Based on the communication model

described above we can define variable Zer
t given that X0

t =
x as:

Zer
t =

8

>

<

>

:

X
1,2
t , w.p. 1− pe(x) if Mor

t = 1.

φ, w.p. pe(x) if Mor
t = 1.

φ, if Mor
t = 0.

(4)

At time t+, the adversary observes a noisy version Yt of the

variable Zer
t given by

Yt = lt(Z
er
t ,Mt, X

0
t ,W

y
t ), (5)

where W
y
t is the observation noise.

Information structure and decision strategies: At the

beginning of the t-th time step, the information available to

agent i is given by (i) history of global states and its local

states, (ii) its control actions, (iii) communication actions and
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messages and (iv) adversary’s action and observation history:

Iit = (6)

{X0
1:t, X

i
1:t, U

i
1:t−1,M

1,2
1:t−1, Z

er
1:t−1, U

a
1:t−1, Y1:t−1}.

Agent i can use this information to make its communication

decision at time t. We allow the agent to randomize its

decision. Thus, agent i first selects a distribution δM i
t over

{0, 1} based n its information and then it randomly picks

M i
t according to the chosen distribution:

δM i
t = f i

t (I
i
t); M i

t = RAND({0, 1}, δM i
t ,K

i
t) (7)

where Ki
t , i = 1, 2, t ≥ 1, are independent random variables

uniformly distributed over the interval (0, 1] that are used

for randomization (these variables are also independent of

initial states and all noises/disturbances). The function f i
t is

referred to as the communication strategy of agent i at time

t. At this point, the adversary does not take any action. After

the communication decisions are made and the resulting

communication (if any) takes place, the information available

to agent i is Ii
t+

= {Iit , Z
er
t ,M

1,2
t , Yt}.

Iat denotes the adversary’s information just before the

communication at time t and Ia
t+

denotes the adversary’s

information after communication at time t+. Our model

allows for different scenarios of adversary’s information

which will be described later.

Agent i and the adversary choose their control actions

based on their post-communication information according to

δU i
t = git(I

i
t+) (8)

U i
t = RAND(U i

t , δU
i
t ,K

i
t+), i = 1, 2, a, (9)

where Ki
t+
, i = 1, 2, t ≥ 1, are independent random vari-

ables uniformly distributed over the interval (0, 1] that are

used for randomization (these variables are also independent

of all other randomization variables, initial states and all

noises/disturbances). The functions git and gat are referred to

as the control strategy of agent i and the adversary at time

t. The tuples f i := (f i
1, f

i
2, ..., f

i
T ) and gi := (gi1, g

i
2, ..., g

i
T )

are called the communication and control strategy of agent

i respectively. The collection f := (f1, f2), g := (g1, g2)
of communication and control strategies of both agents are

called the communication and control strategy of the team.

Similarly, ga := (ga1 , g
a
2 , ..., g

a
T ) is called the control strategy

of the adversary.

We can split the information available to the agents into

two parts – common information and private information.

Common information at a given time is the information

available to all the decision-makers (including the adversary)

at the given time. Private information of an agent includes

all of its information at the given time except the common

information.

1) At the beginning of time step t, before the communica-

tion decisions are made, the common (Ct) and private

information (P i
t ) is defined as

Ct := I1t ∩ I2t ∩ Iat (10)

P i
t := Iit \ Ct ∀i ∈ {1, 2, a}. (11)

2) After the communication decisions are made and the re-

sulting communication (if any) takes place, the common

and private information is defined as

Ct+ := I1t+ ∩ I2t+ ∩ Iat+ (12)

P i
t+ := Iit+ \ Ct+ ∀i ∈ {1, 2, a}. (13)

Assumption 1. We assume that the following conditions are

satisfied:

1) Monotonicity: The adversary’s information grows with

time. Thus, Iat ⊆ Ia
t+

⊆ Iat+1 for every t.

2) Nestedness: The adversary’s information is common

information and each agent in the team has access to

adversary’s information, i.e.,

Ct = Iat ⊆ I1t ∩ I2t =: CTEAM

t

Ct+ = Iat+ ⊆ I1t+ ∩ I2t+ =: CTEAM

t+ .

Therefore, P a
t = P a

t+
= ∅.

3) Common Information Evolution: (i) Let Zt+
.
= Ct+ \Ct

and Zt+1
.
= Ct+1 \ Ct+ be the increments in common

information at times t+ and t+ 1, respectively . Thus,

Ct+ = {Ct, Zt+} and Ct+1 = {Ct+ , Zt+1}. The

common information evolves as

Zt+ = ζt+(P
1:2
t ,M1:2

t , Zer
t , Yt), (14)

Zt+1 = ζt+1(P
1:2
t+ , U1:2

t , X0:2
t+1) (15)

where ζt+1 and ζt+ are fixed transformations.

4) Private Information Evolution: The private information

evolves as

P i
t+ = ξit+(P

1:2
t ,M1:2

t , Zer
t , Yt) (16)

P i
t+1 = ξit+1(P

1:2
t+ , U1:2

t , X0:2
t+1) (17)

where ξi
t+

and ξit+1 are fixed transformations and i =
1, 2.

Due to the nestedness condition in Assumption 1, the team is

always more-informed than the adversary. Scenarios where

the adversary has some private information are beyond the

scope of this paper. The third and fourth conditions in

Assumption 1 on the evolution of common and private

information are very mild [4], [16] and most information

structures of interest satisfy these conditions.

Strategy optimization problem: At time t, the system

incurs a cost ct(X
0
t , Xt, Ut, U

a
t ) that depends on the global

state, the team’s state, control actions of both agents and the

adversary’s action. Whenever agents decide to share their

states with each other, they incur a state-dependent cost

ρ(X0
t , Xt). The system runs for a time horizon T . The total

expected cost over the time horizon T associated with a

strategy profile ((f, g), ga) is:

J((f, g), ga) = (18)

E
((f,g),ga)

h

T
X

t=1

ct(X
0
t , Xt, Ut, U

a
t ) + ρ(X0

t , Xt)1{Mor

t
=1}

i

.

The objective of the team is to find communication and

control strategies (f, g) for the team in order to minimize the
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worst-case expected total expected cost maxga J((f, g), ga).
This min-max optimization problem can be viewed as a zero-

sum game between the team and the adversary. We denote

this zero-sum game with Game G . We denote the min-max

value of this game G with Su(G ), i.e.,

Su(G ) = min
(f,g)

max
ga

J((f, g), ga). (19)

III. PRELIMINARY RESULTS AND SIMPLIFIED GAME Gs

In this section we show that agents in the team can

ignore parts of their information without losing optimality.

This removal of information narrows the search for optimal

strategies to a class of simpler strategies and is a key step in

our approach for finding optimal strategies.

Let us define the team’s common private information Dt

before communication at time t and Dt+ after communica-

tion at time t+ as

Dt := P 1
t ∩ P 2

t ; Dt+ := P 1
t+ ∩ P 2

t+ . (20)

The variables Ct, Dt (resp. Ct+ , Dt+ ) constitute the team’s

common information at time t (resp. t+), i.e.,

Ct ∪Dt = I1t ∩ I2t = CTEAM

t (21)

Ct+ ∪Dt+ = I1t+ ∩ I2t+ = CTEAM

t+ . (22)

Notice that Ct and Dt depend on the adversary’s information

structure. However, since the team’s information structure is

fixed, Ct, Dt combined do not depend on the adversary’s

information structure. The following lemma establishes a key

conditional independence property that will be critical for our

analysis.

Lemma 1 (Conditional independence property). At any

time t, the two agents’ local states and control actions

are conditionally independent given the team’s common

information (Ct, Dt) (before communication) or Ct+ , Dt+

(after communication). That is, if ct, dt, ct+ , dt+ are the

realizations of the common information and common private

information before and after communication respectively,

then for any realization x1:t, u1:t−1 of states and actions,

we have

P(x1:t, u1:t−1|ct, dt) =

2
Y

i=1

P(xi
1:t, u

i
1:t−1|ct, dt), (23)

P(x1:t, u1:t|ct+ , dt+) =

2
Y

i=1

P(xi
1:t, u

i
1:t|ct+ , dt+). (24)

Further, P(xi
1:t, u

i
1:t−1|ct, dt) and P(xi

1:t, u
i
1:t|ct+ , dt+) de-

pends on only on agent i’ strategy.

Proof. The proof of this lemma is very similar to the proof

of Lemma 1 in [6]. For a detailed proof, see Appendix I in

[17].

The following proposition shows that agent i at time t

and t+ can ignore its past states and actions, i.e. Xi
1:t−1 and

U i
1:t−1, without losing optimality. This allows agents in the

team to use simpler strategies where the communication and

control decisions are functions only of the current state and

the team’s common information.

Proposition 1. Agent i, i = 1, 2, can restrict itself to

strategies of the form below

M i
t ∼ f̄ i

t (X
i
t , Ct, Dt) (25)

U i
t ∼ ḡit(X

i
t , Ct+ , Dt+) (26)

without loss of optimality. In other words, at time t and

t+, agent i does not need the past local states and actions,

Xi
1:t−1, U

i
t−1, for making optimal decisions.

Proof. See Appendix II in [17].

Proposition 1 leads to a simplified game in which the

information used by the players in the team is substantially

reduced. We will refer to this game as Game Gs. Game Gs

has the same dynamics and cost model as Game G . The

key difference between these two games lies in the team’s

information structure and strategy spaces. In Game Gs, the

information used by player i in the team at time t and t+

respectively is

Iit = {Xi
t} ∪Dt ∪ Ct (27)

Iit+ = {Xi
t} ∪Dt+ ∪ Ct+ . (28)

Therefore, the common information in the simplified game

Gs is the same as in the original game G . In the simplified

game Gs, the private information1 P i
t = Xi

t ∪Dt.

Corollary 1. If (f∗, g∗) is a min-max strategy in Game Gs,

then it is a min-max strategy in Game G . Further, the min-

max values of games G and Gs are identical.

Henceforth, we make the following mild assumption on

the information structure of agents in the simplified game Gs.

Several examples that satisfy this assumption are provided in

[17].

Assumption 2. The information structure in the simplified

game Gs with reduced private information satisfies Assump-

tion 1.

Remark 1. The reduced information in equations (27) and

(28) is unilaterally sufficient information (see Definition 2.4

in [18]) for each player in the team. Proposition 1 can

alternatively be shown using the concept of unilaterally

sufficient information and Theorem 2.6 in [18].

IV. DYNAMIC PROGRAM CHARACTERIZATION OF A

MIN-MAX STRATEGY

It was shown in [7] that for certain zero-sum game

models with a special structure, a virtual game Ge can be

constructed based on the simplified Game Gs, and this virtual

game can be used to obtain the min-max value and a min-

max strategy for the minimizing team. In our game model

described in Section II, the adversary does not have any

private information at any given time and hence, this model

1With a slight abuse of notation, we use the same letter for denoting
private information in both games G and Gs.
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can be viewed as a special case of the game model described

in paragraph (a), Section IV-A of [7]. Therefore, we can use

the result in [7] to obtain the min-max value and a min-

max strategy for our original Game G . The virtual game Ge

involves the same underlying system model as in game Gs.

The main differences among games Gs and Ge lie in the

manner in which the actions used to control the system are

chosen. In the virtual game Ge, all the players in the team

of game Gs are replaced by a virtual player (referred to as

virtual player b) and the adversary is replaced by a virtual

player (referred to as virtual player a). These virtual players

in Game Ge operate as described in the following sub-section.

A. Virtual Game Ge

Consider virtual player a associated with the adversary.

At each time t+, virtual player a selects a distribution

Γ
a
t over the space Ua

t . The set of all such mappings is

denoted by Ba
t

.
= ∆Ua

t . Consider virtual player b associated

with the team. At each time t and for each i = 1, 2,

virtual player b selects a function Γ
i
t that maps private

information P i
t to a distribution δM i

t over the space {0, 1}.

Thus, δM i
t = Γ

i
t(P

i
t ). The set of all such mappings is

denoted by Bi
t

.
= F(Pi

t ,∆{0, 1}). We refer to the tuple

Γt
.
= (Γ1

t ,Γ
2
t ) as virtual player b’s prescription at time t.

The set of all possible prescriptions for virtual player b at

time t is denoted by Bt
.
= B1

t × B2
t . At each time t+ and

for each i = 1, 2, virtual player b selects a function Λ
i
t that

maps private information P i
t+

to a distribution δU i
t+

over

the space U i
t . Thus, δU i

t = Λ
i
t(P

i
t+). The set of all such

mappings is denoted by Bi
t+

.
= F(Pi

t+
,∆U i

t ). We refer to

the tuple Λt
.
= (Λ1

t ,Λ
2
t ) as virtual player b’s prescription

at time t+. The set of all possible prescriptions for virtual

player b at time t+ is denoted by Bt+
.
= B1

t+
× B2

t+
. Once

virtual players select their prescriptions at times t and t+,

the corresponding actions are generated as

M i
t = RAND({0, 1},Γi

t(P
i
t ),K

i
t) (29)

U i
t = RAND(U i

t ,Λ
i
t(P

i
t+),K

i
t+) (30)

Ua
t = RAND(Ua

t ,Γ
a
t ,K

a
t+). (31)

In virtual game Ge, virtual players’ information Ivt at

time t comprises of the common information Ct and the

past prescriptions of both players Γ1:t−1,Γ
a
1:t−1,Λ1:t−1. At

time t, Virtual player b selects its prescription according to

a control law χb
t , i.e. Γt = χb

t(I
v
t ). Note that at time t,

Virtual player a does not take any action. At time t+, the

virtual players information Iv
t+

comprises of Ct+ and all the

past prescriptions of both players Γ1:t,Γ
a
1:t−1,Λ1:t−1. Virtual

player a selects its prescription according to a control law χa
t ,

i.e., Γa
t = χa

t (I
v
t+
) and virtual player b selects its prescription

according to a control law χb
t+

, i.e. Λt = χb
t(I

v
t+
). For

virtual player a, the collection of control laws over the entire

time horizon χa = (χa
1 , . . . ,χ

a
T ) is referred to as its control

strategy. Similarly for virtual player b. Let Ha
t be the set of

all possible control laws for virtual player a at time t and

let Ha be the set of all possible control strategies for virtual

player a, i.e. Ha = Ha
1 × · · · × Ha

T . For virtual player b,

the collection of control laws over the entire time horizon

χb = (χb
1,χ

b
1+ . . . ,χb

T ,χ
b
T+) is referred to as its control

strategy. Let Hb
t (resp. Hb

t+
) be the set of all possible control

laws for virtual player b at time t (resp. t+) and let Hb be

the set of all possible control strategies for virtual player b.

The total cost associated with the game for a strategy profile

(χa,χb) is

J (χa,χb) = (32)

E
(χa,χb)

h

T
X

t=1

ct(X
0
t , Xt, Ut, U

a
t ) + ρ(X0

t , Xt)1{Mor

t
=1}

i

.

where the functions ct and ρ are the same as in games G and

Gs. In this virtual game, virtual player a aims to maximize

the cost while virtual player b aims to minimize the cost.

The upper value of Game Ge is denoted by Su(Ge).

B. Common Information Belief and the Dynamic Program

1) Common Information Belief: Before communication at

time t, the CIB is given as:

Πt(x
0, x, d) = P[X0

t = x0, Xt = x,Dt = d|Ivt ]. (33)

After the communication decisions are made and Zer
t is

realized, the CIB is given as:

Πt+(x
0, x, d) = P[X0

t = x0, Xt = x,Dt+ = d|Ivt+ ]. (34)

The CIB satisfies two key properties: (i) the CIB can be

computed without using the virtual players’ strategies χa

and χb; (ii) since the adversary does not have any private

information at any given time, the CIB does not depend on

the adversary’s prescriptions (see Section IV-A and Appendix

VI of [7]). This can be stated formally as the following

lemma.

Lemma 2. Π1(x
0
1, x1, d1) is the belief P(X0

1 = x0
1, X1 =

x1, D1 = d1) and for each t ≥ 1,

Πt+ = ηt(Πt,Γt, Zt+); Πt+1 = βt(Πt+ ,Λt, Zt+1),

where ηt,βt are fixed transformations derived from the

system model using Bayes’ rule (see Appendix VI of [7]).

We now describe the dynamic program that provides us

with the value of the game G and an algorithm to compute

a min-max strategy for the team.

2) Dynamic Program: Define the value function

VT+1(π) := 0 for all π at time T + 1. The cost-to-go

functions wt (resp. wt+ ) and value functions Vt (resp. Vt+ )

for t = T, . . . , 2, 1, are defined as follows:

wt+(π,λ, γ
a) :=

E

h

ct(X
0
t , Xt, Ut, U

a
t ) + Vt+1(βt(π,λ, Zt+1)) | π,λ, γ

i

,

Vt+(π) := min
λ

max
γa

wt+(π), (35)

wt(π, γ) :=

E

h

ρ(X0
t , Xt)1{Mor

t
=1} + Vt+(ηt(π

1,2, γ, Zt+)) | π, γ
i

,

Vt(π) := min
γ

wt(π, γ). (36)
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Algorithm 1 Strategies f i∗, gi∗ for Player i in the Team

Input: Ξt(π),Ξt+(π) obtained from DP for all t and all π

for t = 1 to T do

Before communication:

Current information: Ct, P
i
t {where Ct =

{C(t−1)+ , Zt}}
Update CIB Πt = βt−1(Π(t−1)+ ,Ξ

1
(t−1)+(Πt−1+), Zt)

{If t = 1, Initialize CIB Πt using C1}
Get prescription Γt = (Γ1

t ,Γ
2
t ) = Ξt(Πt)

Get distribution δM i
t = Γ

i
t(P

i
t ) and select action M i

t =
RAND({0, 1}, δM i

t ,K
i
t)

After communication decisions are made:

Current information: Ct+ , P
i
t+

{where Ct+ =
{Ct, Zt+}}
Update CIB Πt+ = ηt(Πt,Ξ

1
t (Πt), Zt+)

Get prescription Λt = (Λ1
t ,Λ

2
t ) = Ξt+(Πt+)

Get distribution δU i
t = Λ

i
t(P

i
t ) and select action U i

t =
RAND(U i

t , δU
i
t ,K

i
t+
)

end for

Let Ξt(π) (resp. Ξt+(π)) be a minimizer (resp. minmaxi-

mizer) of the cost-to-go function in (36) (resp. (35)).

Theorem 1. The min-max value of games G , Gs and Ge

are identical, i.e., we have Su(G ) = Su(Ge) = E[V1(Π1)].
Further, the strategy pair f∗, g∗ described by Algorithm 1 is

a min-max strategy for the team in the original game G .

Proof. Because of our assumption on the information struc-

ture of Game Gs (Assumption 2), the evolution of CIB in

Game Ge does not depend virtual player a’s prescription.

This property allows us to use Theorems 4 and 5 in [7] and

obtain our result.

The dynamic program is helpful for characterizing the

min-max value and a min-max strategy in a general setting.

However, solving the dynamic program involves computa-

tional challenges. The main cause of these challenges is

that the private information (Xi
t ∪ Dt) space can be very

large even after the private information reduction in the

simplified game Gs. In [17], we discuss some special cases

in which the private information is small or can be reduced

further to a manageable size. Once the private information

has been reduced sufficiently, one can use the computational

methodology discussed in Appendix X of [7] to solve the

dynamic program.

V. CONCLUSIONS

We considered a zero-sum game between a team of two

agents and a malicious agent. The agents can strategically

decide at each time whether to share their private information

with each other or not. The agents incur a cost whenever

they communicate with each other and the adversary may

eavesdrop on their communication. Under certain assump-

tions on the system dynamics and the information struc-

ture of the adversary, we characterized a min-max control

and communication strategy for the team using a common

information belief based min-max dynamic program. For

certain specialized information structures, we proved that

the agents in the team can ignore a large part of their

private information without losing optimality. This reduction

in private information substantially simplifies the dynamic

program and hence, improves computational tractability.
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