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Abstract—In this article, we consider the problem of con-
trolling an unknown linear quadratic Gaussian (LQG) sys-
tem consisting of multiple subsystems connected over a
network. Our goal is to minimize and quantify the regret
(i.e., loss in performance) of our learning and control strat-
egy with respect to an oracle who knows the system model.
Upfront viewing the interconnected subsystems globally
and directly using existing LQG learning algorithms for
the global system results in a regret that increases super-
linearly with the number of subsystems. Instead, we pro-
pose a new Thompson sampling-based learning algorithm
which exploits the structure of the underlying network. We
show that the expected regret of the proposed algorithm is
bounded by Õ(n

√
T ), where n is the number of subsys-

tems and T is the time horizon. Thus, the regret scales
linearly with the number of subsystems. We present nu-
merical experiments to illustrate the salient features of the
proposed algorithm.

Index Terms—Linear quadratic systems, networked con-
trol systems, reinforcement learning, Thompson sampling
(TS).

I. INTRODUCTION

LARGE-SCALE systems comprising multiple subsystems
connected over a network arise in a number of applications

including power systems, traffic networks, communication net-
works, and some economic systems [1]. A common feature of
such systems is the coupling in their subsystems’ dynamics and
costs, i.e., the state evolution and local costs of one subsystem
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depend not only on its own state and control action but also on
the states and control actions of other subsystems in the network.
Analyzing various aspects of the behavior of such systems and
designing control strategies for them under a variety of settings
have been long-standing problems of interest in the systems and
control literature [2]–[6]. However, there are still many unsolved
challenges, especially on the interface between learning and
control in the context of these large-scale systems.

In this article, we investigate the problem of designing control
strategies for large-scale network-coupled subsystems when
some parameters of the system model are not known. Due to
the unknown parameters, the control problem is also a learning
problem. We adopt a reinforcement learning framework for
this problem with the goal of minimizing and quantifying the
regret (i.e., loss in performance) of our learning and control
strategy with respect to the optimal control strategy based on
the complete knowledge of the system model.

The networked system we consider follows linear dynamics
with quadratic costs and Gaussian noise. Such linear quadratic
Gaussian (LQG) systems are one of the most commonly used
modeling frameworks in numerous control applications. Part
of the appeal of LQG models is the simple structure of the
optimal control strategy when the system model is completely
known—the optimal control action in this case is a linear or
affine function of the state—which makes the optimal strategy
easy to identify and easy to implement. If some parameters
of the model are not fully known during the design phase
or may change during operation, then it is better to design a
strategy that learns and adapts online. Historically, both adaptive
control [7] and reinforcement learning [8], [9] have been used to
design asymptotically optimal learning algorithms for such LQG
systems. In recent years, there has been considerable interest in
analyzing the transient behavior of such algorithms which can be
quantified in terms of the regret of the algorithm as a function
of time. This allows one to assess, as a function of time, the
performance of a learning algorithm compared to an oracle who
knows the system parameters upfront.

Several learning algorithms have been proposed for LQG
systems [10]–[21], and, in most cases, the regret is shown to be
bounded by Õ(d0.5x (dx + du)

√
T ), where dx is the dimension of

the state, du is the dimension of the controls, T is the time hori-
zon, and the Õ(·) notation hides logarithmic terms in T . Given
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the lower bound of Ω̃(d0.5x du
√
T ) (where Ω̃(·) notation hides

logarithmic terms in T ) for regret in LQG systems identified in
a recent work [18], the regrets of the existing algorithms have
near optimal scaling in terms of time and dimension. However,
when directly applied to a networked system with n subsystems,
these algorithms would incur Õ(n1.5d0.5x (dx + du)

√
T ) regret

because the effective dimensions of the state and the controls
are ndx and ndu, where dx and du are the dimensions of each
subsystem. This super-linear dependence on n is prohibitive in
large-scale networked systems because the regret per subsystem
(which is Õ(

√
n)) grows with the number of subsystems.

The learning algorithms mentioned above are for a general
LQG system and do not take into account any knowledge of
the underlying network structure. Our main contribution is to
show that by exploiting the structure of the network model,
it is possible to design learning algorithms for large-scale
network-coupled subsystems where the regret does not grow
super-linearly in the number of subsystems. In particular, we
utilize a spectral decomposition technique, recently proposed
in [22], to decompose the large-scale system into L decoupled
systems, where L is the rank of the coupling matrix correspond-
ing to the underlying network. Using the decoupled systems,
we propose a Thompson sampling (TS)-based algorithm with
Õ(nd0.5x (dx + du)

√
T ) regret bound.

A. Related Work

Broadly speaking, three classes of low-regret learning algo-
rithms have been proposed for LQG systems: certainty equiva-
lence (CE) based algorithms, optimism in the face of uncertainty
(OFU) based algorithms, and TS-based algorithms. CE is a
classical adaptive control algorithm [7]. Recent works [15]–[19]
have established near optimal high probability bounds on regret
for CE-based algorithms. OFU-based algorithms are inspired by
the OFU principle for multiarmed bandits [23]. Starting with the
work of Campi et al. [10] and Yadkori and Szepesvári [11], most
of the works following the OFU approach [12]–[14] also provide
similar high probability regret bounds. TS-based algorithms are
inspired by TS algorithm for multiarmed bandits [24]. Most of
the works following this approach [19]–[21] establish bounds
on expected Bayesian regret of similar near-optimal orders. As
argued earlier, most of these works show that the regret scales
super-linearly with the number of subsystems and are, therefore,
of limited value for large-scale systems.

There is an emerging literature on learning algorithms for
networked systems both for LQG models [25]–[30] and Markov
decision process (MDP) models [31]–[33]. The works on LQG
models propose distributed value based or policy-based learning
algorithms and analyze their convergence properties, but they
do not characterize their regret. Some of the works on MDP
models [32], [33] do characterize regret bounds for OFU- and
TS-based learning algorithms, but these bounds are not directly
applicable to the LQG model considered in this article.

An important special class of network-coupled systems is
mean-field coupled subsystems [34], [35]. There has been
considerable interest in reinforcement learning for mean-field
models [36], [37], but most of the literature does not consider

regret. The basic mean-field coupled model can be viewed as a
special case of the network-coupled subsystems considered in
this article (see Section VI-A). In a preliminary version of this
article [38], we proposed a TS-based algorithm for mean-field
coupled subsystems which has a Õ((1 + 1/n)

√
T ) regret per

subsystem. The current article extends the TS-based algorithm
to general network-coupled subsystems and establishes scalable
regret bounds for arbitrarily coupled networks.

B. Organization

The rest of the article is organized as follows. In Section II,
we introduce the model of network-coupled subsystems. In Sec-
tion III, we summarize the spectral decomposition idea and the
resulting scalable method for synthesizing optimal control strat-
egy when the model parameters are known. Then, in Section IV,
we consider the learning problem for unknown network-coupled
subsystems and present a TS-based learning algorithm with
scalable regret bound. We subsequently provide regret analysis
in Section V and numerical experiments in Section VI. Finally,
Section VII concludes this article.

C. Notation

The notation A = [aij ] means that A is the matrix that has aij

as its (i, j)th element. For a matrix A, AT denotes its transpose.
Given matrices (or vectors) A1, ..., An with the same number of
rows, [A1, . . . , An]denotes the matrix formed by horizontal con-
catenation. For a random vector v, var(v) denotes its covariance
matrix. The notationN (µ,Σ) denotes the multivariate Gaussian
distribution with mean vector µ and covariance matrix Σ.

For stabilizable (A,B) and positive-definite matrices Q,R,
DARE(A,B,Q,R) denotes the unique positive semidefinite
solution of the discrete time algebraic Riccati equation (DARE),
which is given as

S = ATSA− (ATSB)(R+BTSB)−1(BTSA) +Q.

II. MODEL OF NETWORK-COUPLED SUBSYSTEMS

We start by describing a minor variation of a model of
network-coupled subsystems proposed in [22]. The model in
[22] was described in continuous time. We translate the model
and the results to discrete time.

A. System Model

1) Graph Structure: Consider a network consisting of n
subsystems/agents connected over an undirected weighted sim-
ple graph denoted by G(N,E,Ψ), where N = {1, . . . , n}
is the set of nodes, E ⊆ N ×N is the set of edges, and
Ψ = [ψij ] ∈ Rn×n is the weighted adjacency matrix. Let
M = [mij ] ∈ Rn×n be a symmetric coupling matrix corre-
sponding to the underlying graph G. For instance, M may
represent the underlying adjacency matrix (i.e., M = Ψ) or the
underlying Laplacian matrix (i.e., M = diag(Ψ1n)−Ψ).

2) State and Dynamics: The states and control actions of
agents take values in Rdx and Rdu , respectively. For agent i ∈
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N , we usexi
t ∈ Rdx andui

t ∈ Rdu to denote its state and control
action at time t.

The system starts at a random initial state x1 = (xi
1)i∈N ,

whose components are independent across agents. For agent i,
the initial state xi

1 ∼ N (0,Ξi
1), and at any time t ≥ 1, the state

evolves according to

xi
t+1 = Axi

t +Bui
t +DxG,i

t + EuG,i
t + wi

t (1)

where xG,i
t and uG,i

t are the locally perceived influence of the
network on the state of agent i and are given by

xG,i
t =

∑

j∈N
mijxj

t and uG,i
t =

∑

j∈N
mijuj

t . (2)

A, B, D, and E are matrices of appropriate dimensions, and
{wi

t}t≥1, i ∈ N, are independent and identically distributed
(i.i.d.) zero-mean Gaussian processes which are independent
of each other and the initial state. In particular, wi

t ∈ Rdx and
wi

t ∼ N (0,W ). We call xG,i
t and uG,i

t the network-field of the
states and control actions at node i at time t.

Thus, the next state of agent i depends on its current local
state and control action, the current network-field of the states
and control actions of the system, and the current local noise.

We follow the same atypical representation of the “vector-
ized” dynamics as used in [22]. Define xt and ut as the global
state and control actions of the system

xt = [x1
t , . . . , x

n
t ] and ut = [u1

t , . . . , u
n
t ].

We also define wt = [w1
t , . . . , w

n
t ]. Similarly, define xG

t and uG
t

as the global network field of states and actions

xG
t = [xG,1

t , . . . , xG,n
t ] and uG

t = [uG,1
t , . . . , uG,n

t ].

Note that xt, x
G
t , wt ∈ Rdx×n and ut, u

G
t ∈ Rdu×n are matrices

and not vectors. The global system dynamics may be written as

xt+1 = Axt +But +DxG
t + EuG

t + wt. (3)

Furthermore, we may write

xG
t = xtM

T = xtM and uG
t = utM

T = utM.

3) Per-Step Cost: At any time t, the system incurs a per-step
cost given by

c(xt, ut) =
∑

i∈N

∑

j∈N
[hij

x (x
i
t)

TQ(xj
t ) + hij

u (u
i
t)

TR(uj
t )] (4)

where Q and R are matrices of appropriate dimensions and hij
x

and hij
u are real valued weights. Let Hx = [hij

x ] and Hu = [hij
u ].

It is assumed that the weight matrices Hx and Hu are polyno-
mials of M , i.e.,

Hx =
Kx∑

k=0

qkM
k and Hu =

Ku∑

k=0

rkM
k (5)

where Kx and Ku denote the degrees of the polynomials and
{qk}Kx

k=0 and {rk}Ku
k=0 are real-valued coefficients.

The assumption that Hx and Hu are polynomials of M cap-
tures the intuition that the per-step cost respects the graph struc-
ture. In the special case when Hx = Hu = I , the per-step cost

is decoupled across agents. When Hx = Hu = I +M , the per-
step cost captures a cross-coupling between one-hop neighbors.
Similarly, when Hu = I +M +M2, the per-step cost captures
a cross-coupling between one- and two-hop neighbors. See [22]
for more examples of special cases of the per-step cost defined
above.

B. Assumptions on the Model

Since M is real and symmetric, it has real eigenvalues. Let
L denote the rank of M and λ(1), . . . , λ(L) denote the nonzero
eigenvalues. For ease of notation, for " ∈ {1, . . . , L}, define

q(!) =
Kx∑

k=0

qk(λ
(!))k and r(!) =

Ku∑

k=0

rk(λ
(!))k

where {qk}Kx
k=0 and {rk}Ku

k=0 are the coefficients in (5). Further-
more, for " ∈ {1, . . . , L}, define

A(!) = A+ λ(!)D and B(!) = B + λ(!)E.

We impose the following assumptions.
(A1) The systems (A,B) and {(A(!), B(!))}L!=1 are stabiliz-

able.
(A2) The matrices Q and R are symmetric and positive

definite.
(A3) The parameters q0, r0, {q(!)}L!=1, and {r(!)}L!=1 are

strictly positive.
Assumption (A1) is needed to ensure that the average cost

under the optimal policy is bounded. Assumptions (A2) and
(A3) ensure that the per-step cost is strictly positive.

C. Admissible Policies and Performance Criterion

There is a system operator who has access to the state and
action histories of all agents and who selects the agents’ control
actions according to a deterministic or randomized (and poten-
tially history-dependent) policy ut = πt(x1:t, u1:t−1).

Let θT = [A,B,D,E] denote the parameters of the system
dynamics. The performance of any policy π = (π1,π2, . . . ) is
measured by the long-term average cost given by

J(π; θ) = lim sup
T→∞

1

T
Eπ

[ T∑

t=1

c(xt, ut)

]
. (6)

Let J(θ) denote the minimum of J(π; θ) over all policies.
We are interested in the setup where the graph coupling matrix

M , the cost coupling matrices Hx and Hu, and the cost matrices
Q and R are known but the system dynamics θ are unknown and
there is a prior distribution on θ. The Bayesian regret of a policy
π operating for a horizon T is defined as

R(T ;π) := Eπ

[ T∑

t=1

c(xt, ut)− TJ(θ)

]
(7)

where the expectation is with respect to the prior on θ, the noise
processes, the initial conditions, and the potential randomiza-
tions done by the policy π.
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III. BACKGROUND ON SPECTRAL DECOMPOSITION OF THE
SYSTEM

In this section, we summarize the main results of [22], trans-
lated to the discrete-time model used in this article.

The spectral decomposition described in [22] relies on the
spectral factorization of the graph coupling matrix M . Since M
is a real symmetric matrix with rank L, we can write it as

M =
L∑

!=1

λ(!)v(!)(v(!))T (8)

where (λ(1), . . . , λ(L)) are the nonzero eigenvalues of M and
(v(1), . . . , v(L)) are the corresponding eigenvectors.

We now present the decomposition of the dynamics and the
cost based on (8) as described in [22].

A. Spectral Decomposition of the Dynamics and
Per-Step Cost

For " ∈ {1, . . . , L}, define eigenstates and eigencontrols as

x(!)
t = xtv

(!)(v(!))T and u(!)
t = utv

(!)(v(!))T (9)

respectively. Furthermore, define auxiliary state and auxiliary
control as

x̆t = xt −
L∑

!=1

x(!)
t and ŭt = ut −

L∑

!=1

u(!)
t (10)

respectively. Similarly, define w(!)
t = wtv(!)(v(!))T and w̆t =

wt −
∑L

!=1 w
(!)
t .

We now obtain the dynamics of the eigenstates and auxiliary
states. Multiplying (3) on the right by v(!)(v(!))T and observing
that v(!) is an eigenvector of M , we get

x(!)
t+1 = (A+ λ(!)D)x(!)

t + (B + λ(!)E)u(!),i
t + w(!)

t . (11)

Substituting (3) and (11) in (10), we get

x̆t+1 = Ax̆t +Bŭt + w̆t. (12)

Let x(!),i
t and u(!),i

t denote the ith column of x(!)
t and u(!)

t ,
respectively; thus, we can write

x(!)
t = [x(!),1

t , . . . , x(!),n
t ] and u(!)

t = [u(!),1
t , . . . , u(!),n

t ].

Similar interpretations hold for w(!),i
t and w̆i

t.
Looking at a particular column of (10) and rearranging terms,

we can decompose the state and control action at each node
i ∈ N as xi

t = x̆i
t +
∑L

!=1 x
(!),i
t and ui

t = ŭi
t +
∑L

!=1 u
(!),i
t .

Equation (11) implies that the dynamics of eigenstate x(!),i
t

depend only on u(!),i
t and w(!),i

t and are given by

x(!),i
t+1 = (A+ λ(!)D)x(!),i

t + (B + λ(!)E)u(!),i
t + w(!),i

t .
(13)

Similarly, (12) implies that the dynamics of the auxiliary state
x̆i
t depend only on ŭi

t and w̆i
t and are given by

x̆i
t+1 = Ax̆i

t +Bŭi
t + w̆i

t. (14)

Furthermore, [22, Proposition 2] implies that per-step cost
decomposes as follows:

c(xt, ut) =
∑

i∈N

[
q0c̆(x̆

i
t, ŭ

i
t) +

L∑

!=1

q(!)c(!)(x(!),i
t , u(!),i

t )

]

(15)
where1

c̆(x̆i
t, ŭ

i
t) = (x̆i

t)
TQx̆i

t +
r0
q0

(ŭi
t)

TRŭi
t,

c(!)(x(!),i
t , u(!),i

t ) = (x(!),i
t )TQx(!),i

t +
r(!)

q(!)
(u(!),i

t )TRu(!),i
t .

Following [22, Lemma 2], we can show that for any i ∈ N

var(w(!),i
t ) = (v(!),i)2W and var(w̆i

t) = (v̆i)2W (16)

where (v̆i)2 = 1−
∑L

!=1(v
(!),i)2. These covariances do not

depend on time because the noise processes are i.i.d.

B. Planning Solution for Network-Coupled Subsystems

We now present the main result of [22], which provides a
scalable method to synthesize the optimal control policy when
the system dynamics are known.

Based on the decomposition presented in the previous section,
we can view the overall system as the collection of the following
subsystems:

1) Eigensystem (", i), " ∈ {1, . . . , L} and i ∈ N with state
x(!),i
t , controls u(!),i

t , dynamics (13), and per-step cost
q(!)c(!)(x(!),i, u(!),i);

2) Auxiliary system i, i ∈ N , with state x̆i
t, controls ŭi

t,
dynamics (14), and per-step cost q0c̆(x̆i

t, ŭ
i
t).

Let (θ(!))T = [A(!), B(!)] := [(A+ λ(!)D), (B + λ(!)E)],
" ∈ {1, . . . , L}, and θ̆T = [A,B] denote the parameters of
the dynamics of the eigensystems and auxiliary systems,
respectively. Then, for any policy π = (π1,π2, . . . ), the
performance of the eigensystem (", i), " ∈ {1, . . . , L} and
i ∈ N , is given by q(!)J (!),i(π; θ(!)), where

J (!),i(π; θ(!)) = lim sup
T→∞

1

T
Eπ

[ T∑

t=1

c(x(!),i
t , u(!),i

t )

]
.

Similarly, the performance of the auxiliary system i, i ∈ N , is
given by q0J̆ i(π; θ̆), where

J̆ i(π; θ̆) = lim sup
T→∞

1

T
Eπ

[ T∑

t=1

c(x̆i
t, ŭ

i
t)

]
.

Equation (15) implies that the overall performance of policy π
can be decomposed as

J(π; θ) =
∑

i∈N
q0J̆

i(π; θ̆) +
∑

i∈N

L∑

!=1

q(!)J (!),i(π; θ(!)). (17)

The key intuition behind the result of [22] is as follows.
By the CE principle for LQ systems, we know that (when
the system dynamics are known) the optimal control policy

1Recall that (A3) ensures that q0 and {q(!)}L!=1 are strictly positive.
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of a stochastic LQ system is the same as the optimal control
policy of the corresponding deterministic LQ system where the
noises {wi

t}t≥1 are assumed to be zero. Note that when noises
{wi

t}t≥1 are zero, then the noises {w(!),i
t }t≥1 and {w̆i

t}t≥1 of
the eigensystems and auxiliary systems are also zero. This,
in turn, implies that the dynamics of all the eigensystems and
auxiliary systems are decoupled. These decoupled dynamics
along with the cost decoupling in (17) imply that we can
choose the controls {u(!),i

t }t≥1 for the eigensystem (("), i),
" ∈ {1, . . . , L} and i ∈ N , to minimize2J (!),i(π; θ(!)) and
choose the controls {ŭi

t}t≥1 for the auxiliary system i, i ∈ N ,
to minimize3 J̆ i(π; θ̆). These optimization problems are
standard optimal control problems. Therefore, similar to [22,
Theorem 3], we obtain the following result.

Theorem 1: Let S̆ and {S(!)}L!=1 be the solution of the
following DARE:

S̆(θ̆) = DARE(A,B,Q, r0
q0
R) (18a)

and for " ∈ {1, . . . ,L}S(!)(θ(!)) = DARE(A(!),B(!),

Q, r(!)

q(!)
R). (18b)

Define the gains

Ğ(θ̆) = −
(
(B)TS̆(θ̆)B + r0

q0
R
)−1

(B)TS̆(θ̆)A (19a)

and for " ∈ {1, . . . , L}

G(!)(θ(!)) = −
(
(B(!))TS(!)(θ(!))B(!)

+ r(!)

q(!)
R
)−1

(B(!))TS(!)(θ(!))A(!). (19b)

Then, under assumptions (A1)–(A3), the policy

ui
t = Ğ(θ̆)x̆i

t +
L∑

!=1

G(!)(θ(!))x(!),i
t (20)

minimizes the long-term average cost in (6) over all admissible
policies. Furthermore, the optimal performance is given by

J(θ) =
∑

i∈N
q0J̆

i(θ̆) +
∑

i∈N

L∑

!=1

q(!)J (!),i(θ(!)) (21)

where J̆ i(θ̆) = (v̆i)2 Tr(WS̆) and for " ∈ {1, . . . , L}

J (!),i(θ(!)) = (v(!),i)2 Tr(WS(!)). (22)

IV. LEARNING FOR NETWORK-COUPLED SUBSYSTEMS

For the ease of notation, we define z(!),it = vec(x(!),i
t , u(!),i

t )
and z̆it = vec(x̆i

t, ŭ
i
t). Then, we can write the dynamics (13) and

(14) of the eigensystems and the auxiliary systems as

x(!),i
t+1 = (θ(!))Tz(!),it + w(!),i

t ∀i ∈ N ∀" ∈ {1, . . . , L},
(23a)

x̆i
t+1 = (θ̆)Tz̆it + w̆i

t ∀i ∈ N. (23b)

2The cost of the eigensystem ((!), i) is q(!)J(!),i(π; θ(!)). From (A3), we
know that q(!) is positive. Therefore, minimizing q(!)J(!),i(π; θ(!)) is the same
as minimizing J(!),i(π; θ(!)).

A. Simplifying Assumptions

We impose the following assumptions to simplify the descrip-
tion of the algorithm and the regret analysis.

(A4) The noise covarianceW is a scaled identity matrix given
by σ2

wI .
(A5) For each i ∈ N , v̆i += 0.
Assumption (A4) is commonly made in most of the literature

on regret analysis of LQG systems. An implication of (A4) is
that var(w̆i

t) = (σ̆i)2I and var(w(!),i
t ) = (σ(!),i)2I , where

(σ̆i)2 = (v̆i)2σ2
w and (σ(!),i)2 = (v(!),i)2σ2

w. (24)

Assumption (A5) is made to rule out the case where the
dynamics of some of the auxiliary systems are deterministic.

B. Prior and Posterior Beliefs

We assume that the unknown parameters θ̆ and {θ(!)}L!=1

lie in compact subsets Θ̆ and {Θ(!)}L!=1 of R(dx+du)×dx .
Let θ̆k denote the kth column of θ̆. Thus, θ̆ = [θ̆1, . . . , θ̆dx ].
Similarly, let θ(!),k denote the kth column of θ(!). Thus,
θ(!) = [θ(!),1, . . . , θ(!),dx ]. We use p

∣∣
Θ

to denote the restriction
of probability distribution p on the set Θ.

We assume that θ̆ and {θ(!)}L!=1 are random variables that
are independent of the initial states and the noise processes.
Furthermore, we assume that the priors p̆1 and {p(!)1 }L!=1 on θ̆
and {θ(!)}L!=1, respectively, satisfy the following.

(A6) p̆1 is given as: p̆1(θ̆) =
[
∏dx

k=1 ξ̆k1 (θ̆
k)

]∣∣∣
Θ̆

where, for k ∈

{1, . . . , dx}, ξ̆k1 = N (µ̆k
1 , Σ̆1) with mean µ̆k

1 ∈ Rdx+du and
positive-definite covariance Σ̆1 ∈ R(dx+du)×(dx+du).

(A7) For each " ∈ {1, . . . , L}, p(!)1 is given as:

p(!)1 (θ(!)) =

[
dx∏

k=1

ξ(!),k1 (θ(!),k)

] ∣∣∣
Θ(!)

where for k ∈ {1, . . . , dx}, ξ(!),k1 = N (µ(!),k
1 ,Σ(!)

1 ) with mean
µ(!),k
1 ∈ R(dx+du) and positive-definite covariance Σ(!)

1 ∈
R(dx+du)×(dx+du).

These assumptions are similar to the assumptions on the prior
in the recent literature on TS for LQ systems [20].

Our learning algorithm (and TS-based algorithms in gen-
eral) keeps track of a posterior distribution on the unknown
parameters based on observed data. Motivated by the nature
of the planning solution (see Theorem 1), we maintain separate
posterior distributions on θ̆ and {θ(!)}L!=1. For each ", we select a
subsystem i(!)∗ such that the i(!)∗ th component of the eigenvector
v(!) is nonzero (i.e., v(!),i

(!)
∗ += 0). At time t, we maintain a

posterior distribution p(!)t on θ(!) based on the corresponding
eigenstate and action history of the i(!)∗ th subsystem. In other
words, for any Borel subset B of R(dx+du)×dx , p(!)t (B) gives
the following conditional probability:

p(!)t (B) = P(θ(!) ∈ B | x(!),i(!)∗
1:t , u(!),i(!)∗

1:t−1 ). (25)

We maintain a separate posterior distribution p̆t on θ̆ as
follows. At each time t > 1, we select a subsystem jt−1 =
argmaxi∈N z̆i

T

t−1Σ̆t−1z̆it−1/(σ̆
i
t)

2, where Σ̆t−1 is a covariance
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matrix defined recursively in Lemma 1. Then, for any Borel
subset B of R(dx+du)×dx

p̆t(B) = P(θ̆ ∈ B | {x̆js
s , ŭjs

s , x̆js
s+1}1≤s<t}). (26)

See [38] for a discussion on the rule to select jt−1.
Lemma 1: The posterior distributions p(!)t , " ∈ {1, 2, . . . , L},

and p̆t are given as follows.
1) p(!)1 is given by Assumption (A7) and for any t ≥ 1

p(!)t+1(θ
(!)) =

[ dx∏

k=1

ξ(!),kt+1 (θ(!),k)

]∣∣∣∣
Θ(!)

where for k ∈ {1, . . . , dx}, ξ(!),kt+1 = N (µ(!),k
t+1 ,Σ(!)

t+1) and

µ(!)
t+1 = µ(!)

t +
Σ(!)

t z(!),i
(!)
∗

t

(
x(!),i(!)∗
t+1 − (µ(!)

t )Tz(!),i
(!)
∗

t

)T

(σ(!),i(!)∗ )2 + (z(!),i
(!)
∗

t )TΣ(!)
t z(!),i

(!)
∗

t

(27a)

(Σ(!)
t+1)

−1 = (Σ(!)
t )−1 +

1

(σ(!),i(!)∗ )2
z(!),i

(!)
∗

t (z(!),i
(!)
∗

t )T

(27b)

where, for each t, µ!
t denotes the matrix [µ(!),1

t , . . . ,

µ(!),dx
t ].

2) p̆1 is given by Assumption (A6) and for any t ≥ 1

p̆t+1(θ̆) =

[ dx∏

k=1

ξ̆kt+1(θ̆
k)

]∣∣∣∣
Θ̆

where for k ∈ {1, . . . , dx}, ξ̆kt+1 = N (µ̆k
t+1, Σ̆t+1), and

µ̆t+1 = µ̆t +
Σ̆tz̆

jt
t

(
x̆jt
t+1 − (µ̆t)Tz̆jtt

)T

(σ̆jt)2 + (z̆jtt )TΣ̆tz̆
jt
t

(28a)

(Σ̆t+1)
−1 = (Σ̆t)

−1 +
1

(σ̆jt)2
z̆jtt (z̆jtt )T (28b)

where, for each t, µ̆t denotes the matrix [µ̆1
t , . . . , µ̆

dx
t ].

Proof: Note that the dynamics of x(!),i(!)∗
t and x̆i

t in (23) are

linear and the noisesw(!),i(!)∗
t and w̆i

t are Gaussian. Therefore, the
result follows from standard results in Gaussian linear regression
[39, Theorem 3]. !

C. Thompson Sampling Algorithm

We propose a TS-based algorithm called Net-TSDE which
is inspired by the TSDE (Thompson sampling with dynamic
episodes) algorithm proposed in [20] and the structure of the
optimal planning solution described in Section III-B. The TS
part of our algorithm is modeled after the modification of TSDE
presented in [40].

The Net-TSDE algorithm consists of a coordinator C and
|L|+ 1 actors: an auxiliary actor Ă and an eigen actor A! for
each " ∈ {1, 2, . . . , L}. These actors are described below and
the whole algorithm is presented in Algorithm 1.

1) At each time, the coordinator C observes the current
global state xt, computes the eigenstates {x(!)

t }L!=1 and

Algorithm 1: Net-TSDE.

1: initialize eigen actor: Θ(!), (µ!
1,Σ

!
1), t

!
0 = −Tmin,

T !
−1 = Tmin, k = 0, θ!k = 0

2: initialize auxiliary actor: Θ̆, (µ̆1, Σ̆1), t̆0 = −Tmin,
T̆−1 = Tmin, k = 0, θ̆k = 0.

3: for t = 1, 2, . . . do
4: observe xt

5: compute {x(!)
t }L!=1 and x̆t using (9) and (10).

6: for " = 1, 2, . . . , L do
7: u(!)

t ← EIGEN-ACTOR(x(!)
t )

8: ŭt ← AUXILIARY-ACTOR(x̆t)
9: for i ∈ N do

10: Subsystem i applies control ui
t = u(!),i

t + ŭi
t

1: function eigen-actor x(!)
t

2: global var t

3: Update p(!)t according to (27)
4: if (t− t(!)k > Tmin) and
5: ((t− t(!)k > T (!)

k−1) or (detΣ(!)
t < 1

2 detΣt(!)k
))

6: then
7: T (!)

k ← t− t(!)k , k ← k + 1, t(!)k ← t

8: sample θ(!)k ∼ p(!)t

9: return G(!)(θ(!)k )x(!)
t

1: function auxiliary-actor x̆t

2: global var t
3: Update p̆t according to (28)
4: if (t− t̆k > Tmin) and
5: ((t− t̆k > T̆k−1) or (det Σ̆t <

1
2 det Σ̆t(!)k

))
6: then
7: T̆k ← t− t̆k, k ← k + 1, t̆k ← t
8: sample θ̆k ∼ p̆t
9: return Ğ(θ̆k)x̆t

the auxiliary states x̆t, and sends the eigenstate x(!)
t

to the eigen actor A(!), " ∈ {1, . . . , L}, and sends the
auxiliary state x̆t to the auxiliary actor Ă. The eigen
actor A(!), " ∈ {1, . . . , L}, computes the eigencontrol
u(!)
t and the auxiliary actor Ă computes the auxiliary

control ŭt (as per the details presented below) and both
send their computed controls back to the coordinator C.
The coordinator then computes and executes the control
action ui

t =
∑L

!=1 u
(!),i
t + ŭi

t for each subsystem i ∈ N .
2) The eigen actor A(!), " ∈ {1, . . . , L}, maintains the pos-

terior p(!)t on θ(!) according to (27). The actor works in
episodes of dynamic length. Let t(!)k and T (!)

k denote the
starting time and the length of episode k, respectively.
Each episode is of a minimum length T (!)

min + 1, where
T (!)
min is chosen as described in [40]. Episode k ends if

the determinant of covariance Σ(!)
t falls below half of its

value at time t(!)k (i.e., det(Σ(!)
t ) < 1

2 detΣt(!)k
) or if the
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length of the episode is one more than the length of the
previous episode (i.e., t− t(!)k > T (!)

k−1). Thus

t(!)k+1 = min
{
t > t(!)k + T (!)

min

∣∣∣ t− t(!)k > T (!)
k−1 or

detΣ(!)
t < 1

2 detΣt(!)k

}
.

At the beginning of episode k, the eigen actor A(!)

samples a parameter θ(!)k according to the posterior dis-
tribution p(!)

t(!)k

. During episode k, the eigen actor A(!)

generates the eigencontrols using the sampled parameter
θ(!)k , i.e., u(!)

t = G(!)(θ(!)k )x(!)
t .

3) The auxiliary actor Ă is similar to the eigen actor. Actor
Ă maintains the posterior p̆t on θ̆ according to (28).
The actor works in episodes of dynamic length. The
episodes of the auxiliary actor Ă and the eigen actors
A(!), " ∈ {1, 2, . . . , L}, are separate from each other.3

Let t̆k and T̆k denote the starting time and the length
of episode k, respectively. Each episode is of a mini-
mum length T̆min + 1, where T̆min is chosen as described
in [40]. The termination condition for each episode is
similar to that of the eigen actor A(!). In particular

t̆k+1 = min
{
t > t̆k + T̆min

∣∣∣ t− t̆k > T̆k−1 or

det Σ̆t <
1
2 det Σ̆t̆k

}
.

At the beginning of episode k, the auxiliary actor Ă
samples a parameter θ̆k from the posterior distribution
p̆t̆k . During episode k, the auxiliary actor Ă generates the
auxiliary controls using the the sampled parameter θ̆k,
i.e., ŭt = Ğ(θ̆k)x̆t.

Note that the algorithm does not depend on the horizon T .

D. Regret Bounds

We impose the following assumption to ensure that the closed-
loop dynamics of the eigenstates and the auxiliary states of each
subsystem are stable.

(A8) There exists a positive number δ ∈ (0, 1) such that
1) for any " ∈ {1, 2, . . . , L} and θ(!),φ(!) ∈ Θ(!) where

(θ(!))T = [A(!)
θ(!) , B

(!)
θ(!) ], we have

ρ(A(!)
θ(!) +B!

θ(!)G
(!)(φ(!))) ≤ δ.

2) for any θ̆, φ̆ ∈ Θ̆, where (θ̆)T = [Aθ̆, Bθ̆], we have

ρ(Aθ̆ +Bθ̆Ğ(φ̆)) ≤ δ.

This assumption is similar to an assumption made in [40] for
TS for LQG systems. According to [41, Lemma 1] (also see [18,
Theorem 11]), (A8) is satisfied if

Θ(!) = {θ(!) ∈ R(dx+du)×dx : ‖θ(!) − θ!◦‖ ≤ ε(!)},

Θ̆ = {θ̆ ∈ R(dx+du)×dx : ‖θ̆ − θ̆◦‖ ≤ ε̆}

3The episode count k is used as a local variable for each actor.

where θ(!) and θ̆ are stabilizable and ε(!) and ε̆ are sufficiently
small. In other words, the assumption holds when the true system
is in a small neighborhood of a known nominal system. Such
a small neighborhood can be learned with high probability by
running appropriate stabilizing procedures for finite time [18],
[41].

The following result provides an upper bound on the regret of
the proposed algorithm.

Theorem 2: Under (A1)–(A8), the regret of Net-TSDE is
upper bounded as follows:

R(T ;Net-TSDE) ≤ Õ
(
αGσ2

wd
0.5
x (dx + du)

√
T
)

where αG =
∑L

!=1 q
(!) + q0(n− L).

See Section V for proof.
Remark 1: The term αG in the regret bound partially captures

the impact of the network on the regret. The coefficients r0
and {r(!)}L!=1 depend on the network and also affect the regret,
but their dependence is hidden inside the Õ(·) notation. It is
possible to explicitly characterize this dependence, but doing so
does not provide any additional insights. We discuss the impact
of the network coupling on the regret in Section VI via some
examples.

Remark 2: The regret per subsystem is given by R(T ;
Net-TSDE)/n, which is proportional to

αG/n = O
(L
n

)
+O

(n− 1

n

)
= O

(
1 +

L

n

)
.

Thus, the regret per-subsystem scales as O(1 + L/n). In con-
trast, for the standard TSDE algorithm [20], [40], the regret
per subsystem is proportional to αG(TSDE)/n = O(n0.5). This
clearly illustrates the benefit of the proposed learning algorithm.

V. REGRET ANALYSIS

For the ease of notation, we simply use R(T ) instead of
R(T ;Net-TSDE) in this section. Based on (15) and Theorem 1,
the regret may be decomposed as

R(T ) =
∑

i∈N
q0R̆

i(T ) +
∑

i∈N

L∑

!=1

q(!)R(!),i(T ) (29)

where

R̆i(T ) := E

[ T∑

t=1

c̆(x̆i
t, ŭ

i
t)− T J̆ i(θ̆)

]

and, for " ∈ {1, . . . , L}

R(!),i(T ) := E

[ T∑

t=1

c(!)(x(!),i
t , u(!),i

t )− TJ (!),i(θ(!))

]
.

Based on the discussion at the beginning of Section III-B,
q0R̆i(T ), i ∈ N , is the regret associated with auxiliary sys-
tem i and q(!)R(!),i(T ), " ∈ {1, . . . , L} and i ∈ N , is the regret
associated with eigensystem (", i). We now bound R̆i(T ) and
R(!),i(T ) separately.
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A. Bound on R(!),i(T )

Fix " ∈ {1, . . . , L}. For the component i(!)∗ , the Net-TSDE
algorithm is exactly the same as the variation of the TSDE algo-
rithm of [20] presented in [40]. Therefore, from [40, Theorem 1],
it follows that

R(!),i(!)∗ (T ) ≤ Õ
(
(σ(!),i(!)∗ )2d0.5x (dx + du)

√
T )
)
. (30)

We now show that the regret of other eigensystems (", i) with
i += i(!)∗ also satisfies a similar bound.

Lemma 2: The regret of eigensystem (", i), " ∈ {1, . . . , L}
and i ∈ N , is bounded as follows:

R(!),i(T ) ≤ Õ
(
(σ(!),i)2d0.5x (dx + du)

√
T
)
. (31)

Proof: Fix " ∈ {1, . . . , L}. Recall from (9) that x(!)
t =

xtv(!)(v(!))T. Therefore, for any i ∈ N

x(!),i
t = xtv

(!)v(!),i = v(!),ixtv
(!)

where the last equality follows because v(!),i is a scalar. Since
we are using the same gain G(!)(θ(!)k ) for all agents i ∈ N , we
have

u(!),i
t = G(!)(θ(!)k )x(!),i

t = v(!),iG(!)(θ(!)k )xtv
(!).

Thus, we can write (recall that i(!)∗ is chosen such that v(!),i
(!)
∗ +=

0), for all i ∈ N

x(!),i
t =

(
v(!),i

v(!),i
(!)
∗

)
x(!),i(!)∗
t and u(!),i

t =

(
v(!),i

v(!),i
(!)
∗

)
u(!),i(!)∗
t .

Thus, for any i ∈ N

c(!)
(
x(!),i
t , u(!),i

t

)
=

(
v(!),i

v(!),i
(!)
∗

)2

c(!)
(
x(!),i(!)∗
t , u(!),i(!)∗

t

)
.

(32)
Moreover, from (22), we have

J (!),i(θ(!)) =

(
v(!),i

v(!),i
(!)
∗

)2

J (!),i(!)∗ (θ(!)). (33)

By combining (32) and (33), we get

R(!),i(T ) =

(
v(!),i

v(!),i
(!)
∗

)2

R(!),i(!)∗ (T ).

Substitute the bound for R(!),i(!)∗ (T ) from (30) and observe that
(v(!),i/v(!),i

(!)
∗ )2 = (σ(!),i/σ(!),i(!)∗ )2 gives the result. !

B. Bound on R̆i(T )

The update of the posterior p̆t on θ̆ does not depend on the
history of states and actions of any fixed agent i. Therefore, we
cannot directly use the argument presented in [40] to bound the
regret R̆i(T ). We present a bound from first principles below.

For the ease of notation, for any episode k, we use Ğk and
S̆k to denote Ğ(θ̆k) and S̆(θ̆k), respectively. From LQ optimal
control theory [42], we know that the average cost J̆ i(θ̆k) and
the optimal policy ŭi

t = Ğkx̆i
t for the model parameter θ̆k satisfy

the following Bellman equation:

J̆ i(θ̆k) + (x̆i
t)

TS̆kx̆
i
t = c̆(x̆i

t, ŭ
i
t)

+ E
[(
θ̆T
k z̆

i
t + w̆i

t

)T
S̆k

(
θ̆T
k z̆

i
t + w̆i

t

)]
.

Adding and subtracting E[(x̆i
t+1)

TS̆kx̆i
t+1 | z̆it] and noting that

x̆i
t+1 = θ̆Tz̆it + w̆i

t, we get that

c̆(x̆i
t, ŭ

i
t) = J̆ i(θ̆k) + (x̆i

t)
TS̆kx̆

i
t − E[(x̆i

t+1)
TS̆kx̆

i
t+1|z̆it]

+ (θ̆Tz̆it)
TS̆k((θ̆)

Tz̆it)− (θ̆T
k z̆

i
t)

TS̆k((θ̆k)
Tz̆it).

(34)

Let K̆T denote the number of episodes of the auxiliary actor
until horizon T . For each k > K̆T , we define t̆k to be T + 1.
Then, using (34), we have that for any agent i

R̆i(T ) = E




K̆T∑

k=1

T̆kJ̆
i(θ̆k)− T J̆ i(θ̆)





︸ ︷︷ ︸
regret due to sampling error=:R̆i

0(T )

+ E




K̆T∑

k=1

t̆k+1−1∑

t=t̆k

[
(x̆i

t)
TS̆kx̆

i
t − (x̆i

t+1)
TS̆kx̆

i
t+1

]




︸ ︷︷ ︸
regret due to time-varying controller =:R̆i

1(T )

+
[t]E

[
K̆T∑
k=1

t̆k+1−1∑

t=t̆k

[
(θ̆Tz̆it)

TS̆k((θ̆)Tz̆it)

−(θ̆T
k z̆

i
t)

TS̆k((θ̆k)Tz̆it)
]]
.

︸ ︷︷ ︸
regret due to model mismatch =:R̆i

2(T )

(35)

Lemma 3: The terms in (35) are bounded as follows.
1) R̆i

0(T ) ≤ Õ((σ̆i)2(dx + du)0.5
√
T ).

2) R̆i
1(T ) ≤ Õ((σ̆i)2(dx + du)0.5

√
T ).

3) R̆i
2(T ) ≤ Õ((σ̆i)2d0.5x (dx + du)

√
T ).

Combining these three, we get that

R̆i(T ) ≤ Õ((σ̆i)2d0.5x (dx + du)
√
T ). (36)

See Appendix for the proof.

C. Proof of Theorem 2

For ease of notation, let R∗ = Õ(d0.5x (dx + du)
√
T ). Then,

by substituting the result of Lemmas 2 and 3 in (29), we get that

R(T ) ≤
∑

i∈N
q0(σ̆

i)2R∗ +
∑

i∈N

L∑

!=1

q(!)(σ(!),i)2R∗

(a)
=
∑

i∈N
q0(v̆

i)2σ2
wR

∗ +
∑

i∈N

L∑

!=1

q(!)(v(!),i)2σ2
wR

∗

(b)
=
(
q0(n− L) +

L∑
!=1

q(!)
)
σ2
wR

∗ (37)
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Fig. 1. Regret for mean-field system. (a) R(T )/
√
T vs T .

(b) R(T )/
√
T vs n.

where (a) follows from (24) and (b) follows from observing that∑
i∈N (v(!),i)2 = 1 and therefore

∑
i∈N (v̆i)2 = n− L. Equa-

tion (37) establishes the result of Theorem 2.

VI. SOME EXAMPLES

A. Mean-Field System

Consider a complete graphG where the edge weights are equal
to 1/n. Let M be equal to the adjacency matrix of the graph,
i.e., M = 1

n1n×n. Thus, the system dynamics are given by

xi
t+1 = Axi

t +Bui
t +Dx̄t + Eūt + wi

t

where x̄t =
1
n

∑
i∈N xi

t and ūt =
1
n

∑
i∈N ui

t. Suppose Kx =
Ku = 1 and q0 = r0 = 1/n and q1 = r1 = κ/n, where κ is a
positive constant.

In this case,M has rankL = 1, the nonzero eigenvalue ofM is
λ(1) = 1, the corresponding normalized eigenvector is 1√

n
1n×1,

and q(1) = r(1) = q0 + q1 = (1 + κ)/n. The eigenstate is given
by x1

t = [x̄t, . . . , x̄t] and a similar structure holds for the eigen-
control u1

t . The per-step cost can be written as [see (15)]

c(xt, ut) = (1 + κ)
[
x̄T
tQx̄t + ūT

tRūt

]
.

+
1

n

∑

i∈N

[
(xi

t−x̄t)
TQ(xi

t−x̄t)+(ui
t−ūt)

TR(ui
t−ūt)

]
.

Thus, the system is similar to the mean-field team system inves-
tigated in [6].

For this model, the network-dependent constant αG in the
regret bound of Theorem 2 is given by αG =

(
1 + κ

n

)
= O

(
1 +

1
n

)
. Thus, for the mean-field system, the regret of Net-TSDE

scales asO(1 + 1
n )with the number of agents. This is consistent

with the discussion following Theorem 2.
We test these conclusions via numerical simulations of a

scalar mean-field model with dx = du = 1, σ2
w = 1, A = 1,

B = 0.3, D = 0.5, E = 0.2, Q = 1, R = 1, and κ = 0.5. The
uncertain sets are chosen as Θ(1) = {θ(1) ∈ R2 : A+D +
(B + E)G(1)(θ(1)) < δ} and Θ̆ = {θ̆ ∈ R2 : A+BĞ(θ̆) <
δ} where δ = 0.99. The prior over these uncertain sets is chosen
according to (A6)–(A7) where µ̆1 = µ(1)

1 = [1, 1]T and Σ̆1 =

Σ(1)
1 = I . We set Tmin = 0 in Net-TSDE. The system is sim-

ulated for a horizon of T = 5000 and the expected regret R(T )
averaged over 500 sample trajectories is shown in Fig. 1. As

Fig. 2. Graph G◦ with n = 4 nodes and its adjacency matrix.

Fig. 3. Regret for general low-rank network. (a) R(T )/
√
T vs T .

(b) R(T )/
√
T vs n.

expected, the regret scales as Õ(
√
T ) with time and O

(
1 + 1

n

)

with the number of agents.

B. General Low-Rank Network

We consider a network with 4n nodes given by the graph
G = G◦ ⊗ Cn, where G◦ is a four-node graph shown in Fig. 2
and Cn is the complete graph with n nodes and each edge weight
equal to 1

n . Let M be the adjacency matrix of G which is given
as M = M ◦ ⊗ 1

n1n×n, where M ◦ is the adjacency matrix of
G◦ shown in Fig. 2. Moreover, suppose Kx = 2 with q0 = 1,
q1 = −2, and q2 = 1 and Ku = 0 with r0 = 1. Note that the
cost is not normalized per-agent.

In this case, the rank of M ◦ is 2 with eigenvalues ±ρ, where
ρ =

√
2(a2 + b2) and the rank of 1

n1n×n is 1 with eigenvalue
1. Thus, M = M ◦ ⊗ 1

n1n×n has the same nonzero eigenvalues
as M ◦ given by λ(1) = ρ and λ(2) = −ρ. Further, q(!) = (1−
λ(!))2 and r(!) = 1, for " ∈ {1, 2}. We assume that a2 + b2 +=
0.5, so that the model satisfies (A3).

For this model, the scaling parameter αG in the regret bound
in Theorem 2 is given by

αG = (1− ρ)2 + (1 + ρ)2 + (4n− 2) = 4n+ 2ρ2.

Recall that ρ2 = (λ(1))2 = (λ(2))2. Thus, αG has an explicit
dependence on the square of the eigenvalues and the number
of nodes.

We verify this relationship via numerical simulations. We
consider the graph above with two choices of parameters
(a, b): 1) a = b = 0.05 and 2) a = b = 5. For both cases, we
consider a scalar system with parameters the same as the
mean-field system considered in Section VI-A. The regret for
both cases with different choices of number of agents 4n ∈
{4, 40, 80, 100} is shown in Fig. 3. As expected, the regret scales
as Õ(

√
T ) with time and O

(
4n+ 2ρ2) with the number of

agents.
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VII. CONCLUSION

In this article, consider the problem of controlling an un-
known LQG system consisting of multiple subsystems con-
nected over a network. By utilizing a spectral decomposition
technique, we decompose the coupled subsystems into eigen-
systems and auxiliary systems. We propose a TS-based learn-
ing algorithm Net-TSDE which maintains separate posterior
distributions on the unknown parameters θ(!), " ∈ {1, . . . , L},
and θ̆ associated with the eigensystems and auxiliary systems,
respectively. For each eigensystem, Net-TSDE learns the un-
known parameter θ(!) and controls the system in a manner
similar to the TSDE algorithm for single agent LQG systems
proposed in [20] and [40]. Consequently, the regret for each
eigensystem can be bounded using the results of [20] and [40].
However, the part of the Net-TSDE algorithm that performs
learning and control for the auxiliary system has an agent
selection step and thus requires additional analysis to bound
its regret. Combining the regret bounds for the eigensystems
and auxiliary systems shows that the total expected regret
of Net-TSDE is upper bounded by Õ(nd0.5x (dx + du)

√
T ).

The empirically observed scaling of regret with respect to
the time horizon T and the number of subsystems n in
our numerical experiments agrees with the theoretical upper
bound.

The results presented in this article rely on the spectral de-
composition developed in [22]. A limitation of this decomposi-
tion is that the local dynamics (i.e., the (A,B) matrices) are
assumed to be identical for all subsystems and the coupling
matrix M is symmetric. Interesting generalizations overcoming
these limitations include settings where 1) there are multiple
types of subsystems and the (A,B) matrices are the same for
subsystems of the same type but different across types, 2) the
coupling matrix M is not symmetric, and 3) the subsystems
are not identical but approximately identical, i.e., there are
nominal dynamics (A◦, B◦) and the local dynamics (Ai, Bi)
of subsystem i are in a small neighborhood of (A◦, B◦). It may
be possible to extend the decomposition in [22] and the learning
algorithm of this article to handle cases 1) and 2). For case 3),
it may be possible to approximate the nonidentical subsystems
by identical subsystems. However, such an approximation may
lead to a regret which is linear in time due to the approximation
error.

The decomposition in [22] exploits the fact that the dynam-
ics and the cost couplings have the same spectrum (i.e., the
same orthonormal eigenvectors). It is also possible to con-
sider learning algorithms which exploit other features of the
network such as sparsity in the case of networked MDPs
[32], [33].

APPENDIX
REGRET ANALYSIS

A. Preliminary Results

Since S̆(·) and Ğ(·) are continuous functions on a com-
pact set Θ̆, there exist finite constants M̆J , M̆θ̆, M̆S , M̆G

such that Tr(S̆(θ̆)) ≤ M̆J , ‖θ̆‖ ≤ M̆θ̆, ‖S̆(θ̆)‖ ≤ M̆S and

‖[I, Ğ(θ̆)T]T‖ ≤ M̆G for all θ̆ ∈ Θ̆ where ‖ · ‖ is the induced
matrix norm.

Let X̆i
T = σ̆i +max1≤t≤T ‖x̆i

t‖. The next two bounds follow
from [40, Lemma 4] and [40, Lemma 5].

Lemma 4: For each node i ∈ N , any q ≥ 1 and any T > 1

E

[
(X̆i

T )
q

(σ̆i)q

]
≤ O (log T ) .

Lemma 5: For any q ≥ 1, we have

E

[
(X̆i

T )
q

(σ̆i)q
log

( T∑

t=1

(X̆i
T )

2

(σ̆i)2

)]

≤ E

[
(X̆i

T )
q

(σ̆i)q
log

( T∑

t=1

∑

i∈N

(X̆i
T )

2

(σ̆i)2

)]
≤ Õ(1). (38)

The next lemma gives an upper bound on the number of
episodes K̆T .

Lemma 6: The number of episodes K̆T is bounded as follows:

K̆T ≤ O





√√√√(dx + du)T log

(
T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

)

 .

Proof: We can follow the same argument as in the proof of
[40, Lemma 5]. Let η̆ − 1 be the number of times the second
stopping criterion is triggered for p̆t. Using the analysis in the
proof of [40, Lemma 5], we can get the following inequalities:

K̆T ≤
√

2η̆T , (39)

det(Σ̆−1T ) ≥ 2η̆−1 det(Σ̆−11 ) ≥ 2η̆−1λ̆d
min (40)

whered = dx + du and λ̆min is the minimum eigenvalue of Σ̆−11 .
Combining (40) with Tr(Σ̆−1T )/d ≥ det(Σ̆−1T )1/d, we get

Tr(Σ̆−1T ) ≥ dλ̆min2(η̆−1)/d. Thus

η̆ ≤ 1 +
d

log 2
log

(
Tr(Σ̆−1T )

dλ̆min

)
. (41)

Now, we bound Tr(Σ̆−1T ). From (28b), we have

Tr(Σ̆−1T ) = Tr(Σ̆−11 ) +
T−1∑

t=1

1

(σ̆jt)2
Tr(z̆jtt (z̆jtt )T

︸ ︷︷ ︸
=‖z̆jt

t ‖2

). (42)

Note that ‖z̆jtt ‖ = ‖[I, Ğ(θ̆)T]Tx̆jt
t ‖ ≤ M̆G‖x̆jt

t ‖ ≤ M̆GX̆
jt
T .

Using‖z̆jtt ‖2 ≤ M̆2
G(X̆

jt
T )2 in (42) and substituting the resulting

bound on Tr(Σ̆−1T ) in (41) and then combining it with the bound
on η in (39) give the result of the lemma. !

Lemma 7: . The expected value of K̆T is bounded as follows:

E[K̆T ] ≤ Õ
(√

(dx + du)T
)
.

Proof: From Lemma 6, we get

E[K̆T ] ≤ O
(

E

[√√√√(dx + du)T log

(T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

)])
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(a)
≤ O

(
√√√√(dx + du)T log

(
E

[T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

]))

≤ O
(
√√√√(dx + du)T log

(
E

[T−1∑

t=1

∑

i∈N

(X̆i
T )

2

(σ̆i)2

]))

(b)
≤ Õ(

√
(dx + du)T )

where (a) follows from Jensen’s inequality and (b) follows from
Lemma 4. !

B. Proof of Lemma 3

Proof: We will prove each part separately.
1) Bounding R̆i

0(T ): From an argument similar to the proof
of [20, Lemma 5], we get that R̆i

0(T ) ≤ (σ̆i)2M̆JE[K̆T ]. The
result then follows from substituting the bound on E[K̆T ] from
Lemma 7.

2) Bounding R̆i
1(T ):

R̆i
1(T ) = E

[ K̆T∑

k=1

t̆k+1−1∑

t=t̆k

[
(x̆i

t)
TS̆kx̆

i
t − (x̆i

t+1)
TS̆kx̆

i
t+1

]]

= E

[ K̆T∑

k=1

[
(x̆i

t̆k
)TS̆kx̆

i
t̆k
− (x̆i

t̆k+1
)TS̆kx̆

i
t̆k+1

]]

≤ E

[ K̆T∑

k=1

(x̆i
t̆k
)TS̆kx̆

i
t̆k

]
≤ E

[ K̆T∑

k=1

‖S̆k‖‖x̆i
tk‖

2

]

≤ M̆SE[K̆T (X̆
i
T )

2] (43)

where the last inequality follows from ‖S̆k‖ ≤ M̆S . Using the
bound for K̆T in Lemma 6, we get

R̆i
1(T )≤ O

(
√
(dx + du)TE

[
(X̆i

T )
2

√√√√log

( T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

)])
.

(44)
Now, consider the term

E

[
(X̆i

T )
2

√√√√log

(T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

)])

(a)
≤

√√√√E[(X̆i
T )

4] E

[
log

(T−1∑

t=1

(X̆jt
T )2

(σ̆jt)2

)]

(b)
≤

√√√√E[(X̆i
T )

4] log

(
E

[T−1∑

t=1

∑

i∈N

(X̆i
T )

2

(σ̆jt)2

])

(c)
≤ Õ((σ̆i)2) (45)

where (a) follows from Cauchy–Schwarz, (b) follows from
Jensen’s inequality, and (c) follows from Lemma 4. The result
then follows from substituting (45) in (43).

3) Bounding R̆i
2(T ): As in [20], we can bound the inner

summand in R̆i
2(T ) as

[
(θ̆Tz̆it)

TS̆k(θ̆
Tz̆it)− (θ̆T

k z̆
i
t)

TS̆k((θ̆k)
Tz̆it)

]

≤ O(X̆i
T ‖(θ̆ − θ̆k)Tz̆it‖).

Therefore

R̆i
2(T ) ≤ O

(
E

[
X̆i

T

K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖(θ̆ − θ̆k)Tz̆it‖
])

. (46)

The term inside O(·) can be written as

E

[
X̆i

T

K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖(θ̆ − θ̆k)Tz̆it‖
]

= E

[
X̆i

T

K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖(Σ̆−0.5tk (θ̆ − θ̆k))TΣ̆0.5
tk z̆it‖

]

≤ E

[ K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖Σ̆−0.5tk (θ̆ − θ̆k)‖ × X̆i
T ‖Σ̆0.5

tk z̆it‖
]

≤

√√√√√E

[ K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖Σ̆−0.5tk (θ̆ − θ̆k)‖2
]

×

√√√√√E

[ K̆T∑

k=1

t̆k+1−1∑

t=t̆k

(X̆i
T )

2‖Σ̆0.5
tk z̆it‖2

]
(47)

where the last inequality follows from Cauchy–Schwarz in-
equality.

Following the same argument as [40, Lemma 7], the first part
of (47) is bounded by

E

[ K̆T∑

k=1

t̆k+1−1∑

t=t̆k

‖Σ̆−0.5tk (θ̆ − θ̆k)‖2
]
≤ O(dx(dx + du)T ).

(48)
For the second part of the bound in (47), we follow the same

argument as [40, Lemma 8]. Recall that λ̆min is the smallest
eigenvalue of Σ̆−11 . Therefore, by (28b), all eigenvalues of Σ̆−1t

are no smaller than λ̆min. Or, equivalently, all eigenvalues of Σ̆t

are no larger than 1/λ̆min.
Using [11, Lemma 11], we can show that for any t ∈

{tk, . . . , tk+1 − 1},

‖Σ̆0.5
tk z̆it‖2 = (z̆it)

TΣ̆tk z̆
i
t ≤

det Σ̆−1t

det Σ̆−1tk

(z̆it)
TΣ̆tz̆

i
t

≤ F1(X̆
i
T ) (z̆

i
t)

TΣ̆tz̆
i
t (49)

where F1(X̆i
T ) =

(
1 + (M̆2

G(X̆
i
T )

2/λ̆minσ̆2
w)
)T̆min∨1 and the

last inequality follows from [40, Lemma 10].
Moreover, since all eigenvalues of Σ̆t are no larger than

1/λ̆min, we have (z̆it)
TΣ̆tz̆it ≤ ‖z̆it‖2/λ̆min ≤ M̆2

G(X̆
i
T )

2/λ̆min.
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Therefore

(z̆it)
TΣ̆tz̆

i
t ≤

(
(σ̆i)2 ∨ M̆2

G(X̆
i
T )

2

λ̆min

)(
1 ∧ (z̆it)

TΣ̆tz̆it
(σ̆i)2

)

≤
(
(σ̆i)2 +

M̆2
G(X̆

i
T )

2

λ̆min

)(
1 ∧ (z̆jtt )TΣ̆tz̆

jt
t

(σ̆jt)2

)

(50)

where the last inequality follows from the definition of jt. Let
F2(X̆i

T ) =
(
(σ̆i)2 + (λ̆min/M̆2

G(X̆
i
T )

2)
)
. Then

T∑

t=1

(z̆it)
TΣ̆tz̆

i
t ≤ F2(X̆

i
T )

T∑

t=1

(
1 ∧ (z̆jtt )TΣ̆tz̆

jt
t

(σ̆jt)2

)

= F2(X̆
i
T )

T∑

t=1

(
1 ∧

∥∥∥∥
Σ0.5

t z̆jtt (z̆jtt )TΣ0.5
t

(σ̆jt)2

∥∥∥∥

)

(a)
≤ F2(X̆

i
T )

[
2d log

(
Tr(Σ̆−1T+1)

d

)
− log detΣ−11

]

(b)
≤ F2(X̆

i
T )

[
2d log

(
1

d

(
Tr(Σ̆−11 ) + M̆G

T∑

t=1

(X̆jt
T )2

(σ̆jt)2

))

− log detΣ−11

]
(51)

where d = dx + du and (a) follows from (28b) and the inter-
mediate step in the proof of [43, Lemma 6]. and (b) follows
from (42) and the subsequent discussion.

Using (49) and (51), we can bound the second term of (47) as
follows:

E

[
T∑

t=1

(X̆i
T )

2‖Σ̆0.5
tk z̆it‖2

]
≤ O

(
dE

[
F1(X̆

i
t)F2(X̆

i
T )(X̆

i
T )

2

× log

( T∑

t=1

(X̆i
T )

2

(σ̆i)2

)])

≤ O
(
d(σ̆i)4E

[
F1(X̆

i
T )

F2(X̆i
T )

(σ̆i)2
(X̆i

T )
2

(σ̆i)2
log

( T∑

t=1

(X̆i
T )

2

(σ̆i)2

)])

≤ Õ(d(σ̆i)4) (52)

where the last inequality follows by observing that

F1(X̆i
T )

F2(X̆i
T )

(σ̆i)2
(X̆i

T )2

(σ̆i)2 log
(∑T

t=1
(X̆i

T )2

(σ̆i)2

)
is a polynomial in

X̆i
T /σ̆

i multiplied by log
(∑T

t=1
(X̆i

T )2

(σ̆i)2

)
and, using Lemma 5.

The result then follows by substituting (48) and (52) in (47).!

REFERENCES

[1] N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Survey of decentral-
ized control methods for large scale systems,” IEEE Trans. Autom. Control,
vol. AC-23, no. 2, pp. 108–128, Apr. 1978.

[2] J. Lunze, “Dynamics of strongly coupled symmetric composite systems,”
Int. J. Control, vol. 44, no. 6, pp. 1617–1640, 1986.

[3] M. K. Sundareshan and R. M. Elbanna, “Qualitative analysis and de-
centralized controller synthesis for a class of large-scale systems with
symmetrically interconnected subsystems,” Automatica, vol. 27, no. 2,
pp. 383–388, 1991.

[4] G.-H. Yang and S.-Y. Zhang, “Structural properties of large-scale systems
possessing similar structures,” Automatica, vol. 31, no. 7, pp. 1011–1017,
1995.

[5] S. C. Hamilton and M. E. Broucke, “Patterned linear systems,” Automatica,
vol. 48, no. 2, pp. 263–272, 2012.

[6] J. Arabneydi and A. Mahajan, “Team-optimal solution of finite number
of mean-field coupled LQG subsystems,” in Proc. Conf. Decis. Control,
Kyoto, Japan, 2015, pp. 5308–5313.

[7] K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA, USA:
Addison-Wesley Longman Publishing, 1994.

[8] S. J. Bradtke, “Reinforcement learning applied to linear quadratic regula-
tion,” in Proc. Neural Inf. Process. Syst., 1993, pp. 295–302.

[9] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” in Proc. Amer. Control Conf., vol. 3, 1994,
pp. 3475–3479.

[10] M. C. Campi and P. Kumar, “Adaptive linear quadratic gaussian control:
The cost-biased approach revisited,” SIAM J. Control Optim., vol. 36, no. 6,
pp. 1890–1907, 1998.

[11] Y. Abbasi-Yadkori and C. Szepesvári, “Regret bounds for the adaptive
control of linear quadratic systems,” in Proc. Annu. Conf. Learn. Theory,
2011, pp. 1–26.

[12] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Optimism-based
adaptive regulation of linear-quadratic systems,” IEEE Trans. Autom.
Control, vol. 66, no. 4, pp. 1802–1808, Apr. 2021.

[13] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic regulators
efficiently with only

√
T regret,” in Proc. Int. Conf. Mach. Learn., 2019,

pp. 1300–1309.
[14] M. Abeille and A. Lazaric, “Efficient optimistic exploration in linear-

quadratic regulators via lagrangian relaxation,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 23–31.

[15] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds for
robust adaptive control of the linear quadratic regulator,” in Proc. Neural
Inf. Process. Syst., 2018, pp. 4192–4201.

[16] H. Mania, S. Tu, and B. Recht, “Certainty equivalent control of LQR
is efficient,” in Proc. Int. Conf. Neural Inf. Process. Syst., Dec. 2019,
pp. 10154–10164.

[17] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Input perturba-
tions for adaptive control and learning,” Automatica, vol. 117, 2020,
Art. no. 108950.

[18] M. Simchowitz and D. Foster, “Naive exploration is optimal for online
LQR,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 8937–8948.

[19] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On adaptive linear–
quadratic regulators,” Automatica, vol. 117, Jul. 2020, Art. no. 108982.

[20] Y. Ouyang, M. Gagrani, and R. Jain, “Posterior sampling-based reinforce-
ment learning for control of unknown linear systems,” IEEE Trans. Autom.
Control, vol. 65, no. 8, pp. 3600–3607, Aug. 2020.

[21] M. Abeille and A. Lazaric, “Improved regret bounds for thompson sam-
pling in linear quadratic control problems,” in Proc. Int. Conf. Mach.
Learn., 2018, pp. 1–9.

[22] S. Gao and A. Mahajan, “Optimal control of network-coupled sub-
systems: Spectral decomposition and low-dimensional solutions,” IEEE
Trans. Control Netw. Syst., vol. 9, no. 2, pp. 657–669, Jun. 2022,
doi: 10.1109/TCNS.2021.3124259.

[23] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2–3, pp. 235–256,
2002.

[24] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the
multi-armed bandit problem,” in Proc. Conf. Learn. Theory, 2012,
pp. 39.1–39.26.

[25] H. Wang, S. Lin, H. Jafarkhani, and J. Zhang, “Distributed q-learning with
state tracking for multi-agent networked control,” in Proc. AAMAS, 2021,
pp. 1692–1694.

[26] G. Jing, H. Bai, J. George, A. Chakrabortty, and P. K. Sharma, “Learning
distributed stabilizing controllers for multi-agent systems,” IEEE Control
Syst. Lett., vol. 6, pp. 301–306, 2022.

[27] Y. Li, Y. Tang, R. Zhang, and N. Li, “Distributed reinforcement learn-
ing for decentralized linear quadratic control: A derivative-free pol-
icy optimization approach,” in Proc. Conf. Learn. Dyn. Control, 2020,
pp. 814–814.

[28] S. Alemzadeh and M. Mesbahi, “Distributed q-learning for dynamically
decoupled systems,” in Proc. Amer. Control Conf., 2019, pp. 772–777.

[29] J. Bu, A. Mesbahi, and M. Mesbahi, “Policy gradient-based algorithms for
continuous-time linear quadratic control,” 2020, arXiv:2006.09178.

[30] H. Mohammadi, M. R. Jovanovic, and M. Soltanolkotabi, “Learning
the model-free linear quadratic regulator via random search,” in Proc.
Learning Dyn. Control, 2020, pp. 531–539.

Authorized licensed use limited to: Ashutosh Nayyar. Downloaded on December 12,2023 at 17:47:30 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TCNS.2021.3124259


14 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 1, MARCH 2023

[31] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 5872–5881.

[32] I. Osband and B. Van Roy, “Near-optimal reinforcement learning in
factored MDPs,” in Advances in Neural Information Processing Systems,
vol. 27. Red Hook, NY, USA: Curran Associates, 2014.

[33] X. Chen, J. Hu, L. Li, and L. Wang, “Efficient reinforcement learning in
factored MDPs with application to constrained RL,” in Proc. Intl. Conf.
Learn. Representations, 2021.

[34] M. Huang, P. E. Caines, and R. P. Malhamé, “Large-population cost-
coupled LQG problems with nonuniform agents: Individual-mass behavior
and decentralized epsilon-Nash equilibria,” IEEE Trans. Autom. Control,
vol. 52, no. 9, pp. 1560–1571, Sep. 2007.

[35] J.-M. Lasry and P.-L. Lions, “Mean field games,” Japanese J. Math., vol. 2,
no. 1, pp. 229–260, 2007.

[36] S. G. Subramanian, P. Poupart, M. E. Taylor, and N. Hegde, “Multi type
mean field reinforcement learning,” in Proc. Int. Conf. Auton. Agents
Multiagent Syst., 2020, pp. 411–419.

[37] M. A. uz Zaman, K. Zhang, E. Miehling, and T. Başar, “Reinforce-
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