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Abstract

Polarized Resonant Soft X-ray scattering (P-RSoXS) has emerged as a powerful

synchrotron-based tool that combines principles of X-ray scattering and X-ray

spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and

chemical heterogeneity in soft materials such as polymers and biomaterials.

Quantitative extraction of orientation information from P-RSoXS pattern data is

challenging because the scattering processes originate from sample properties that

must be represented as energy-dependent three-dimensional tensors with

heterogeneities at nanometer to sub-nanometer length scales. We overcome this
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challenge by developing an open-source virtual instrument that uses Graphical

Processing Units (GPUs) to simulate P-RSoXS patterns from real-space material

representations with nanoscale resolution. Our computational framework – called

CyRSoXS (https://github.com/usnistgov/cyrsoxs) – is designed to maximize

GPU performance, including algorithms that minimize both communication and

memory footprints. We demonstrate the accuracy and robustness of our approach

by validating against an extensive set of test cases, which include both analytical

solutions and numerical comparisons, demonstrating a speedup of over three orders

relative to the current state-of-the-art P-RSoXS simulation software. Such fast

simulations open up a variety of applications that were previously computationally

infeasible, including (a) pattern fitting, (b) co-simulation with the physical

instrument for operando analytics, data exploration, and decision support, (c) data

creation and integration into machine learning workflows, and (d) utilization in

multi-modal data assimilation approaches. Finally, we abstract away the complexity

of the computational framework from the end-user by exposing CyRSoXS to Python

using Pybind. This eliminates input/output (I/O) requirements for large-scale

parameter exploration and inverse design, and democratizes usage by enabling

seamless integration with a Python ecosystem

(https://github.com/usnistgov/nrss) that can include parametric morphology

generation, simulation result reduction, comparison to experiment, and data fitting

approaches.

1. Introduction

Developing process-structure-property relationships is a central pillar of material

science and engineering research. Understanding the e�ect of composition,

structure, and processing on the performance of a material can enable the intelligent
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and e�cient tuning of the process variables to improve the end performance of the

material in a given application. With these process-structure-property relationships,

the exciting goal of designing new materials instead of discovering them becomes a

reality. Thus, there is an ever-present need to develop new characterization methods

to elucidate material structure with increasing detail and clarity.

Structural characterization is particularly challenging in soft matter due to its

semi-disordered nature. Some important aspects of soft material structure include

spatial heterogeneities in composition, density, molecular orientation/conformation,

and the degree of order. Recent advancements in synthesis and materials processing

have unlocked access to systems in which all aspects of soft material structure might

ultimately be controlled by design. However, despite an enormous acceleration in

the capability and speed of characterization methods across many length scales, it

remains a fundamental and pervasive challenge to e�ciently, rigorously, and

robustly assimilate materials structure characterization data streams into a

self-consistent digital twin that describes material structure. If achieved, the resultant

comprehensive structural description would allow us to understand, predict, and

eventually control how material properties arise from a complex interplay of

di�erent aspects of structure across relevant length scales.

In this context, there have been recent e�orts to integrate computational tools

with experimental data streams. Virtual instruments that mimic the physical

principles of the characterization method—X-ray di�raction, light spectroscopy,

electron transmission (Wessels & Jayaraman, 2021; Mukherjee et al., 2021; Pryor

et al., 2017; Reynolds et al., 2022)—can transform how downstream analysis of

experimental data streams is performed. For instance, a virtual instrument can

enable rapid data quality evaluation and provide statistically rigorous estimates of

when enough data has been collected. Such approaches can maximize the utilization
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of heavily-subscribed instruments at centralized facilities such as X-ray and neutron

sources. Furthermore, a virtual instrument can allow principled down-selection of

plausible hypotheses for developing structure-property relationships. Such virtual

tools also allow formal analysis and characterization of uncertainty, identify the

most sensitive features, and allow in silico experimentation before performing

physical experiments for greater e�ciency in experiment execution. Finally, the

success of artificial intelligence and machine learning (AI/ML) methods (Axelrod

et al., 2022; Vasudevan et al., 2021; Guo et al., 2021; Gomes et al., 2019) point to the

possibility of integrating experimental data with the virtual instrument to provide

automated and formal approaches to assimilating complementary data streams—for

instance, real space (electron microscopy) and frequency space (X-ray

di�raction)—to create a self-consistent and multimodal digital twin.

Polarized Resonant Soft X-ray scattering (P-RSoXS) is a recently developed

technique with unique characterization abilities (Collins & Gann, 2022) and an

excellent candidate for developing a virtual instrument. Typical scattering

experiments performed at hard X-ray energies provide a very low contrast between

organic constituents in a material. P-RSoXS overcomes this limitation by combining

conventional small-angle X-ray scattering (SAXS) with soft X-ray spectroscopy to

yield a tunable scattering contrast. The energies of this soft X-ray are scanned across

absorption edges of the light elements (C, N, O), commonly found in organic

materials, often yielding significant contrast variation and substantially improved

signal-to-noise ratio for organic systems. P-RSoXS thus provides a path to probe the

structure in the nm� µm range with both chemical and physical sensitivity without

the need to perturb the system with labels such as the heavy element ”stains”

commonly used to enhance SAXS or the radioisotopes commonly used to enhance

small angle neutron scattering (SANS). The contrast enhancement makes P-RSoXS
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particularly useful for probing the structure of thin (< 200 nm) films, samples that

are challenging for hard X-rays and neutrons due to the small scattering volumes.

Composition contrast with P-RSoXS is so significant that short exposures of thin

films – less than 1 min at normal incidence – at resonant energies with high contrast

will yield patterns with quality similar to conventional bulk SANS patterns

requiring mm-scale sample volumes and hours to collect. The approach also does

not require grazing-incidence geometries which are commonly used to gain signal

in the X-ray scattering of thin films.

The variable sensitivity of P-RSoXS to each chemical bond can amplify scattering

intensity even with only small chemical di�erences between materials, which

enables the extraction of useful structure information for heterogeneous materials.

A unique aspect of P-RSoXS is that it is sensitive to molecular orientation via

interaction of the soft X-ray electric field vector with oriented transition dipoles

within the sample. Complex P-RSoXS patterns can arise from orientational

heterogeneities. This unique aspect of P-RSoXS provides exciting opportunities for

characterizing previously unmeasurable aspects of the structure of soft materials,

but it makes adapting conventional SAXS or SANS analysis approaches nearly

impossible because the materials properties that a�ect contrast in those techniques

are e�ectively scalar quantities. A new analysis framework is required to represent

independent fluctuations in material composition and molecular orientation on

sub-nanometer length scales. The availability of a virtual analog to P-RSoXS will

enable the discovery and quantification of structure in complex, chemically

heterogeneous soft systems. Motivated by this exciting promise, here we will

describe our development of CyRSoXS – a fast, graphics processing unit (GPU)

accelerated virtual instrument for Polarized Resonant Soft X-ray scattering

(P-RSoXS).
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To dispel any question regarding which technique we address herein, we note

that, because P-RSoXS is not yet a mainstream technique, a variety of di�erent

acronyms have been proposed for it, including ”R-SoXS” and ”PAXS.”(Gann

et al., 2016) The community now appears to have settled on ”RSoXS” and

”P-RSoXS.” It is not uncommon for practitioners to use only ”RSoXS” when

exploiting its composition contrast capabilities and to use ”P-RSoXS” when adding

its orientation contrast capabilities. We should mention, however, that these contrast

modes are intrinsically linked. It is not possible to perform RSoXS without

polarization and its concomitant molecular orientation sensitivity. Even circular

polarization will yield patterns that can be significantly a�ected by molecular

orientation e�ects. These principles suggest that model-free, composition-only

analyses of P-RSoXS in systems having significant but ignored molecular orientation

fluctuations may yield incorrect results, a situation that could be greatly improved

with a fast virtual instrument.

Current state-of-art: The current state-of-the-art P-RSoXS simulator, developed by

Gann et al. (2016) in Igor Pro⇤ has been pivotal in answering many scientific

questions (Jiao et al., 2017; Ye et al., 2016; Song et al., 2018; Song

et al., 2019; Mukherjee et al., 2017; Litofsky et al., 2019). However, it has limitations on

practical deployment in terms of speed and no opportunity for deployment on

state-of-the-art high performance computing (HPC) clusters. These limitations

become most apparent when attempting to fit experimental data using goal-seeking

algorithms that adjust material structure input parameters to obtain agreement

between simulation and experiment. Such optimization routines require a

significant number of forward simulations and thereby motivate the need for the
⇤ Certain commercial equipment, instruments, or materials are identified in this paper in order to specify
the experimental procedure adequately. Such identification is not intended to imply recommendation
or endorsement by NIST, nor is it intended to imply that the materials or equipment identified are
necessarily the best available for the purpose.
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fast forward simulator. The commercial licensing of Igor Pro further hinders the

democratization and availability of the tool to many researchers. There has been

rapid growth in the interest in leveraging advances in Machine Learning and Data

Analytics among material scientists for material design and exploration. The

availability of a fast forward simulator is a critical necessity for data creation and

integration into Machine Learning Model Operationalization (MLOps) workflows.

More practically, since Python has become the de-facto language for data analysis

and Machine Learning, the currently available simulator does not provide any

straightforward integration for researchers to utilize such tools.

Our contributions: We build upon an earlier framework that modeled the physics of

soft X-ray scattering through a heterogeneous thin film (Gann et al., 2016). In

particular, we significantly speed up execution time and, via integration with a

Python ecosystem, incorporate substantial additional functionality. Our key

contributions in this paper are:

• Accomplish near real-time simulation of RSoXS at sizes/resolutions (up to 228

or 268 million voxels†) that were hitherto not possible.

• Use GPU acceleration to achieve 1000 ⇥ speedup over current state-of-art

approaches. This is achieved by careful design of “GPU-friendly” data

structure and algorithms— including memory and communication

considerations.

• Careful software design of a simulation engine that lies at the center of a

feature-rich data analysis and model exploration ecosystem when combined

with Python code bases for morphology generation, simulation result

reduction, and data-fitting. Python binding democratizes access, simplifies

usage, and enables seamless integration with AI / ML libraries and eliminates
† On V��� GPUs. This size is limited purely by the GPU memory (Section 4)
IUCr macros version 2.1.10: 2016/01/28
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the bottleneck of I/O operation‡, especially during parameter exploration or

inverse design.

• A new and well-documented voxel-based material structure data file format in

Hierarchical Data Format-5 (HDF5) that includes capabilities for verbose

metadata, multiple materials, independent representation of composition and

orientation, and an intuitive Euler angle description of material orientation.

• An extensive set of validation examples developed by a growing community

across multiple institutions.

• Tutorials that serve as unit tests for this open-source framework. The full

software stack is open-source and requires access to CUDA-enabled hardware.

The rest of the paper is organized as follows: We begin by briefly introducing

P-RSoXS in Section 2, followed by a detailed mathematical model in Section 3; We

detail the data structures and algorithms in Section 4, and present results including

validation cases in Section 5. We show the performance of CyRSoXS with varying

problem size and scaling to multiple GPUs in Section 6. We discuss integration with

Python environments in Section 7, and we conclude by discussing the implications

and path for future developments in Section 8.

2. Polarized Resonant Soft X-ray Scattering (P-RSoXS)

In P-RSoXS, a polarized soft X-ray beam passes through a sample, interacting with

and scattering o� the electrons in that sample; these scattered X-rays are collected on

an X-ray sensitive detector (typically charge coupled device (CCD) or

complementary metal oxide semiconductor (CMOS)). Fig. 1 shows a condensed

version of the physical principles of P-RSoXS, which are explained in greater detail
‡ This can quickly become a bottleneck as File I/O is several orders of magnitude slower than memory
read/write.
IUCr macros version 2.1.10: 2016/01/28
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Fig. 1. Schematic of P-RSoXS, where a polarized soft X-ray beam passes through a
sample, interacting with and scattering o� the electrons in that sample; these scattered
X-rays are collected on an X-ray sensitive detector.

in a recent comprehensive review of the technique and its application to soft

materials.(Collins & Gann, 2022) This photon-electron interaction strength depends

on the X-ray energy and the chemistry of the molecules within the sample. At

energies far from an absorption edge, X-rays interact equally with all electrons in the

sample, and the interaction strength scales directly with the electron density. Near

an absorption edge, the interaction strength increases dramatically when the

incident X-ray energy is commensurate with the energy required to resonantly excite

an electron to an unoccupied molecular orbital. The K-absorption edge of many

lightweight elements (C, O, N, F) lies in the soft X-ray energy regime

(100 eV . Ephoton . 2 keV ); all are commonly exploited in P-RSoXS. Selection of the

incident energy near the core binding energy of the electrons makes the technique

element-specific, whereas the chemical bonds that define the excited state
IUCr macros version 2.1.10: 2016/01/28
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unoccupied molecular orbital energy make the technique sensitive to specific bonds

or moieties. The spectroscopic scattering pattern thus provides a tunable,

chemically-sensitive probe of nanoscale and mesoscale components in a

heterogeneous complex material (Attwood & Sakdinawat, 2017).

The resonant soft X-ray absorption is described by a transition dipole moment

that couples the initial and final states. The initial state of the electron is a core

orbital that is spherically symmetric, therefore the geometric dependence of the

interaction strength is defined by the unoccupied molecular orbital, which for most

soft X-ray resonances can be represented as vectors or planes parallel or

perpendicular to the bond (Stöhr, 1992). Soft X-ray absorption, a principal

contributor to scattering contrast, varies as the dot product of the electric field vector

and the transition dipole moment. This interaction makes P-RSoXS sensitive to

spatial distributions in molecular orientation. For instance, in the case of carbon

fused ring compounds, when the X-ray energy is in resonance with the fundamental

carbon electron transition (C1s �! ⇡⇤), the molecules exhibit vector transition dipole

moments perpendicular to the ring planes (Mannsfeld, 2012). Two identical

molecules oriented di�erently within a sample will have di�erent interaction

strengths with a fixed electric field vector, and there will be a scattering contrast

between them. If the orientation of these molecules is spatially correlated in a

sample, a scattering pattern will be observed. For example, P-RSoXS can detect

correlated interfacial molecular orientation regions (such as mixtures of amorphous,

semi-crystalline, or liquid crystalline phases). Crystalline, semi-crystalline, and

liquid-crystalline organic materials have locally large anisotropic bond orientation

statistics, impacting the mechanical, optical, and electronic properties of these

materials. Understanding these relative orientations at di�erent length scales is

necessary for a detailed understanding of organic thin-film devices. In addition,

IUCr macros version 2.1.10: 2016/01/28
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P-RSoXS had been shown to reveal local molecular alignment independent of overall

crystallinity and represents an essential new tool for understanding the

structure-property relationship and examining the connection between transport

properties and morphology in organic and hybrid organic-inorganic electronic

devices (Mannsfeld, 2012; Collins & Gann, 2022; Collins et al., 2012; Liu et al., 2016).

The interaction of X-rays with a system can be encoded using a 3D analog of the

complex index of refraction, N. Each component of this tensor is a function of the

dispersive and absorptive components of the index of refraction,

Nij(E) = f(�(E),�(E)), where E is the photon energy, � is the dispersive

component, and � is the absorptive component of the index of refraction. In the hard

X-ray regime, far away from the resonance frequency of the constituent atoms, the

real part of the complex index of refraction is a scalar proportional to the electron

density of the material. The imaginary part is negligible due to low absorption, and

the electron density di�erence between constituent materials determines the

scattering contrast of the system. However, close to the absorption edge of the

constituent atoms, the electrons get excited to the unoccupied molecular states or

vacuum, and therefore � will naturally exhibit peaks and other absorption features

that will di�er depending on orientation; changes in � are also expected due to

causality and can be calculated using the Kramers-Kronig relations (Wang

et al., 2010; Watts, 2014).
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3. Mathematical Model

Notation

• Vectors are represented as lower case bold letters, e, p
• Tensors (or specifically, matrices) are represented as uppercase bold letters

with single underline, R, N

• Scalars are represented as lower case letters, ', nx

• Counting (over components) integer is j

Having described the overall mechanism of P-RSoXS, we next detail the

mathematics of the simulation.

3.1. Morphology:

Consider a morphology composed of a c component mixture. We discretize the

morphology into a uniformly spaced voxel grid. Each voxel contains some (or all) of

the c components. Each of these components can either be amorphous or can be

oriented. If a component is oriented, we assume that it is well represented by a

uniaxial representation. §

A key advantage of the uniaxial assumption is that it is simple and allows the

construction of a simple, abstract model of properties within a voxel. This abstract

model and associated data structures are independent of the material and energy.

The abstract model can then be combined with a material library, which can be

stored in memory, to allow the same model to be re-used for di�erent materials and

di�erent energies. This abstract representation requires only two scalar fractions

(volume fraction and orientation fraction) and two Euler angles per material/voxel

for the uniaxial assumption. In contrast, a biaxial representation would require five
§ While the uniaxial representation is adequate for most use cases currently considered, it has
disadvantages. A key disadvantage is that it will convey less information than other representations.
It cannot perfectly represent properties at the molecular level: the simplest representations of
molecular-level properties for most molecules would be biaxial. It cannot represent complex orientation
distributions at the sub-voxel level: only a single orientation mode is conveyed per material, and the
”shape” of the distribution is lost.
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scalar fractions (volume fraction and four orientation mixing parameters) with three

Euler angles for a similar abstract model. To represent arbitrary distributions of a

biaxial representation in an abstract model would require including non-diagonal

elements of the full tensor for 19 unique scalar fractions (volume fraction, six

elements with 3 coe�cients each on the original ”molecular” biaxial elements),

significantly increasing memory and communication footprints.

A uniaxial representation conveys the necessary properties for materials with a

single dominant orientation mode of one particular molecular axis, which we judge

to be a large number of use cases. If a more faithful representation of a multimodal

orientation distribution is required, that can be approached in our framework by

breaking a component into additional materials with identical dielectric functions

and volume fractions that add to the total for that component, but which have

distinct orientations reflecting the expected distribution. If a more faithful

representation of molecular-level properties is required, it is possible to use a system

of uniaxial functions to represent an underlying biaxial function, but that is not a

currently supported use case for our approach. We will lay out a clear pathway to

relax this assumption and consider biaxial representation in the next release version

of CyRSoXS.

Each voxel, therefore, has four features associated with each component j = 1 . . . c:

• vjfrac: fraction of volume occupied by component j in this voxel. By definition, 0

 vjfrac  1, and the sum vjfrac across all j (that is, the sum of all volume fractions

of all materials) within a voxel is expected to be 1.0, CyRSoXS will not check

whether they sum to one, although such checking can be done with morphology

class methods provided in our broader Python ecosystem. We encourage as a

best practice the use of vacuum as an explicit material in the model, such that

model self-consistency is straightforward to confirm.
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• sj : degree of alignment of component j in this voxel. This parameter indicates

the volume fraction of component j that is oriented (as opposed to unaligned).

We expect that 0  sj  1, but unlike vjfrac, there is no expectation of any

constraint involving other materials. sj is a relative volume fraction; in other

words sj is multiplied by vjfrac to yield the absolute volume fraction of

oriented material j in a voxel (see Eq. 2 below). This parameter is conceptually

identical to the well-known uniaxial ”orientational order parameter,” S, but

only in the range of 0  S  1, where S = 1 indicates complete alignment with

a director (our director is defined by the Euler angles described below) and S

= 0 indicates an isotropic condition. We note that the orientational order

parameter S can also include the range -0.5  S  0, which indicates

orientation perpendicular to the director, but we do not support values of sj

less than zero. Expressing perpendicular orientations should instead be

accomplished by explicit adjustment of Euler angles.

• 'j : orientation feature 1, defined as the (first) rotation of component j about the

Z-axis.

• ✓j : orientation feature 2, defined as (second) rotation of component j about the

(original) Y-axis.

The last two features represent the Euler angle representation of material orientation

in a voxel.

We refrain from providing overly prescriptive guidance on model design because

there may be use cases for CyRSoXS that we cannot anticipate. However, we o�er

here some model design choices that have worked well for our internal testing and

for many of our validation cases provided in Section 5. Most models will represent

the real-space structure of a thin film, so they will typically have larger x and y
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”lateral” dimensions and a smaller z ”height” dimension. We consider it a best

practice for x and y to have the same dimensions and resolutions. Common x and y

dimensions (meaning the length of the whole model on a lateral side) are micron

scale, perhaps ranging from (0.5 to 5) µm. Common lateral resolutions include

512 ⇥ 512, 1024 ⇥ 1024, and 2048 ⇥ 2048, although larger sizes are possible. The z

resolution is usually a smaller multiple of 2; common values include 32, 64, and 128.

The z resolution should be substantially greater than 1 for accurate calculations that

involve three-dimentional Ewald sphere components; these are especially important

for models that involve significant orientation and pattern anisotropy. The voxels are

considered perfect cubes in CyRSoXS, such that the model dimensions are the

product of the resolution and the length of a voxel side. These model dimensions

and resolutions correspond to voxels with side lengths in the (0.2 to 10) nm range. A

practical limit on the minimum voxel size could be the di�raction limit of the

incident radiation, which for Carbon K-edge wavelengths is (1.5 to 2) nm.

These model dimensions and resolutions are compatible with data fusion

workflows where real-space images derived from atomic force microscopy (AFM),

transmission electron microscopy (TEM), or other imaging methods are used as a

foundation for CyRSoXS model creation. In some cases such images could be used

to assign vjfrac across voxels for di�erent components, depending on the contrast

mode of the imaging. The other voxel-level parameters, sj , 'j , and ✓j will most

likely not be available from imaging methods because there is a lack of techniques

that are sensitive to molecular orientation in soft materials at the nanoscale. (This

fact provides much of our motivation for investment in P-RSoXS interpretation!)

Hypothesis driven parametric assignment of sj , 'j , and ✓j might instead be

employed. Models built entirely parametrically are certainly possible, as

demonstrated for many of our validation cases shown in Section 5.
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0) initial state

(a) Initial state

0) initial state
1) rotate φ about Z

φ=π/4

(b) ' around Z

0) initial state
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θ=π/2

(c) ✓ around Y

0) initial state
1) rotate φ about Z
2) rotate θ about Y
3) rotate ψ about Z 

ψ=π/4

(d)  around Z
Fig. 2. Di�erent steps of the Euler angle rotation. The extraordinary optical axis of the
uniaxial dielectric function is shown in red; it is initially aligned to the Z-axis. The
ordinary optical axes of the uniaxial dielectric function are shown in green; they are
initially aligned to the X- and Y-axes.

A brief primer on Euler angles: For Euler angles, we use the ZYZ convention. We

assume that the primary alignment axis starts parallel to Z - axis (0,0,1) (Fig. 2a).

This is also the default direction of the simulated incident beam. According to this

convention (Fig. 2), and with reference to the rotation matrices B, C, and D, which

are further defined in Equation (3):

1. The first rotation is by an angle ' about the Z-axis using rotation matrix D.

(Fig. 2b)

2. The second rotation is by an angle ✓ about the original Y-axis using rotation

matrix C.(Fig. 2c)

3. The third rotation is by an angle  about the original Z-axis using rotation

matrix B.(Fig. 2d)

We note that other conventions are possible and have been used in the literature;

for instance, (Gann et al., 2016) used the vector orientation in 3D space to define an

equivalent morphology. These equivalent conventions can be easily transformed into

the Euler angles using suitable rotation transformations. A benefit of our convention

is its straightforward expandability into a biaxial representation by adding a third

Euler angle.
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3.2. Material properties:

As mentioned in Section 2, the interaction of soft X-rays with a material is encoded

in the 3D analog, N, of the material-specific, complex index of refraction. N is a 3 ⇥

3 data structure that exhibits energy dependence. For a uniaxial system, N can be

diagonalized as:

N =

0

@
n? 0 0
0 n? 0
0 0 nk

1

A (1)

where nk and n? refers to the parallel and perpendicular indices of refraction

respectively. We will refer to N as the refractive index for brevity, with the

understanding that it actually is a convenient 3D analog to the complex index of

refraction.

3.3. Mathematical representation of P-RSoXS

The mathematical operations that mimic P-RSoXS can be divided into 6 steps:

1. E�ective Refractive Index: For each voxel, the e�ective refraction tensor for

material component j can be computed using the aligned and unaligned

fraction as:
Ne↵

j = vjfrac

✓
sjNj

| {z }
aligned part

+(1� sj)
1
3

Trace(Nj)I
| {z }

unaligned part

◆
(2)

2. Rotated Refractive Index: For each material component, j, in every voxel, the

e�ective refractive tensor, Ne↵
j , is rotated according to the alignment vector,

Rj :

Rj = Bj Cj Dj (3)

where B, C and D are the rotation matrices following the Euler angle

convention depicted in Fig. 2. The rotated refractive index, Nrot
j is computed
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as:

Nrot
j = RjT Ne↵

j Rj (4)

3. Polarization Computation: The induced molecular polarization p produced by

the electric field e of the beam is computed as:

p =
cX

j=1

(Nrot
jNrot

j
� I) · e

4⇡
(5)

Voxel-to-voxel di�erences in the p components are the origin of scattering

contrast in P-RSoXS. The structure of these components in real space can be

complex, even for simple structures. For a qualitative picture of this

complexity, Fig. 1 shows an illustration of px and py magnitudes for a simple,

compositionally homogeneous disk with radial orientation of a uniaxial

dielectic function (polyethylene in this image), at an energy that enhances

orientation contrast in the material. In Fig. 1, the initial morphology is shown

in bottom left. Moving right in the direction of beam passage, the absolute

value of the px component is shown on the right with a pink false color map,

and the absolute value of the py component is shown on the left with a green

false color map. The initial beam in this schematic is shown as polarized

parallel to the X-axis. The ”polarized” px components describe the field that

remains polarized parallel to the X-axis after interaction with the sample. The

”ellipsometric” (also called ”depolarized”) py components describe the field

that is polarized parallel to the Y-axis after interaction with the sample.

Models that include Euler angle tilt relative to the Z-axis may also contain pz

components (not shown). The scattering from each of the px and py

components is then shown, followed by their sum in the far field projection.

We include a switch to allow the the final scattering pattern to be computed by

averaging across di�erent orientations of the electric field. If this computation
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is enabled, it is performed as follows: we start with e = (1, 0, 0), we rotate e

using a rotation matrix U. The rotation is done in fine increments across a

range, and then averaged. This rotation functionality is included as a capability

to smooth simulated pattern features that are due to the finite size of the

models. Rotating in small increments and averaging the scattering pattern in

this way e�ectively simulates a noninteracting polydomain material where

each domain is a copy of the original model that is rotated about the z axis.

Enabling this functionality will better capture electric field interactions with

model details. This functionality should not be used, however, if a model has

structural features that are intentionally nonuniform in x-y plane directions.

4. Fast Fourier Transform (FFT): To get the reciprocal space (q) representation, we

first compute the FFT of the real space polarization vector p:

p̃ = FFT(p) (6)

5. Scatter computation: The di�erential scattering cross-section, X(q) is given by:

X(q) = ||kout
|
2(I� r̂r̂) · p̃|2 (7)

where r̂ is the real-space unit vector from the sample to the detector, such that

r ⇡ kout = kin + q, and kin is the wavenumber of the incident wave. Eq. (7) is

derived using the first order Born approximation (far-field limit) (Born & Wolf,

2013).

The individual components of p̃ are combined to produce the final pattern

simulation. Molecular orientation that gives rise to anisotropy in the real-space

structure of p will produce correspondingly anisotropic patterns in the

reciprocal space structure of the elements of p̃, as illustrated for the disk

morphology in Fig. 1. There is typically a significant di�erence between the
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intensity of the polarized and depolarized scattering components such that the

polarized scattering contributes most strongly to the sum, but the depolarized

components remain essential for accurate simulation. This sum is not shown in

Fig. 1 because a final step is required, the Ewalds projection.

6. Ewalds projection: The final step consists of projecting the di�erential scattering

cross-section onto the Ewalds sphere to mimic the detector. For this step we will

separately consider the elements of q as qx, qy, and qz . For each location on the

detector given by (qx, qy), we compute qz by evaluating

qz = �kin
z +

q
|kout|2 � (kin

x + qx)2 � (kin
y + qy)2 (8)

For real values of qz , the detector image is given by interpolating X(q).

Interpolation is needed because qz may not be an integer. We perform linear

interpolation using the nearest integer neighbors. Fig. 1 shows the final

scattering simulation after Ewalds projection of the p̃ components also

depicted.

4. Algorithm

The two criteria considered during algorithm design for P-RSoXS simulation are the

memory limitation on the GPU side and the communication time from central

processing unit (CPU) to GPU. GPU architecture advancements have produced

constant memory growth, but GPU memory remains much lower than its CPU

counterpart. Additionally, data communication from CPU to GPU or vice versa

remains a bottleneck. In this section, we describe the memory layout for the

morphology and describe the two algorithms supported by our framework: a)

Algorithm 1 which minimizes the data movement from CPU to GPU but is memory

intensive, especially for the larger number of material components; and b)
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Algorithm 2 which minimizes the memory footprint at the cost of communication

between CPU and GPU.

4.1. Memory layout for morphology

The overall morphology is represented in memory as a 1D array of size

Nx ⇥ Ny ⇥ Nz ⇥ c. Each entry of this 1D array consists of a Real4 ¶ data type

representing the 4 components (vfrac, s,�, ✓). Fig. 3 shows the memory layout of

morphology for P-RSoXS simulation. Using a 1D array ensures that only a single

cudaMemcpy instruction is needed to load from CPU to GPU memory. The use of

Real4 datatype ensures vectorized load from global memory of GPU to local

memory. Additionally, this memory layout – of striding through voxels first before

striding through components – ensures the best utilization of the load bandwidth

from global memory to local memory.

• • • • • • • • •

Component 1 Component 2 Component 3

Fig. 3. Illustration of memory layout of morphology for a c = 3 component system,
color coded for each component. The complete morphology is a 1D array of size Nx ⇥
Ny ⇥ Nz ⇥ �. Each entry of morphology consists of a Real4 entry.

The memory layout allows for additional computational gains during the

averaging process. An earlier algorithm by (Gann et al., 2016) relied on rotating the

material, keeping e fixed, in order to compute the average intensity on the detector.

This step is computationally expensive, especially for 3D morphologies, where we

would need to rotate Nz channels of Nx ⇥ Ny voxelated morphologies. In this work,

we reformulated the algorithm to rotate e while keeping the material fixed.

Additionally, we rotate the detector coordinates at the last step to average the

resulting intensity. The transfer of computation from the material to e reference
¶Real4 represents float4, a single-precision floating-point number, or double4, a double-precision
floating-point number, depending upon type of compilation
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frame makes the algorithm computationally e�cient and GPU friendly.

4.2. Communication Minimization (Algorithm 1)

This algorithm relies on copying all the morphology information once from CPU

to GPU at the start of the computation, which is then utilized for all the subsequent

computations. Once this copy is performed, no communication is needed for the

next computation steps. We perform the polarization computation p, given by

Eq. (5). As discussed in the previous section, the memory layout for the vector

morphology allows us to achieve maximum bandwidth mainly because all

subsequent threads within the block try to load the nearby memory. Additionally,

packing the data as Real4 allows us to perform vectorized load from global memory

to local thread memory. To e�ciently utilize the available resources, we use streams

to compute the FFT of the polarization vector. In particular, we use 3 streams, one

for each of px, py and pz . We then compute the qz position for a given value of (qx, qy)

2D pixel, given by Eq. (8). We note that we only compute X(qz) for the pixels

participating in 3D Ewald’s projection. This helps to eliminate the memory

Algorithm 1 P-RSoXS simulation : Communication minimization
Require: M morphology information; E: Energy List ; EAngle[start,increment,End]: rotation angle for e;

Nj : Refractive Index for each material at all energy
Ensure: 2D RSoXS pattern
1: MGPU MCPU . Copy from CPU to GPU
2: for i 1 · · · len(E) do

3: ScatterAvg[i] 0
4: for eAngle 2 EAngle do

5: Compute erot . Rotate electric field using rotation matrix U
6: for each voxel do

7: Compute Ne↵
j . Eq. (2)

8: Compute Nrot
j . Eq. (4)

9: Compute p . Eq. (5)
10: p̃ FFT(p)) . in-place FFT transform
11: for each pixel (qx, qy) in 2D do

12: Compute qz for projection . Eq. (8)
13: Ewald[qx, qy] X(qz) . Eq. (7)
14: EwaldAvg[i] EwaldAvg[i]/numRotation . Average the contribution over all the e rotations
15: return EwaldAvg
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Algorithm 2 P-RSoXS simulation : Memory minimization
Require: M morphology information; E: Energy List ; EAngle[start,increment,end]: rotation angle for e;

Nj : Refractive Index for each material at all energy
Ensure: 2D RSoXS pattern
1: for i 1 · · · len(E) do

2: Nt
GPU  N�C����������(M, E,Nj) . Algorithm: 3

3: ScatterAvg[i] 0
4: for eAngle 2 EAngle do

5: Compute erot . Rotate electric field using rotation matrix U
6: for each voxel do

7: Compute p(x) Nt · erot . Eq. (5)
8: p̃ FFT(p)) . in-place FFT transform
9: for each pixel (qx, qy) in 2D do

10: Compute qz for projection . Eq. (8)
11: Ewald[qx, qy] X(qz) . Eq. (7)
12: EwaldAvg[i] EwaldAvg[i]/numRotation . Average the contribution over all the e rotations
13: return EwaldAvg

requirement to store a 3D vector for X(q). Finally, the averaged result (averaged

across a range of rotation angles of e) is transferred from GPU to CPU. Table 1 shows

the memory requirement for P-RSoXS simulation. One potential drawback of this

approach is the overall memory requirement. We can see that overall memory

requirement grows linearly with the number of materials. Memory requirements are

dependent on the resolution and number of materials per model, and can range

from less than 1 GB to approaching or exceeding the ⇡ 48 GB memory limit of

current-generation CUDA GPUs.

Table 1: Memory requirement for various steps during P-RSoXS computation for
Algorithm 1

Algorithm Variable Data Type Size Total Size

P-RSoXS
(Algorithm 1)

M Real 4c(nxnynz) 4c(nxnynz)
px Complex (nxnynz) 2(nxnynz)
py Complex (nxnynz) 2(nxnynz)
pz Complex (nxnynz) 2(nxnynz)

Ewald Real (nxny) (nxny)
EwaldAvg Real (nxny) (nxny)

Total (4c+ 6)(nxnynz) + 2(nxny)
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Algorithm 3 N�C����������: Local Refractive Index computation
Require: M: morphology information; E: Energy ; Nj : Refractive Index for each material for energy E
Ensure: Nt

CPU = (Nr
j : Nr

j � I)/(4⇡) for energy E
1: ����M����� M ,Ni . Allocate GPU memory
2: for each voxel do

3: Nt  0 . Initialize
4: for j 1 · · · c do . Loop over components
5: ���C��� Mj : CPU! GPU . Copy from CPU to GPU component by component
6: Compute Ne↵

j . Eq. (2)
7: Compute Nrot

j . Eq. (4)
8: Nt  Nt + (Nr

j : Nr
j � I)/(4⇡)

9: ����F��� X . Free CUDA memory for morphology
10: return Nt

CPU

Table 2: Memory requirement for various phases during P-RSoXS computation for
Algorithm 2

Algorithm Variable Data Type Size Total Size

P-RSoXS
(Algorithm 2)

Nt Complex 6(nxnynz) 12(nxnynz)

px Complex (nxnynz) 2(nxnynz)

py Complex (nxnynz) 2(nxnynz)

pz Complex (nxnynz) 2(nxnynz)

Ewald Real (nxny) (nxny)

EwaldAvg Real (nxny) (nxny)

Total 18(nxnynz) + 2(nxny)

N�C����������
(Algorithm 3)

M Real 4c(nxnynz) 4c(nxnynz)

Nt Complex 6(nxnynz) 12(nxnynz)

Total
(non - stream)

(4c+ 12)(nxnynz)

Total
(stream)

(4 + 12)(nxnynz)

4.3. Memory Minimization (Algorithm 2)

Analysis of the steps detailed in Section 3.3 indicates that morphology inputs are

only required during the computation of polarization p, Eq. (5). The main idea of

this algorithm is to precompute a precursor of p for a given energy and use it for all

subsequent computation (across multiple rotations of e). The pre-computation stage

is shown by Algorithm 3, which computes an intermediate tensor Nt (which is

defined as
Pc

j=1(Nr
j : Nr

j
� I)/(4⇡), see Eq. (5)). The computation in this step is

embarrassingly parallel and can be computed per voxel independently. Therefore,
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even if the complete memory required does not fit on the GPU, we can

asynchronously stream the required data to and from CPU to GPU. In particular, we

stream the data per material from CPU to GPU. So, the memory requirement during

this stage drops from (4c + 12)(nxnynz) to 16(nxnynz). The streaming helps to

overlap computation with communication and hides the latency.

Once Nt’s are computed, these values are subsequently used for the P-RSoXS

simulation in a similar way as in Algorithm 1. Table 2 shows the memory

requirement for the di�erent steps. The memory requirement for the main stage is

independent of the number of materials and requires less memory compared to

Algorithm 1 for c � 3. This is an important consideration, especially when we

consider multi-component chemical systems. Finally, we exploit the symmetric

structure of Nt to further minimize the number of computations required. While Nt

contains 9 entries (3⇥ 3 matrix), only 6 of these entries are unique.

Remark. We note that further optimization is possible in terms of memory requirement.

Theoretically only 6(nxnynz) + 2(nxny) (3 p vectors and 2 vectors for Ewald and

EwaldAvg) units of memory is required for P-RSoXS computation. All the other information

can be communicated from CPU to GPU in a streamed fashion. But achieving this theoretical

bound would imply a lot of communication overhead with M or Nt being communicated

from CPU to GPU for each rotation of e field. For most of our use cases, we find that the

memory available on current GPUs, like the N����� V����� V���, is su�cient for carrying

out the computation using Algorithm 1 with Algorithm 2 needed in some extreme cases.

Remark. We remind the reader that c denotes the total number of materials. While we

recommend adding vacuum as an additional component to the morphology to ensure robust

morphology checks; this is not strictly enforced. CyRSoXS does not provide any special

treatment to vacuum. When provided in the input morphology, the code treats vacuum as an

additional material.
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5. Results: Validation Cases

We comprehensively verify and validate CyRSoXS by comparing against an array of

benchmarks. This includes three test cases with analytical scattering expressions,

and one validation case consisting of comparisons against results within an earlier

framework (Gann et al., 2016).

5.1. Form factor scattering test

A simple validation case is for form factor scattering, in which scattering results

purely from the shape of a particle. We specifically test the form factor scattering of

a sphere. We consider two cases: a) 2D projection of a sphere, and b) 3D sphere, and

we compare the results of CyRSoXS to analytical expression results. The analytical

expression for form factor scattering of a sphere is given by:

I(q) =
scale

V


3V (�⇢)(sin(qr)� qr cos(qr))

(qr)3

�2
(9)

where, scale is the intensity scaling, r is the sphere radius (in Å), �⇢ is the scattering

contrast (in Å�2).

5.1.1. 2D projection of a sphere As a first test case, we consider a 2D projection of a

sphere of radius 50 nm placed in the center of the domain. For this test, the sphere

is composed of amorphous polyethylene in a surrounding medium of vacuum. Fig. 4

illustrates the zoomed view of domain setup for the test case. The whole domain

is discretized using 2048 ⇥ 2048 ⇥ 1 voxels, with each voxel representing a 5 ⇥ 5 ⇥

5 nm3 physical volume. Fig. 4 shows a zoomed view near the center of the circle.

The scattering profile for this morphology was simulated from (270 to 310) eV, using

tabulated optical constants of polyethylene (Gann, 2022) for the projected sphere and

vacuum outside.

Fig. 5 shows the result of the 2D projected sphere validation case at 285 eV.
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Fig. 4. A zoomed-in view of the 2D projected sphere

Fig. 5. Results of the projected sphere case and comparison with analytical solution.

Fig. 6. The simulated ISI alongside the theoretical energy dependence.

Linecuts of the analytical and simulated data are plotted in Figure 5b and show

excellent agreement. To validate the energy dependence of the P-RSoXS simulation,

we calculate the integrated scattering intensity (ISI) across the range of simulated
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(a) 3D sphere (b) 2D mid plane slice
Fig. 7. Domain for the sphere validation test (not to scale) and a 2D slice along the
mid plane.

photon energy values. Fig. 6 plots the simulated ISI alongside the theoretical energy

dependence given by the analytical expressions provided in Tatchev(Tatchev, 2010),

computed for this specific dielectric function by us:

(��2 +��2) ⇤ E4 (10)

While on di�erent absolute scales, the theoretical and simulated photon energy

dependence show commensurate relative scaling indicating we are capturing the

correct physics in our scattering model.

5.1.2. 3D sphere test Fig. 7 shows the 3D sphere test domain along with a 2D slice of

the sphere mid-plane. The morphology consists of 128 ⇥ 2048 ⇥ 2048 voxels, where

each voxel is 5⇥ 5⇥ 5 nm3. A 3D sphere of radius 50 nm is placed at the center. The

simulation was carried out at 285 eV, using tabulated polyethylene optical constants

for the sphere and vacuum for the surrounding matrix.

Fig. 8a shows the 2D scattering pattern and Fig. 8b compares the 1D analytical

expression for a sphere with the azimuthally integrated data from Fig. 8a. The

analytical and simulation data were both normalized to 1 at q = 1e-2. We see an
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Fig. 8. Results of the 3D sphere case and comparison with analytical solution.

excellent comparison between the analytical and simulated results. The minor

discrepancy between the simulation and analytical results at higher q values can be

attributed to the finite discretization of the sphere and voxel size. To demonstrate

this further, we simulated two additional parameter sweeps: increasing box size at a

constant voxel size of 5⇥ 5⇥ 5 nm3, and a constant 256⇥ 256⇥ 256 voxels at 5 and 2

nm voxel sides. These results are plotted in Fig. 9. Increasing the box size at a

constant voxel size e�ectively pads the sphere morphology with additional vacuum.

This has the e�ect of creating more complete destructive interference in the form

factor minima. Decreasing the voxel size at a constant box size increases the

resolution of the simulation, and leads to better agreement at higher q, but more of

the simulation box is occupied by the sphere. Thus the padding is decreased and

less complete destructive interference results in the minima.

5.2. Periodic structure test

Extending beyond form factor scattering, many materials studied with X-ray

scattering techniques exhibit periodic structures, which result in Bragg di�raction:

constructive interference of the scattered X-rays produces sharp peaks at locations

corresponding to the periodic spacing. Materials of this nature that have been
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Fig. 9. E�ect of box size and voxel size on the 3D sphere form factor for di�erent voxel
size of 1283, 2563, 5123 and di�erent physical size of 5 nm and 2 nm. The black line
shows the analytical result.

studied with RSoXS include block copolymers (Wang et al., 2011; Virgili et al., 2007)

and patterned thin films (Freychet et al., 2018). Voxelized representations will

approximate the spacings and shapes of real morphologies. We perform two

validation cases that reflect this periodic arrangement of structures: a) 2D hexagonal

packed lattice; and b) grating test.

5.2.1. Circle on hexagonal lattice We first consider an arrangement of circular domains

on a 2D hexagonal lattice. This morphology is representative of hexagonally-packed

cylinders, a common block copolymer morphology. We consider the cylinders to be

oriented parallel to the X-ray beam.

Fig. 11 shows the 2D scattering pattern output from Cy-RSoXS. Given the target

lattice spacing of the input morphology, we observe Bragg peaks at the expected

locations (q⇤,
p
3q⇤,

p
4q⇤,

p
7q⇤,

p
9q⇤, and so on). Fig. 12 shows the azimuthally

integrated scattering intensity plotted versus q, with the first 7 Bragg peaks labeled.

There is perfect agreement between the analytical and simulated peak locations. We

do observe some non-peak background features with low intensity that originate

from the finite size of the model and voxel-level discretization e�ects. Such artifacts

can be further reduced by using larger and/or higher-resolution models, models
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Fig. 10. Volume fraction map of PEOlig for the hexagonal lattice. The dark blue region
represents vacuum.

Fig. 11. Hexagonal lattice validation case. Contours of I(q) with the corresponding
peak locations.

that contain realistic structural defects, and models with periodic boundary

conditions.

5.2.2. Grating test The second periodic structure test case is a set of parallel lines

which form a grating structure. This type of morphology is observed in the directed

self-assembly of block copolymers, or structures fabricated using lithographic

processes; it is often seen in semiconducting manufacturing. We consider a single

line grating morphology in 2D and 3D. The 3D morphology consists of single line

grating extended in the Z direction. Fig. 13 shows the setup for the grating
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Fig. 12. 1D simulated di�raction pattern with the analytical peak locations marked.

2θ

qy
qxqz

qyz

qxz

Fig. 13. Setup of the line grating simulation

simulation. The 2D morphology consists of 1024 ⇥ 1024 ⇥ 1 voxels whereas the 3D

morphology consists of 1024 ⇥ 1024 ⇥ 63 voxels, with each voxel representing a

physical dimension of 1 ⇥ 1 ⇥ 1 nm3. The simulation was carried out at 17 keV. The

analytical results are calculated using a previously-published procedure (Sunday

et al., 2015) in which the grating is discretized into a stack of trapezoids. The

analytical solution for the Fourier Transform of a trapezoid is used to calculate the

scattering intensity at each q position. Fig. 14 compares the analytical and

simulation results for the line gratings. The simulated results are in excellent

agreement with the analytical results.
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Fig. 14. Comparison of analytical and simulation line cut integration for 2D and 3D
line gratings. The qx component of q is at the location of the first order peak.

5.3. Orientation e�ect on polymer-grafted nanoparticles

All of the previous test cases dealt with isotropic materials. As the final

validation case, we consider a film of polymer-grafted nanoparticles

(PGNs) (Mukherjee et al., 2021). Polystyrene chains are grafted onto gold

nanoparticles, and the confinement of polystyrene chains near the nanoparticle

surface results in radial stretching of the chains and a net molecular orientation.

Fig. 15 is a 2D slice of the 3D morphology, showing the gold nanoparticle core

surrounded by the oriented polystyrene shell, all embedded in a matrix of isotropic

polystyrene. The CyRSoXS simulation is tested against the current state-of-the-art

P-RSoXS simulator (Gann et al., 2016). Fig. 16 plots the scattering anisotropy

averaged over q = (0.02 to 0.4) nm�1 for the reference simulator and our

GPU-accelerated P-RSoXS simulator. Our implementation perfectly reproduces the

results of the reference simulator.
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6. Performance

In this section, we report the scaling of CyRSoXS with respect to variation in number

of voxels and materials. All computation was carried out using NVIDIA V���� V-���

GPU with 32 GB of memory.

6.1. Performance with increasing number of voxels

As a first scaling test, we considered performance with an increase in number of

voxels. The overall number of voxels varied from 128⇥ 128⇥ 16 to 1024⇥ 1024⇥ 128

with an increment of 2⇥ in each direction. k The number of materials is fixed to four

and the computation was carried out for 150 photon energies. For each photon energy,

the electric field e was rotated from 0o to 180o at an increment of 2o.

Fig. 17 compares the time with increase in the number of voxels for Algorithm 1.
k The 1024⇥ 1024⇥ 128 voxel size is the largest size that fits into the memory of a 32 GB NVIDIA V���
GPU.

Fig. 15. 2D slice of 3D polymer-grafted nanoparticle (PGN) morphology. An oriented
shell of polystyrene (PS) surrounds each gold nanoparticle core. The pixels in this
image are colored by the values of the Euler angle �PS), which exhibits a radial
orientation relative to the particle centers. The orientation of the extraordinary axis of
the dielectric function in real space relative to the x and y axes is shown in the inset
color wheel. This 2D slice was collected near the particle equators such that �PS

⇡ ⇡/2
for all pixels.
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Fig. 16. Scattering Anisotropy plotted versus energy for the CyRSoXS and reference
simulators
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(b) Percentage of time with variation in number of voxels.
Fig. 17. Performance of Algorithm 1 with variation in number of voxels. The number
of material was fixed to 4. The time reported corresponds to computation of 150
energy level with e rotated from 0o to 180o at increment of 2o for each energy level.

Fig. 17a shows the variation of total wall-time with respect to the number of voxels.

Overall we see a linear dependence (O(N)), where N is the total number of voxels.
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(b) Percentage of time with variation in number of voxels
Fig. 18. Performance of Algorithm 2 with variation in number of voxels. The number
of material was fixed to 4. The time reported corresponds to computation of 150
energy level with e rotated from 0o to 180o at increment of 2o for each energy level.

Fig. 17b compares the percentage of time taken by di�erent sections of the

computation. The total time is dominated by polarization computation (Eq. (5)) and

FFT computation. The “other” cost, which include Ewalds projection computation,

image rotation and data transfer from CPU to GPU and vice–versa, form a

significant fraction at lower resolution (i.e., smaller voxel sizes), but become

insignificant at higher resolutions.

Fig. 18 compares the time with increase in the number of voxels for Algorithm 2.

Fig. 18a shows the variation of total time whereas Fig. 18b compares the percentage

of time with increase in the number of voxels. We observe a similar performance

behavior compared to Algorithm 1, including O(N) scaling with increase in the

number of voxels. The majority of the time is spent in computing Nt which also
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involves the copying data from CPU to GPU (Algorithm 3), polarization

computation and FFT computation. The “other” cost, similar to the previous

algorithm, forms a significant chunk of percentage at lower resolution but becomes

insignificant at higher resolutions.

6.2. Performance with increasing number of materials: Communication minimization vs
memory minimization algorithms

As a next analysis, we compared the performance of both algorithms with respect

to increase in the number of materials. We considered a system with a voxel size of

2048 ⇥ 2048 ⇥ 64. The computation was carried out for 9 photon energies. For each

photon energy, Electric field e was rotated from 0o to 180o at an increment of 2o. We

utilize 10 streams for the computation of Algorithm 2 to overlap computation and

communication.

Fig. 19a compares the total time for both algorithms. We see Algorithm 1 to be

faster than Algorithm 2. However, the overall slope, or the rate of increase in time with

material size tends to be much steeper for Algorithm 1 compared to Algorithm 2.

This is because the polarization computation (Eq. (5)) involves a loop over the number

of material. Algorithm 1 performs this computation for each rotation of e, whereas

in case of Algorithm 2, this computation is carried out once for each photon energy

and stored in Nt. With increase in the number of material, this computation tends

to dominate, and thus, we see a higher slope for Algorithm 1. Further, we observe

that the memory requirement of Algorithm 1 exceeds the overall GPU memory for

material size > 4, whereas Algorithm 2 continues to exhibit a linear variation with

an increase in material size. This agrees with the memory requirement analysis in

Section 4. We recall that memory requirement of Algorithm 1 exceeds Algorithm 2

for material size � 3.

Fig. 19b shows the percentage of time for di�erent sections of Algorithm 2. We
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Fig. 19. Run time and percentage distribution of P-RSoXS for 2048 ⇥ 2048 ⇥ 64
morphology with increasing number of material for 9 di�erent energy levels. e
rotated from 0o to 180o at increment of 2o for each energy level. For Algorithm 1, the
overall memory requirement exceeds the GPU memory size for number of material
> 4.

see an increase in the time for Nt computation. This is expected as only Nt

computation in Algorithm 2 depends on the number of materials. Overall, the time

is mostly dominated by FFT computations.

6.3. Scaling performance across multiple GPUs

We parallelize the code with respect to the photon energies across multiple

GPUs. This makes the code embarrassingly parallel. Each GPU device allocates its

own chunk of memory depending on the photon energies owned by it and performs

the computation independently. We utilize O���MP to schedule the threads with

each thread handling a single GPU. This allows us to utilize all GPUs e�ciently

across a single node.

In order to demonstrate the scaling performance, we consider a server with 2

NVIDIA V��� GPUs and analyzed the e�ciency for di�erent voxel sizes. We

consider a material system with two di�erent voxel size of 512 ⇥ 512 ⇥ 64 and

1024 ⇥ 1024 ⇥ 128 and 4 materials. We consider 150 photon energies distributed
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across multiple GPUs. Overall, we see an ideal scaling behavior with both

algorithms achieving 2⇥ speedup while utilizing 2 GPUs.
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Fig. 20. Scaling of P-RSoXS simulator on multiple GPU. The number of material
was fixed to 4. The time reported corresponds to computation of 150 energy level
distributed across multiple GPU with e rotated from 0o to 180o at increment of 2o for
each energy level.

Remark. In practice, we observe Algorithm 1 to be faster than Algorithm 2. Therefore,

Algorithm 1 is recommended as the first choice, until we hit the memory limit of the GPU

(usually exhibited as a memory error).

6.4. Comparison with current state–of–the–art

We considered the PGN case from Section 5.3 for performance comparison

between CyRSoXS and Igor based state–of–the–art (Gann et al., 2016) simulation.

The overall morphology contains 512⇥ 512⇥ 32 voxels with 3 components. We only

report the timing for 1 rotation and 101 photon energies. Igor based simulation took

around 31 minutes on anIntel (R) Core (TM) i7-8700 CPU running at 3.20 GHz

with 24.0 GB of RAM. In contrast, CyRSoXS took only 1.05 s (> 1000⇥ speedup) on

NVIDIA Quadro A6000 GPU with 48 GB of GDDR6 global memory to accomplish

this task. We note that the speedup will become much more prominent once we
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perform the simulation for multiple rotation as these rotation do not involve any

communication between CPU and GPU.

7. Python interface to CyRSoXS

In addition to GPU acceleration, we have added a python interface using

Pybind11 (Jakob et al., 2019). Pybind11 was designed to expose C++ data types to

Python and vice-versa. One of the benefits of this approach is directly passing the

morphology information via memory instead of performing file IO operations,

which can be a major bottleneck for fitting and other inverse problems. Additionally,

the output of the scattering pattern in the form of NumPy arrays enables users to

use sophisticated python visualization libraries like Matplotlib (Barrett et al., 2005),

seaborn (Waskom et al., 2020), and develop Python-based post-processing tools. We

also interface with the cupy (Nishino & Loomis, 2017) library that enables

morphology generation on GPU. A morphology generated on GPU can be directly

passed to the simulator without copying data back and forth from the CPU.

However, the morphology layout must strictly match the framework layout as

shown in Fig. 3 and described in Section 4.1.

We believe that the availability of the Python interface will give a major boost to

inverse problems relating to the material design, as most of the Machine Learning

(ML) or Data analysis (DA) toolkits (Garreta & Moncecchi, 2013; Chollet, 2018; Abadi

et al., 2016; Paszke et al., 2019) are currently Python-based. This interface will allow

the users to seamlessly integrate their ML/DA models with the current framework.

8. Conclusion

We have demonstrated a new P-RSoXS virtual instrument with greatly increased

performance compared to the state-of-the-art. Computations with this new virtual

instrument are fast enough to enable practical data fitting by adjusting structure
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parameters using goal-seeking algorithms. The first fitting of orientational

parameters to experimental P-RSoXS data was recently demonstrated using this

virtual instrument to simulate polymer-grafted nanoparticles using a

high-throughput multi-resolution parametric sweep of a 3-parameter system

(Mukherjee et al., 2021). We have developed soon-to-be-published Python-driven

workflows that demonstrate the practical use of this virtual instrument with other

fitting methods, including genetic algorithm and Markov Chain Monte Carlo

approaches. Close integration with Python environments a�ords opportunities to

develop morphological models based on data fusion approaches, particularly

leveraging real-space imaging, which reduces common questions of model

uniqueness in fitting small-angle scattering data. The P-RSoXS virtual instrument

shows great promise as a cornerstone of future approaches for assimilating

complementary data streams to construct complex and self-consistent material

structure representations in silico and ultimately to power inverse design

frameworks that eliminate the need for costly Edisonian optimization approaches.

9. Data and Software Availability

The core C++/CUDA software is available online at

https://github.com/usnistgov/cyrsoxs. Additional reference data and analysis

scripts necessary to reproduce the validation results in Section 5 are available online

at https://github.com/usnistgov/NRSS under tests/validation.
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