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Image Segmentation for Continuum Robots from a Kinematic Prior
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Abstract—In this work, we address the problem of robust
scgmentation of a continuum robot from images without the
need lor training data or markers. We present a method that
leverages information about the kincmatics of these robots to
produce an estimate of the robot shape, which is refined through
oplimization over global image statistics. Our approach can be
straightforwardly applied to any continuum robot design and is
able to handle partial occlusions ol the robot body, as well as
challenging background conditions. We validate our method
experimentally for a concentric tube robot in a simulated
surgical environment and show that our method significantly
outperforms a naive projection of the robot shape and color
thresholding, which is commonly used in current vision-based
cstimation algorithms for these robots. Overall, this work has
the potential o improve the viability of vision-based stale
estimalion lor continuum robots in real-world sellings.

[. INTRODUCTION

Unlike  traditional robotc  manipulators, which change
shape at discrete joint locations, continuum robots have
shapes that vary continuously along their lengths [1]-[5].
Their flexibility, small form factor, and ability to navigate tor-
tuous paths make continuum robots well suited for minimally
invasive surgery (see [6] for a review) and other applications
that require high dexterity in tight spaccs.

These atlractive, mechanical [catures, however, can also
lead W challenges with sensing and estimation. For instance,
because continuum rohots are flexible, it is difficult to
accuratcly estimate their shape, ecspecially when the body
ol the robot is subjected o unknown lorces. Phenomena
like [riction similarly impact the shape and dynamics ol
the robot in ways that are hard to predict. These issues
are compounded by (he small size of the robot body—
whose diameter is typically on the millimeter scale— which
imposes significant limitations on the integration of sensors.

Reliable state estimation is a critical challenge that must
be solved before continuum robots can be safely deployed
in environments like the surgical theawre. One approach (o
address these challenges. has been to use vision to estimate
important aspects ol the robols stule. Examples ol this
work include shape estimation [7]-[10}], the identification
ol incrtial paramcters uscd in dynamics models [11], [12].
and the estimation ol forees the robout applics w unknown
surroundings [13].
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Fig. 1. An example of robust image segmentation for a concentric tube
continuum robot. The robot is successfully identified, as illustrated by the
while overlay, despite the presence of multiple, partial occlusions and a
background of similar color.

Tmportantly, a common feature ol these works on vision-
based estimation is the requirement to have an accurate
segmentation ol the robol, thal distinguishes the pixels be-
longing to the continuum robot body [rom the rest ol the
image. In order (0 oblain this segmentation reliably however,
the images used in these previous works are taken under
idcal conditions, which do not cxist outside the laboratory,
severely limiting their real-world applicabilivy [14], [15]. To
address this issuc, we propose a new method for accurate
continuum robot segmentation (Fig. 1) that is robust to more
realistic Imaging conditions and can be used to help further
the growing body of research on vision-based estimation for
continuum robots.

A, Continnum Robor Image Segmentation

In the last decade, most image segmentaton research has
largely
spurred by the success ol ImageNet [16]. It has become

been dominaled by deep learning-based methods

clear thal, given sulficient computational power and training
data, the results achicved by deep neitworks significantly
outperform all other existing methods, cspecially on general
image segmentation lasks.

However, amassing the requisite amount ol labeled (rain-
ing data for the very specialized task ol segmenting a
continuum robot is a challenging undertaking. Even trans-
fer learning approaches—where a successiul deep network
architccture that has (irst been traincd on a very general set of
labels is then retrained on a more specilic set ol labels using
fewer images—require on the order of ~ 10ed images. An

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 4805

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on December 12,2023 at 18:09:03 UTC from IEEE Xplore. Restrictions apply.



individual collecting and labeling such a large amount ol dala
is a highly impractical undertaking, especially given the large
variety ol continuum robot designs lor which the process
would nced o be repeated. Online datasets, which have
catalyzed advancements in other sub-disciplines of robotics,
such as self-driving vehicles [17] and manipulation [18], do
not yet exist for continuum robots. Finally, perhaps the most
significant impediment to gathering useful training data for
continuum robots is that many ol the intended applications
are surgical, which adds regulatory and privacy concerns [or
how the dala is colleclted [19].

As an alternative approach to using deep networks [or
vision-hased estimation lor continuum robots, researchers
olten rely on composing an image scene to contain the entire
robot body against a unilorm, high-contrast background
[71, [8]. [10]-[13]. This control over the composition of
the scene. cnables straightforward, background-subtraction
technigues based on color or another pholometric guantity
o effectively segment the robot without the need for large
amounts ol (raining data. These simple swralegies are not
robust, however, In that as the complexity of the scene
increases (e.g. the robot is only partially visible, foreign
objects are present, the background color is non-uniform and
similar to the robou body, elc.) the segmentation becomes
less reliuble [14], [15]. Although it is possible to improve
color-based segmentation methods through proper coloring
ol the
such modifications suller [rom sterilization and integration
challenges [20] [21].

In the decade preceding the explosion ol deep learning

instrument or the addition ol reflective markers,

upprouches, rescarchers studied segmentation methods based
on modcly ol the 3D shape ol a target object. By leveraging
this prior knowledge, these methods [22], [23] can effectively
segment an object in a more complicated scene where a
simple color-based method would fail. In this work, we
propose to augment these methods with a kinematic model
for a continuum robot that can be used for scgmentation,
withoul the need for a large set ol training dala.

B. Contributions

Specilically, the contribution of this work is an algorithm
for segmentation ol continuum robots that: requires minimal
raining data, is general across conlinuum robot designs,
and segments the rtobot in realistic image conditions that
include partial views and challenging background conditions
(where color-based segmentation of the robot alone performs
poorly). In the [ollowing section we delail the components
ol our algorithm that leverage information about the robot’s
shape derived [rom a kinemalic model (o construct an
oplimization problem which can be solved w0 segment (he
robot. Next, we test our algorithm empirically using images
ol the robol collected from a simulated surgical environment
and demonstrate its improved performance relative to current
techniques. Finally, we conclude with a discussion of the
current limitations ol the work, along with [uture dircclions.

TABLE 1

NOMINCLATURE

—
e

conversion of an element of R® to an element of 56(3)
arclength variable of the continuum robot

total arclength of the robor

curvature of the tobot centerline

position vector of the robot centerline

W'Y g =~

oricntation matrix of the robot centerline
es3 the third clemenc of the standard basis
vector of the robol joint positions
fi) mapping from robol joint positions (o centerline curvature
() mapping from robot centerline pose to 3D shape

S 30 shupe of the robot

X0 a 31 point on the surface of the robot in the Tobol frame
rotation between camera frame and robot frame

t translation between camera frame uand robot frame

X a 313 point on the surface of the robol in the camera frame

() a perspective projection mapping

y a 2D pixel coordinate in the domain of the image

I raw image

AT binary mask of background

r background subtracted image

P domuin of image

7 subsct of image domain belonging to background

R subsel of image domain belonging to projection of shape model

Re complement of B

I{v) color value of the image of a pixel coordinale y

II. METHODS

Our algorithm [or continuum robot segmenlation consisls
ol three main parts (Fig. 2). First, the image 1o be processed
undergoes an initial background subtraction. Second, joint
measurements ol the robol’s configuration are [ed into a
kinematic medel to produce an initial paramclerization ol the
shape ol the robot. [inally, this parameterization is rehined
through optimization to minimize an cnergy defined for the
background-subtracted image, which produces a segmenta-
tion for the robot. An example of this workflow is shown
in Fig. 4. The nomenclature used throughout this arlicle is
summarized in Table L

A. Background Subtraction
This first step is
segmentation—only o remove elements ol the image that

not expected to achieve a perfect

are grossly inconsistent with the expecled appearance of the
robot. Consequently, our algorithm does nor require a specilic
background subtraction method. Instead, this choice is lell
to the user as a design decision, which may depend on the
information available for the particular problem.

Consider an initial image J. a binary mask M(I, 8},
and background-subtracted image I’ = [ o M, where o
is the Hadamard product. The mask, M, which delineales
the foreground [rom the background, is a lunction of the
image, I, and a vector of paramcters, 0, used to cncode any
information about the background available o the user. For
instance, il the user has access to images ol the background a
priori, @ may be the weights ol a Gaussian Mixture Model
[24], ncural network [25], or other learned [unclion [26],
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(3) Optimization
Background e
ompute robot centerline
] Subtractsd from curvature
Image [(1) Background | _1mage
|  Subtraction Compute robot shape from
centerline Segmented
Project robot shape onto Image
image to compute R, R’
Initial Compute cost function and
Robot Joint Robot its gradient wrt u
Positions (2) Robot Curvature .
| Take gradient step to
Kinematic Model reduce cost
Repeat until convergence

Fig. 2. Workflow diagram of the proposed algorithm.

meant to capture slalislics about the background pixels. I,
however, the user does not have dala Lo train such a modcl, @
may be the parameters wscd to specily a simple color mask
that removes unlikely robot colors. In our experiments, we
adopt this later approach, but incorporating more complicated
models is straightforward.

B. Continuum Robot Shape Model

The key element ol our proposed approach is o leverage
a model ol the expecled shape ol the conlinuum robol to
improve segmentation. Specifically, we consider a mapping
u(s} = f{q) from the robot’s joint configuration, g € ™ o
the curvature ol ity centerline, u(s), which is parameterized
by thc arclength of the centerline, s € [0, L]. There is
extensive literature on [orward kinematic modcls specific [or
different continuum robot designs that define such mappings
(lor a review see [27] and [28]). These models range in
complexity [rom simple constant curvature models, which do
not vary with respect to s, to more complicated mechanics-
based models that define f(-) as the solution to a set of
differential equations.

Given such a mapping, it is then straightforward to deter-
mine the position, p(s), and orientation, R({s}, ol the tobot
centerline as a [unction ol arclength by integrating the system
ol equalions,

P = Rey (

R = Ri, )
with an appropriatc set ol initial conditions, p(0}, R(0).
where (A) maps the robot curvature to so(3). It Is important
to note thal the 1D centerline of the robol is distinet [rom
its expected shape, which is a surface embedded in 3D
space. Therefore it is nccessary to define another mapping,
§ = T'(p, R, s}, which maps information about the Tobot
centerline computed in Eq. 1 to the shape of the robot, 5,
effectively “drawing” the robot shape from its centerline. The
exact definition of I'{-} depends on the specific design ol the
trobot to be segmented and is straightforward to determine
given that continuum robot designs (o dale have cross sec-
tions that are radially symmetric about their centerline.

C. Segmentation by Shape Optimization

Consider an image I with domain $ and area clement d®.
Our approach te scgmentation is inspired by mcthods such as

[22] [29]. which pose an oplimizalion problem o minimize
cnergics ol the lorm

E = / E, (Ddd + B, (DdD, (2)
where K, and F,,; are [unclions thal are integrated Lo
capture statistics about pixels within a region of the image.
R < ®, and within its complement, R® = ®\ R, respectively.
The region R is determined (rom a model of the surface of
the object to be scgmented by first transforming the object
into the reference [rame ol the camera and then projecting the
object onto the image domain, ®, using a projection model.
Specifically, consider a model of an object with a shape
defined by surface S. Every point on the surface, x5 € 5, is
transformed into the camera frame by

x = xg + t, 3)

where £2 and t are (he oricntlation and translation of the
camera [rame relative to the coordinate [rame in which 8 is
defined. This ransformation is lollowed by a projeclion,

y = n(x), 4

which maps 3D points in the relerenee [rame ol the camcera,
x = [7,4, 2T, w 2D pixel locaions in the image domain,
y. The region 1% is then delined to be the set ol all points y
in the image domain (Fig. 3). The choice ol 7(-) is another
design decision allorded o the user. Here, we assume an
ideal perspectlive projection model so that y = [é , g]T

Prior waorks typically assume that the posc ol the target
object in the camera frame, {£2, t}, is unknown and solve for
these variables by minimizing Eq. 2. In our case. however,
the target object is a continuum robot [or which the relative
pose ol the camera is usually known. In many tobotic
applications, the camera is either mounted in a fixed position
relative to the robot [30] or is under direct robotic control—
as is the case lor many surgical robots [31]. Conscquenitly,
we instead choose to segment a continuum rohot [rom an
image by minimizing an cnergy functional like Eq. 2 over a
paramclerization ol the robot shape.

As described in Section II-B, a model ol the shape ol a
continuum robot is completely defined by ils curvature, u,

Fig. 3.

A schemaiic of a continuum robot shape model and its projection
onto an image. The centerline of the model, p(s), is determined from the
robol’s joint conﬁgura[ion and g forward kinematc model. Points on the
surface of the robor, S, are transformed fromn the robot reterence framic
to the camera rcference frame, given the relative pose of the camera as
defined by {€2, t}. and are then projected into the image frame with a
mapping defined by =(-).
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which can be delermined from the robol’s joint configuration,
q. We posc a modified optimization problem to find a new
robol curvature, 1’ = u + du, that solves the Tollowing:

min 7«'1/ E(!'(y))do -|—~,'2/ FEpue{ ! (y))dd
du R—1D3 Re—12
o j 5l 2ds + 7z ] . ()
L RNB

——
Er'-l/‘

Epen

Here., Ey, and E,,; are the same as in LEg. 2, but we use a
background subtracted version ol the image (Scetion TI-A),
and the domains ol inlcgralion are restricted to not include
any pixels in the domain of the background, B < &.
Compared to Eg. 2, we also add two new terms to our
modified objective function. The first term, L., is a regu-
larization term thal penalizes large changes W the curvalure
ol the robot and is integraled over the arclength ol the robot
centerline. The second additional term, Fi,.,, is the integral
over all pixels that are common o both the background
and the projection ol the robot shape onto the image. This
term penalizes solutions where large regions of the robot
projection lie in the domain ol the background. The weights,
~1— 4. are used to adjust the relative importance ol each ol the
terms. We find that setting the weights such that all terms in
the cost [unction have the same order of magnitude (ends o
produce cllcetive results. There are many possible choices [or
the functions E;, and E,,; [22]. Here we adopt the method
from [29]:

E’i'l!-\Uut(I(Y)) = (I(y) - u-:,-n,mi.t)27
et (©)
Mo oui, — W7

where I(y) € R® is (he color at pixel location y, and e, L.
is the average color over the region R, R°.

III. EXPERIMENTAL EVALUATION

In this section, we empirically evaluate the performance
of our algorithm under different conditions. We do so for
the segmentation of a concentric tube robot (CTR), which is
a specilic class of conlinuum robot. We oulline the details

Fig. 4.

ol the experiment, discuss metrics Tor charactlerizing  the
performance, and finally analyze the results.

A. Experimental Setup

CTRs consist ol precurved, flexible, telescoping (ubes
which can be rranslated and rotated relative to one another
hy an acluation unit. As the tubes are actuated, they interact
in bending and wrsion to reach mechanical cquilibrium
and produce different robot configurations [4], |5]. The
specific CTR used in this experiment has the same tubes
and actuation unit as described in [32]. The kinematic model
we use to determine the robot shape from its joint angles is
based on the mechanics ol Cosserat rods and is detailed in
[33]. To draw the shape ol the robol [rom ity centerline, we
define the [unclion

p(s)
Sis, ) =T(p, R, 5, ¢) = p(s) + R(sIR () 0 (7)
0

where R(s)R..(¢*) is a rotation of ¢ radians about the tangent
to the robol centerline and p{s) is (he diameter of the
outermost robot tube at arclength location s.

To evaluate our proposed method, we gather 4 sets of
20 images of this robot from an external camera (Logitech
C920) as the tip of the CTR follows a trajectory thal spans a
large region ol ils workspace (Fig. 5). AL the ume when each
image is taken, the robot joint values are also recorded [or
use in the algorithm. Hall of the image dala collecled (i.e. 40
imuges) comes [rom an “orthogonal®”
camera is oricnted orthogonal to the insertion axis—while the

viewpoinl—where the

other hall’ comes [rom an “endoscopic™ viewpoini—where
the camera is oriented nearly parallel to the insertion axis ol
the robol. The first viewpoint is more common in lab seltings
while the sccond, more challenging viewpoint is similar 1o
how a camera might be mounted lor use with a minimally
invasive surgical robot. The endoscopic viewpoint is more
challenging since differences in the robot’s configuration are
difficult to discern and becuuse the robot is often partially
occluded by its own body and/or its actuation system.

== Projected shape

8 True shape

(a) Example of a raw, color image prior to segmentation by our propuosed algorithm. (b) The image after background subtraction has removed

colors inconsistent with the robot body. (c) Prajeetion of the initial robot shape (white) onto the background subiracted image clearly deviales from the
true robot shape (blue}. (d) Projection of the optimized robot shape (while) onto the background subiracted image. The optimized shape aligns much better

with the true robot shape (bluc).
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TABLE TI

COMPARISON OF IoUs FOR THE DIFFERENT SEGMENTATION METHODS ACROSS VARIOUS IMAGE SETS. A1iusti: IoU SCORES ARE REPORTED TO
THE RIGHT OF THE | ($kK SECTION TIT-B FOR DETAILS)

Orthogonal Orthogonal Occluded

Endoscopic Endoscopic Occluded

Background Subtraction 0.016 + 0.001 0.015 4 0.001 0.022 + 0.003 0.013 £+ 0.003
CUnoptimized Projection | 0.284 + 0.087 0.292 4 0.101 0.284 + 0.092 | 0.415 4 0.143 | 0254 4 0.088 | 0.427 £+ 0.157

Optimized Projection 1663 1 0.063 0.603 L 0.134

0.414 1 0104 | 636 L 0.153 03 L 0109|052 1 0171

Camera — A

Actuation
System
Concentric
Tubes

|

Tissue

Fig. 5. The cxperimental sclup consists of a concentric tube robot mounted
abovc a picce of fissuc. An external camera is attached to an articulating
locking arm to enable images to be taken from both an “orthogonal™ and
an “endoscopic” viewpoint.

From each viewpoint, we collect 2 sets of data, one in
which the robot is partially occluded by a laparoscopic
instrument (Endopath monopolar cautery scissors, Ethicon)
and one in which it is not. The camera pose relative to the
the robot at
known locations. All images are laken against a background

robol is delermined Irom markers allixed to

ol animal tissue which is similar in color to the robot tubes
and meant to simulate a surgical environment (Fig. 5). After
collection. the images are hand-segmented to produce ground
truth labels that can be used to evaluate the performance of
the algorithm., We use the Intersection Over Union (IoU) of
the algorithm segmentation against the ground truth as the
performance metric, which is computed as:

_ |An B

Toll = ——— .
7 T lAu D

(8)
Higher IoUs indicate better performance and an IoU of 1 in-
dicates a perfect match between the algorithm segmientation
and ground truth. We also report IoUs [or the segmentation
produced by Uie uvnoplimized projection ol the robol (i.e.
du = () and for the background subtraction [or comparison
with our algorithm. The color mask used lor background
subtraction (Section II-A) and the weights in the objective
function used for optimization are the same tor all imagcs.

B. Resulis

We rccord the mean IoU plus or minus one standard
deviation for cach method on cach dala set in Table T
From these numbers, it is clear that hackground subtraction
by color thresholding alonc is a poor way to segment the

robot when it is similar in appcarance to the background

(tlop row ol Table IIT}, regardless of
which is consistent with previous works [14], [15]. This

the viewing angle,

result motivales the need [or a more advanced approach [or
segmentation, even when the entire robot body is visible in
the imagc.

Projecling the unoplimized shape ol the robol gives betlter
results than background subtraction alone but still fails w0
accurately capture all ol the pixels ol the robot (middle row
ol Table IIT). Although we use a sophisticaled mechanical
model to predict the shape ol the robot, there are many
sources ol error thal contribute to the misalignment belween
the projection of thie robol shape medel and the actual image
ol the robot. Tixamples ol possible sources of error include,
but are not limited 1o, the effects of unmodeled phenomena
like friction, backlash, and fabrication telerances [34]; un-
certainty in model parameters such as bending stiffness or
wbe curvatures; and small calibration errors in camera posc
or joint ollsets.

Our proposed algorithm, however, results in significantly
higher IoUs across all test conditions. This improved result
is duc to the fuct that our mecthod uses data [rom the
image to refine the model of the robol’s shape, consequently
producing a projection thal more closely agrees with (he
ground truth labels (bottom row ol Table TII). Note that for
the endoscopic viewpoint datasets, we report two differnt
ToUs: a raw IoU, calculated as previously described, and
an adjusled ToU, which excludes segmentation pixels thal
are in occluded regions. The rationale [or this adjusted IoU
is that the ground truth labels only capture regions ol the
image where the robot is visible. The projection of the Tobot
shape model, however—whether oplimized or nol—does not
account lor any occlusions in the environment. This [ealure
is beneficial in thal it provides the user with a segmentation
ol the cuntire robot—even porlions that are not visible—but
makes the ToUs ol the optimized and unoptimized projections
more difficult to distinguish numerically because a large
percentage ol both projcctions is occluded by the actuation
unit of the robot. By removing the pixels projected into the
occluded regions from the IoU calculation, the improvement
due to optimization of the robot shape model becomes more
apparent.

IV. CONCLUSION

In conclusion, we have presenled a new algorithm [lor
robust conlinuum robot segmentation that docs not require
labeled wraining data. Our approach poses an optimization
over changes to a paramcterization ol the shape ol the robot.
It produccs a scgmentation ol the rohot even lor challenging
cases, such as when the background is similar in color to
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TABLE T

DR

INT IMAGE SEGMENTATION METHODS APPLIED TO EACH OF THE FOUR DATASETS DESCRIBED IN SECTION 111-A. Tuik RESULTING

SEGMENTATION IS SHOWN AS A TRANSPARENT, WHITE OVERLAY ON TOP OF EACH OF THE ORIGINAL IMAGES.

Orthogonal Orthogonal Occluded

Endoscopic Endoscopic Occluded

Unoptimized Projeclion] Background Subtraction

Optimized Projection

the robot or the robot is only partially visible. We validated
our proposed approach empirically and demonstrated that
our method shows significant, quantifiable improvement over
color-based segmentation approaches, and is robust to errors
in the model used to describe the shape of the robot and its
projeclion.

There are several possible extensions of this method and
directions lor [uture work. First, our current mecthod assumes
that the tobot operales in [ree space, unallected by external
forces arising [rom, for example, tssue interaction thal may
be present in a rcal-world scenario. To account for this,
our approach can be adapted o utilize more sophisticated
kinematic models that account {or the cileet ol external loads
on the robot shape [13]. Second. the computational efficiency
of the algorithm can be improved by investigating lower-
dimensional parameterizations of the robot shape, warm-
slarting the oplimization, and exploiting parallel computa-
tions that could enable use in real-time applications. Finally,
this method could be combined with learning-based scgmen-

[4]

[7]

[8]

[10]

tation techniques for improved performance, similar o the  [11]
automated labeling method described in [35].
[12]
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