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a b s t r a c t 

Rolling bearings are important components in rotating machinery in various industries. 

Conducting intelligent prognostics for bearing remaining useful life (RUL) prediction plays 

an important role in the health management and reliability assessment of these machinery 

systems. While the bearing fault prognosis using measured system response through ma- 

chine learning techniques has attracted significant attention and demonstrated promising 

potential, completely data-driven approaches face some challenges in understanding com- 

plex domains with data efficient learning. In this research, we develop an integral bearing 

fault prognosis framework informed by the well-designed time-domain signal preprocess- 

ing to conduct the bearing RUL prediction. This framework is built upon physical feature- 

oriented signal preprocessing and an associated wavelet neural network (WNN). Sequential 

procedures of time-domain analyses are proposed to extract the physical features of bear- 

ing degradation. Empirical mode decomposition (EMD) is specifically chosen owing to its 

capability of handling bearing fault signals that are nonstationary with underlying nonlin- 

earities. The WNN is a new class of neural networks that combines the classic neural net- 

work and wavelet analysis. Here in this research a WNN model built upon B-spline mother 

wavelet to suit the preceding EMD-based signal preprocessing is constructed to process 

the bearing degradation features extracted and then identify their correlation with bear- 

ing RUL. The combination of EMD-based signal preprocessing and B-spline mother wavelet 

in WNN enables the network to learn the input-output correlation in a physical sense. 

Case studies formulated upon multiple bearing datasets and multiple benchmark methods 

are carried out to systematically validate the proposed framework. The results consistently 

demonstrate prediction accuracy and performance robustness. 

© 2023 Elsevier Inc. All rights reserved. 
1. Introduction 

Rotating machinery is commonly used in various industries involving manufacturing, aerospace, civil infrastructure, and 

transportation etc. The rolling bearings are one of the essential components in rotating machinery that supports the shaft 

and reduces friction. They are prone to various failures/faults as they operate under harsh conditions. Unexpected failure of 

in-service bearings increases the downtime and maintenance cost, resulting in significant economic and manpower losses 
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[1] . The concept of prognostics and health management (PHM) has been introduced in order to reduce the probability of

failure events. Predicting the remaining useful life (RUL) is a critical process in bearing PHM. 

Existing prognostic approaches are often classified into two main categories, i.e., the model-based approaches and the 

data-driven ones. The model-based approaches characterize the inherent degradation behavior based on physics modeling 

and then estimate the RUL of the target system by utilizing the mathematical models that incorporate the damage and fa-

tigue mechanisms [ 2 , 3 ]. Establishing a high-fidelity physical model that can account for the machinery degradation process,

nevertheless, is difficult, especially when the operating conditions are complex. Even if a physical model may be theoret- 

ically reasonable, extensive effort is required to tune the model parameters using the experimental measurement [4] . On 

the other hand, the data-driven approaches directly predict the RUL of the target system by building the correlation of 

RUL with respect to the run-to-failure data collected [5] . Owing to the concurrent advancements of computing power and

computational intelligence algorithms, a variety of machine learning approaches have recently been explored for bearing 

fault prognosis. It is worth noting that many earlier machine learning approaches possessed limited capacity in handling 

large number of input features in the data. Fundamentally, their relatively simple architectures cannot ensure the adequate 

learning of intrinsic correlation between the high-dimensional features and RUL. Hence, they were often performed upon 

the salient features with dimensional reduction. Benkedjouh et al. proposed to use the isometric feature mapping reduction 

technique and support vector regression to estimate the RUL of bearings [6] . Zhao et al. proposed a two-step supervised

technique, i.e., a combination of principal component analysis (PCA) and linear discriminant analysis (LDA), to achieve the 

feature dimension reduction, which facilitates the RUL prediction using a subsequent linear regression model [7] . Gao et al.

developed a data-driven Bayesian model built upon the Metropolis-Hasting algorithm to estimate the RUL of bearings from 

the dimensionally reduced time-domain features [8] . Lyn et al. developed a similarity-based method to estimate the RUL 

of the system that can utilize its multiple past events and corresponding impacts [9] . This method has been further im-

proved by involving a self-adaptive weight allocation approach Besides these conventional machine learning approaches, 

more recent efforts focus on deep learning that can fully exploit the neural network architecture to utilize a large amount

of available data for machinery fault diagnosis and prognosis [10–14] . By nature, deep learning can minimize or even elimi-

nate the data pre-processing effort while maintaining the desired predictive performance. 

Despite their significant progresses, most of the data-drive approaches lack the physical interpretation of the entire prog- 

nostic processes as the neural networks inherently handle the features in an implicit manner. Aiming at overcoming this 

drawback and elucidating the failure occurrence via the temporal data in a physical sense, physics-based signal processing 

have been increasingly adopted to extract the fault-related system characteristics and improve the data-driven technique 

for characterizing bearing degradation behavior. It is noted that here the physics-based signal processing differs from the 

data-driven feature extraction and dimension reduction which is built upon the statistical data analysis to cluster/group 

the salient/pilot features for discriminating different bearing degradation conditions. A variety of signal processing methods 

have been developed for RUL estimation of bearings. One class of these methods is to extract the explicit and essential fea-

tures in the time domain, frequency domain, or time-frequency domain that are sensitive to bearing degradation. Mosallam 

et al. developed a nonparametric trend modeling method for multidimensional feature extraction of sensory data followed 

by unsupervised feature selection. The empirical mode decomposition (EMD) was then employed on the projected features 

to reflect the health evolution of bearing over time [15] . Motahari-Nezhad and Jafari adopted sixty time-domain features 

extracted from acoustic emission data and then used the improved distance evaluation (IDE) algorithm to select the best 

features for bearing RUL prediction [16] . Liu et al. used the discrete wavelet transform (DWT) technique to conduct the

multiresolution analysis of bearing vibration data [17] . Moreover, some other methods aim at constructing the new health 

indicator/index to assess the bearing degradation status. Qiu et al. constructed a new health indicator using the structural 

information of the spectrum (SIOS) algorithm [18] . Xu et al. proposed a new health index evaluated by the moving average

cross-correlation of power spectral density of vibration signals [19] . Cheng et al. processed the raw vibration data using

the Hilbert–Huang transform (HHT) to construct a novel nonlinear degradation energy indicator to evaluate the bearing 

health status [20] . Additionally, there is also effort to enhance the signal processing and data-driven approaches to fulfill the

practical but challenging bearing fault prognosis mission, such as the prognosis under time-varying conditions and ambient 

uncertainties [21–23] . 

The overarching goal of this research is to apply carefully designed signal preprocessing techniques to machine learning 

as a performance multiplier to realize an integrated physics-informed data-driven framework for bearing fault prognosis. 

This unified framework with seamless integration of all tailored techniques provides another path for bearing RUL predic- 

tion, which is considered as the main contribution of this research. To thoroughly retrieve the key degradation features 

of a bearing and subsequently facilitate the establishment of an associated data-driven model, sequential signal prepro- 

cessing using statistical analysis of segmented time-domain responses followed by empirical mode decomposition (EMD) is 

synthesized. We first segment the original raw data and compute key statistical metrics of the segmented data, and form 

new times series of these statistical metrics. EMD is an adaptive multiresolution technique that decomposes a time series 

into physically meaningful components. It has demonstrated its effectiveness in analyzing the nonlinear and nonstationary 

bearing fault signals [24–26] . While the EMD oftentimes is applied in conjunction with the Hilbert spectral analysis (HSA) 

to achieve the so-called Hilbert–Huang transform (HHT) [27–30] , in this research we only employ EMD to further process

the segmented time-domain statistical metrics. Since the signal transformation only occurs in the time domain, EMD-based 

time-domain analysis possesses less computational complexity than the conventional Hilbert–Huang transform (HHT) for 

joint time-frequency analysis. The detailed investigation of the computational complexity of the EMD can be referred to 
221 



K. Zhou and J. Tang Applied Mathematical Modelling 122 (2023) 220–241 

 

 

 

 

 

 

[31] . Treating the degradation features obtained from EMD and the associated bearing RUL as input and output, respectively, 

we then establish a wavelet neural network (WNN) model for conducting the bearing RUL estimation. WNN inherits the 

architecture of the classical neural network and meanwhile harnesses the wavelet analysis within the network, which gen- 

erally can be achieved by utilizing the wavelet function as the activation function [32] . While various options of wavelets

exist, in this research we specifically chose the B-spline mother wavelet to construct the WNN, since this mother wavelet 

fits very well with the nature of the preceding EMD based signal preprocessing that is built upon splines. The combination

of EMD and B-spline mother wavelet in WNN allows the built-in wavelet transform that enables the physical interpreta- 

tion of the network learning process, into RUL prediction. The pivot degrading features extracted from EMD generally are 

low-dimensional, and will be fed into WNN as input information. Hence, WNN possesses low computational complexity. 

In addition to WNN, it is interesting to note that the other variant termed as WaveletKernelNet recently has emerged for

intelligent machinery PHM. Different from WNN that modifies the activation function, WaveletKernelNet adopts the wavelet 

function as the kernel/filter to convolve the input signal for accomplishing the wavelet transform during the learning pro- 

cess. With this, the essential semantic information with a clear physical context can be extracted from high-dimensional 

input [33] . 

The remainder of this paper is organized as follows. In Section 2 , the proposed methodology for bearing fault prognosis is

outlined, in which the EMD-based time-domain signal preprocessing, WNN, and fault prognosis procedures are consecutively 

introduced. In Section 3 we implement comprehensive case studies to validate the methodology using publicly accessible 

bearing datasets, including the NASA Ames prognostics dataset and the XJTU-SY bearing dataset, followed by the conclusions 

summarized in Section 4 . 

2. Formulation of fault prognosis framework 

In this section, the integrated bearing fault prognosis framework that leverages upon the sequential time-domain signal 

preprocessing and feature extraction, and physics-based wavelet neural network is presented. 

2.1. Sequential time-domain signal preprocessing 

The bearing degradation is reflected essentially in the time domain responses acquired. To facilitate the degradation 

characterization, time-domain signal processing and feature extraction has been a common technique. However, it is well 

known that simple time-domain signal processing may overlook the rich and subtle underlying features in bearing degra- 

dation which is a highly nonlinear and relatively slow process. Although the joint time-frequency domain approaches have 

been attempted, they usually require extensive empirical knowledge for decision making which is subjective. Fundamentally, 

these signal processing techniques lack the learning capability thus rely heavily on empirical experience. In this research, 

we aim at establishing a new framework for bearing prognosis, in which we intend to leave the mapping of hidden fea-

tures of bearing degradation and the RUL to a wavelet neural network (WNN) (to be explained) to take advantage of the

concept of machine learning. Before applying WNN, a sequential signal pre-processing procedure is formulated to extract 

the time-domain essential features/characteristics which are then fed to the WNN. As the first step of signal preprocessing, 

we segment the available time domain responses and, for each segment, compute several prominent statistical metrics from 

the raw vibration data, including [34] : 

a) Mean indicates the average of acceleration signals in the segment and can be calculated as 

μ= 

1 

N 

N ∑ 

i =1 

y (a ) 
i 

(1) 

where N denotes the length of segment (i.e., number of data points) and y ( a ) denotes the measured acceleration signals. 

a) Variance (VAR) measures the data distribution around the segment mean that can be expressed as 

VAR = 

1 

N 

N ∑ 

i =1 

∣∣y (a ) 
i 

− μ
∣∣2 (2) 

b) Mean absolute value (MAV) is the absolute average of acceleration signals in the segment that is defined as 

MAV = 

1 

N 

N ∑ 

i =1 

∣∣y (a ) 
i 

∣∣ (3) 

c) Simple sign integral (SSI) determines the energy of signals in the segment and can be computed as 

SSI = 

N ∑ 

i =1 

∣∣y (a ) 
i 

∣∣2 (4) 
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d) Root mean square (RMS) is the amplitude of modulated random process that can be described as 

RMS = 

√ 

1 

N 

N ∑ 

i =1 

∣∣y (a ) 
i 

∣∣ (5) 

e) Peak to peak (P2P) value represents the difference between the maximum and minimum in the form of 

P2P = max ([ y (a ) 
1 

, y (a ) 
2 

, ...y (a ) 
N 

]) − min ([ y (a ) 
1 

, y (a ) 
2 

, ...y (a ) 
N 

]) (6) 

f) Kurtosis (KURT) is the scaled form of the fourth statistical moment to assess the degree of tailedness in the probability

distribution curve, given as 

KURT = 

1 
N 

N ∑ 

i =1 

∣∣y (a ) 
i 

− μ
∣∣4 

( 1 
N 

N ∑ 

i =1 

∣∣y (a ) 
i 

− μ
∣∣2 ) 2 (7) 

g) Skewness (SKW) is the third statistical moment to evaluate the degree of asymmetry of the probability distribution curve, 

given as 

SKW = 

1 
N 

N ∑ 

i =1 

∣∣y (a ) 
i 

− μ
∣∣3 

( 

√ 

1 
N 

N ∑ 

i =1 

∣∣y (a ) 
i 

− μ
∣∣2 ) 3 

(8) 

For each segment, we can compute the aforementioned statistical metrics. When we consider all segments, these seg- 

mented statistical metrics then form new time-series statistical metrics data. As the second step of signal preprocessing, 

we employ the empirical mode decomposition (EMD) technique to these time-series statistical metrics data to further ex- 

tract the critical degradation-related features which are then fed to the subsequent WNN for RUL prediction. The underlying 

principle of EMD is to locally identify the most rapid oscillations in the time series, which is defined as a waveform inter-

polating local maxima and minima [35] . Specifically, the local maxima and minima are interpolated through a cubic spline, 

resulting in the upper and lower bounds, i.e., the envelope. The mean of the envelope can then be subtracted from the

original time series. The same interpolation procedure is iterated on the remainder of the time series, which is called the

sifting process. This process stops when the mean of the envelope approaches zero over the entire domain. The resulting 

time series is defined as the first intrinsic mode function (IMF). Removing the preceding IMFs from the original time series

and applying the same sifting process iteratively can yield higher-order IMFs. Theoretically, a time series can be classified as 

IMF only when two criteria hold concurrently. The first is that the number of local maxima and the number of local minima

must differ by at most one, and the second is that the mean of the envelope must be zero. When the EMD is employed, a

1-dimensional discrete time series can be represented as 

S = 

K ∑ 

i =1 

im f k + res (9) 

where imf k is the decomposed k -th order IMF, and res is the residual i.e., a low-order polynomial component that cannot be

further decomposed. Fundamentally, a finite (and limited) number of IMFs are nearly orthogonal to each other. Inherently, 

this technique can decompose the time series into different fundamental components, each with a distinct time scale. As 

can be seen above, the time scale of the component increases when the decomposition proceeds. Correspondingly, the 

oscillation frequency of the component decreases. As pointed out in the literature [24–26] , the main strength of EMD is to

deal with nonstationary behaviors of systems with nonlinearities. This appears to be very promising to deal with bearing 

fault degradation, which indeed features nonstationary responses with system nonlinearities. For this reason, we will employ 

EMD to the time-series statistical metrics data and use the resulting fundamental components to conduct the bearing fault 

prognosis analysis. 

2.2. Physics-based wavelet neural network 

In this section, the wavelet neural network (WNN) employed in the proposed framework is outlined. WNN is a feedfor-

ward neural network with the theoretical formulation in terms of the wavelet decomposition. It is a generalization of the 

radial basis function network (RBFN) [ 32 , 36 ]. The underlying idea of a WNN is to adopt the wavelet basis to the training

data, i.e., utilize the wavelet function as the activation function. This is the main difference between the WNN and the

conventional neural networks that use classical activation functions such as sigmoid, and ReLU etc. [36] . A WNN usually
223 
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Fig. 1. WNN architecture. 

 

 

 

 

 

 

 

 

 

consists of three layers, including an input layer, a hidden layer, and an output layer, as shown in Fig. 1 [37] . The input layer

intends to introduce the explanatory variables into the WNN. The hidden layer consists of hidden neurons/nodes referred 

to as wavelons. The wavelons can transform the input variables into dilated and translated form of the mother wavelet. The

output layer approximates the target value using the information from the hidden layer. 

Since the wavelet activation function integrated into the hidden layer is incorporated with multi-scaled analysis and 

scale translation, WNN usually has high precision and resolution. The unique structure of WNN also leads to its excellent 

capability in analyzing the local information of signals and performing the function approximation, especially for the sin- 

gle variable function approximation. It is generally of small scale, enabling computationally efficient model training. More 

importantly, compared to the traditional activation function, the built-in wavelet activation function in WNN allows the im- 

plementation of wavelet transform, to establish an interpretable neural network, as will be shown subsequently. Owing to 

these features, the concept of WNN has been employed in diverse applications [ 32 , 38–41 ]. Nevertheless, in the past due to

structural limitations, WNN has not been formulated to fulfill the complex learning tasks by handling a large number of 

features simultaneously. This shortcoming can be tackled by reconfiguring the network architecture, i.e., appending the con- 

volutional layers at the beginning of the network to establish the so-called convolutional wavelet neural network (CWNN) 

[42] , or using the wavelet function as the kernel to convolve the input signals in a WaveletKernelNet [33] . 

Training the WNN model resorts to backpropagation optimization [43] . The basic idea of backpropagation optimization 

is to find the percentage of contribution of each weight to the error. The error generally is formulated as a cost function to

be minimized via model training. For a regression problem, the cost function is typically defined as the mean squared error

(MSE) [44] , 

L = 

1 

n 

n ∑ 

i =1 

(y i − ˆ y i ) 
2 

(10) 

The contribution of unknown weight to the cost function can be evaluated through the partial derivative below, 

∂L 

∂θ
= −2 

n 

n ∑ 

i =1 

(y i − ˆ y i ) 
∂y i 
∂θ

(11) 

where θ represents any type of unknown weight. It is noted that the computation of the above partial derivative requires

implementing the succeeding gradient descent algorithm for WNN weight optimization [45] . As shown in Fig. 1 , different

types of weights are involved in a WNN, including the traditional weights w 
(I) 
i, j 

and w 
(O ) 
j 

in the input and output layers, and

wavelet weights a 
j 
and b 

j 
(i.e., translation and dilation parameters) in the hidden layer. Let θ be denoted as a possible set

of [ w 
(I) 
i, j 

, a j , b j , w 
(O ) 
j 

] , ∂ y i / ∂ θcan be derived in different forms, 

∂y i 

∂w 

(I) 
i, j 

= �( 
h j − a j 

b j 
) x i (12a) 

∂y i 
∂a 

j 

= −�( 
h j − a j 

b j 
) 
1 

b j 
(12b) 
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Fig. 2. Bearing fault prognosis implementation workflow. 

 

 

 

 

 

 

∂y i 
∂b 

j 

= −�( 
h j − a j 

b j 
)( 

h j − a j 

b 2 
j 

) (12c) 

∂y i 

∂w 

(O ) 
j 

= �( 
h j − a j 

b j 
) (12d) 

where �(, )is the generic form of the mother wavelet. Based on the above partial derivatives, the gradient descent algorithm

is adopted to adjust the weights of WNN in each training increment. The new weights that are updated by the gradient

descent algorithm are described as [45] , 

w 

(I) 
i,J 

(t + 1) = w 

(I) 
i,J 

(t) − γ (I) ∂L 

∂w 

(I) 
i,J 

(13a) 

a j (t + 1) = a j (t) − γ (H) ∂L 

∂a j 
(13b) 

b j (t + 1) = b j (t) − γ (H) ∂L 

∂b j 
(13c) 

w 

(O ) 
j 

(t + 1) = w 

(O ) 
j 

(t) − γ (O ) ∂L 

∂w 

(O ) 
j 

(13d) 

where t indicates the t -th training increment, and γ is the learning rate. Different learning rates can be assigned for the

gradient descent algorithm to optimize the weights at different layers. The termination of model training can be determined 

by the specified threshold of variation of gradient or weights. However, for the implementation convenience, we use the 

number of epochs to manage the training duration in this research. 

2.3. Integrated bearing fault prognosis framework 

In the proposed new framework, we first segment the original time-domain data and compute respectively the statistical 

metrics of each segment when then form new time-series data. As can be seen, the underlying principle of empirical mode

decomposition (EMD) is to perform the envelope interpolation using a cubic spline and then obtain the fundamental com- 

ponents. We plan to apply WNN to analyze these fundamental components. While many mother wavelets may be used, in 

this research we adopt the B-spline wavelet in the construction of WNN to specifically fit the nature of EMD-based signal

preprocessing and unleash the potential of the network learning capability. The EMD-based signal preprocessing and the 

WNN can be seamlessly synthesized as an integrated framework for bearing fault prognosis. Specifically, the EMD-based 

time-series analysis is performed to extract the key bearing degradation features, i.e., intrinsic mode functions (IMFs) and 

residual of the statistical metrics data calculated from the raw vibration signals. The WNN model is subsequently trained by 

the relations between the degradation features (i.e., the input of WNN) and respective RUL information (i.e., the output of 

WNN). Once the WNN model is established, it can be used for bearing RUL prediction given any measured vibration. The

implementation workflow of the proposed bearing fault prognosis is schematically illustrated in Fig. 2 . 
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Fig. 3. Test rig for NASA Ames data [46] . 

Fig. 4. Illustration of data acquisition ( n denotes the number of data recordings). 

Table 1 

Overview of datasets. 

Time 

Duration 

Failure Occurrence and 

Type 

Instrumentation 

Dataset 1 21,340 

(min.) 

Bearing 3 with inner race 

defect; Bearing 4 with 

roller element defect 

Accelerometers placed at all bearings 

to measure both horizontal and 

vertical vibrations 

Dataset 2 9840 (min.) Bearing 1 with outer face 

defect 

Accelerometers placed at all bearings 

to measure only horizontal vibration 

Dataset 3 63,230 

(min.) 

Bearing 3 with outer face 

defect 

Accelerometers placed at all bearings 

to measure only horizontal vibration 

Note: datasets with gray highlights are used in this research. 

 

 

 

 

 

 

3. Case illustration for bearing remaining useful life (RUL) prediction 

In this section, we conduct implementation and demonstration using publicly accessible bearing fault datasets, illustrat- 

ing the effectiveness of the methodology. Specifically, we use the run-to-failure experimental data from the NASA Ames 

Prognostics and the XJTU-SY data repositories for case illustrations [ 46 , 47 ]. 

3.1. NASA Ames prognostic data 

We first use the NASA Ames data to investigate the vibration characteristics along the bearing degradation history. The 

experimental test rig is shown in Fig. 3 . In this test rig, four test bearings are installed on the shaft with a constant rotational

speed of 20 0 0 rpm. These four testing bearings all belong to the type of Rexnord ZA-2115 double row bearings. A radial load

of 60 0 0 lbf is directly applied to bearings 2 and 3 through a spring mechanism. Accelerometers are placed at all bearings

to record the vibration data with 20 kHz sampling rate/frequency. Because of the slow varying nature of bearing vibration 

response under fault condition, in data acquisition, for every 10 min, signals were collected for 1 s duration until the bearing

fault occurred. In other words, here 10 min are the interval between two adjacent data recordings as shown in Fig. 4 .

Three different run-to-failure experiments are performed, in which different types of failures on bearings are captured. The 

corresponding three datasets collected are shown in Table 1 . In this research, datasets 2 and 3 are used to implement the

subsequent bearing fault prognosis analysis. 
226 



K. Zhou and J. Tang Applied Mathematical Modelling 122 (2023) 220–241 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Problem set-up, feature extraction, and model development 

The objective of this research is to establish a methodology to perform the robust and reliable prediction of the remaining

useful life (RUL) of in-service bearings given the measured vibration time-series data. As such, the vibration time-series data 

are the input, and the bearing RUL is the output. For the datasets shown in Table 1 , the RUL can be simply determined

according to the running time, which is expressed as 

RUL = T total − t current (14) 

where T total is the total time duration of the experiment required to initiate the bearing failure, and t current is the current time

instant. In the case studies, we treat the vibration data measured in the recording duration (i.e., 1 s) of every 10 min. as

one data subset (i.e., segment mentioned in Section 2 ) Fig. 4 ). Our hypothesis is that this can capture the periodic vibration

characteristics of rotating machinery and thus can elucidate the underlying degradation behavior due to the fault. According 

to the data acquisition setup ( Fig. 4 ), the total numbers of data subsets are identical to the number of sampling durations,

which are 2134, 984, and 4 4 48 for datasets 1, 2, and 3, respectively. The time-domain statistical metrics of all data subsets

will be extracted accordingly. While there are many statistical metrics available to elucidate the temporal characteristics 

of raw vibration data, as shown in Section 2 , in this research, we select the metrics with trial-and-error nature, resulting

in four representative metrics, including root mean square (RMS), peak-to-peak (P2P) value, kurtosis (KURT), and skewness 

(SKW) ( Eqs. (5 )–( (8) ). These metrics have been proven effective in machinery fault diagnosis and RUL prediction [48–52] .

To perform the rigorous metric selection, some well-established methods in the feature engineering domain need to be 

adopted, in which the available metrics are treated as possible features [53] . 

Since only a small number of time-domain metrics are involved, it is unnecessary to carry out the metric selection 

procedure. In other words, the information of all metrics will contribute to the succeeding WNN model learning. Because 

the bearing fault signals inherently are nonstationary and nonlinear, the empirical mode decomposition (EMD) technique 

is then applied to those time-domain statistical metrics data to retrieve the more explicit features which can elucidate 

the bearing degradation tendency. These newly generated features generally include the intrinsic mode functions (IMFs) 

with different orders and residuals of the statistical metrics data that cannot be further decomposed. In this research, the 

residuals of statistical metrics data are particularly utilized to feed the proposed wavelet neural network (WNN) because 

they match the slowly progressive nature of bearing degradation. 

With the input and output as residuals of the statistical metrics data and RUL of bearing, respectively, a WNN model

can be established to fulfill the regression type of analysis. More specifically, a WNN model consists of a 4-node input layer

carrying the residuals, and a 1-node output layer carrying the RUL information. The other hyperparameters subject to tuning 

include the number of nodes in the hidden layer, and the type of mother wavelet and associated wavelet parameters. The

hyperparameter tuning generally is performed based upon empirical experience. In this research, we finalize the hidden 

layer with 30 neurons/nodes and select the B-spline wavelet as the mother wavelet [54] . It is worth noting that the B-spline

mother wavelet embedded in WNN can well suit the EMD that inherently adopts the cubic spline for envelope interpolation. 

As will be shown later, the B-spline mother wavelet in WNN also can yield excellent prediction performance. The B-spline 

wavelet, i.e., �(.)in Fig. 1 can be represented as 

�(h, a j , b j ) = 

√ 

f b ( sin c ( f b 
h − a j 

mb j 
) 
m 

e 
(2 π f c 

h −a j 
b j 

i ) 
) (15) 

where m, f b and f c denote the order parameter, bandwidth parameter, and wavelet center frequency parameter, respectively. 

They are the hyperparameters that are determined as m = 1, f b = 0.5, f c = 1in this research. h is the input of the hidden

layer, and a j and b j represent the translation and dilation parameters, which can be treated as unknown weights in the neural

network to be optimized via model training. A B-spline wavelet essentially is a continuous complex-valued wavelet, the 

profile of which is illustrated in Fig. 5 . Combining all the above information, the configuration of WNN architecture can

be finalized. The total number of unknown weights in this WNN model is 210 (i.e., 4 × 30 (w 
(I) 
i, j 

) + 30 (a j ) + 30 (b j ) +
30 (w 

(O ) 
j 

) ), indicating a small-scale WNN model with low training cost. 

3.3. Predictive performance investigation and discussion 

Following the set-up formulated in the previous section, the bearing fault prognosis is carried out using NASA Ames 

prognostics data. We first conduct the case study on dataset 2 shown in Table 1 . 

3.3.1. Case 1 – RUL prediction on dataset 2 ( Table 1 ) 

The raw vibration time-series data acquired from different bearings are shown in Fig. 6 . Since bearing 1 eventually has

outer race failure, its vibration amplitudes at the end-of-life cycle become noticeably large. On the other hand, a very in-

significant increase in amplitudes over time can be observed for other bearings. To highlight the temporal characteristics of 

raw data that is expected to reflect the degradation nature of bearing, we first conduct the time-domain signal processing to

compute the statistical metrics of all data subsets and yield the results shown in Fig. 7 . Compared to the raw vibration sig-

nals in Fig. 6 , those statistical metrics are more capable of accounting for the effect of bearing fault occurrence. Particularly,
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Fig. 5. Illustration of B-spine wavelet. 

Fig. 6. Vibration data (a) measured on bearing 1; (b) measured on bearing 2; (c) measured on bearing 3; (d) measured on bearing 4. 
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Fig. 7. Time-domain statistical metrics (a) root mean square; (b) peak-to-peak value; (c) kurtosis; (d) skewness. 

 

 

 

 

 

 

 

 

 

 

 

the statistical metrics on bearings 2, 3, and 4 at the end-of-life cycle have notable variations due to the fault occurred on

bearing 1. The statistical metrics on bearing 1 are most informative to the bearing fault occurrence. Moreover, the skewness 

has the opposite trend with respect to other statistical metrics for all datasets. 

While the statistical metrics data indicate the bearing degradation behavior to a certain extent, they appear to be in- 

discriminative at the early and middle stages of the life cycle. The fundamental reason is that the statistical metrics data

essentially are superimposed with many high-frequency contents, i.e., fast oscillating components that exhibit strong non- 

linearity with respect to fault. To extract the key degradation features that can elucidate the slowly progressing nature of 

bearing degradation, empirical mode decomposition (EMD) is further performed to decompose the statistical metrics data 

into the components with different resolutions. The first three intrinsic mode functions (IMFs) and residuals extracted from 

the statistical metrics data are given in Fig. 8 . It can be clearly seen that the higher-order the intrinsic mode function (IMF),

the slower the dominant oscillation. The residuals are relatively proportional/linear with respect to the running time. Among 

them, the residuals of the bearing 1 dataset exhibit a more evident trend versus running time than that of other bearings

because of the fault occurrence on bearing 1. Consistent with the observation above ( Fig. 7 ), the residuals of the skewness

show an adverse tendency. As reported in the study associated with the battery failure prediction, it was found that the

residuals of EMD were strongly correlated with the ground truth battery RUL data [55] . Therefore, in this research we also

use residuals of statistical metrics data as inputs to train the subsequent WNN model for bearing RUL prediction. 

Recall that the signals within every recording duration, i.e., 1 s ( Fig. 4 ) are treated as one data subset, upon which

the respective statistical metrics and residual are retrieved. Let a sample be defined as the mapping/relation between the 

residuals of one data subset and associated RUL. We thus have a total of 984 samples for each dataset measured from

each bearing. Here we use 984 samples of bearing 1 dataset for analysis. 30% and 70% of all samples are used as training

and testing samples, respectively. A mean squared error (MSE) is employed as a metric to direct the model training and
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Fig. 8. Intrinsic mode functions (IMFs) and residuals retrieved from different statistical metrics (a) root mean square; (b) peak-to-peak value; (c) kurtosis; 

(d) skewness. 
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Fig. 9. Training history (a) full epochs; (b) last 50 epochs. 

Fig. 10. RUL prediction accuracy (a) training samples; (b) testing samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

evaluation. It is worth noting that the MSE essentially is normalized since the outputs, i.e., RUL values of samples, are

mapped to unit space [0, 1] before we feed them into the model training. Regarding the emulation parameters, 200 epochs

are adopted. The learning rate for input and output layer weights optimization is set as 0.01 ( γ ( I ) and γ ( o ) in Eq. (13a , d),

and the learning rate for hidden layer weight optimization is set as 0.001 ( γ ( H ) in Eq. (13b , c)). The model training is very

efficient, and only costs several seconds due to the small scale of the network model. The entire training history is shown in

Fig. 9a . It is observed that the training performance improves drastically at the first several epochs. While the improvement

of training performance becomes slower as the training proceeds, it does exist, as can be seen in the zoom-in view of

training history at the last 50 epochs ( Fig. 9b ). Once the WNN model is well-trained, we can use it to directly predict the

RUL of bearing for both the training and testing samples and obtain the training and testing accuracy shown in Fig. 10 . The

nominal relation between the running time and RUL is assumed to be linear with a monotonical decrease according to the

definition of RUL given in Eq. (14) . Clearly, both the training and testing accuracies are desired because the predicted RUL

values match the actual RUL values extremely closely. This also indicates the adequate model training without overfitting 

and underfitting. The results validate the effectiveness of the proposed methodology which leverages upon the combination 

of signal preprocessing and WNN. 

In contrast to the “black box” nature of traditional neural network, the physical knowledge incorporated makes the WNN 

model physically interpretable. After the WNN model is adequately trained, the optimized wavelet functions in the hidden 

layer of the WNN model can locate the salient features of vibration signals. To verify this, we select one of the optimized

wavelet functions in the trained WNN model, the profiles of which are displayed in Fig. 11a . Additionally, we choose a data
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Fig. 11. Physical interpretation of the trained WNN model (a) optimized B-spline wavelet; (b) frequency spectrums comparison. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

subset with signals collected at 9500 min. running time. We then obtain the frequency spectrums of the above optimized 

wavelet function and selected data subset by performing the fast Fourier transform (FFT), as shown in Fig. 11b . While the

bearing characteristic frequencies are separated, and their bands cannot be all captured, the frequency spectrum (i.e., spec- 

tral envelope) of the wavelet function can locate one resonance frequency band of signals, which is centered around 10 0 0 Hz

with a larger amplitude and a narrower bandwidth. Such agreement indicates the WNN learning in a physical context. It is

noted that the spectral envelope of the wavelet function has the “square” shape because the first-order B-spline wavelet is 

adopted (i.e., m is set as 1 in Eq. (15) ). 

Considering the randomness in the data split and stochastic optimization for model training, 50 emulation runs based 

upon the random data splits are carried out to assess the robustness of the proposed methodology. The results are given in

Fig. 12a . It is noted that the result comparison in Fig. 12 a is conducted over the entire sample space, and thus the testing

and training samples are not necessarily separated. The gray region represents the envelope of the prediction embraced 

by the upper and lower bounds. A very narrow envelope along the actual RUL line indicates the excellent robustness of

the proposed methodology. The noticeable variation of predictions mainly occurs in the middle range of the bearing life 

cycle. We also examine the prediction envelops using other bearing datasets following the same analysis procedures and 

obtain the respective results shown in Fig. 12b –d, which also illustrate the excellent performance robustness. While the raw

vibration data collected on other bearings cannot directly point to the fault occurrence ( Fig. 6 ), good predictive capability

also can be ensured by harnessing the proposed signal preprocessing and WNN collectively. 

To further verify the efficacy of the proposed framework for RUL prediction, we conduct the performance investigation 

and comparison with respect to other benchmark methods. In this study, we first introduce two general machine learning 

models, i.e., support vector machine (SVM) and random forest (RF), which utilize the same input of the WNN. Comparing 

these two methods with the WNN aims to highlight the advantage of the WNN in predictive accuracy. We then develop a

deep long short-term memory (DLSTM) network to directly handle the raw vibration signals for RUL prediction to validate 

the entire proposed framework. For rigorous comparison, hyperparameter tuning is carried out to optimize the performance 

of the benchmark methods. Specifically, the kernel functions, e.g., linear, polynomial, and RBF kernels of SVM, and the num- 

ber of bagged decision trees in RF are subject to tuning. Moreover, the architecture of DLSTM network is carefully configured

with the layer details shown in Table 2 . Recall that a total of 984 samples are segmented in this dataset, each of which

records 1 s duration of vibration. According to the specified sampling frequency, each sample contains 20,480 data points. 

The underlying strength of DLSTM is to characterize the data input-output correlation while accounting for the temporal 

dependence of data points within each single sample. To take such temporal nature into account during the implementation 

of DLSTM network, we transform each data sample with size 1 × 20,480 to 20 time sequences, each of which is of size

1 × 1024 (20,480 = 20 × 1024). Therefore, the input layer of DLSTM carries the sequence with the size, i.e., 1 × 1024.

The epoch size and batch size of DLSTM network are set as 100 and 10 respectively. “Adam” optimizer is used for model

training. All the hyperparameters of DLSTM are determined by the combination of empirical experience, and training and 

validation history monitoring. 

The same training and testing split ratio is adopted for all methods. As RUL prediction essentially belongs to the re-

gression analysis, mean squared error (MSE) is originally used as a metric to assess the accuracy. It is noticed that the MSE

magnitude order is significant due to the large RUL value, leading to the dramatic discrepancy in MSE among different meth-

ods. To facilitate the result comparison, we take the logarithm of MSE, i.e., log 
MSE 
10 as a new accuracy metric. With the above

data split ratio, 50 emulation runs are carried out to obtain the statistical distribution of this new accuracy metric, as shown

in Fig. 13 . As can be seen, the DLSTM network consistently shows more significant errors than the rest of the methods for
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Fig. 12. RUL prediction envelopes (lower and upper bounds) (a) data collected from bearing 1; (b) data collected from bearing 2; (c) data collected from 

bearing 3; (d) data collected from bearing 4. 

 

 

 

 

 

 

 

all the data collected from the different bearings. This clearly indicates the positive contribution of proposed signal prepro- 

cessing on the predictive accuracy improvement. With the same signal preprocessing employed, WNN outperforms RF and 

SVM in terms of accuracy, even though it has relatively larger variability of accuracy over different emulation runs. Because 

of the substantial reduction in data dimension, the WNN, RF, and SVM feature significantly less computational complexity 

than DLSM. Such observation illustrates that WNN appears to be the most tailored method. Furthermore, the data collected 

from bearing 1 especially favors the predictive performance of WNN and RF because of the respective reduced errors. This 

may be due to the fact that actual failure occurs at bearing 1. Overall, this set of results adequately verifies the effectiveness

of the proposed framework for bearing RUL prediction. 

3.3.2. Case 2 – RUL prediction on dataset 3 ( Table 1 ) 

In this section, we conduct another case study based on the NASA Ames prognostics data repository, specifically utilizing 

the dataset with a much longer duration with a fault occurrence on bearing 3, i.e., dataset 3 in Table 1 . Upon the raw

vibration signals, we conduct the time-domain statistical metric extraction followed by the empirical mode decomposition 

(EMD) to identify the fundamental components shown in Fig. 14 . 

Compared with Fig. 8 , most of the intrinsic function modes (IMFs) extracted remain quite constant with a small oscilla-

tion amplitude before the fault occurrence. Additionally, it can be found that the residuals from the bearing 3 dataset exhibit

a more prominent trend with respect to time than that from other bearing datasets. In this dataset, more samples are gen-

erated using the same data acquisition setup ( Fig. 4 ) and signal preprocessing procedure because of the longer duration. The

total number of samples is 6323. With the same training-testing data split ratio and other relevant operating parameters, 

we can identify the prediction envelopes from the collected results of 50 emulation runs, as shown in Fig. 15 . Compared
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Table 2 

Configuration of DLSTM network architecture. 

Layer ID Layer Type Property 

1 Sequence Input 

2 Convolutional 20 filters with size 

1 × 5; stride 1 × 1 same padding 

3 BatchNormalization 

4 ReLU 

5 MaxPooling 1 × 3 Max pooling; stride 1 × 3; no padding 

6 Convolutional 20 filters with size 

1 × 5; stride 1 × 1 same padding 

7 BatchNormalization 

8 ReLU 

9 MaxPooling 1 × 3 Max pooling; stride 1 × 3; no padding 

10 Convolutional 20 filters with size 

1 × 5; stride 1 × 1 same padding 

11 BatchNormalization 

12 ReLU 

13 MaxPooling 1 × 3 Max pooling; stride 1 × 3; no padding 

14 Flatten 

15 LSTM 200 hidden units 

16 Fully connected 2000 nodes 

17 Fully connected 2000 nodes 

18 Output/regression 1 node 

Note: the total number of learnable parameters is around 5.1 million. 

 

 

 

 

 

 

 

 

 

with the result in Case 1, the predictive accuracy and performance robustness in this case are considerably enhanced due to

the reduction of envelope width. Regardless of the bearing dataset, excellent performance robustness can be ensured. Such 

enhancement may be attributed to the more samples involved in training, which can adequately learn the inherent cor- 

relation between the residuals of statistical metrics data and bearing RUL. The additional case investigation provided once 

again verifies the effectiveness of the proposed methodology. It is worth noting that in this case, we do not carry out the

investigation of method performance because this dataset, i.e., Dataset 3, and the above dataset, i.e., Dataset 2 in Table 1 ,

are acquired under the same experimental setup. A similar trend of method performance comparison shown in Fig. 13 is

expected to be observed. Besides, this dataset contains an increasing number of data samples, which leads to the extremely 

computational cost in DLSTM network training with many emulation runs involved. 

3.4. Further validation using the XJTU-SY bearing datasets 

In practice, bearing data are acquired upon different experimental setups, bearing types, fault types etc. To systematically 

assess the proposed methodology, we also implement the bearing fault prognosis on the datasets from another public data 

repository, i.e., XJTU-SY bearing datasets. As shown in Fig. 16 , the bearing testbed established to collect the XJTU-SY bearing

datasets mainly consists of an alternating current (AC) induction motor with a motor speed controller, a support shaft, 

two support bearings, a testing bearing, and a hydraulic loading system. This testbed is designed to conduct accelerated 

degradation tests of rolling bearings under different operations [47] . Specifically, three operation conditions are classified 

according to the radial load applied and rotational shaft speed. Five run-to-failure experiments on different single bearings 

are conducted at each operation condition. The sampling frequency of data acquisition is 25.6 kHz, and the interval between 

two adjacent recordings is 1 min. The corresponding data are collected as given in Table 3 . In the XJTU-SY bearing datasets,

both the horizontal and vertical vibrations are measured by properly placing the dual accelerometers. Among the total fifteen 

datasets, we specifically select three datasets with different bearing fault types, which we perceive are sufficient to validate 

the methodology. Those datasets utilized are highlighted in the gray background ( Table 3 ). 

After implementing the procedures mentioned above, we obtain the results shown in Fig. 17 . It is found that the di-

rection of vibration measurements plays a negligible role in dictating prediction accuracy. Additionally, the bearing fault 

type appears to be uninfluential with respect to the prediction accuracy. On the other hand, the number of samples de-

pendent on the time duration impacts the accuracy and performance robustness. When more samples are generated due 

to the longer duration, more training samples will contribute to the model training given the same training-testing data 

split, thereby improving the predictive robustness under the inevitable randomness. This statement is clearly illustrated in 

the results that the performance using dataset #11 tops that using other datasets. Overall, the prediction envelope is very 

narrow, consistently indicating the good performance robustness of the proposed methodology. As a new testing case built 

upon the new bearing testbed, it is essential to conduct the performance investigation of different methods following the 

similar procedures adopted in Case 1. The results are given in Fig. 18 , which clearly demonstrate the underlying advantage

of the proposed methodology once again. 

Noteworthy, enhancing the generalization capability of the bearing RUL prediction method is equally important to pursue 

the success of the practical applications, which we deem a future endeavor. Moreover, in the proposed method, EMD IMFs 
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Fig. 13. Comparison of prediction accuracy over 50 emulation runs among different methods (a) data collected from bearing 1; (b) data collected from 

bearing 2; (c) data collected from bearing 3; (d) data collected from bearing 4. 

Table 3 

Overview of datasets. 

Operation Condition Dataset Index Fault type Time Duration 

Condition 1 

(2100 rpm/12 kN) 

#1 Outer race 123 min. 

#2 Outer race 161 min. 

#3 Outer race 158 min. 

#4 Cage 122 min. 

#5 Inner race and outer face 52 min. 

Condition 2 

(2250 rpm/11 kN) 

#6 Inner race 491 min. 

#7 Outer race 161 min. 

#8 Cage 533 min. 

#9 Outer race 42 min. 

#10 Outer race 339 min. 

#11 Outer race 2538 min. 

Condition 3 

(2400 rpm/10 kN) 

#12 Inner race, outer race, ball 

and cage 

2496 min. 

#13 Inner race 371 min. 

#14 Inner race 1515 min. 

#15 Outer race 114 min. 

Note: datasets with gray highlights are used in this research. 
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Fig. 14. Intrinsic mode functions (IMFs) and residuals retrieved from different statistical metrics (a) root mean square; (b) peak-to-peak value; (c) kurtosis; 

(d) skewness. 

 

should be retrieved upon the entire time-series vibration signals, which may not be available in the online/real-time bearing 

RUL prediction task. To tackle this issue, we can periodically collect more data to carry out analysis and update the RUL

prediction as we proceed. Another possible way of extending data for reliable RUL prediction is the adaptive Kalman filter, 

which is worthy of further investigation. Given all results shown above, the proof of concept using the proposed method- 

ology that exploits the collective strength of suitable signal preprocessing and WNN has been conveyed, demonstrating the 

contribution of this research. 
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Fig. 15. RUL prediction envelopes (lower and upper bounds) (a) data collected from bearing 1; (b) data collected from bearing 2; (c) data collected from 

bearing 3; (d) data collected from bearing 4. 

Fig. 16. Test rig for XJTU-SY bearing datasets [47] . 
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Fig. 17. RUL prediction envelops (lower and upper bounds) (a) #8 dataset (horizontal vibration); (b) #8 dataset (vertical vibration); (c) #11 dataset (hori- 

zontal vibration); (d) #11 dataset (vertical vibration); (e) #14 dataset (horizontal vibration); (f) #14 dataset (vertical vibration). 
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Fig. 18. Comparison of prediction accuracy over 50 emulation runs among different methods (a) #8 dataset (horizontal vibration); (b) #8 dataset (ver- 

tical vibration); (c) #11 dataset (horizontal vibration); (d) #11 dataset (vertical vibration); (e) #14 dataset (horizontal vibration); (f) #14 dataset (vertical 

vibration). 
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4. Conclusion 

In this research, a new bearing fault prognosis framework is synthesized, which mainly consists of the sequential time- 

domain signal preprocessing for bearing degradation feature extraction followed by the physics-based wavelet neural net- 

work (WNN) for bearing remaining useful life (RUL) prediction. Representative statistical metrics in the time domain are first 

extracted, followed by the empirical mode decomposition (EMD) to continuously highlight the essential degradation features 

of a bearing. Such signal preprocessing serves as a performance multiplier of WNN for subsequent bearing fault prognosis. 

With the degradation features as the input, the data correlation with respect to fault occurrence is adequately and effec- 

tively learned by the proposed WNN. The low-dimensional degradation features greatly facilitate the WNN model training 

with high computational efficiency. Compared to traditional neural networks, the wavelet function embedded in WNN al- 

lows the physical interpretation of the influence of degradation features on the bearing RUL. The B-spline mother wavelet 

particularly adopted in this research, is well suited to the EMD technique that is built upon the envelope interpolation using

cubic spline. Different publicly accessible bearing datasets, i.e., NASA Ames Prognostics and XJTU-SY bearing datasets, are 

utilized to conduct the comprehensive case illustrations, and the efficacy of the proposed framework is holistically validated 

by comparing it with other benchmark methods. 
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