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Abstract 
Bacteria sense and respond to their environment, allowing them to maximize their survival and 
growth under changing conditions, such as oxygen levels. Direct oxygen sensing proteins allow 
bacteria to rapidly sense concentration changes and adapt by regulating signaling pathways 
and/or cellular machinery. Recent work has identified roles for direct oxygen sensing proteins in 
controlling second messenger levels and motility machinery, as well as effects on biofilm 
formation, virulence, and motility. In this review, we discuss recent progress in understanding 
O2-dependent regulation of cyclic di-GMP signaling and motility and highlight the emerging 
importance in controlling bacterial physiology and behavior.  
 
I. Introduction 
Bacteria have complex systems to sense and respond to environmental oxygen (O2) 

concentrations. The balance between bacterial proliferation and stress adaptation through the 
formation of multicellular aggregates known as biofilms requires the adaptation of metabolism, 
growth, and the expression of stress responses in localized environments [1]. The oxygen 
gradient formed within a biofilm matrix effects physiological differentiation. Modulations to O2 
concentration impact virulence related phenotypes such as motility and biofilm formation. For 
example, in the opportunistic pathogen Pseudomonas aeruginosa, O2 concentrations impact 
downstream gene expression in systems ranging from antibiotic resistance to colony morphology 
[2–5]. 
To balance hypoxia, normoxia, and hyperoxia, prokaryotes have developed complex 

pathways to signal oxygen saturation. Bacteria generally reply on protein cofactors such as 
hemes, which directly bind O2, or [FeS] clusters and flavins, which alter the oxidative state of the 
cofactor, to regulate O2 dependent gene expression. While redox sensors are impacted by O2 
concentration, organisms that can use alternative electron acceptors can mediate their redox 
potential under hypoxia [5].  
  In addition to the systems controlling metabolism, O2 sensing is also used to directly 

modulate bacterial signaling pathways and phenotypes, such as biofilm formation and motility 
[6,7], and direct O2 sensing protein activity is tuned specifically to O2 saturation. These proteins 
are often linked to transcription regulators or signaling cascades, which alter bacterial 
phenotypes. For example, the direct oxygen-sensing membrane receptor FixL, isolated from 
Rhizobia, regulates the expression of nitrogen fixation genes through an oxygen binding heme 
domain [8]. Understanding the mechanism of O2 sensing has been an area of significant research; 
however, many questions remain on the mechanisms of O2 dependent signal transduction in 
bacteria [8–10]. 
Numerous heme-containing metalloenzymes have been studied as diatomic gas sensors [11]. 

These enzymes can be categorized by their domain architecture into globin-coupled sensors 



(GCS), heme-binding PAS domain proteins, heme-binding GAF domain proteins, CooA proteins, 
and heme–NO/O2 (H-NOX) proteins [12–14].  Some characterized heme proteins, like FixL [10], 
AfGcKH from the bacterium Anaeromyxobacter sp. Fw 109-5 [15–17], and DosT/DevS from 
Mycobacterium tuberculosis [18–20], are part of two component signal transduction systems. 
These multidomain sensory proteins consists of a sensing domain and a histidine kinase, which 
auto-phosphorylates upon ligand binding and phosphorylates the response regulatory protein, 
which regulates downstream gene expression. The mechanisms of O2-dependent kinase 
regulation and functional roles of many of these two component systems, including AfGcHK and 
FixL, have been investigated and recently have been reviewed in detail [10,14,17]. 
In this brief review, we highlight recent advances in our understanding of microbial O2-

dependent signaling outside of classic two component signal transduction systems and their 
physiological implications in secondary messenger formation and motility. We have focused on 
two distinct systems, heme-PAS domain containing methyl accepting chemotaxis proteins and 
sensor globin-containing proteins that regulate the bacterial second messenger cyclic dimeric 
guanosine monophosphate (c-di-GMP), to highlight the diversity of direct O2 sensing mechanism 
in bacteria. Emerging work in non-heme iron [21,22] and sRNA based [23] O2 sensors 
underscore the need for further investigation into the breadth of direct O2 sensing proteins and 
their physiological effects.  
 
I. O2-Dependent Nucleotide Second Messenger Signaling 
Bacterial nucleotide secondary messengers are used across the domains of life to link sensory 

inputs to regulatory responses [24–27]. In prokaryotes, the metabolic enzymes, effectors, and 
targets involved in the function of secondary messengers, such as bis-(3,5)-cyclic diguanosine 
monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), have been identified 
in numerous species.  The diversity of regulatory 
responses in bacteria, including growth, metabolic 
homeostasis, stress responses, cellular 
differentiation, and phage resistance, suggests the 
broad importance of understanding the molecular 
drivers of nucleotide secondary messenger 
activity [28,29].  
Globin couped sensor (GCS) proteins are a 

class of heme containing O2 sensors found in 
bacteria, archaea, and lower eukaryotes. The GCS 
proteins characterized to date are multidomain 
proteins, with an N-terminal sensing globin 
domain linked to a C-terminal catalytic domain.  
Output domains that have been characterized 
include methyl-accepting chemotaxis proteins 
(MCP), kinases, diguanylate cyclases (DGCs), 
phosphodiesterases (PDEs), and adenylate 
cyclases [24]. GCS proteins from several species, 
including the E. coli (EcDosC) [28,29], Bordetella 
pertussis (BpeGReg) [30,31], Shewanella 
putrefaciens (DosD) [32], and Pectobacterium 
carotovorum subspecies carotovorum (PccGCS of 

Figure 1. GCS proteins. A) Crystal structure of 
BpeGReg globin domain with distal tyrosine and 
serine and proximal hisitidine shown. [36] B) 
Domain architectures of representative GCS proteins.  



PcDgcO) [30], contain DGC output domains and have been demonstrated to exhibit O2-
dependent c-di-GMP production in vitro. Studies on EcDosC, BpeGReg, and PccGCS have 
demonstrated that the proteins exhibit a range of O2 affinities, suggesting that each GCS is tuned 
to increase c-di-GMP production at a different environmental O2 saturation based on the 
requirements of the bacterial species.  
In addition to O2-sensing GCSs, DcpG, a bifunctional DGC/PDE GCS from Paenibacillus 

dendritiformis was recently characterized as dual O2/nitric oxide (NO) sensor [33,34] and has 
expanded our understanding of bacterial gas sensing. Ligation of O2 to DcpG heme iron 
decreases diguanylate cyclase activity, as compared to Fe(II) unligated state, which NO binding 
increases diguanylate cyclase activity. In contrast, O2 binding increases phosphodiesterase 
activity, relative to Fe(II), while NO binding causes little effect. The in vitro data suggest that 
under high O2 saturation, DcpG will function primarily as a phosphodiesterase, while NO 
binding under anaerobic conditions will result in c-di-GMP production. Quantification of P. 
dendritiformis biofilm formation under aerobic, anaerobic, and anaerobic + NO conditions 
yielded results consistent with the in vitro studies [33] and suggest a role for DcpG in responding 
to both O2 levels and NO produced within the environment, as well as highlight the potential for 
bifunctional c-di-GMP metabolic enzymes to respond to multiple signals.  
Structures of sensor globins and mutagenesis studies have highlighted key features involved 

in O2 binding, affinity, and signaling transduction to regulate DGC activity (Figure 1) [15,35–
37]. Within the heme pocket, typically a distal tyrosine and serine/threonine hydrogen bond with 
the bound O2 and stabilize the Fe(II)-O2 form. EcDosC, which has an alanine in the homologous 
position of the distal serine/threonine residue, and Ser to Ala variants of BpeGReg and PccGCS 
exhibit markedly weaker O2 affinity, underscoring the role of the hydrophilic residues in 
stabilizing ligand binding [29,38]. Within EcDosC, a distal pocket leucine is involved in 
stabilizing the bound O2 and, within DcpG, a p-stacking heme edge residue, typically 
tryptophan, histidine, or tyrosine, modulates O2 binding without concomitant heme autooxidation 
[34]. A structure of BpeGReg globin domain in the Fe(II)-O2 (“on”) and Fe(III) (“off”) states 
identified changes in heme distortion, which can be propagated through the heme edge residue 
and lead to conformational changes in the protein and changes in c-di-GMP metabolic domain 
activity [35].  
While experiments to determine the cellular effects of O2-dependent GCS signaling have 

been limited, the results hint at important, and often overlooked roles, in second messenger 
signaling. In each of the species mentioned above, the DGCS strain exhibited decreased biofilm 
formation, relative to wild type (WT) strain [31,32,30,40]. More in depth studies in P. 
carotovorum have demonstrated that PccGCS regulates O2-dependent motility and virulence 
within a potato host [39]. Regulation of cellular functions by PccGCS has been demonstrated to 
occur through both global changes in transcript levels and local interactions with downstream 
proteins, allowing for multiple levels of c-di-GMP-dependent regulation of cellular behavior 
[41]. These findings suggest that DGC-containing GCS proteins, and likely other direct O2-
sensing c-di-GMP metabolic proteins, have important roles in c-di-GMP signaling within 
bacteria and highlight the need for comparisons of WT/sensor deletion strains in aerobic and 
anaerobic environments.  

 
II. O2-Sensing Methyl Accepting Chemotaxis Proteins 
Bacteria have evolved several mechanisms of movement to colonize a breadth of 

environments and acquire resources [42]. Whether through swimming in aqueous media or 



moving over solid surfaces, motile bacteria can sense spatial gradients of chemicals, 
pH, temperature, or redox signals through complex chemotaxis signaling pathways. 
Chemosensory arrays detect changes in the environment through a range of mechanism including 
direct ligand binding to periplasmic receptors, indirect sensing mediated by periplasmic binding 
proteins, and by coupling chemotactic responses to metabolism [43]. Bacteria utilize the 
chemotaxis machinery to move toward O2 concentrations and redox environments optimum for 
growth and proliferation [44]. Aerotaxis (O2 sensing) has been studied most prominently in E. 
coli, which uses Aer and Tsr proteins to indirectly sense oxygen. Unlike other chemotaxis 
receptors, Aer senses redox changes inside the cell using a FAD containing PAS domain facing 
the cytoplasm. Tsr, a serine chemoreceptor, senses a change in proton motor force [45].  
To date, chemotaxis machinery involved in directly sensing O2 concentrations have been 

found to often use either a sensing globin domain (HemAT-Bs and HemAT-Hs) or a PAS (Per-
Arnt-Sim) domain (Aer2). Recent work in the analogous Aer2 receptors from Pseudomonas 
aeruginosa [46–51], Leptospira interrogans [52], Vibrio cholerae [53,54], and Vibrio vulnificus 
[55] underlines the diversity of O2 sensing mechanisms involved in taxis. Aer2 proteins are 
heme-based soluble gas sensing receptors that contain PAS folds and poly-HAMP (histidine 
kinase–adenylyl cyclase–methyl-accepting chemotaxis protein–phosphatase) domains. Unlike E. 
coli Aer receptors [56], which are redox based sensors, Aer2 receptors are soluble, membrane 
associated proteins that directly bind O2 using a heme-bound PAS domain(s) (Figure 2) and 
changes in PAS domain N-terminal cap upon O2 binding yields signaling to the HAMP domain 
[49].  
When expressed in E. coli, each of the Aer2 proteins can mediate O2-dependent motility, with 

nature of the response (attractant vs. repellant) dependent on the Aer2 homologue. In addition, P. 
aeruginosa Aer2 has been demonstrated to associate with flagellum-mediated chemotaxis 
proteins CheA2 and CheW2 and has been implicated in stress response and virulence [50] The 
role of Aer2 in V. cholerae has also been investigated and was demonstrated to be the MCP 
responsible for O2-dependent swarming motility. V. cholerae Aer2 only responds to O2 levels, as 
anaerobic assays in the presence of alternative electron acceptors did not yield any differences 
between WT and Daer2 strains, demonstrating its physiological role as a direct O2 sensor [54]. 
Furthermore, Aer2 modulates expression of V. cholerae virulence factors TcpA and TcpP, with 
virulence factor production increased under microaerobic and anaerobic conditions. Surprisingly, 

Figure 2. Aer2 protein architectures. A) Structure of PaAer2 PAS (tan) and HAMP3 linker (grey) domains with 
key residues (distal tryptophan and methionine, proximal histidine) shown [49]. B) Domain architectures of Aer2 
proteins from various species.  



the Daer2 strain out-competed WT V. cholerae in a mouse model of infection, suggestion that 
Aer2 signaling may have more complex roles during bacterial infection of a host. 
 Additional species, including Bacillus subtilis and Halobacterium salinarum, utilize globin 

coupled sensors with methyl accepting chemotaxis domains to directly control O2-dependent 
motility [57–59]. Based on in vitro spectroscopic studies, O2 binding to the sensing globin 
domain results in conformational changes that are propagated through the protein and result in 
altered motility, [60–63] as has been observed for other GCS family members (discussed above). 
Similar to the Aer2 family of MCPs, HemAT proteins can control chemotaxis toward or award 
from high O2 levels, depending on the bacterium from which the HemAT originates. Within B. 
subtillis, HemAT-Bs modulates an aerophilic response, while H. salinarum HemAT-Hs controls 
an aerophobic response [58,59]. These studies suggest that subtle differences in either the 
sensing globin domain or intra-protein signaling pathway modulate bacteria chemotactic 
responses to O2 and highlight a need for further studies into both the O2 sensing/signaling 
mechanism and physiological effects in a wider range of bacterial species. 
 
III. Conclusions 
Recent work investigating the roles of direct O2-sensing proteins has identified roles in 

controlling intricate signaling pathways in bacteria modulating motility, biofilm formation, and 
virulence. While the GCS and Aer2 protein families have been under investigation for their roles 
in c-di-GMP signaling and motility respectively, further work is necessary to understand the 
signaling mechanism(s) and the physiological roles in a wider range of bacterial species.  
The recent discoveries of additional O2 sensing domains suggests that many pathways 

controlled by O2 levels remain uninvestigated and could have significant implications for our 
understand of bacterial signaling and physiology under changing conditions. Non-heme iron 
proteins such as DcrH-Hr found in Desulfovibrio vulgaris, which contains a hemerythrin-like 
domain, sense O2 via autoxidation of the iron center [22,64,65]. A distinct family of bacterial and 
archaeal oxygen sensing di-iron proteins, ODPs, has emerged as novel class of O2 and iron 
sensors. In the human pathogen Treponema denticola, reversible binding of O2 to the ODP 
Fe(II)2 center leads to the formation of the cis 𝜇-1,2 peroxo species, which destabilizes 
phosphorylated CheA, a histidine kinase which serves as a primary regulator of bacterial 
chemotaxis [21]. ODPs fall within the metallo- β-lactamase (MBL) superfamily and serve as the 
regulatory link between sensory input and chemoreceptors without transmembrane regions and 
periplasmic ligand-binding domains.  
Small RNA (sRNA) has also been linked to O2 dependent virulence. In enterohemorrhagic 

Escherichia coli O157:H7 (EHEC), the sRNA DicF is expressed in hypoxic conditions and 
modulates Shiga toxin and host colonization related gene expression [23]. While the precise 
mechanism sensing is still unknown, O2 dependent sRNA-mediated transcriptional regulation 
highlights the diversity of mechanisms employed by bacteria to sense and respond to O2. Given 
the widespread occurrence of putative O2 sensing systems in bacterial genomes, elucidating the 
mechanisms of sensing and signaling by all classes of O2 sensors will help to explain how 
bacteria adapt to changing O2 levels in the environment, as well as potentially identify novel 
methods to control O2-dependent bacterial phenotypes.  
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