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H I G H L I G H T S

Koopman theory is applied to model
the proton exchange membrane fuel cell
stack.
A systematic method to train the Koopman-
based model has been introduced.
Various structures of Koopman-based mod-
els are compared and analyzed.
Temperature variations across the fuel
cell stack have been studied.
Physics-based model and Koopman-based
model are compared.
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A B S T R A C T

In this study, a novel application of the Koopman operator for control-oriented modeling of proton exchange
membrane fuel cell (PEMFC) stacks is proposed. The primary contributions of this paper are: (1) the design of
Koopman-based models for a fuel cell stack, incorporating K-fold cross-validation, varying lifted dimensions,
radial basis functions (RBFs), and prediction horizons; and (2) comparison of the performance of Koopman-
based approach with a more traditional physics-based model. The results demonstrate the high accuracy of
the Koopman-based model in predicting fuel cell stack behavior, with an error of less than 3%. The proposed
approach offers several advantages, including enhanced computational efficiency, reduced computational
burden, and improved interpretability. This study demonstrates the suitability of the Koopman operator for
the modeling and control of PEMFCs and provides valuable insights into a novel control-oriented modeling
approach that enables accurate and efficient predictions for fuel cell stacks.
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1. Introduction

The global growth of industrialization and urbanization has driven a
surge in energy demand, which has raised significant concerns regard-
ing the environmental effects of fossil fuels. These traditional energy
sources are associated with several environmental problems, including
air pollution, greenhouse gas (GHG) emissions, and climate change.
According to the US Environmental Protection Agency, carbon dioxide
(CO2) emissions resulting from the combustion of petroleum-based
products such as gasoline and diesel fuel in internal combustion engines
(ICE) constitute a significant proportion of GHG emissions from the
transportation sector [1]. In recent years, there has been a notable
emphasis on mitigating the environmental impact of conventional fuels.
To achieve this goal, research efforts have been directed towards
the characterization of alternative fuels [2–6], as well as improved
modeling and control. A range of studies have focused on modeling
ICEs to better understand their performance and emission character-
istics [7–11]. Moreover, optimizing power management strategies has
been explored as a means of enhancing performance and reducing
pollutants [12–16].

To address the environmental issues associate with fossil fuels,
researchers have devoted significant efforts to exploring alternative
energy technologies. The hydrogen fuel cell (FC) is considered a promis-
ing alternative to traditional power sources due to its high efficiency
and zero emissions. The five primary categories of fuel cells are dis-
tinguished from each other based on their electrolyte composition and
these include [17]: (1) Phosphoric acid fuel cell (PAFC); (2) Polymer
electrolyte membrane fuel cell (PEMFC); (3) Alkaline fuel cell (AFC);
(4) Molten carbonate fuel cell (MCFC); (5) Solid-oxide fuel cell (SOFC).
Despite sharing the same underlying electrochemical principles, the
five types of fuel cells operate at varying temperature ranges and utilize
different materials. Fuel cells produce solely water as a byproduct of
their electrochemical reaction, making them a viable and eco-friendly
solution for energy generation. In particular, hydrogen fuel cell stacks
have been widely studied as a means of producing electrical power
for a variety of applications, from small portable devices to large-scale
stationary power generation [18–20]. However, it is challenging to
precisely simulate and predict the behavior of the stack under varying
operating conditions due to the intricate electrochemical and transport
processes that take place within it. Over the years, various modeling
methods have been developed to enhance the comprehension and
prediction of the performance of FC stacks, and a thorough review of
these methods can be found in [21,22]. The study in [23] presented
a physics-based dynamic model with a focus on addressing the airflow
control issue. In [24], a physics-based model is developed for a 540 kW
power output high-speed vehicle to predict the pressure dynamics at
high current density conditions.

In recent times, there has been increased interest in the application
of data-driven methods for the modeling and control of fuel cell stacks.
A comprehensive survey of related literature can be found in [25,26].
In [27], the artificial neural networks (ANNs) approach was utilized as
a data-driven method for modeling a 400 W FC stack. In [28], an ANN-
PID controller was developed to regulate a commercial PEMFC system.
However, since this kind of machine learning approach is non-linear in
nature, it requires computationally intensive non-linear optimal control
algorithms or the linearization of the model before utilizing linear
optimal control algorithms. Additionally, as the complexity of the neu-
ral network structure grows, the training cost increases exponentially.
Hence, the primary objective of this study is to identify a control-
oriented modeling approach that not only provides high accuracy and
requires less development effort but can also be efficiently and directly
implemented with linear optimal control algorithms. To this end, this
study explores the potential of the Koopman operator approach as a
data-driven alternative for modeling FC stacks, which has not been
comprehensively investigated previously.
2
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Table 1
Fuel cell stack specifications.
Description Value Unit

Minimum operating voltage 60 V
Maximum operating current load 90 A
Maximum operating temperature 65 ◦C
External power supply 24/8–12 V/A
Fuel cell stack weight(wo blowers) 28 kg
Blowers weight 2 kg
Number of cells 120 –
Active area 150 cm2

The concept of the Koopman operator, which involves representing
a nonlinear dynamical system through an infinite-dimensional linear
operator, was first introduced by Koopman in the early 1930s [29,30].
Since then, many researchers have studied the Koopman operator, mak-
ing it a useful tool for analyzing and controlling complex systems [31,
32]. The extended dynamic mode decomposition (EDMD) method was
introduced in [33] as a way to approximate the infinite-dimensional
Koopman operator to a finite dimension. Since the Koopman-based
model is linear, it can be integrated directly into linear model-based
optimization algorithms, which are computationally efficient compared
to nonlinear optimization algorithms. This attribute makes the Koop-
man operator a superior choice compared to other data-driven tech-
niques [34].

The main contribution of this research work is the novel application
of the Koopman operator for modeling the dynamics of the FC stack
system, which has not yet been thoroughly investigated. This study in-
vestigates the potential of the Koopman-based approach by performing
a comparative analysis with the physics-based model in terms of accu-
racy, computational time, and development complexity. A systematic
method for determining the parameters for the Koopman-based model
is presented. The results demonstrate that the Koopman-based model
can accurately predict the temperature variation across the FC stack
without any additional calibration effort. This study provides valuable
insights into the development of a control-oriented modeling approach
that is both accurate and efficient for FC stacks.

The paper is structured as follows: in Section 2, the experimental
setup and test conditions are introduced. The physics-based model
and Koopman-based models are presented in Section 3, along with
an analysis of their calibration and training results. In Section 4, the
performance of the models is compared and analyzed using a different
dataset than the ones used in Section 3. Finally, Section 5 provides
oncluding remarks and outlines of our future research directions.

. Experimental configuration

.1. Experimental setup

In this study, a 5 kW open-cathode proton exchange membrane
uel cell stack, manufactured by Horizon, was utilized. The FC stack
onsists of 120 fuel cells connected in series, with each cell containing a
embrane-electrode assembly sandwiched between bipolar plates. The
otal active area of the single-cell was 150 cm2. Each individual cell is
omposed of 4 anode channels and 81 cathode channels. The cathode
hannels serve as the air supply, while the anode channels provide
he hydrogen gas supply. In addition, the FC stack is equipped with a
hort-circuit unit (SCU) that serves as a protective mechanism against
verload, low-voltage, and overheating. In the event that any of these
azardous conditions occur, the SCU will trigger a shutdown procedure
o prevent potential damage or safety risks. The specifications of the
C stack utilized in this study are presented in Table 1, and the
xperimental setup layout is illustrated in Fig. 1.
In order to acquire and log the experimental data, various data ac-

uisition devices are employed. The FC stack’s built-in module records

he FC stack’s output voltage, current, and in-stack temperature. In
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Table 2
List of laboratory devices used in the experiment.
Device Model number Description

Fuel cell stack Horizon FCS-C5000 5 kW, 120 cells, active area 150 cm2

Built-in controller Horizon Records fuel cell stack voltage, current, and in-stack temperature
Self-made circuit Arduino Uno Records the fuel cell stack temperature variations
Thermocouples USP12397 Four thermocouples affixed on the opposite side of the blowers
Tachometer 8518T96 Measures rotational speed of blowers
Flow control valve Aalborg DPC47 Records the anode intake pressure of compressed hydrogen
Self-built controller Arduino Controls the fuel cell stack blowers
Electronic load Chroma 63206A-150-600 6 kW capacity, adjustable current load
DC power supply Chroma 62006P-100-25 Maximum current of 25 A, provides constant voltage
Fig. 1. Experimental setup schematic.

Fig. 2. Thermocouple layout used for temperature measurement of the FC stack.

addition, to investigate temperature variation across the FC stack,
four thermocouples (USP12397) are attached on the opposite side of
the blowers, and their readings are acquired via a self-made circuit
using MATLAB. To remove unused hydrogen, back-diffused water, and
nitrogen gas, a built-in purge valve is used with a fixed 10-second
purging period, the duration of which varied according to the current
load and temperature of the FC stack. The rotational speed of the
blowers is measured using a tachometer (8518T96) and can be visually
observed through a panel-meter (8518T61) as well. For the purpose of
controlling the rotational speed of the blowers, a self-built controller
was utilized. In addition, the anode intake pressure of compressed
hydrogen is recorded by an Aalborg (DPC47) flow control valve.

The built-in module records data with a sampling time of 0.5 s,
while the sampling time for the tachometer, thermocouples, and flow
control valve is 1 s. Linear interpolation is employed to standardize the
sampling rates and synchronize the data from various devices during
the post-processing of data. To provide a constant voltage to the built-in
controller and the blowers, a Chroma DC power supply (62006P-100-
25), capable of delivering a maximum current of 25 A, was used. To
simulate loads on the FC stack, a Chroma electronic load (63206A-
150-600), with a capacity of 6 kW, was utilized. The electronic load
could adjust the current load in Amperes precisely to 3 decimal places
both remotely and locally. A comprehensive list of the lab devices
utilized in this study is provided in Table 2. The thermocouples layout
is illustrated in Fig. 2, with the left side of the figure being in proximity
to the hydrogen inlet.
3

Fig. 3. Temperature variation steady-state results.

Fig. 3 shows the results of the steady-state temperature variations
at the inlet side of the air flow channels, carried out under specific
testing conditions of a blower maximum speed of 5800 RPM, current
load spanning from 0 A to 86 A, and an ambient temperature of
294.15 K. The legend Therm1 to Therm4 corresponds to the left-to-right
order of the thermocouples shown in Fig. 2. The temperature trends
observed in Fig. 3 indicate a decreasing trend from left (closest to the
hydrogen gas inlet) to right, with a maximum temperature variation of
approximately 11 K. Notably, the thermocouple located in the middle of
the fan, Therm2, exhibit the lowest temperatures due to uneven cooling
effects. These observations highlight the importance of considering the
cooling effects on the temperature distribution within the FC stack
during the design of the FC stack coolant system. One potential solution
for the uneven cooling in the FC stack system could be to implement
temperature zoning control. This approach would divide the stack into
different zones and apply separate cooling strategies to each zone to
achieve more even cooling and temperature distribution. Despite this,
it is important to note that a considerable temperature variation of up
to 8 K still persists between the leftmost and rightmost thermocou-
ples (Therm1 and Therm4). Moreover, it is crucial to highlight that
a significant increase in temperature variation is observed with an
increase in the current load. This observation highlights the significance
of considering the coolant effect during the modeling of FC stacks and
the design of the cooling controller.

2.2. Operating conditions

In this study, current load sweeps were conducted after a 30-minute
warm-up period to ensure the FC stack is fully self-humidified and
stable operation of the equipment. Each test condition was sustained
for approximately five minutes to attain a steady-state, and the data
from the last minute were averaged to obtain the steady-state values. A
polarization test was conducted under the default operating conditions,
with the FC stack being supervised by the built-in controller while

only the current load was modified. The current load was varied from
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Fig. 4. Operating conditions.

Fig. 5. Experimental data of the FC stack temperature.

0 A to 90 A, with different intervals for each load range. Specifically,
smaller intervals were applied for low and high current loads, where
the voltage to current gradient is relatively larger due to activation loss
and concentration loss, respectively.

The thermal effects on the FC stack were investigated by varying
the speed of the blowers through the pulse width modulation (PWM)
signal from the self-built controller. The blower’s speed was adjusted
from a minimum of 1500 rpm to a maximum of 5800 rpm, and four
current sweeps were conducted at a constant speed for each test set.
The PWM was set to 20% for the minimum blower speed and larger
than 90% for the maximum blower speed, resulting in a range of 20%
to 90% PWM. The operating conditions are summarized in Fig. 4, and
the corresponding stack temperature at steady state versus the current
load are demonstrated in Fig. 5. As illustrated in Fig. 4, data sets 1
and 2 have fewer data points than data sets 3 and 4 because the short
circuit unit (SCU) protection was activated due to the blower’s reduced
cooling capacity at lower speeds, causing the FC stack temperature to
exceed the upper limit. The polarization test and data sets 1, 2, and 3
are utilized as calibration data sets for the physics-based model, and
as training data sets for the Koopman-based model. Data set 4, which
covers different PWMs and additional loads not included in the other
data sets, is used to test and compare the models.

3. Modeling

In this section, an overview of the development and fundamental
principles of the physics-based model and the Koopman-based model
are developed, along with a discussion on their calibration results.
The calibration of the physics-based model utilized data from the
polarization curve test and sweep test data sets 1, 2, and 3. On the other
4

Fig. 6. Physics-based model schematic.

hand, the Koopman-based model was trained using sweep test data sets
1, 2, and 3. Finally, sweep test data set 4 was employed as the test data
set for evaluating both the physics-based and Koopman-based models.

3.1. Physics-based model

Three submodels comprise the FC stack physics-based model,
namely the electrochemical, thermal, and hydrogen inlet pressure
models, as depicted in Fig. 6. The physics-based model takes four
input variables, which are FC stack temperature, current load, hydrogen
inlet pressure, and PWM signal, and produces two outputs, FC stack
temperature and voltage. The electrochemical model was calibrated
using the polarization curve test data, while the thermal and hydrogen
inlet pressure models were calibrated using data sets 1, 2, and 3. As
previously stated in Section 2.2, a 30-minute warm-up test is conducted
prior to each experimental test. Consequently, it is assumed in this
study that the membrane is fully self-humidified due to this warm-up
process.

3.1.1. Electrochemical model
Fuel cells are electrochemical systems that can directly convert

chemical energy into electrical energy. The electrochemical reactions
occurring within a fuel cell stack can be represented by Eq. (1):

Anode: H2 → 2H+ + 2𝑒−

Cathode: 1
2O2 + 2H+ + 2𝑒− → H2O

Overall: H2 +
1
2O2 → H2O

(1)

The total voltage of the FC stack, denoted by 𝑉𝑠𝑡, can be computed
using Eq. (2):

𝑉𝑠𝑡 = 𝑁𝑠𝑡𝑉𝑐𝑒𝑙𝑙 (2)

where 𝑁𝑠𝑡 is the total number of fuel cells, 𝑉𝑐𝑒𝑙𝑙 is the output voltage
of a single cell.

Generally, the single cell output voltage can be expressed as Eq. (3):

𝑉𝑐𝑒𝑙𝑙(𝑡) = 𝑉𝑜𝑐 (𝑡) − 𝑉𝑎𝑐𝑡(𝑡) − 𝑉𝑜ℎ𝑚(𝑡) − 𝑉𝑐𝑜𝑛(𝑡) (3)

where 𝑉𝑜𝑐 is the open circuit voltage, 𝑉𝑎𝑐𝑡, 𝑉𝑜ℎ𝑚 and 𝑉𝑐𝑜𝑛 are the
activation voltage loss, ohmic voltage loss, and concentration voltage
loss, respectively.

The open circuit cell voltage of an FC stack is the voltage output
when there is no external load connected to the system, and the
full expression describing how the individual cell open circuit voltage
varies with temperature, pressure, and activity under non-standard
conditions can be written as Eq. (4) [17]:

𝑉𝑜𝑐 (𝑡) = 𝐸0 +
𝛥𝑠(𝑇𝑠𝑡)
𝑛𝐹

(𝑇𝑠𝑡(𝑡) − 𝑇𝑎𝑚𝑏) −
𝑅𝑇𝑠𝑡(𝑡)
𝑛𝐹

𝑙𝑛 1
𝑝𝐻2

(𝑡)𝑝0.5𝑂2

(4)

where the 𝐸0 is the non-standard reversible voltage, 𝛥s is the sensible
entropy, 𝑇𝑠𝑡 is the fuel cell stack temperature, 𝑇𝑎𝑚𝑏 is the ambient
temperature, R is the ideal gas constant, n is the number of moles
of electrons transferred from the hydrogen gas and equal to 2, F is



Energy and AI 14 (2023) 100289D. Huo and C.M. Hall

F
o

o

𝐸

𝑉

w
d
s
t
t
0
e
I

a

i

𝑅

i
t

3

𝐶

𝑃

s
g

𝑃

f
E

𝑄

w
i

𝑚

w
o

i

𝑄

Fig. 7. Polarization curve comparison.

araday’s constant, 𝑝𝐻2
is the hydrogen inlet pressure, and 𝑝𝑂2

is the
xygen inlet pressure and is equal to ambient pressure in this study.
The reversible voltage 𝐸0 under non-standard conditions can be

btained by utilizing Eq. (5):
0 = − 𝛥𝑔(𝑇𝑠𝑡)

𝑛𝐹
(5)

where 𝛥𝑔 is the non-standard-state free-energy change for the reac-
tion [35].

The activation voltage loss can be determined from Eq. (6):

𝑎𝑐𝑡(𝑡) =
𝑅𝑇𝑠𝑡(𝑡)
𝛼𝑛𝐹

𝑙𝑜𝑔(
𝑖(𝑡)
𝑖0

) (6)

here 𝑖 is the current density of the FC stack, 𝑖0 is the exchange current
ensity, the transfer coefficient, denoted as 𝛼, is determined by the
ymmetry of the activation barrier and quantifies the extent to which
he electrical potential across the reaction interface affects the sizes of
he forward and reverse activation barriers. The value of 𝛼 falls between
and 1, with a value of 0.5 for symmetric reactions. In the case of most
lectrochemical reactions, 𝛼 ranges from approximately 0.2 to 0.5 [17].
n this study 𝛼 has been set to 0.5.
The ohmic voltage loss can be calculated from Eq. (7):

𝑉𝑜ℎ𝑚(𝑡) = 𝑖(𝑡)𝑅𝑜ℎ𝑚
= 𝑖(𝑡)(𝑅𝑖𝑜𝑛 + 𝑅𝑒𝑙𝑒𝑐)

(7)

where 𝑅𝑜ℎ𝑚 is the total ohmic resistance, 𝑅𝑖𝑜𝑛 is the ionic charge
transport resistance, 𝑅𝑒𝑙𝑒𝑐 is the electronic charge transport resistance
nd equal to 0.0007𝛺.
The value of 𝑅𝑖𝑜𝑛 can be obtained by utilizing Eq. (8) as presented

n [36]:

𝑖𝑜𝑛 =
181.6[1 + 0.03𝑖(𝑡) + 0.062( 𝑇𝑠𝑡(𝑡)303 )2𝑖2.5(𝑡)]𝑙

[𝜆𝑚 − 0.634 − 3𝑖(𝑡)]𝑒𝑥𝑝[4.18(1 − 303
𝑇𝑠𝑡(𝑡)

)]𝐴
(8)

n which 𝑙 is the membrane thickness, 𝜆𝑚 denotes the water content of
he membrane, and 𝐴 represents the active area.
The concentration voltage loss is given by [37] Eq. (9):

𝑉𝑐𝑜𝑛𝑐 = 𝑚(𝑒𝑥𝑝[𝑛𝑖(𝑡)] − 1) (9)

where the coefficients of m and n are determined through MATLAB
curve fitting to the experimental polarization experimental data.

The calibration results for the polarization curve of the electrochem-
ical model are presented in Fig. 7, where the errors are within 3%.

.1.2. Thermal model
The FC stack thermal dynamics can be determined as Eq. (10) [38]:

𝑑𝑇𝑠𝑡(𝑡) = 𝑃 (𝑡) − 𝑃 (𝑡) − 𝑄̇ (𝑡) (10)
5

𝑡 𝑑𝑡 𝑡𝑜𝑡 𝑠𝑡 𝑐𝑜𝑜𝑙𝑎𝑛𝑡
in which P𝑡𝑜𝑡 is the total power released by the electrochemical reac-
tions (W), P𝑠𝑡 represents the electrical power output of the FC stack
(W), and Q̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is the heat dissipated to the cooling airflow. C𝑡 is the
thermal capacitance (J/K-s) determined by data observation. Since the
built-in controller and the blowers are powered by a separate DC power
supply rather than consuming power generated by the FC stack in the
tests, their power consumption is not considered in this equation. In
both the polarization curve test and sweep tests, the initial condition
of 𝑇𝑠𝑡 (stack temperature) is set to match the ambient temperature.
Specifically, for the polarization curve test, the ambient temperature
is 297.15 K, while for the sweep tests, the ambient temperature is
294.15 K.

The total power released by the electrochemical reaction within the
FC stack can be calculated from Eq. (11):

𝑡𝑜𝑡(𝑡) =
𝑁𝑠𝑡𝐼𝑠𝑡(𝑡)𝛥ℎ

𝑛𝐹
(11)

in which N𝑠𝑡 denotes the total number of cells, I𝑠𝑡 represents the fuel cell
tack current load, 𝛥h represents the enthalpy change of the hydrogen
as, n denotes the number of electric charges, F is the Faraday constant.
The FC stack output power is given by Eq. (12):

𝑠𝑡(𝑡) = 𝑉𝑠𝑡(𝑡)𝐼𝑠𝑡(𝑡) (12)

The variable Q̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is computed by taking into account the air
low passing through the fuel cell stack, and it can be obtained using
q. (13):

̇ 𝑐𝑜𝑜𝑙𝑎𝑛𝑡(𝑡) = 𝜂𝑓𝑎𝑛𝑚̇𝑎𝑖𝑟(𝑡)𝑐𝑝(𝑇𝑠𝑡(𝑡) − 𝑇𝑎𝑚𝑏) (13)

here 𝜂𝑓𝑎𝑛 is the fan efficiency, ṁ𝑎𝑖𝑟 is the air mass flow rate, and c𝑝
s the specific heat coefficient of the air.
The air mass flow rate can be calculate from Eq. (14):

̇ 𝑎𝑖𝑟(𝑡) = 𝜌𝑎𝑖𝑟𝑄𝑎𝑖𝑟(𝑡) (14)

here the 𝜌𝑎𝑖𝑟 and 𝑄𝑎𝑖𝑟 are the air density and the volumetric flow rate
f the air, respectively.
For arbitrary fan rotational speeds, the volumetric flow rate of air

n Eq. (14) can be obtained by utilizing Eq. (15):

𝑎𝑖𝑟(𝑡) = 𝜔(𝑡)
𝑄𝑛𝑜𝑚
𝜔𝑛𝑜𝑚

(15)

in which 𝜔 is the arbitrary fan speed (RPM), 𝑄𝑛𝑜𝑚 is the nominal
volumetric flow rate (m3/s) of the fan, and 𝜔𝑛𝑜𝑚 is the nominal blower
speed (RPM) at the operating curve, 𝑄𝑛𝑜𝑟𝑚 and 𝜔𝑛𝑜𝑟𝑚 are determined
based on the approach suggested by [38]. In an open cathode PEMFC,
the pressure drop is mainly determined by the air channel, which can be
calculated by taking into account the friction factor, Reynolds number,
minor loss coefficients, and hydraulic diameter. Then the intersection
of the pressure drop and the fan performance curve under nominal fan
speed corresponds to the nominal volumetric flow rate.

A static empirical model is utilized to establish the relationship
between the input PWM command and the rotational speed of the
blowers:

𝜔(𝑡) =

⎧

⎪

⎨

⎪

⎩

1500 for PWM ∈ [0,20)
60.36𝑢𝑓𝑎𝑛(𝑡) + 294.2 for PWM ∈ [20,90)
5800 for PWM ∈ (90,100]

(16)

where, 𝑢𝑓𝑎𝑛 refers to the PWM control signal.
The model calibration was performed using three different data

sets, namely, data sets 1, 2, and 3, while the validation of the thermal
model was done using data set 4. The optimization of 𝜂𝑓𝑎𝑛 was carried
out using the MATLAB fminsearch function, and the resulting value
obtained was 46.59%. The steady-state data were utilized to calibrate
the thermal model, and the errors were found to be within 3% for
all the test conditions, as depicted in Fig. 8. To facilitate the control
of the transient response, a first-order assumption was made for all
the responses, and C𝑡 was assigned a value of 5209 (J/K-s) based on
experimental data.
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Fig. 8. Fan efficiency calibration results.

3.1.3. Hydrogen inlet pressure model
In fuel cell operation, the diffusion of water molecules and nitrogen

molecules from the cathode air stream to the anode side, due to
concentration gradient across the membrane, causes accumulation of
water and nitrogen molecules in the anode channels. This accumulation
can lead to voltage losses and degradation issues within the fuel cell
stack [17]. To prevent this phenomenon, periodic anode purging is
performed using a built-in purge valve. The purging process involves
removing back-diffused nitrogen gas, water, and unused hydrogen gas
from the anode channels, resulting in improved performance of the fuel
cell stack. The purging cycle has a fixed period of 10 s, but the duration
of purging varies based on a lookup table that considers the current
load and temperature of the fuel cell stack. Eq. (17) proposed in [38]
an be used to determine the hydrogen gas inlet pressure:

H2 ,𝑖𝑛𝑙𝑒𝑡(𝑡) = 𝑝𝑡𝑎𝑛𝑘(𝑡)𝑢(𝑡) − 𝛥𝑝𝑝𝑢𝑟𝑔𝑒𝑢(𝑡 − 𝑡1)

+𝛥𝑝𝑝𝑢𝑟𝑔𝑒(1 − 𝑒
− 𝑡−𝑡2

𝜏𝑝 )
(17)

where 𝑝𝑡𝑎𝑛𝑘 is the hydrogen tank outlet pressure, 𝛥p𝑝𝑢𝑟𝑔𝑒 and 𝜏𝑝 is the
pressure drop during the purging and time constant, respectively. These
variables are determined from the data. The time instances 𝑡1 and 𝑡2
refer to the start and the end of the purging process, respectively, and
𝑢(𝑡) is the unit step function.

While the hydrogen tank outlet pressure is set as a constant, an
increase in the current load results in an increased hydrogen mass flow
rate, causing a reduction in the hydrogen tank pressure. Therefore, the
hydrogen tank pressure, 𝑝𝑡𝑎𝑛𝑘, is represented as a polynomial function
of the stack current load as Eq. (18):

𝑝𝑡𝑎𝑛𝑘(𝑡) = 𝑝𝑡𝑎𝑛𝑘,𝑝𝑟𝑒 + 𝑎𝐼3𝑠𝑡 + 𝑏𝐼
2
𝑠𝑡 + 𝑐𝐼𝑠𝑡 + 𝑑 (18)

where 𝑎, 𝑏, 𝑐 and 𝑑 are the constant coefficients, and 𝑝𝑡𝑎𝑛𝑘,𝑝𝑟𝑒 is the
predetermined hydrogen tank pressure of 25.3 psia.

The hydrogen gas inlet pressure results of data set 2 are illustrated
in Fig. 9. The model presented in this study can effectively capture the
pressure drops induced by changes in the current load and the status
of the purge valve. However, a slight misalignment of the pressure
drop is observed due to the limited sensor sampling rate, which cannot
accurately capture the transient changes. Furthermore, during each
purging cycle, an additional pressure drop is observed due to the
consumption of hydrogen gas by the SCU, which is responsible for
protecting the FC stack from overload, overvoltage, and overheating.
In the event of any hazardous conditions, the SCU initiates a shutdown
procedure to prevent potential damage or safety risks.

Table 3 presents the parameters employed in the physics-based
model.
6

Fig. 9. Data set 2 purging result.

Table 3
Parameters of the physics-based model.
Parameters Value Unit

Active area, 𝐴 150 cm2

Thickness of the membrane, 𝑙 0.0035 cm
Electronic charge transport resistance, 𝑅𝑒𝑙𝑒𝑐 0.00007 Ω
Charge transfer coefficient, 𝛼 0.5 –
Water content, 𝜆𝑚 22 –
Reference enthalpy of H2 at 298.15 K, ℎ0H2

0 J/mol

Reference enthalpy of O2 at 298.15 K, ℎ0O2
0 J/mol

Reference enthalpy of H2O at 298.15 K, ℎ0H2O
−241830 J/mol

Reference entropy of H2 at 298.15 K, 𝑠0H2
130.68 J/mol

Reference entropy of O2 at 298.15 K, 𝑠0O2
205 J/mol

Reference entropy of H2O at 298.15 K, 𝑠0H2O
188.84 J/mol

Thermal capacitance, C𝑡 5209 J/K-s
Specific heat capacity of air, c𝑝 1006 J/kg-K
Air density, 𝜌𝑎𝑖𝑟 1.1839 kg/m3

Fan efficiency, 𝜂𝑓𝑎𝑛 0.4659 –
Fuel cell stack weight 28 kg
Blowers weight 2 kg
Number of cells, 𝑁𝑠𝑡 120 –

3.2. Koopman-based model

In this section, Koopman-based models were developed using data
sets 1, 2, and 3 as the training set. To determine the optimal parameters
for the modeling approach, K-fold cross-validation was performed. Five
different radial basis functions, including thin plate spline, Gaussian,
inverse quadratic, inverse multiquadratic, and polyharmonic spline,
were trained with five different lifted dimensions (9, 13, 17, 21, and
25 dimensions) and four different prediction horizons (5, 10, 25, and
50 steps). Each training was performed 30 times, and the minimum
weighted root mean square error (RMSE) was selected. The overall best
Koopman-based model was chosen by comparing the weighted RMSE
and computation time. Additionally, the performance of the selected
Koopman-based model will be compared with the physics-based model,
and the results will be presented in Section 4.

Additionally, sweep tests were conducted with a wide range of
current loads and fan speeds. The current loads varied from 0 A to 85 A,
while the fan speeds covered the entire RPM range. The laboratory
maintained a stable ambient temperature, and a 30-minute warm-up
test preceded the experimental tests. As a result, the training dataset
comprehensively covered various boundary conditions. This extensive
coverage ensures the model’s reliability in making accurate predictions,
even for interpolated test conditions, thereby guaranteeing its overall

reliability.
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3.2.1. Koopman-based modeling approach for PEM fuel cell stacks
Eq. (19) represents an arbitrary discrete-time nonlinear control

ystem:

𝑘+1 = 𝑓 (𝒙𝑘, 𝒖𝑘) (19)

here 𝒙𝑘 is the states of the dynamic system at time step 𝑘, 𝒙 ∈ R𝑛

ith 𝑛 dimensions, 𝒖𝑘 is the control inputs at time step 𝑘, 𝒖 ∈ R𝑚

ith 𝑚 dimensions, and 𝑓 is the nonlinear transition mapping. The
oopman operator, denoted as  ∶  →  , is a linear operator
hat acts on nonlinear observable functions 𝜓 ∶ R𝑛 → R𝑁 , where 
s a space of observables that are invariant under the action of the
oopman operator. The operator is typically infinite-dimensional and
an be expressed as Eq. (20):

𝜓)(𝑥) = 𝜓(𝑓 (𝑥)) (20)

here 𝑥 denotes the state of the dynamic system, 𝑓 is the nonlinear
ransition mapping, and 𝜓(𝑓 (𝑥)) represents the observable function of
he next state obtained by applying the mapping 𝑓 to the current state.
The primary objective of this research is to develop a control-

riented dynamic system for the FC stack utilizing the Koopman oper-
tor. To this end, an extended dynamic mode decomposition (EDMD)
pproach, as described in [33], is utilized to approximate the infinite-
imensional Koopman operator into a finite-dimensional representation
∈ R𝑁 , where 𝑁 is larger than 𝑛. The EDMD approach essentially

erforms regression on a vector of observable functions and generates
he lifted state vector. The lifted state 𝒛 ∈ R𝑁 can be expressed as
q. (21):

= 𝜙(𝒙) = [𝜙1(𝒙), 𝜙2(𝒙)...𝜙𝑁 (𝒙)]𝑇 (21)

For the discrete-time, the lifted state space can be expressed as
q. (22):

𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢𝑘
𝑥̂𝑘 = 𝐶𝑧𝑘

(22)

here 𝑥̂ represents the predicted states, the best-fit linear operators 𝐴,
and 𝐶 are obtained through EDMD, and 𝐴 ∈ R𝑁×𝑁 , 𝐵 ∈ R𝑁×𝑚,
∈ R𝑛×𝑁 .
To apply the Koopman opeartor to our FC stack modeling problem,

he data of the discrete system has the following inputs to the Koopman
perator:

𝜒 = [𝒙𝟏,𝒙𝟐,… ,𝒙𝒌]
+ = [𝒙𝟐,𝒙𝟑,… ,𝒙𝒌+𝟏]
𝑈 = 𝑍[𝒖𝟏, 𝒖𝟐,… , 𝒖𝒌]

(23)

here the matrices 𝜒 ∈ R𝑛×𝑘 and 𝜒+ ∈ R𝑛×𝑘 are the current state and
uccessor state, respectively, and 𝑈 ∈ R𝑚×𝑘 is the control inputs.
Similarly, the state matrices in the lifted space are given as:

𝑍 = [𝜙(𝒙𝟏), 𝜙(𝒙𝟐),… , 𝜙(𝒙𝒌)]
+ = [𝜙(𝒙𝟐), 𝜙(𝒙𝟑),… , 𝜙(𝒙𝒌+𝟏)]

(24)

n which 𝑍 and 𝑍+ ∈ R𝑁×𝑘.
The matrices of 𝐴, 𝐵 and 𝐶 in Eq. (24) can be calculated through

he best least-squares:

in𝐴,𝐵 ‖𝑍+ − 𝐴𝑍 − 𝐵𝑈‖𝐹
in𝐶 ‖𝜒 − 𝐶𝑍‖𝐹

(25)

here ‖ ⋅ ‖𝐹 represents the Frobenius norm of a matrix, and the
nalytical solutions of Eq. (24) can be expressed as:

[𝐴,𝐵] = 𝑍+[𝑍,𝑈 ]†

𝐶 = 𝜒𝑍† (26)

where † denotes the Moore–Penrose pseudoinverse of a matrix.
In addition to investigating the effects of voltage, temperature, and

hydrogen inlet pressure on the FC stack, the variation of FC stack tem-
perature has also been studied using the Koopman operator approach.
7

To achieve this, the state inputs, control inputs, and outputs are defined
as Eq. (27):

𝒙 = [Temperature, Voltage, H2 Pressure, Therm1, Therm2,
Therm3, Therm4]𝑇

𝒖 = [Load, PWM, Purge Valve, Purging Time,
Current-step Purging Time, Current-step Purging Phase]𝑇

𝒙̂ = [Temperature, Voltage, H2 Pressure, Therm1, Therm2,
Therm3, Therm4]𝑇

(27)

where temperature, voltage, and H2 pressure of the state inputs and
outputs denote the FC stack temperature, FC stack voltage, and FC stack
hydrogen inlet pressure, respectively, and the Therm1 to Therm4 state
inputs and outputs refer to the thermocouples that are connected to the
FC stack in the order from right to left shown in Fig. 2. The purge valve
denotes the purge valve status (On/Off), the purging time is obtained
from a lookup table based on the FC stack’s operating conditions, the
current step purging time can vary from 0 to 0.5, and the purging phase
represents the time elapsed in which purging phase within the current
step since the purging time may be longer than a sample time.

As such, the lifted states of Eq. (24) can be summarized as:

𝒛 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝜙8(𝒙),… , 𝜙𝑁 (𝒙)]𝑇 (28)

where 𝜙𝑁 (𝒙) represents the radial basis function with N ≥ 8.
There are 5 radial basis functions have been investigated including

thin plate spline, Gaussian, inverse quadratic, inverse multiquadratic,
and polyharmonic splin. They are expressed as:

𝜙(𝑟)𝑡𝑝𝑠 = 𝑟2𝑙𝑛(𝑟)

𝜙(𝑟)𝑔𝑎 = 𝑒−(𝛾𝑟)2

𝜙(𝑟)𝑖𝑞 = 1
1+(𝛾𝑟)2

𝜙(𝑟)𝑖𝑚𝑞 = 1
√

1+(𝛾𝑟)2

𝜙(𝑟)𝑝ℎ𝑠 = 𝑟𝑘𝑙𝑛(𝑟)

(29)

in which the subscripts 𝑡𝑝𝑠, 𝑔𝑎, 𝑖𝑞, 𝑖𝑚𝑞, and 𝑝ℎ𝑠 correspond to the radial
basis function of thin plate spline, gaussian, inverse quadratic, inverse
multiquadratic, and polyharmonic spline, respectively. The parameter
𝑟 denotes the distance between the data point and the randomly gener-
ated centers, and the parameters 𝛾 and 𝑘 represent the inverse kernel
width and the degree of polyharmonic spline, respectively.

3.2.2. Koopman-based model training results
To avoid the Koopman-based model from overfitting, the K-fold

cross-validation approach was used. The training data set will be di-
vided into K subsets or folds, training the model on K-1 folds, and
validating it on the remaining fold. This process is repeated K times,
with each fold serving as the validation set once. In order to mitigate
the effects of the random initialization of centers, the training proce-
dure was repeated 30 times for each RBF. The resulting weighted RMSE
of the trained model over the K folds was averaged, and the model
with the minimum weighted RMSE was chosen as the optimal one.
The optimal parameters for each RBF model were determined in this
process. Furthermore, each RBF was trained with different dimensions,
namely, 9, 13, 17, 21, and 25 dimensions, and prediction horizons of
5, 10, 25, and 50 steps.

In this section, the focus is on the FC stack temperature variations.
Therefore, the weighted root mean square error (RMSE) is defined
by Eq. (30), which calculates the error between the predicted and
experimental data:

𝑅𝑀𝑆𝐸𝑤𝑒𝑖 = 0.16(𝑒1 + 𝑒4 + 𝑒5 + 𝑒6 + 𝑒7) + 0.1(𝑒2 + 𝑒3) (30)

where the notation 𝑒 is used to represent the RMSE between the
predicted and experimental data, while the subscript number denotes
the same variables as the state inputs. Tables 4, 5, 6, and 7 present the
training results of the Koopman-based models with prediction horizons
of 5-step, 10-step, 25-step, and 50-step, respectively.
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Table 4
5-step prediction horizon weighted RMSE train results.
Rad. basis func. 9 dim 13 dim 17 dim 21 dim 25 dim

Thin plate spl. 0.0176 0.0196 0.0178 0.0213 0.0214
Gaussian 0.0178 0.0214 0.0216 0.0221 0.0206
Inv. quad. 0.0191 0.0215 0.0212 0.0210 0.0208
Inv. multiquad. 0.0211 0.0199 0.0203 0.0208 0.0217
Polyharm. spl. 0.0202 0.0200 0.0205 0.0212 0.0218

Table 5
10-step prediction horizon weighted RMSE train results.
Rad. basis func. 9 dim 13 dim 17 dim 21 dim 25 dim

Thin plate spl. 0.0225 0.0210 0.0258 0.0261 0.0265
Gaussian 0.0231 0.0279 0.0266 0.0269 0.0260
Inv. quad. 0.0208 0.0244 0.0254 0.0265 0.0266
Inv. multiquad. 0.0227 0.0251 0.0260 0.0262 0.0260
Polyharm. spl. 0.0253 0.0268 0.0264 0.0263 0.0263

Table 6
25-step prediction horizon weighted RMSE train results.
Rad. basis func. 9 dim 13 dim 17 dim 21 dim 25 dim

Thin plate spl. 0.0278 0.0307 0.0330 0.0352 0.0360
Gaussian 0.0271 0.0365 0.0340 0.0359 0.0364
Inv. quad. 0.0297 0.0376 0.0358 0.0353 0.0356
Inv. multiquad. 0.0320 0.0339 0.0359 0.0352 0.0363
Polyharm. spl. 0.0318 0.0342 0.0354 0.0357 0.0352

Table 7
50-step prediction horizon weighted RMSE train results.
Rad. basis func. 9 dim 13 dim 17 dim 21 dim 25 dim

Thin plate spl. 0.0427 0.0504 0.0465 0.0486 0.0485
Gaussian 0.0414 0.0492 0.0489 0.0483 0.0482
Inv. quad. 0.0428 0.0498 0.0481 0.0481 0.0482
Inv. multiquad. 0.0430 0.0468 0.0480 0.0486 0.0487
Polyharm. spl. 0.0427 0.0463 0.0462 0.0489 0.0488

The training results show that for the FC stack modeling prob-
em, with the same prediction horizon, regardless of the kernel func-
ion used, all Koopman-based models exhibit a consistent trend where
maller lifted dimensions result in better performance, which contra-
icts the initial intuition. This trend suggests that the system dynamics
an be captured more accurately with a lower-dimensional feature
pace. Specifically, the Koopman-based model with the thin plate spline
adial basis function and 9 dimensions exhibited the lowest weighted
MSE among all the Koopman-based models. Therefore, this model was
elected for comparison with the physics-based model in the following
ection.

. Results and analysis

In this section, a comprehensive analysis and comparison of the
erformance is provided between the physics-based model and the
oopman-based model, denoted as Koopman9 for convenience. The
valuation will be carried out on data set 4, employing a constant
lower’s Pulse Width Modulation (PWM) of 90%, corresponding to the
aximum fan speed of 5800 RPM. The current load ranges from 0 A
o 85 A. It is important to note that this specific data set 4 was not
tilized during the model calibration or training processes. Our analysis
ill encompass a variety of aspects such as transient behavior, transient
rror distributions and steady-state errors for voltage, temperature, and
2 pressure, as well as computational cost. Moreover, Koopman9’s
emperature variation results will also be examined by comparing them
ith the experimental data.
Fig. 10 presents a comparison of the voltage transient results ob-

ained from the selected Koopman-based model (Koopman9) and the
8

hysics-based model. The Koopman model exhibits lower errors under P
Fig. 10. Data set 4 voltage results comparison.

Fig. 11. Data set 4 voltage transient error distribution results.

all test conditions during steady-state conditions, with both models
showing steady-state errors of less than 3%. Furthermore, the Koop-
man model demonstrates superior performance in capturing transient
dynamics compared to the physics-based model. This is due to the
limitation of the physics-based model, which is limited to a first-order
model and cannot fully capture the non-linear dynamic behavior of
the FC stack voltage, especially in high-load regions. Furthermore,
the physics-based model exhibits a larger steady-state error due to
the assumption of a constant charge transfer coefficient. One possible
solution is to set the charge transfer coefficient as a dynamic parameter
rather than a constant parameter.

The transient error distributions shown in Fig. 11 reveal that ap-
proximately 95% of the transient errors for the Koopman model are
less than ±2 V, indicating a smaller transient error range and more
concentrated transient error distribution compared to the physics-based
model. The maximum transient error of the physics-based model, which
occurred during the transient processes as shown in Fig. 10, is 6.68 V,
further highlighting the limitations of the first-order system.

In Figs. 12 and 13, the FC stack temperature prediction results and
ransient error distributions of the Koopman9 model and the physics-
ased model are presented, respectively. Similar to the voltage results,
he Koopman-based model demonstrates superior transient and steady-
tate performance compared to the physics-based model, exhibiting
reduced error range and a more concentrated error distribution.
he physics-based model underestimates the stack temperature for all
est conditions. This is due to the coolant model of the physics-based
odel being based on a constant efficiency for the blower, which
as overestimated based on data sets 1, 2, and 3. Consequently, the
odel underestimates the stack temperature for data set 4 with 90%
WM, with the maximum error of 6.4 K occurring at a load of 85 A.
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Fig. 12. Data set 4 FC stack temperature result comparison.

Fig. 13. Data set 4 temperature transient error distribution results.

One feasible approach to enhancing the accuracy of the temperature
prediction of the physics-based model is by modeling the blower’s
efficiency as a function of PWM rather than as a constant value.
However, this approach would result in increased model complexity
and computational cost. Despite the overestimation of the temperature
by the physics-based model, both the Koopman-based model and the
physics-based model exhibit errors within 3%.

Figs. 14 and 15 present a comparison between the FC stack hydro-
en inlet pressure prediction results and the transient error distribu-
ions obtained from the physics-based model and the Koopman9 model.
oth models demonstrate a steady-state error within the 3% range,
espite the transient overestimation in the Koopman. A majority of the
rror distribution for both models across all validation data falls within
he range of 2 psia. It can be observed that the Koopman model slightly
verestimates the hydrogen inlet pressure for all validation conditions.
ne potential approach to improving the performance of the model is
o assign a higher weight to the hydrogen pressure RMSE during the
raining process. As in the calibration results, a misalignment of the
ressure drop is also observed, indicating a need for improvement in
uture modeling efforts.
In contrast to the physics-based model, the Koopman-based model

oes not require any additional calibration effort to predict the temper-
ture variations across the fuel cell stack. The transient temperature
ariation results are presented in Figs. 16, 17, 18, and 19, and are
ompared with the experimental data. All of the temperature prediction
esults for the thermocouples show a high level of accuracy, with the
redicted values nearly overlapping with the corresponding experimen-
al data. It was also observed that there was a descending trend in
emperature from the left side to the right side. This phenomenon may
e explained by the fact that the left side of the FC stack is closer to
9

f

Fig. 14. Data set 4 H2 inlet pressure result comparison.

Fig. 15. Data set 4 H2 inlet pressure transient error distribution results.

he hydrogen inlet port, resulting in a relatively higher inlet pressure
ompared to the right side, due to the pressure drops along the stack. A
igher pressure can lead to a higher open circuit voltage, as described
y Eq. (4), which is resulted in a higher temperature. The temperature
at the middle-left of the FC stack exhibits the lowest values, which may
be attributed to uneven cooling distribution. Specifically, the thermo-
couple is located at the center of the fan, which is subject to a stronger
cooling effect compared to other areas, resulting in lower temperatures.
To achieve more precise temperature variations in the FC stack, a
potential solution is to attach additional thermocouples at different
locations on the stack to obtain more comprehensive temperature data.
In addition, the transient error distribution results are presented in
Figs. 20, 21, 22, 23 which indicating that the majority of the errors
re within ±0.5 K.
In this study, our primary goal is to find a modeling approach

hat could easily predict temperature variation in the FC stack. The
hysics-based modeling approach to capture this variation would have
equired additional calibration effort and resulted in a more complex
tructure, resulting in a longer computation time. Therefore, this option
as not pursued and instead the computational cost of the Koopman-
ased model and the physics-based model was compared, as presented
n Table 8. The Koopman9 model was found to be 48.48% faster than
he physics-based model, despite the additional temperature variation
redictions.

. Conclusion and future works

In this study, a novel application of the Koopman operator is pre-
ented for control-oriented modeling of a proton exchange membrane

uel cell stack. In contrast to other data-driven approaches such as
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Fig. 16. Comparison of temperature variation transient results for thermocouple on
the right side of the FC stack.

Fig. 17. Comparison of temperature variation transient results for thermocouple on
the middle-right side of the FC stack.

Fig. 18. Comparison of temperature variation transient results for thermocouple on
the middle-left side of the FC stack.

artificial neural networks (ANNs), the Koopman operator approach
stands out by eliminating the need for additional efforts in lineariza-
tion and avoiding ‘‘black box’’ behavior that hinders interpretability.
It can be directly integrated into linear control algorithms without
10

requiring additional effort. Our study presents a systematic approach
Fig. 19. Comparison of temperature variation transient results for thermocouple on
the left side of the FC stack.

Table 8
Data set 4 computation cost comparison.
Model Cost [s]

Physics-based model 0.2205
Koopman9 0.1136

to determine the Koopman-based modeling parameters, which includes
the use of five radial basis functions, different prediction horizons,
and K-fold cross-validation with weighted root mean square error to
train the Koopman-based models. Each model structure was trained
30 times, and the minimum weighted training root mean square error
model (RMSE) and its parameters were retained. The performance of
the optimal Koopman-based model was compared to a baseline physics-
based approach through the evaluation of the transient performance
and error distribution, as well as the computation cost. Furthermore,
the performance of the Koopman-based model was analyzed for tem-
perature variation across the fuel cell stack, and results show that
the Koopman-based model’s accuracy is highly promising. Moreover,
after conducting experiments and analyzing the results, it was found
that a smaller dimension of the Koopman-based model leads to better
performance in predicting the behavior of the fuel cell stack. This
observation suggests that a more efficient and computationally feasible
Koopman-based modeling strategy could be implemented for the con-
trol and optimization of the fuel cell stack. Based on the observations
and analysis, it can be concluded that the Koopman operator can be
successfully applied to the PEMFC stack modeling problem with high
accuracy and computation efficiency. In addition, the Koopman-based
modeling approach does not require any additional development effort
compared to the physics-based approach, and it has the ability to
accurately predict temperature variations. The results demonstrate that
the Koopman-based control-oriented modeling approach has promising
potential and may not be limited to the application of modeling the
fuel cell stack.

Furthermore, based on the temperature variation results, it is sug-
gested that the design of the FC stack coolant system and cooling
controller should consider the cooling effects on temperature distribu-
tion for an open cathode proton exchange membrane fuel cell stack.
Implementing temperature zoning control could be a potential solution
for achieving more even cooling and temperature distribution within
the FC stack for the uneven cooling situation.

Future research will explore the use of different kernel functions in
the Koopman-based control-oriented modeling approach. Additionally,
the impact of temperature and humidity variations within the FC stack
will be investigated and the Koopman-based model will be utilized for

FC stack control and efficiency optimization.
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Fig. 20. Error distribution of temperature variation transient results for thermocouple
on the right side of the FC stack.

Fig. 21. Error distribution of temperature variation transient results for thermocouple
on the middle-right side of the FC stack.
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