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Abstract: Accurate modeling is crucial for the effective design and control of fuel cell stacks.
Although physics-based models are widely used, data-driven methods such as the Koopman
operator have not been fully explored for fuel cell modeling. In this paper, a Koopman-based
approach is utilized to model the thermal dynamics of a 5 kW open cathode proton exchange
membrane fuel cell stack. A physics-based model is used as the baseline for comparison. By
varying the cooling fan rotational speed, the dynamics of the fuel cell stack were measured from
the low load of near 0 kW to about 5 kW. Compared to experimental results, the steady-state
absolute errors of Koopman-based models are within 3%. Additionally, once given sufficient
dimension, the development effort required for the Koopman-based model is relatively low
compared to the traditional physics-based approach, while still achieving a high level of accuracy.
These findings suggest the Koopman operator may be a suitable alternative approach for fuel cell
stack modeling that enables the development of more accurate and efficient modeling methods
for fuel cell systems and facilitates the implementation of the linear optimal algorithms.
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1. INTRODUCTION

The demand for energy continues to rise, driven by the
growth of industrialization and urbanization worldwide.
Traditional energy sources such as fossil fuels have been
the primary source of energy for many years, but they
are associated with several environmental problems, such
as air pollution, greenhouse gas (GHG) emissions, and
climate change. According to the US Environmental Pro-
tection Agency, the majority of GHG emissions from the
transportation sector are carbon dioxide (CO2) emissions
resulting from the combustion of petroleum-based prod-
ucts such as gasoline and diesel fuel in internal combus-
tion engines (ICE) [EPA (2023)]. The hydrogen fuel cell
(FC) is considered a promising alternative to traditional
power sources due to its high efficiency and low emissions.
Through an electrochemical reaction, fuel cells produce
only water and heat as byproducts. This characteristic
makes hydrogen fuel cells an environmentally friendly op-
tion for energy generation. In particular, hydrogen fuel cell
stacks have been widely studied as a means of producing
electrical power for a variety of applications, from small
portable devices to large-scale stationary power genera-
tion.However, it is challenging to precisely simulate and
predict the behavior of the stack under varying operating
conditions due to the intricate electrochemical and trans-
port processes that take place within it.

Over the years, various modeling methods have been de-
veloped to enhance the prediction of the performance of
FC stacks, and a thorough review of these methods can
be found in [Wu (2016); Yang et al. (2020)]. The study
in [Pukrushpan et al. (2002)] presented a physics-based
dynamic model with a focus on addressing the airflow
control issue. In [Hillstrom et al. (2013)], a physics-based
model is developed for a 540 kW power output high-speed
vehicle to predict the pressure dynamics at high current

density conditions. Artificial neural network (ANN) ap-
proaches have also been utilized as in [Barzegari et al.
(2019)] in which an ANN was utilized as a data-driven
method for modeling a 400 W FC stack. However, since
this kind of approach is non-linear in nature, it requires
computationally intensive non-linear optimal algorithms
or the linearization of the model before utilizing linear
optimal algorithms. Additionally, as the complexity of the
neural network structure grows, the training cost increases
exponentially. Nevertheless, the potential of the Koopman
operator approach as a data-driven alternative for model-
ing FC stacks has not been thoroughly investigated.

The concept of Koopman operator, representing a nonlin-
ear dynamical system using an infinite-dimensional linear
operator, dates back to the pioneering works of Koopman
in the early 1930s [Koopman (1931)]. In general, the Koop-
man operator, an infinite-dimensional linear operator, rep-
resents a linear transformation that acts on non-linear
observable functions of a dynamical system into a higher-
dimensional space, and it has since been studied by many
researchers [Mauroy et al. (2020); Budǐsić et al. (2012)]. In
[Williams et al. (2015)], extended dynamic mode decom-
position (EDMD) was introduced as a method capable of
approximating the infinite-dimensional Koopman operator
to a finite-dimension. The fact that the Koopman-based
model is linear means that it can be directly integrated
into linear model-based optimization algorithms, which
are computationally efficient compared to nonlinear op-
timization algorithms. This makes the Koopman operator
superior compared to other data-driven techniques [Korda
and Mezić (2018)].

The primary contribution of this paper is the pioneering
application of the Koopman operator to model the FC
stack dynamic system. Our findings highlight the potential
of the Koopman-based approach by comparing it with the
physics-based model. These insights provide a pathway



toward developing a more accurate and efficient control-
oriented modeling approach for FC stacks. The paper
introduces the experimental setup and test conditions
in Section 2 and present the physics-based model and
Koopman-based model, and analyze their calibration and
training results using the same datasets. In section 4,
we compare and analyze the performance of the physics-
based model and Koopman-based model with a different
dataset than the ones used in Section 3. Section 5 provides
some brief concluding remarks and introduces our future
research directions.

2. EXPERIMENTAL CONFIGURATION

2.1 Experimental Setup

In this study, a 5kW open-cathode proton exchange mem-
brane (PEM) fuel cell stack manufactured by Horizon is
utilized. Specifications of the fuel cell stack are summa-
rized in Table 1 and the layout of the experimental set up
is shown in Figure 1. To monitor the ambient conditions,
a hygrometer is used to measure the temperature and rel-
ative humidity. The compressed hydrogen gas is supplied
to the anode side of the FC stack through a regulator and
a flow control valve. The cathode side of the FC stack is
exposed to the ambient air with 81 channels per cell. A
purge valve is used to purge the unused hydrogen, back
diffused water and nitrogen gas every 10 seconds.

Table 1. Fuel Cell Stack Specifications

Description Value Unit

Minimum fuel cell voltage 60 V
Maximum fuel cell stack current 90 A

Maximum fuel cell stack temperature 65 ◦C
External power supply 24/8-12 V/A

Number of cells 120 -
Active area per cell 150 cm2

The FC stack is equipped with four 25kHz fans (San
Ace 9SG5724P5H61) that provide oxygen supply and
cooling. Their rotational speed was dictated by an Arduino
controller with the speed being manipulated by pulse
width modulation (PWM). To simulate the loads on the
FC stack, a Chroma electronic load (63206A-150-600),
with a capacity of 6 kW, is employed. The electronic load
is capable of adjusting the current load. A Chroma DC
power supply (62006P-100-25) provides a constant voltage
to the built-in controller and the fans.

Fig. 1. Experimental setup schematic

Data acquisition is conducted via several devices. The FC
stack built-in module logs stack output voltage, current,
and in-stack temperature. A tachometer (8518T96) and
a panel-meter (8518T61) are used to measure the fans
rotational speed and anode intake pressure is recorded by
an Aalborg (DPC47) flow control valve.

2.2 Operating Conditions

The equipment went through a 30-minute warm-up period
before data collection and each test condition was held for
about five minutes to ensure the system reached steady
state. Data for the last one minute were averaged to get
the steady-state values. A polarization test was conducted
under default operating conditions where the FC stack was
controlled and supervised by the built-in controller, and
only the current load was varied. The current load for the
polarization test ranges from 0A to 90A, with different
intervals for each load range. At low and high loads where
the gradient of the voltage to the current is relatively
larger, a smaller interval was applied. To study the thermal
effects, a set of tests with varying fan speed were conducted
in which the fans were operated from a minimum of 1500
rpm to a maximum of 5800 rpm through the PWM signal
from the self-built controller. Four current sweeps with fan
speeds were conducted, and the speed was kept constant
for each test set. The FC stack temperatures at steady-
state versus the current loads are demonstrated in Figure
2. As the figure shows, test sets 1 and 2 have fewer points
than test sets 3 and 4, because the system’s short circuit
unit (SCU) protection is activated due to the fan’s reduced
cooling capacity at lower speeds which drives the stack
temperature above the upper limit. The polarization test
and data sets 1, 2 and 3 are used as calibration data sets for
the physics-based model and as training data sets for the
Koopman-based model. Data set 4, which has a different
PWM and additional loads that are not covered by the
other data sets, is used to validate both models.

Fig. 2. Experimental data of the FC stack temperature

3. MODELING

In this section, the physics-based model and the Koopman-
based model and their calibration are discussed.

3.1 Physics-based model

The FC stack physics-based model has three submodels:
the electro-chemical model, thermal model, and hydrogen
inlet pressure model as illustrated in Figure 3. The physics-
based model has four input variables: FC stack temper-
ature, current load, hydrogen inlet pressure, and PWM
signal. It produces two outputs: FC stack temperature and
voltage. The polarization curve test data was utilized for
calibrating the electrochemical model, while data set 1, 2,
and 3 were used for calibrating the thermal model and
hydrogen inlet pressure model.

Electrochemical Model Fuel cells are electrochemical de-
vices that convert chemical energy directly into electrical
energy via electrochemical reactions shown as Equation 1:



Fig. 3. Physics-based model schematic

Anode: H2 → 2H+ + 2e−

Cathode:
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1
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O2 → H2O

(1)

The total FC stack voltage Vst is the product of the total
number of fuel cells (Nst) and the voltage output of a single
cell (Vcell). Generally, the fuel cell output voltage can be
expressed as Equation 2:

Vcell(t) = Voc(t)− Vact(t)− Vohm(t)− Vcon(t) (2)

where Voc is the open circuit voltage; Vact, Vohm and
Vcon are the activation loss, ohmic loss, and concentration
loss, respectively. The open circuit cell voltage of a FC
stack is the voltage output when there is no external load
connected to the system and it varies with temperature,
pressure, and activity under non-standard conditions and
can be written as Equation 3 [O’hayre et al. (2016)]:

Voc(t) = E0 +
∆s(Tst)

nF
(Tst(t)− Tamb)

− RTst(t)

nF
ln

1

pH2(t)p
1/2
O2

(3)

where the E0 is the non-standard reversible voltage, ∆s is
the sensible entropy, Tst is the fuel cell stack temperature,
Tamb is the ambient temperature, R is the ideal gas
constant, n is the number of moles of electrons transferred
from the hydrogen gas and equal to 2, F is Faraday’s
constant, pH2 is the hydrogen inlet pressure, and pO2 is the
oxygen inlet pressure and is equal to ambient air pressure
multiplied by the oxygen fraction of the air. The non-
standard reversible voltage E0 is given by:

E0 = −∆g(Tst)

nF
(4)

where ∆g is the non-standard-state free-energy change for
the reaction [Kyle (1984)].

The activation loss can be calculated from Equation 5:

Vact(t) =
RTst(t)

αnF
log

(
i(t)

i0

)
(5)

where i is the current density of the FC stack, i0 is
the exchange current density, α is the charge transfer
coefficient and is set to 0.5 here. The ohmic voltage loss is
given by Equation 6:

Vohm(t) = i(t)Rohm = i(t)(Rion +Relec) (6)

where Rohm is the total ohmic resistance, Rion is the
ionic charge transport resistance, Relec is the electronic
charge transport resistance and equal to 0.00007Ω. Since
a 30-minute warm-up test is conducted prior to each
experimental test, it is assumed that the membrane is fully
self-humidified due to this warm-up process. The value of
Rion can be obtained by utilizing Equation 7 as presented
in [Wang et al. (2014)]:

Rion =
181.6[1 + 0.03i(t) + 0.062(Tst(t)

303 )2i2.5(t)]l

[λm − 0.634− 3i(t)]exp[4.18(1− 303
Tst(t)

)]A
(7)

where l is the membrane thickness (0.0035 cm), λm denotes
the water content of the membrane (22), and A represents
the active area (150 cm2). The concentration voltage loss
is given by [Hao et al. (2016)] :

Vconc = m(expni(t) − 1) (8)

where the coefficients of m and n are determined through
curve fitting to the experimental polarization data.

Figure 4 demonstrates the results of the electrochemical
model predictions for the polarization curve. The steady-
state absolute errors are within 3%. Furthermore, within
the current load range of 0A to approximately 57A,
relatively larger errors are observed compared to the
high-load region. These errors can be attributed to the
activation voltage loss and ohmic voltage loss models,
which primarily impact the low and medium current load
regions.

Fig. 4. Polarization curve comparison

Thermal model The FC stack thermal dynamics can be
described as following Equation 9 [Ishaku et al. (2014)]

Ct
dTst(t)

dt
= Ptot(t)− Pst(t)− Q̇coolant(t) (9)

where Ptot is the total power released by the electro-
chemical reactions (W), Pst represents the electrical power

output of the FC stack (W), and Q̇coolant is the heat
dissipated to the cooling airflow. Ct is the thermal capac-
itance (J/K-s) determined by data observation. Since the
built-in controller and the fans are powered by a separate
DC power supply rather than consuming power generated
by the FC stack in the tests, their power consumption is
not considered in this equation. The total power released
by the electrochemical reaction in the FC stack can be
calculated from Equation 10:

Ptot =
NstIst(t)∆h

nF
(10)

where ∆h represents the higher heating value of the
hydrogen gas. The FC stack output power is the product
of the stack voltage (Vst(t)) and stack current ((t)Ist(t)).

The variable Q̇coolant is determined by considering the air
blowing through the FC stack, and can be derived from:

Q̇coolant = ηfanṁair(t)cp(Tst(t)− Tamb) (11)

where ηfan is the fan efficiency, ṁair is the air mass flow
rate, and cp is the specific heat coefficient of the air. To
obtain the air mass flow rate in the above equation, its
volumetric flow rate for any rotational speed of the fan is
given by Equation 12:



Q(t) = ω(t)
Qnom

ωnom
(12)

where ω is the arbitrary fan speed (RPM), Qnom is the
nominal volumetric flow rate (m3/s) of the fan, and ωnom

is the nominal fan speed (RPM) at the operating curve,
Qnorm and ωnorm are obtained based on the method
in [Ishaku et al. (2014)]. A static empirical model is
employed to describe the correlation between the input
PWM command to the fans’ rotational speed:

ω(t) =


1500 for PWM∈[0,20)
60.36ufan(t) + 294.2 for PWM∈[20,90)
5800 for PWM∈(90,100]

(13)

where ufan is the PWM of fan.

Data sets 1, 2, and 3 are used for model calibration. To
determine ηfan, MATLAB fminsearch function is used
and the output is 46.59%. Data set 4 is used to validate
the thermal model. Figure 5 shows the thermal model
calibration results, and the errors are within 3% for all the
test conditions. To enable control of the transient response,
all responses are assumed to be first-order, and 5209 (J/K-
s) is assigned to Ct based on experimental data.

Fig. 5. Fan efficiency calibration results

Hydrogen Inlet Pressure Model As a result of a wa-
ter concentration gradient across the membrane, water
molecules generated in the cathode can diffuse back to the
anode. Similarly, nitrogen molecules present in the cathode
air stream can transfer to the anode side due to a corre-
sponding nitrogen concentration gradient. Consequently,
water and nitrogen molecules tend to accumulate in the
anode channels and can impede hydrogen delivery leading
to voltage losses and degradation [O’hayre et al. (2016)].
To prevent this phenomenon, a periodic anode purging is
performed. During the purging process, the back diffused
nitrogen gas and water, along with unused hydrogen gas
are removed from the anode, resulting in improved per-
formance. The period of the purging cycle is fixed at 10
seconds, while the purging time varies and is determined
based on a lookup table that takes into account the current
load and temperature of the FC stack. Equation 14 [Ishaku
et al. (2014)] can be utilized to determine the hydrogen gas
inlet pressure

pH2,inlet(t) =ptank(t)u(t)−∆ppurgeu(t− t1)

+ ∆ppurge(1− e
− t−t2

τp )
(14)

where ptank is the hydrogen tank outlet pressure, ∆ppurge

and τP is the pressure drop during the purging and time
constant, respectively, and they are determined from the
data. The time instances t1 and t2 refer to the start and

the end of the purging process, respectively, and u(t) is
the unit step function. Though the hydrogen tank outlet
pressure is predetermined as a constant, an increase in
current load will lead to a higher hydrogen mass flow rate,
causing a drop in the hydrogen tank pressure. As such,
ptank is modeled as a third order polynomial of the stack
current load.

Figure 6 shows the hydrogen gas inlet pressure results of
data set 2. It is clear that this model can capture the
pressure drops caused by changing the current load and
the purge valve status. Some misalignment of the pressure
drop can be observed, and this this is caused by a sensor
sampling time which is too long to capture the transient
changes. In addition, during each purging cycle, there is
an additional pressure drop caused by the SCU which
also consumes the hydrogen gas. The SCU’s purpose is
to safeguard from overload, overvoltage, and overheating.

Fig. 6. Purging result at 40%PWM (Data set 2)

3.2 Data-Driven Model

Koopman concepts The Koopman operator is applied to
a discrete-time nonlinear dynamic system with the form:

xk+1 = f(xk,uk) (15)

where k represents the current time step, x ∈ Rn denotes
the state of the dynamic system with n dimensions, u ∈
Rm is the control input with m dimensions, f is the
nonlinear transition mapping.

The Koopman operator, K:F → F , is a linear operator
(typically infinite-dimensional) acting on nonlinear observ-
able functions ψ : Rn → RN which belong to F . F is a
space of observables that is invariant under the action of
the Koopman operator, and it can be expressed as:

(Kψ)(x) = ψ(f(x)) (16)

In this study, the goal is to construct a control-oriented
model for the FC stack by using the Koopman operator.
To achieve this, extended dynamic mode decomposition
(EDMD) [Williams et al. (2015)] is applied to approximate
the infinite-dimension Koopman operator into a finite-
dimension form K ∈ RN , N≫n. In general, it performs
regression on a vector of observable functions and produces
the lifted state vector.

The lifted state z ∈ RN can be expressed as:

z = ϕ(x) = [ϕ1(x), ϕ2(x)...ϕN (x)]T (17)

and the discrete-time of the lifted state space is given by:

zk+1 = Azk +Buk
x̂k = Czk

(18)



where x̂ denotes the predicted states, the best-fit linear
operators A, B and C are obtained through EDMD, and
A ∈ RN×N , B ∈ RN×m, C ∈ Rn×N .

For the discrete system, the data has inputs to the Koop-
man operator that include the current state (χ ∈ Rn×k),
successor state (χ+ ∈ Rn×k) and control inputs (U ∈
Rm×k). The matrices Z and Z+ are composed of the lifted
states with the dimension RN×k.

The matrices of A, B and C can be obtained through
the best least-squares, and the analytical solutions can be
expressed as:

[A,B] = Z+[Z,U ]†

C = χZ† (19)

where † denotes the Moore-Penrose pseudoinverse of a
matrix. In addition, the thin plate spline radial basis
function (RBF) is used:

φ(r) = r2ln(r) (20)

where r represents the distance between the data point to
randomly generated centers.

In this study, the state inputs were temperature, voltage
and hydrogen pressure. The control inputs were load
and PWM command and the outputs were temperature,
voltage and hydrogen pressure. As such, the lifted states
of Eq.17 can be summarized as:

z = [x1, x2, x3, ϕ4(x), ..., ϕN (x)]T (21)

where ϕN (x) represents the radial basis function (RBF)
with N ≥ 4, by defining the lifted states in the proposed
format, the C matrix in Eq.18 can be obtained easily.
Furthermore, in combination with the A and B matrices,
it can be iterated through Eq.18.

To determine the optimal hyperparameters for the Koopman-
based model, two Koopman operators with different di-
mensions (N=9 and N=13) were trained and evaluated.
The model with the lowest overall root mean square error
(RMSE) was selected as the optimal model. This optimal
model was then compared to the physics-based model in
Section 4. The 9-dimensional Koopman-based model was
chosen for comparison due to its comparable accuracy to
the 13-dimensional model but with reduced computational
time (14.84s vs. 32.24s).

4. RESULTS

In this section, we will analyze and compare the perfor-
mance of the physics-based model and the Koopman-based
model using data set 4 with fan’s PWM of 90%, which
has never been used for model calibration. The prediction
horizon of Koopman-based model was set as 5 sample
time steps to reduce the accumulated errors. Figure 7
compares the voltage transient results obtained from the
9-dimensional Koopman-based model (Koopman9) and
the physics-based model. At steady-state conditions, the
Koopman-based model has lower errors under all test
conditions though the absolute errors of both models
are less than 3%. Meanwhile, the Koopman-based model
demonstrates superior performance in capturing transient
dynamics compared to the physics-based model. The lim-
itation arises from the thermal model’s first-order nature,
as evident from Eq.9. Consequently, the electrochemical

model follows the dynamics of the thermal model, which
cannot fully capture the non-linear dynamic behavior of
the FC stack voltage. This limitation becomes more evi-
dent in high-load regions.

Fig. 7. Voltage output comparison at maximum fan speed
(Data set 4)

The Koopman-based model has a smaller error range and
a more concentrated error distribution compared to the
physics-based model. The maximum error of the physics-
based model is 6.68 Volts, which occurred during the
transient processes as shown in Figure 7 due to the
limitation of the first-order thermal model. In addition,
the error distribution observed in Figure 7 exhibits slight
differences compared to Figure 4. Specifically, in Figure
4, the voltage is over-estimated after approximately 57A,
whereas in Figure 7, this overestimation occurs after 40A.
This variation can be attributed to the maximum fan
speed causing in lower in-stack temperature.

Fig. 8. Stack temperature comparison at maximum fan
speed (Data set 4)

Figure 8 shows the FC stack temperature prediction re-
sults. Similar to the voltage results, Koopman-based model
demonstrates better transient and steady state perfor-
mance compared to the physics-based model, with a re-
duced error range and more concentrated error distribu-
tion. The physics-based model underestimated stack tem-
perature for all test conditions. This is because the physics-
based coolant model is based on a constant efficiency for
the fan, which was overestimated based on data sets 1,
2, and 3. As a result, it led to an underestimation of
the stack temperature for data set 4 with 90% PWM,
with the maximum error of 6.4 K at the load of 85 A.
One possible approach to enhance the accuracy of the
temperature prediction of the physics-based model is by
modeling the fan’s efficiency as a function of PWM instead
of a constant. However, this would result in increased com-
plexity and computational cost of the model. Although the



physics-based model has overestimated temperature, both
the Koopman-based and physics-based models exhibit an
error within 3%.

Figure 9 compares the prediction results and the error
distributions of the FC stack hydrogen inlet pressure be-
tween the physics-based model and the Koopman-based
model. Both models exhibit a steady-state error within
3%, despite the transient overestimation observed in the
Koopman-based model’s error. The overall error distribu-
tion across all of the validation data are within 2 psia.
It can be observed that the Koopman-based model shows
a slight overestimation of the hydrogen inlet pressure for
all validation conditions. This is because the calibration
data sets are with PWM up to 60%, while that of the
validation data set is 90%. A possible way to optimize
this is that make the H2 pressure weight larger during
the training process. Similar to the calibration results,
the misalignment of the pressure drop is observed, which
needs improvement in the future. The computation time
of the physics-based model is 0.2205 seconds compared to
0.1486 seconds for the Koopman-based model. As such,
the Koopman-based model has a computational time that
is 36.64% less than the physics-based model.

Fig. 9. Hydrogen pressure results at maximum fan speed
(Data set 4)

5. CONCLUSIONS AND FUTURE WORK

In this study, a Koopman-based model was developed for
a PEM fuel cell stack and its performance was compared
to a baseline physics-based approach. Both models were
calibrated with the experimental data collected under a
wide range of operating conditions, with sweeps of current
load and fan’s PWM. Based on the test results of the stack
voltage, temperature, and hydrogen inlet pressure, it is
clear that the Koopman-based model can capture transient
dynamics without requiring additional effort. In addition,
the Koopman-based model can have a faster computa-
tional speed than the physics-based model. Compared to
the traditional physics-based approach, the development
effort required for the Koopman-based model is relatively
low but with high accuracy. Future work will focus on the
systematic determination of the optimal hyperparameters
and radial basis function for the Koopman-based modeling
approach. Modeling and control of temperature and hu-
midity variations within the FC stack will also be explored.
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