2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Prescribed-Time Extremum Seeking with Chirpy Probing
for PDEs—Part |: Delay

Cemal Tugrul Yilmaz and Miroslav Krstic

Abstract— We introduce a scalar prescribed—time extremum-
seeking control design for static nonlinear maps subject to
known input delays. Even in the delay-free case, unlike inthe
recent efforts by Poveda and Krstic, and by Guay and
Benosman, where a user-assigned (prescribed) settling time is
enabled by the use of a Newton-based scheme (and by non-
smooth feedback of the gradient estimate), our approach
employs “chirped” probing and a time varying gain, which
ensure convergence to the optimum in prescribed time, in-
dependent of the initial distance from the optimizer, even
for a gradient scheme. Conventional analysis techniques for
extremum seeking, based on infinite-time stability, averaging
theory, and PDE backstepping, are leveraged by means of a
time dilation (a conversion of time between finite and infinite
horizons). This Part | paper is companion to a Part |l paper
which introduces PT-ES for a three-piece cascade of a heat
PDE, an integrator, and a static map, which are inspired by
optimization of phase change problems in the form of the Stefan
PDE-ODE model.

I. INTRODUCTION

A. Extremum seeking and prescribed-time stabilization

Extremum seeking (ES) has been an effective optimization
technique to find the optimum of static and dynamic systems
in real time due to its non-model based nature. Since its proof
of stability for ES was developed [9], this technique has been
actively studied in terms of theory and has been validated
practically in numerous applications (see [17] and references
therein). In recent years, ES has also been extended to
static maps with time delays observed in the actuation and
measurement path. This problem setting can be observed
in semiconductor manufacturing, or in many chemical and
biochemical processes as discussed in [13]. In addition,
the developed delay compensated ES algorithms have been
applied to the game theory [14] and the traffic bottleneck
congestion [19] problem to name a few.

More recently, the concept of prescribed-time (PT) stabi-
lization convergence has been attracting an extensive interest
because the convergence time is prescribed a priori by
the user independently of the initial condition and system
parameters, which represents an advantage with respect to
the other stability concepts such as asymptotic, finite-time
and fixed-time stability. Although there has been results on
prescribed-time stability of finite-dimensional [6], [16] and
infinite-dimensional systems [1], [2], ES with finite-time
[4] and fixed-time or prescribed-time convergence [15] are
relatively new in the literature.
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B. Prescribed-time extremum seeking with chirpy sinusoids

We present the first result in the literature that achieves
prescribed-time extremum seeking (PT-ES), first for a static
map and then for a map preceded by a delay. In a second,
companion paper, we extend our results to static maps with
heat PDE actuator dynamics [18].

Two novel ingredients of the PT-ES are (1) the em-
ployment of “chirpy” perturbation and demodulation signals
(signals whose frequency grows unbounded) and (2) the use
of tuning gains that grow unbounded (at least in theory; in
implementation they are “clipped” to some moderately large
values, sufficient to get very close to the extremum by the
prescribed terminal time T).

Chirpy signals are common in signal processing and radar
technology. In our PT-ES we replace probing sinusoids
with a constant frequency w by sinusoids with argument
wtT/(to + T - t), which goes to infinity as the time t
advances from the initial time to to the terminal time to+ T,
where T is the prescribed horizon of convergence to the
extremum. The first derivative of the sinusoid’s argument is
called the ‘instantaneous frequency’ and in our case it is
given by w(to + T)T/(to + T - t)2. The second derivative
is called ‘chirpiness,” which in our approach is

T(to + T)
(to+ T - 1t)3°

We first show a PT-ES design for a static scalar map, to
provide the basic understanding for how the existing theory
of infinite-horizon averaging can be employed for a stability
study in a PT setting. This movement between finite and
infinite time is done using the time-dilation transformation
T(t) = Tt/(to+ T - t), where T begins at to and becomes
infinite when t > to+ T.

In the absence of delay, it is of interest to compare the
result of our Section Il with the result in [15]. The fixed-
time result in [15] yield settling times that are user-assignable
only with Newton-based algorithms, which make the settling
times independent of the unknown Hessian. In our paper,
thanks to the use of chirped probing and a time-varying gain,
we achieve a desired settling time T without the Hessian
estimation and without the Newton approach.

Then, in Sections Ill, 1V, and VI, we advance to a static
map with an input delay, which is inspired by maximizing
flow through traffic bottlenecks [19]. We first represent
the delay using a transport PDE and obtain a ODE-PDE
cascade. Second, we design a time-varying backstepping
transformation, which maps the cascade into a prescribed-
time stabilized target system, and obtain a controller. The

(1)

chirpiness(t) = 2w
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perturbation-based estimates of the gradient and Hessian are
incorporated into the resulting controller. Then, we prove the
PT convergence of the average closed-loop system. We also
discuss that the proof of the PT convergence of the output to
a small neighborhood of the extremum would be shown if a
suitable averaging theorem was developed.

C. Notation

The partial derivatives of a function u(x, t) are denoted
by dxu(x,t) = 0du(x,t)/0x, dtu(x,t) = du(x, t)/dt.

The spatial LZ(O,RD) norm of u(x,t) is denoted by
||u(-,t)||L22(0,D) = OD u?(x, t)dx. The spatial L2 (X ) norm
of a function p(x,y,t), where X := {0 < vy

A

)Fg SR D} for D 2 O, is denoted by |[p(-, -, t)A,x,
D

o o P2(xy, t)dydx.
Il. BASIC PT-ES FREE OF DELAYS: DESIGN AND
ANALYSIS
The main objective of scalar PT-ES is to find the optimum
of the unknown static map Q(6) in a prescribed-time by
employing harmonic excitation to the input 8 @ R, and ex-
tracting the gradient information G~ from the output response y
R. Regarding the structure of the unknown static map, we
assume the following:
Assumption 1: The unknown nonlinear static map has the
following quadratic form,
H
Q(e) = y"+ (8- 6"), (2)
where y? @ R and 82 @ R are the unknown optimum output
and input value, respectively, H < 0 is the unknown Hessian
of the static map Q(6).
We illustrate the basic procedure of the PT-ES scheme in
Figure 1. It is clear from (2) and Figure 1 that the output
signal y(t) is written as follows

vit) = v+ Do) - %) @)

We define the following dilation and contraction transforma-
tions

t

T= m/ (4)

= (T T
t=( +tO)T+t' (5)

with the following smooth functions

t- to

v(it-to)=1- , 6
(t- to) T (6)

_ 1
Hm(t - to) = IR 7)

for t @ [to,to + T), T @ [to, =) and m B N, where to is the
initial time and T is the prescribed-time. In general, the
perturbation signals S(t) and M (t) are chosen as asin(wt)
and fsin(wt) in order to ensure the exponential stability of
the averaged error-dynamics. To achieve PT convergence to
the extremum, we replace the sinusoids with “chirpy” per-
turbation and demodulation signals whose frequency grows
rather than being constant:

_ f t
S(t) = asin . w o5 (8)

t t
(t) al) y(t)

® [1s
S t) 1+
ke M (t)
Fig. 1. Basic PT-ES scheme
M (t) = 2gn Wt , (9)
a V(t - to)

Letting 6= 6 - 087 and considering Fig. 1, we can write

t
a(t) = k\#]_l_gr £ ) 2sin 2t y(t),  (10)
for k > 0. Considering (5), we define 6 (t) = ¢ T(TT:E")

and note that 8(t) = 6(t) + asin (9L which vyields

B(t) - 82 = B(t) + asin i) - Then,0 by recalling (3),
we can rewrite (10) in T-domain as follows

- 2
6 (t) =Eka sin(wt) y'H 2~9°°(t) + asin (wt)
N (11)
The averaging of (11) yields
%jr) = kHE3(T), (12)

which shows the local exponential stability of °(t) in t-
domain, T @ [to, ) and implies the local PT stability of
g(t) in t-domain, t @ [to,to + T). The following theorem
concludes the properties of the basic PT-ES scheme depicted
in Figure 1.

Theorem 1: Consider the system in Figure 1 and the trans-
formations (4), (5) under Assumption 1. There exists w? > 0
such that Bw > w?, the error (1) = § Tq%‘)) - 8% has
a unique prescribed-time stable solution in t-domain, denoted
by 6" V—(-ti_t;) , where B"(t) is the unique exponentially
stable periodic solution in t of period N = 2nt/w satisfying Bt
2 to:

8"(t)| < O(1/w). (13)

Furthermore,
telti;’r: L sup [8(t) - ¥ = O(a+ 1/w), (14)
lim sup |y(t)- v?| = O(a%+ 1/w?). (15)

Prootf?tﬁ{e proof of (13) follows from the application
of the averaging theorem [7] to (12). Performing the time
contraction T = t in (13), we deduce the PT stable solution
of B(t). In view of the fact (13), we can write

lénae sup |9";’](r)|2
T

= lim sup [87(x)+ §"(x) - 6")12°,  (16)
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Fig. 2.
compensation

Block diagram of the developed PT-ES scheme for delay

v n °
ZIIer; sup |B=(t) - 6™(1)|%+ B"(T)|2 , (17)
O(1/w). (18)

IN

IN

Considering the property of 8°°(t)-6% = 8= (t)+asin(wt)
and performing the time contraction T = t, we get (14).
Considering (3) and (14), we conclude (15). [ |

I1l. PROBLEM STATEMENT FOR PT-ES WITH DELAYS

In this paper, we consider the case that the output y(t) has
a known and constant delay D BR, i.e.,

y(t) = Q(6(t - D)). (19)

Note that the static map Q(6) allows us to write the delay D
asD = Dy + Dy, where Dy and Dy are the delays in the
actuation and measurement path, respectively. Our aim is to
design a scalar PT-ES which compensates the delay and
stabilizes the output signal y(t) around a small neighborhood
of the extremum in the prescribed time T > D. In addition to
Assumption 1, we make the following assumption regarding
the bound of the Hessian.

Assumption 2: The lower bound of the unknown Hessian
of the static map, H < H, is known.
Considering Assumption 1, we can write the output of the
static map as follows

yit)= v+ %(e(t— D) - 6%)2. (20)

Figure 2 illustrates the closed-loop ES with prescribed-time
delay compensation controller, which is to be designed.

IV. PERTURBATION SIGNALS AND GRADIENT/HESSIAN
ESTIMATE

In this section, we define the signals introduced in Figure
2. Let us first define the following error state

6(t) = 6(t) - 6°, (21)

where 6(t) is the estimate of 8% and 8(t) is the estimation

error. In view of (21), we can write the estimation error
dynamics from Figure 2 as follows

6(t- D) = U(t- D).
Moreover, we get

(22)

8(t) = B(t) + S(t), (23)
Here, S(t) is the derivative of the future state of (8) in
delay-free case since the integrator acts before the map Q(-),

whereas the integrator comes after U (t) in Figure 1. S(t) is
expressed as follows

- w(t+ D) 1+ £T9 i
S(t) = aw cos VtF D= to] VIEF D - to] (24)
Considering (23) and (24), we can write the following
relation
0(t) = B(t) + asin w$t+ D) (25)
Let us define
9(t) = 6(t- D). (26)

Combining (21) and (25) in view of (26), we get the
following relation
9(t) + asin

= 6(t- D) - 6% (27)

(9t )
The final step before designing a controller is to generate the
estimate of the gradient and Hessian as follows

G(t) = M(t)y(t), (28)
H(t) = N(t)y(t), (29)
with the following multiplicative excitation signals
2 . wt
M (t) = sin -t (30)
N(t)= - a82cos 2wt (31)

Performing time dilation t - t and following [3], the
averaged version of the gradient (28) and Hessian estimate
(29) along with (20), (27) can be calculated as follows

Gav(t) = HOav(t),
Hav(t) = H.

(32)
(33)
V. CONTROLLER DESIGN

Recalling (22), (26) and using the technique in [8], the
delayed input U(t - D) can be represented as the boundary
of a transport partial differential equation (PDE) as follows,

9(t) = u(0,1), (34)
otu(x, t) = oxu(x,t), (35)
u(D, t) = U(t), (36)
where the solution of (35) and (36) is given by
u(x,t)= U(t+ x - D). (37)

Following the technique discussed in [8], we consider the
following backstepping transformation

X

w(x,t) = u(x,t) + kpa(t- to+ x) O(t) + u(y, t)dy
RN EY)
which maps (34)—(36) into the target system
9(t) = - kpa(t- to)9(t) + w(0,t),  (39)
0tw(x, t) = dxw(x, t), (40)
otw(D,t) = - poM2(t- to+ D)w(D, t), (41)
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where k, > 0. Now, in order to design a dynamic
stabilizing feedback law, let us take the derivative of (38)

with respect to x

Aew(x, t) = deu(x, t) + kpa(t - to+ x)u(x, t)

+ 2k/Tus(t- to+ D) O(t)+ ~ *uly,t)dy . (42)
0

In (42), let x = D and consider the dynamic boundary
condition (41). Then, we obtain the controller as follows

U(t)= - (Mo + k)pa(t- to+ D)U(t)
- kps(t- to+ D) popa(t- to+ D) + 2/T
Zo |
x  9(t) + u(y, t)dy (43)
0

The implementation of the controller (43) is not possible
since there is no measurement of 9(t). To achieve this, let
us define k = kH where H < 0 is the unknown Hessian
and the gain k < 0 is assigned by the user. Then, we can

rewrite the controller (43) as follows

U(t) = - poM2(t- to+ D)U(t) + H(t)Q(t) + G(t)P(t),

(44)
where
Q(t) = -kpa(t- to+ D) U(t)+ pa(t- to+ D)
z D
X  MoMma(t- to+ D)+ 2/T u(y,t)dy ,  (45)
0

P(t) = -kus(t- to+ D)[pop1(t— to+ D) + 2/T]. (46)

Let us note that imposing a dynamic boundary condition on
the target systems (41) is inspired by [10]. This enables us
to design a dynamic stabilizing feedback law directly. This is
a different controller design approach than [11] where a
static stabilizing feedback law is designed first and then, a
low-pass filter applied to the controller. Substituting (28) and
(29) into (44), we obtain the following error-dynamics

8(t) = u(0, 1), (47)
otu(x, t) = oxu(x, t), (48)
0tu(D,t) = —poM2(t— to+ D)u(D, t) + HP(t)O(t)

+ HQ(t) + sin \/(%tt()) f1(t)
- cos 2wt fy(t)- sin vi 3wt fa(t) +
cos 4wt . fa(t), (49)

where

2y"? 3Ha

f(e) = p(e) 2L+ H;ﬁz(t)+ 2 vawm %ﬁ(t) . (50)

f(t) = POMHBMI+ at) 2H+ v Moy . (s1)
a a

f3(t) = P(t) HTa + Qt) %ﬁ(t) , (52)

fa(t) = Q(t)H. (53)

VI. STABILITY ANALYSIS
Let us define 9 (t) = 9(t(T +to)/(T +1T)), u™(x, T) =
u(x, T(T + to)/(T + 1)), U™(T) = U(t(T + to)/(T + 1))
and write the system (47)—(49) in t-domain as follows

d gw, v T(T+ty)
Eﬁ (t) - ﬁ% u (OIT)I (54)
oo _ T(T + to) oo
0uT(x,T) = W oxu~(x, T), (55)
d . d .
EU (D,t) = EU (t), (56)

for T @ [to, e=) and x @ [0, D]. The average version of the
error-dynamics (54)—(56) in T-domain can be directly written
as follows

T(T + tp)

d
Eﬁav(t) - W uaV(Olt)l (57)
oo T(T + to) v

druzy(x,T) = Aﬁi7grm%ﬁmw, (58)

d . _d o
d—tuav(D,t) = d—tUav (t). (59)

Let us write (57)—(59) in t-domain again as follows

sav(t) = uav(0, 1), (60)
OtUav(x, t) = Oxuav(x, t), (61)

& Uau(D, 1) = ~(Ho + kH)pa(t = to+ D)uay(D, 1)

- kH popa(t- to+ D)+ 2ps(t- to+ D)
Z D 1-!
Uav(y, t)dy

x  Tav(t) + (62)

0
for (x, t) @ T2. The main theorem is stated as follows.
Theorem 2: The average system (60)—(62) is prescribed-

time stable and tne solution satisfies i

t%litle"fT 8av(t) + ||Uav(‘, t)1 |L2(O,D) = OI (63)
1 2 -
(yuim ) Ud(D) = 0 (64)
Proof:

Step 1: (Time dilation t = t) This step is done in (54)—
(56) by writing the system (47)—(49) in T-domain.

Step 2: (Averaging operation) We perform this step in
(57)—(59) by taking the average of (54)—(56).

Step 3: (Time contraction T = t) We convert (57)—(59)
to (60)—(62).

Step 4: (Backstepping transformation) The backstep-
ping transformation

w(X, t) = uav(x, t) + kHi,lz(t— to+ X)

x  Dau(t) + . Uav(y, t)dy (65)

transforms (60)—(62) into the target system
Bav(t) = - kHua(t - to)dav(t) + w(0,t),  (66)
Otw(x, t) = Oxw(x, t), (67)
SwD, 0= - pomalt- to+ DIW(D, ). (68)
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The explicit solution of the PDE system (67), (68) is given
by
w(x,t) = e—lloT(H1(t—t0+X)—u1(D))W(D’ to). (69)
Considering (69), we obtain the solution of the ODE system
(66) as follows
R
uvlt) = e t‘o —kHuz(ﬂ—to)dﬂﬂ
Z: g
x e s “kHuz(t-to)dt e-uoT(Hl(ﬂ—to)—Hl(D))dn
to
= e kAT (t-to)-1)g
t
e‘Tlll(f'I—to)(llo—kH)dn

av(tO) + W(D, tO)

v(to) + w(D, to)eteTw(P)

x e—kHTlM(t—to)

to

ﬂaV(tO),

for C1 > 0. Choosing po > kH, where H is the known
lower bound of H, we conclude that O,y(t) > 0 as t >
to + T. Moreover, we can also prove the prescribed-time
stability of the norm W (t) := ||w(,t)|]%; . To do this,
we take the derivative of W (t) as follows

Zp

< Cre HTHi(t-t0) (70)

W (t) ~2uopz2(t - to+ x)w2(x, t)dx

0
- 2HoM2(t - to)W (t).

It follows from (71) that
[Tw(-, t)] | 2(0,0) < €72HT 1 | (-, t0) | | 12(0,0),
(72)
from which we can conclude that ||w(-,t)||i20p) = O
as t > to+ T. In order to show the prescribed-time
stability the original system (60)—(62) as well, the backstep-
ping transformation (65) needs to be invertible. The inverse

transformation is givenZ by
X

. p(x,y, thw(y, t)dy + T(x, t)Tay(t)

7N

(71)

Uav(x, t) = w(x, t) +

(73)
where the kernels p(x, y, t) satisfies
6tp(xl Y, t) = Oxp(xl Y, t) + oyp(X, Y, t)l (74)
p(x,0,t) = T(x, t), (75)
for (x,y,t) @ T1 and the kernel I'(x, t) satisfies
0tl(x, t) = 0xl(x, t) + kHu2(t - to)l(x, t), (76)
r0,t) = - kHp2(t - to), (77)

for (x,t) @ T, The well-posed solutions of the PDE system
(74)—(77) are given as follows

(X, y,t) = = kHua(t = to+ x)ekHTHL(E-tosy)-KHT ky(t-tosx)
(78)

(X, 1) = - kHp2(t - to+ x)ekHTHI(E-t0)-kHT w1 (t-tosx)
(79)

The inverse backstepping transformation (73) is bounded

where X := {0 £ y < x £ D}.
following bounds

It is easy to recover the

r2(D, t)02,(t) € Copa(t - to+ D)e 2kHTHi(t-to+D) = (gq)
I1p(D, -, tyw(-, t)[[L2( 0, D )

< Cspa(t—- to+ D)e 2KHTH1(t-torD) (82)

T ) PIL2(0,D )8%,(t) < Capa(t - to)e 2KMTHilt-to),

L (83)

L1p(, - W, 1] %2 (x) S Cspa(t = to)e 2kHTHI(t0) — (ga)

provided that o > kH for some Ca,C3,C4,Cs > 0 by
recalling (70), (72), (78) and (79). The stability bound for
the original system (60)—(62) can be written from (80) as
follows

% (t) + |uav(-, ) A L2(0,D)
< 3 w(-, t)Plioop) + 3D1IR(, - W(-, 1) A
+ 1+ 3|1, 1) [F20,0) B2 (1) (85)

In view of the bounds (83), (84) and noting the fact that the

decaying exponential terms dominate the the right hand side

of (83), (84) as t > to + T, we conclude that 62 (t)

[ Tua(-, )] |2 200 20 t>t+ T, This proves (63)
The next step is to recover the bound of the average

controller input Uay(t) = uay(D, t). Setting x = D in (65),

we obtain the following bound

U2,(t) < 3w?(D, t) + 3D||p(D, -, thw(-, ) [} 2(0,0)
+ 3r2(D, t)92,(t). (86)

Recalling the bounds (69), (81), (82) and noting the domina-
tion of the exponential component at the right hand side as t
- to+T -D, we ensure that Uay(t) > 0ast = to+T-D.
This proves (64) and completes the proof of Theorem 2. m

In Theorem 2, we prove that the average closed-loop
system (60)—(62) is PT stable. Note that the right hand
side of (54) and (55) has a decaying function of time. If
these functions were a constant, the averaging technique
introduced in [5] would be used. However, for the system
(54)—(56), there is no suitable averaging theorem and remains
as an open problem in the literature. If this theorem existed,
then we would apply it to (54)—(56), then perform the time
contraction T = t and prove the following conjecture.

Conjecture 1: Consider the transformations (4), (5), the
error-dynamics (47)—(49) in t-domain and the error-dynamics
(54)—(56) in t-domain under Assumption 1 and 2. There
exists w? > 0 such that Bw > w?®, the error dynamical system
(47)—(49) has a unique prescribed-time stable solution in t-
domain, denoted by 9" TeRT u x, e+ Where
9(t), u"(x, T) is the unique exponentially stable periodic
solution of (54)—(56) in T of period M = 2m/w satisfying
Bt > to:

O (T)? + 11U 0 ayom *+ (u"(D, T2 < O(1/w).

by (87)
Furthermore,
[uav(-, t) | 2fo0) <31 Iw(-, ) [IL2(0, D ) + (s im_sup 18() - 8’ = O(a+ 1/uw), (88)
ot
31T, 1) 1L2(0, 6,8 (t) + 3D p(2 -, hw(-, 1) L 2( ), lim sup ly(t) - ¥’| = O(a” + 1/w?). (89)
(80) 9t0+
1004
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Fig. 3. The upper plot shows the prescribed-time stability of the output
signal y(t) under the PT-ES scheme (10) in the presence of no delay. In
the lower plot, this scheme fails to achieve the convergence to the optimum
value y? in the presence of delay, while, the developed PT-ES algorithm
(44) compensates the delay and achieves the controller objective in the
prescribed time T = 40s.

VII. NUMERICAL SIMULATION

In order to test the effectiveness of the developed ex-
tremum seeking controller, we consider the following static
quadratic map with the delayed measurement

Q(®) = 5- (8- 2)% (90)
y(t) = Q(B(t- 5)), (91)

which is borrowed from [12]. It is clear from (90) and (91)
that the extremum point is (8%, y?) = (2, 5), the Hessian of
the map is H = -2 and the input-output delay is D = 5s. We
choose the following parameters to perform our simulation: k
-0.01, a = 0.2, w = 10, go = 0.03, U(to) = 0, 8(to)
0. The initial time is to = 0 and the prescribed-time is
selected as T = 40s. Figure 3 shows the evolution of the
output signal y(t) in three situations: (i) the PT-ES (10)
without any input-output delay, (ii) the same controller in the
presence of the input-output delay and (iii) the developed
delay-compensated PT-ES (44) in the presence of the input-
output delay.

1> 1

VIIl. CONCLUSION

In this paper, we introduce a scalar gradient-based PT-
ES algorithm in the presence of known input-output delay.
Although the problem of PT stability of finite-dimensional
and infinite-dimensional system as well as the exponential
stability of ES algorithms have been actively researched in

the recent years, this is the first attempt which combines two
concepts, namely PT stability and delay compensation for ES
algorithms. We design an average-based controller through a
backstepping transformation which maps the system into a
desired PT stable target. We prove that the average closed-
loop system converges to zero in the prescribed time. We
discuss that if there was a generalized averaging theorem for
infinite-dimensional systems, we would prove the existence
of the PT stable solution of the closed-loop system. The
numerical simulations illustrate that the developed algorithm
achieves the convergence of the system output to a small
neighborhood of the extremum point in the prescribed time.
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