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Abstract— Soft, growing robots have the ability to conform

to their environment and traverse highly curved paths that

would typically prove challenging for other robot designs.

As they navigate through these constrained and cluttered

environments, there is often significant interaction between

the robot and its surroundings. In this work, we propose a

method to enable tactile perception for growing robots, which

utilizes commercially available, flexible sensors that measure

the curvature of the robot shape at multiple locations. Our

method consists of both a pouch design to enable seamless

integration of the sensors with the material of the growing

robot, as well as an algorithm for determining the location of

point contacts along the robot body. We validate our proposed

approach experimentally using a 3.5 cm robot that can grow

to be 53 cm long. We show that we can localize a force applied

to various locations along its length with an average error of

3.44±1.38 cm when the robot is unactuated and 4.62±0.95 cm

when the robot is actuated. Additionally, we characterize the

minimum distance required for our tactile sensing approach

to discriminate between two separate contact points along the

robot body to be 23.5 cm. Finally, we apply our method to a

growing robot exploring an unknown environment and show

that we are able to effectively determine when and where the

growing robot collides with an unknown obstacle.

I. INTRODUCTION

Everting, or growing, robots are a type of continuum robot
that has drawn inspiration from biology. They consist of a
thin, flexible, hollow tube that is inverted inside itself from
one end. Applying an internal pressure causes this inverted
material to be pushed, or everted, out from the tip of the
robot into the environment (Fig. 1), resulting in a growing
motion that resembles that of a plant [1]. Growing robots are
naturally compliant, which allows them to conform to their
surroundings and traverse highly curved paths. The unique
attributes of these robots have motivated their use in a variety
of applications such as search and rescue [2], archaeological
exploration [3], marine environment observation [4], and
minimally invasive surgery [5].

For these applications, the environments are often con-
strained or highly cluttered, typically resulting in signif-
icant interaction between the robot and its surroundings.
It therefore becomes important to take robot-environment
interactions into account for modeling [6], planning [7] [8],
and control [9]. Often, however, the algorithms developed for
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Fig. 1: An actuated growing robot (blue) with integrated
curvature sensors (depicted in orange) which we use for
tactile perception. From left to right the robot is shown
growing and then bending due to applied actuation.

these robots make assumptions that limit the types of applica-
tions for which they can be used. In particular, most planning
algorithms developed to date have assumed that a map of the
robot’s environment is known a priori in order to compute
feasible robot trajectories [7] [8], but this is impractical for
situations where the robot is exploring unfamiliar territory.
Accordingly, sensors must be integrated with growing robots
to allow them to perceive their environments on the fly and
enable their use in a wider range of applications.

Sensor integration for growing robots can be difficult,
however, due to mechanical challenges imposed by the soft,
thin-walled body of the robot. Most previous work in this
area has centered around methods for the integration of
devices at the tip of the robot including cameras [10],
magnets [11], and more general payloads [12]. While these
approaches provide valuable information at a single point
on the robot, growing robots may undergo interactions with
the environment anywhere along their length that would be
unobservable from a single point measurement. To address
this issue, more recent works have looked at distributed
sensing methods that can be used to acquire orientation infor-
mation about the robot, as well as temperature and humidity
measurements from the environment, at many points along
the length of the robot using flexible bands of sensors [13].
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In this work, we also adopt a distributed sensing approach
to, for the first time, enable tactile sensing for growing robots
based on measurements from flexible curvature sensors in-
tegrated throughout the robot body. Similar to the work
of [14] and [15], wherein the authors estimate loads applied
to a flexible rod, our method for estimating contact from
curvature relies on adopting a mechanical model of the robot
shape, which enables us to interpolate between relatively
sparse sensor measurements. Our pursuit of tactile sensing
remains bio-inspired — just like the robots themselves —
drawing inspiration from vine plants, which depend on a
sense of touch to locate support structures on which they can
grow [16]. Tactile sensing has the potential to enable growing
robots to locate obstacles and support structures, map their
environments in real-time, and plan their movement even in
previously unexplored environments.

The remainder of the paper is organized as follows. First,
we detail the specific hardware used in our growing robot
platform and tactile sensing solution. Next, we present an
approach for determining point contact locations on the body
of our robot from discrete curvature measurements, assuming
that the growing robot can be modeled as an inflatable
Euler-Bernoulli (EB) beam [17]. Finally, we empirically
characterize the performance of our tactile sensing method
and conclude with discussions and directions for future work.

II. ROBOT HARDWARE

Here we present the design of our growing robot, as well
as the method to control its growth and shape.

A. Growing Robot

Our growing robot (Fig. 2) is fabricated using a
lightweight, silicone-urethane impregnated ripstop fabric
(Seattle Fabrics) that is flexible, but not extensible. The main
body of the robot is fabricated by forming this material
into an invertible tube using Sil-poxy Silicone adhesive
(Smooth-On). The diameter of the robot, when inflated, is
3.5 cm, which was chosen to ensure that the selected sensors,
explained in detail in the subsequent section, could be easily
everted. The proximal end of the robot body is attached to
an inlet of a pressure vessel, whose internal pressure can be
controlled to induce robot growth. The distal end of the robot
is inverted through the center of the robot and connected
using a string to a motorized spool housed inside the pressure
vessel. Regulating the position of the spool using an encoder,
allows for control of the growth length of the robot, which
is 53 cm maximum.

B. Robot Actuators

Two fabric pneumatic artificial muscles (fPAMs) [18]
are fabricated with a diameter of 1.6 cm using the same
material as the main body. They are attached on opposite
sides of the growing robot body using Sil-Poxy Silicone
adhesive, such that they can easily evert out with the main
body (see Fig. 2). These fPAMs are used to bend, or steer,
the robot in the plane, in a manner analogous to tendons.
When the pressure inside an fPAM is increased, the fPAM

Fig. 2: The fully deployed growing robot, along with critical
dimensions for both the main robot body and the fabric
pneumatic artificial muscles (fPAMs). The coordinate axes
are also defined, where x points in the direction of the
straight robot configuration and y is orthogonal to x.

contracts, causing the entire robot to bend. The pressure
in each fPAM is controlled by a separate NITRA Current
to Pneumatic Transducer (NCP1-20-260N and NCP2-20-
260N). The current sent to the regulators is maintained in
a pressure feedback loop established using a PID controller
and two Honeywell pressure sensors (SSC-series 60 PSI).
Both the actuator pressures and the motorized spool position
are set by an Arduino Mega 2560, which allows for control of
two independent degrees of freedom — the deployed length
of the robot and its tip orientation in the plane.

A mapping was created to determine the robot curvature
as a function of actuator pressure. This mapping is possible
because an fPAM causes approximately constant curvature
bending along the entire length of the robot when pressur-
ized [8]. The mapping was created by applying 11 different
pressures (0 to 20 psi in 2 psi increments) to each actuator
across 3 trials, recording the curvature using an overhead
camera, and fitting the data to a hyperbolic tangent function.

III. SENSOR INTEGRATION

Here we present our sensor choice, integration method,
and how we convert the sensor readings into the necessary
curvature information.

A. Sensor Selection

Integrating sensors onto the flexible, thin-walled body of
a growing robot without adversely affecting the desirable
attributes of the robot (e.g. eversion and compliance) is
difficult. Many of these challenges stem from the significant
stiffness mismatch that typically exists between the sensor
materials and robot materials. In addition, the robot can
experience uncontrolled wrinkling and the eversion process
induces tight curvatures, all of which can lead to significant
stress on any integrated sensors. One potential class of sen-
sors that could be used for tactile perception includes flexible
pressure sensors. Although these sensors would provide a
direct measurement of applied force, they would need to
be placed at every point along the robot body in order to
generate full robot coverage. Further they would need to be
integrated into the outside of the robot body, adding addi-
tional fabrication complexity, in order to ensure sufficiently
large sensor readings from obstacle contact. We instead find
that flexible, resistance-based sensors (Spectra Symbol 2.2”)
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are an appropriate choice given the design requirements,
provided they are properly coupled to the growing robot
body. Each sensor is 5.5 cm long and has a resistance
proportional to its curvature. Using multiple of these sensors,
we can determine local curvature measurements at discrete
locations along the growing robot backbone. In order to
ensure that the sensor can withstand the bending required
for eversion, the base of the sensor is wrapped in tape to
strengthen electrical connections with the wires (Fig. 3a).

B. Sensor Integration

Simply adhering the sensors directly to the growing robot
is problematic because the robot behaves mechanically as
an inflatable beam [17]. Therefore, if stiffer locations exist
along the robot body — caused by something such as a flex
sensor adhered directly to the robot fabric, for example —
the robot will form sharp local kinks around these locations
(Fig. 3c) when the robot encounters a contact force, rather
than forming a smooth curve [6] [7]. Because such kinks
causes a discrete change in the curvature between sensors, it
is not measured, making the contact force unobservable.

To solve this issue, we introduce a pouch device (Fig. 3a
and Fig. 3b) to house and fasten the curvature sensors to the
growing robot. The pouch is made out of the same material
as the robot body. It is sewn closed on three sides and is sized
such that the sensor can slide inside, while being constrained
from unwanted movement (10 cm long, 0.75 cm wide). The
pouches are then glued onto the inside body of the robot,
using the same Sil-poxy Silicone adhesive, and the sensor is
locked in place by gluing another small piece of fabric over
the open entrance.

This pouch allows the robot to bend, while avoiding
the kinking issue that can be caused by severe stiffness
mismatches. Specifically, for a growing robot made from
an inextensible material to bend in a given direction, the
length of the inner side of the curve must shorten. However,
as this material is inextensible, the only way that the fabric
can shorten on the inside curve is by uniform wrinkling of
the fabric. The pouch enables the sensor to lift slightly off
the surface of the robot wall, such that the robot material
can wrinkle and the sensor can continue to provide accu-
rate measurements (Fig. 3d). While the pouch and sensor
attachment does increase the bending stiffness of the robot,
it does not prevent its growing motion. This design makes
the combined stiffness of the sensorized robot more uniform
and more effectively transmits applied forces to the sensors
so that changes in curvature can be measured. For our robot,
we place five, 10 cm long pouches into a single column along
each side of the robot.

IV. TOUCH LOCALIZATION ALGORITHM

In this section we detail our algorithm for determining
the location of point contact forces applied to the body of a
growing robot using measurements of the robot’s local curva-
ture. Then we discuss details associated with the algorithm’s
practical implementation.

(a) (b)

(c) (d)

Fig. 3: (a) Example off-the-shelf, flexible sensor used to
measure local robot curvature, along with its dimensions.
(b) To integrate the sensors with the growing robot, they
are sealed inside individual sensor pouches with dimensions
as shown. (c) Representation of a sharp local kink that can
form in the material due to significant stiffness mismatches if
sensors are attached directly. (d) Representation of material
wrinkling when sensors are housed inside a custom pouch,
resulting in a more uniform stiffness along the robot length.

A. Optimization-Based Localization

We consider a planar robot, which we assume to behave
as a cantilever beam and can be described using an EB beam
model [17] as

EI
d
4
y

dx4
= q(x), (1)

where E is the Young’s modulus of the robot, I is it’s area
moment of inertia, and y is the deflection of the robot due
to applied load q at length x. For Nc point contacts, the
function describing the applied load is

q(x) =
NcX

i=1

Fi�(ai � x), (2)

where �(·) is the Dirac delta function, Fi is the magnitude
of the ith point contact force, and ai is the contact location
along the robot body. The position and orientation of the
robot is fixed at its base, which imposes boundary conditions

y(x)

����
x=0

= 0,
dy

dx

����
x=0

= 0. (3)

As is common for growing robots with pneumatic artificial
muscles, we further assume that actuation causes constant
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curvature deformation of the robot shape [8], leading to
another boundary condition

d
2
y

dx2

����
x=L

= g(p), (4)

which states that the curvature of the robot at the free end
is a function of the actuator pressure, g(p). If the robot is
unactuated, then g(0) = 0. In the case where the robot is
actuated, we can empirically fit a function that relates the
constant curvature of the robot to the actuator pressure, as
described in Section II-B. Integrating Eq. (1) twice with these
boundary conditions gives a closed-form expression for the
robot curvature,

d
2
y

dx2
= k̂(x) = g(p) +

NcX

i=1

Fi

EI
(ai � x)H(ai � x), (5)

where H(·) is the Heaviside step function.
In order to determine the location of the point contact

forces applied to the robot, we can pose an optimization
problem to minimize the difference between the curvature
sensor measurements and Eq. (5) at the location of each
sensor,

min
a,f

NsX

i=1

||ksensor,i � k̂(xi)||1, (6)

where a = [a1, ...aNc ] is a vector of point contact locations,
f = 1

EI [F1, ...FNc ] is a vector of the magnitudes of each
contact force normalized by the robot bending stiffness, xi

is the position of the ith sensor on the robot body, and ||·||1 is
the 1-norm. We choose to minimize the 1-norm to mitigate
the impact of outliers due to sensor noise [19]. We solve
this problem using an interior point method implemented by
MATLAB’s fmincon routine and impose the constraint that
ai 2 [0, L]. Additionally, we find that solving for both a
and f simultaneously, typically finds poor locally optimal
solutions for the point contact locations, a. Therefore, we
iteratively optimize for either a or f , one at a time, while
holding the other constant until the difference between suc-
cessive solutions for all of the point contact locations is less
than a tolerance (0.5 cm). For initialization of each term,
we initialize the force terms at 0 and the position terms to
be at the tip, since we expect most contact locations to first
occur near the tip as the robot grows through an unknown
environment. In the case of multiple contacts we split the
length into uniform sections for initialization (e.g. for 2 point
contacts we initialize the contacts at L

2 and L).

B. Implementation Details

As described above, the sensors used in our experiments
have a resistance that changes proportionally with their
curvature. In order to determine the proportionality constant
for each sensor integrated into the robot, we collect resistance
measurements from all sensors as the tip of the unactuated
robot is deflected to 10 different locations and record the
tip positions using an overhead camera. Each of these tip

position measurements, ytip is used as a boundary condition,

y(x)

����
x=L

= ytip, (7)

together with the conditions in Eq. (3) and Eq. (4) to
solve Eq. (1) for the curvature of the robot at every sensor
location. We can then determine the constant relating these
curvature values to the collected resistance measurements
by computing a linear regression. Once these constants are
computed, they can be used to determine the curvature of
each sensor from its resistance measurement at any given
time.

In addition to using the sensor curvatures to find the
location of applied point contacts, we also use the sensor
measurements to detect when the robot comes into contact
with an unknown force. When the robot is not experiencing
a contact force, it should have a constant curvature that de-
pends on its actuator pressure, g(p). If the average curvature
measured by the sensors at the base of the robot deviates
beyond an empirically determined threshold (0.005 cm-1),
then the robot is determined to be in contact with an obstacle
and optimization can be used to determine the location of the
contact.

V. EXPERIMENTS AND RESULTS

We validate our proposed method for tactile sensing in
growing robots through four different experiments. First,
we characterize the localization accuracy of our method
for a single point contact at different forces and locations
on a robot when it is unactuated (i.e. the fPAMs are not
actively pressurized). Second, we determine conditions under
which our method can discriminate between two contacts on
an unactuated robot. Third, we assess contact localization
accuracy for an actuated robot. Finally, we demonstrate an
application of our method, wherein a growing robot uses our
proposed tactile sensing to determine when it is in contact
with obstacles as it explores an unknown environment.

A. Experimental Setup

A test environment was fabricated to assess our sensing
methodology (Fig. 4). Metal dowels were placed at specified
locations in the workspace and served as contacts with which
the robot could interact. Their positions, relative to the robot
base, were determined from 1920x1080 resolution images
taken with an overhead camera (Nexigo N980P). The x and y

axes of the coordinate frame of the growing robot are defined
as in Fig. 2. In all experiments, localization error is defined as
the absolute difference between the x position of the obstacle
contact, as estimated by the localization algorithm, and the
true obstacle position, as determined by the overhead camera.

B. Single Contact

In this experiment, we look to assess how accurately we
can localize an applied force of different magnitudes at
various locations along the length of an unactuated robot.
Specifically, we consider a low magnitude force and a
high magnitude force, each applied to the following three
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locations along the robot body: at the tip, 3
4L, and 1

2L, where
L is the total deployable length of the robot (see Fig. 5a).
For this experiment, we apply 0.49 psi to the main body of
the robot and collect data (curvature sensor measurements
and an overhead camera image) from 5 trials for each of the
six loading conditions to determine the repeatability of our
results. For each loading condition, Fig. 5c shows the mean
error between the position of the contact force on the robot
body as determined by our optimization and the position as
determined by the overhead camera.

In general, high contact forces result in consistent local-
ization error (3.44± 1.38 cm on average, approximately the
diameter of the unactuated robot) regardless of the location
at which they are applied to the robot (see Fig. 5c). Low
magnitude contact forces, on the other hand, tend to result in
increasing localization error (4.59±6.78 cm on average) the
further away from the tip the force is applied. This difference
is likely because lower magnitude forces applied closer to the
base of the robot do not induce large changes in the curvature
of the robot shape compared to those applied closer to the
tip. Smaller changes in robot curvature correspond to smaller
magnitude signals from each of the sensor measurements
used for optimization, in turn making the optimization more
sensitive to sensor noise. As a result, the optimization can
end up either over-fitting to noisy readings or failing to
move from the initialization point, leading to poor estimates
of the contact point location (Fig. 6b). High magnitude
forces, however, induce consistently larger changes in robot
curvature resulting in more consistent localization regardless
of where the force is applied (Fig. 6a). We note that when
the high magnitude forces are applied, the sensors at the base
have significantly higher curvature measurements relative to
the other sensors, which can likely be attributed to the robot
buckling at this location. These higher curvature measure-
ments do not, however, significantly impact optimization
results.

Fig. 4: The experimental setup includes the growing robot
and associated control hardware, along with the workspace
into which it extends.

(a) (b)
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Fig. 5: (a) Schematic illustrating the locations at which point
contact forces are applied to the robot body. (b) An image
of a low magnitude force applied to the growing robot at
location x = L. (c) Contact position localization errors after
optimization. The mean localization error is 3.44± 1.38 cm
and 4.59 ± 6.78 cm for high and low magnitude forces,
respectively.

C. Two Point Discrimination

In the case where the growing robot is subjected to two
contact forces from opposite sides, we seek to determine
the distance that the forces must be separated in order
to discriminate between them. To determine this distance
empirically, we apply one distal contact at the tip of the robot
and a second proximal contact at 6 different locations (see
Fig. 7a), moving incrementally closer to the distal contact
(39 cm, 34 cm, 29 cm, 23.5 cm, 18.5 cm, and 13 cm apart).
Again, we apply 0.49 psi to the main robot body and collect
image and sensor data 5 times for each loading condition.
An example image is shown in Fig. 7b, where the proximal
contact is located 29 cm away from the distal contact.

Results in Fig. 7c indicate that when the point contacts
are separated by a distance of 23.5 cm or greater (slightly
more than two sensor pouch lengths), our proposed opti-
mization approach can effectively determine the location
of both points with an average error of 4.49 ± 2.79 cm.
Below this threshold however, localization error is much
higher, 16.94 ± 2.55 cm on average, suggesting that this
is the minimum distance at which our method can effec-
tively discriminate between applied point contacts. As the
distance between point forces, which are applied in opposite
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Fig. 6: Representative example of the optimization results
for (a) a high magnitude force and (b) a low magnitude
force applied to the growing robot at x = L

2 . Note the
poor estimate of the point contact location in (b) due to the
optimization over-fitting to noise in the sensors located on
the more proximal half of the robot.

directions, decreases, the effect each force has on the overall
robot shape begins to cancel out that of the other force. This
phenomenon leads to smaller measured changes in curvature
and increases the impact of sensor noise on the optimization
result.

D. Single Contact with Active Bending

Here we consider contact localization for a single contact,
similar to Section V-B, but this time for an actuated robot.
When an fPAM is actuated, its length decreases, causing the
robot body to wrinkle where it is attached to the actuator
in order to accommodate this length change and leading
to bending of the robot body. While this approach is an
effective means of actuation, the significant wrinkling of the
material of the robot body induces hard-to-model responses
in the sensors attached to an activated actuator. Therefore, for
contact localization with actuated growing robots, we only
use measurements from the curvature sensors attached to the
currently inactive actuator, which is on the outer edge of the
curved robot. One full side of sensors is still sufficient to
generate an estimate of the robot body shape.

(a) (b)

39 34 29 23.5 18.5 13
0

10

20

Distance Between Contacts (cm)
A

ve
ra

ge
Er

ro
r

(c
m

) Proximal Contact
Distal Contact

(c)

Fig. 7: (a) Schematic illustrating the locations where point
contacts are applied to the robot body. A distal contact (in
purple) is held constant at the tip for all cases, while an
opposing proximal contact is moved incrementally closer to
the distal contact location. (b) An image of the robot when
the proximal contact is 29 cm away from the distal contact.
(c) Contact force localization errors after optimization.

As in Section V-B, we consider contacts occurring at 3
different locations along the robot body at 2 different force
magnitudes. We now use the robot’s own actuation to initiate
contact with the obstacle, as would be the case when the
robot is exploring a static, unknown environment, as shown
in Fig. 8a. Obstacle locations are chosen such that they are
barely touching the robot body at the 1

2L,
3
4L, and L lengths

when the fPAM actuator pressure is set to 6 psi. For the low
and high magnitude force loading cases, we set the actuator
pressure to 10 psi and 14 psi respectively. Again, we apply
0.49 psi to the main body of the robot and collect data from
5 trials for each of the 6 loading conditions, the results of
which are shown in Fig. 8c.

First, it is important to note that our optimization routine
localizes the point contact with low error for all applied
locations in the high magnitude force case. The average
localization error for these trials is 4.62± 0.95 cm (slightly
less than the diameter of the actuated robot), which is only
slightly higher than it was for the unactuated case. The slight
increase in error is to be expected for the actuated case
because the localization algorithm only uses measurements
from sensors attached to the inactive actuator, making it
more susceptible to noisy measurements from any one sensor.
For the low magnitude force case, however, the average
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Fig. 8: (a) Schematic illustrating the locations at which the
robot collided with point contacts during active bending. (b)
An image of a low force collision that occurs at location x =
L
2 . (c) Contact position localization errors after optimization.
The mean localization error is 4.62± 0.95 cm and 15.21±
9.72 cm for the high and low magnitude forces, respectively.

error across all trials, 15.21 ± 9.72 cm, is much higher
than the error for high magnitude forces. This large error
indicates that the optimization fails to effectively determine
the location of the point contact at low forces, likely due
to the low magnitude signals failing to overcome the noisy
readings from the sensors, and we note that all errors for
actuated contact at low forces are higher than the maximum
error from the unactuated case (Section V-B). Therefore,
in order to determine the location of smaller forces on
an actuated growing robot, more sensor measurements are
necessary.

E. Single Contact with Active Bending and Growing

Finally, we consider a scenario where a growing robot is
exploring an unknown environment. We make use of tactile
perception to determine when and where an obstacle is in
contact with the robot. Such information could be valuable
for use in a planning algorithm (e.g. [8]) or to identify a
support structure the robot could anchor itself to, as proposed
in [20].

We place the unknown obstacle for the robot to encounter
at the same location as that of the furthest obstacle used in
Section V-D. This location is chosen because we have found
that using fewer than 5 sensor measurements — which is the
number of available measurements when our current robot is

actuated and fully everted — for optimization, leads to less
reliable localization. We discuss this current limitation of our
method and robot hardware, along with future approaches
that can address this challenge, in Section VI.

In order to explore the workspace, the robot first grows
one sensor length and then executes a sweeping motion
generated by sending a sine wave to the fPAM actuators with
an amplitude equal to the maximum pressure the actuator
can reliably hold (18 psi). If a contact is detected during the
sweeping motion (as described in Section IV), we average
10 sensor measurements recorded at the peak of the sine
wave to use to localize the contact. We choose to use the
sensor readings collected when the actuator is at maximum
pressure based on the results of Section V-D, which show
consistently lower point contact localization errors for higher
forces applied to the obstacle. To achieve robot growth, we
use the minimum possible body pressure at all times, which
keeps the bending stiffness of the robot low and allows
it to achieve higher curvature configurations. For growth
lengths from zero to L

2 , growth is achieved with a pressure of
1.47 psi. For lengths L

2 to 2L
3 we apply 1.01 psi, and from 2L

3
to L we apply 0.49 psi. Pressure to curvature mappings are
created for each body pressure following the same method
detailed in Section II-B.

Results of the experiment are shown in Fig. 9. Our method
successfully identifies when the robot is in contact with an
obstacle and localizes the contact with 6.82 cm error. It is
worthwhile to note that this error is higher than the average
of the previous experiment in Section V-D. This increased
error is likely due to additional noise in the sensor readings
caused by the rapid change in curvature of the eversion
process that facilitates robot growth. When the sensors are
in a straight configuration, as they are immediately after
robot growth, they should measure zero curvature. In reality,
however, we find that there is a delay in the sensor response
as it goes from a highly bent configuration to a straighter
configuration, which contributes to the increased localization
error. In future, this delay could be modeled and compensated
for so as to mitigate its impact on the optimization.

VI. DISCUSSION AND CONCLUSION

In this work, we have presented an approach to enable
tactile sensing for growing robots. Our approach consists of
a method to integrate flexible, off-the-shelf sensors into the
body of a growing robot via a pouch design, along with an
optimization routine to deduce the locations of point contacts
on the robot body based on these sensor measurements. We
experimentally characterized the error of this approach in
localizing a single contact applied to both an actuated and
unactuated robot and determined a threshold beyond which
it was possible to distinguish between two separate contact
forces applied to the unactuated robot. Finally, we showed
that this method was able to detect and localize an obstacle
that came into contact with a growing robot as it explored
unknown surroundings.

It is important to note a few limitations of the current
approach. In particular, the performance of our proposed
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(a) (b) (c) (d)

Fig. 9: (a)-(c) Images of the robot growing and bending over time, exploring an environment containing an obstacle with
unknown location. (d) The robot collides with the unknown obstacle, triggering the localization algorithm, which returns an
estimate of the location of the contact force applied to the robot. The error between the predicted point contact and actual
point contact is 6.82 cm.

method for tactile sensing decreases considerably when only
a few sensor measurements (fewer than 5) are available,
due to noise corrupting each sensor measurement. Extending
the current optimization framework to take into account
statistics of the noise associated with each sensor, could help
improve localization robustness. Additionally, as soft sensing
technology continues to develop, other types of curvature
sensors with better signal to noise ratios can be investigated
for use with the proposed method. Overall, we believe that
our method for tactile perception in growing robots can be
used either on its own, or in conjunction with other sensing
devices — such as the tip-mounted camera in [3] — to enable
better mapping and autonomous exploration algorithms for
unknown environments.
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