Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data

Lucas Ayres¹, Tomás Benavidez², Armelle Varillas,³ Jeb Linton¹, Daniel C. Whitehead¹, and Carlos D. Garcia^{1*}

¹Department of Chemistry, Clemson University, Clemson, SC, 29634, USA

²INFIQC-CONICET, Department of Physical Chemistry, National University of Córdoba, Cordoba, 5000, Argentina

³South Carolina Governor's School for Science and Mathematics, Hartsville, SC, 29550, USA

^{*} To whom correspondence should be addressed. 211 S. Palmetto Blvd, Clemson, SC, 29634, United States, e-mail: cdgarci@clemson.edu

ABSTRACT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components, leading to the formation of low molecular weight species with diverse functional groups that impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these products, often deployed as combinations of two or more compounds, a strategy that allows for lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have been predominantly empirically driven, but thus far inefficient and unable to account for the complexity and multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the use of an artificial intelligence model based on deep learning architecture to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated with a combination index value (CI) and used as input for our mode, which was challenged against a test (n=140) dataset. Despite the encouraging preliminary results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house, using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the Al algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the importance of having chemically-relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance. We believe the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the behavior of antioxidant mixtures.

23

24

25

KEYWORDS

Lipid oxidation, antioxidant, synergism, machine learning

1. INTRODUCTION

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or components. These include, for instance, cosmetics ^{1, 2}, vegetable oils³⁻⁷, seafood⁸⁻¹⁰, processed meat¹¹⁻¹⁴, and animal feed¹⁵⁻¹⁸. The oxidative deterioration of these samples can occur via chemical, thermal, enzymatic, and/or photocatalytic mechanisms. Among these, auto-oxidation (spontaneously initiated in the presence of atmospheric oxygen) is the least selective and probably the most difficult to control. Among other targets, the oxidation of lipids leads to the formation of low molecular-weight species with diverse functional groups (carboxylic acids, aldehydes, and ketones) that impart off-odors¹⁹ and off-flavors²⁰. This process is also known as rancidity and can not only impart an unpleasant taste but also diminish the nutritional value^{21, 22} and the overall quality of the sample, which ultimately impacts the health of the end consumer²³. Moreover, the oxidation of lipid-based foods also contributes to the shorter shelf-life of these products ²³⁻²⁶, resulting in considerable economic losses in all segments of the supply chain^{27, 28}.

Therefore, it is critical to develop strategies to mitigate or prevent lipid oxidation in foods. For this purpose, the use of antioxidants has proven to be one of the most effective and frequently adopted methods, ²⁹⁻³⁴ a strategy that has been also extended to pharmaceuticals^{35, 36} as well as nutraceutical products^{36, 37}. Although these antioxidants are derived from natural³⁸⁻⁴¹ (e.g., tocopherols, phenolic acids, polyphenols, and ascorbic acid) or synthetic sources⁴²⁻⁴⁵, they offer different mechanisms of action⁴⁶⁻⁵² and allow targeting the reaction at different stages, from scavenging free radicals ⁵³, to quenching triplet oxygen ⁵⁴, to chelating metal cations⁵⁵. Regardless of the mechanism of action, antioxidants are normally deployed as combinations of two or more compounds, a strategy that allows lowering the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows minimizing the potential organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will behave has traditionally been one of the most challenging tasks⁵⁶⁻⁵⁸, often leading to simple additive⁵⁹ (even antagonistic⁶⁰) effects, instead of the desired synergistic response⁶¹⁻⁶³. Although the interaction between some classes of antioxidants is well known ⁶⁴, there is a current need for a strategy that could enable broader and more rational predictions related to the antioxidant capacity of mixtures. Approaches to understanding these interactions have been predominantly empirically driven, where the total antioxidant

effectiveness is assessed by using assays such as total oxidation index (TOTOX) ⁶⁵, thiobarbituric acid reactive substances (TBARS) ⁶⁶, peroxide value (PV)⁶⁷, p-anisidine test ⁶⁸, ferric reducing antioxidant power (FRAP) ⁶⁹, or DPPH scavenging ⁷⁰. The gathered experimental data can be then analyzed as a function of the composition of the antioxidant mixture through the use of standard methods such as isobole diagrams ⁷¹, response curves or interaction index parameters⁷². Albeit effective for simple experimental designs, these one-dimensional methods often hinder the evaluation of non-linear interactions⁷³⁻⁷⁵ due to the complexity and multifaceted nature of antioxidant responses, which are often affected by several factors such as their mechanism of action, structural properties, and matrix effects. On the contrary, machine learning approaches are particularly well suited to address these complex problems and have been recently applied to make predictions related to taste⁷⁶⁻⁷⁹ and fermentation⁸⁰ of foods, screen for Nrf2-agonists ⁸¹, identify flours infested by insects ⁸², and even discover green insecticides⁸³.

In this scenario, we describe the first use of an artificial intelligence model based on deep learning architecture⁸⁴ to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant combinations. The proposed strategy uses the Simplified Molecular Input Line Entry System (SMILES) notation85 to represent the antioxidants combinations as text representations. Each mixture is then associated with a combination index value (CI)86, an established metric often used to assess the magnitude of these interactions. The proposed method also utilizes a self-data augmentation method to overcome overfitting due to the limited amount of data for the training step. This strategy was implemented by representing the stoichiometric ratio as a repetition of the same antioxidant compound instead of numerical representations (vide infra, Figure 1), allowing the rearrangement of the SMILES strings to all possible nonrepeated positions in the final mixture. In this sense, the use of chemical descriptors (density, functional groups, polarity, etc) can be avoided, reducing the complexity of the AI model and easily allowing its implementation in benchmark routines. The performance capability of our model was first assessed by predicting CI values using a database developed from literature reports (n=700), showing a relatively good agreement (R²test= 0.92 and R²train=0.95) between the predicted output and the actual value for both the training (n=560) and test (n=140) datasets. Despite these encouraging results, this algorithm failed to provide accurate predictions of oxidation experiments performed in-house, using binary mixtures of phenolic antioxidants and a lard sample. To overcome this problem, the Al algorithm was then enhanced with various amounts of experimental data (antioxidant power data assessed by the TBARS assay) collected using lard samples. This approach allowed the model to learn from the experimental chemical space targeted by our research, which was not specifically described in the surveyed literature. Our results showed that significant improvements in the model's performance were obtained as the amount of fine-tuning data increased, increasing the correlation between the predicted and experimental results from R²=0.01 (no correlation) to an R² value of 0.90. These results not only demonstrate the predictive power of the proposed algorithm but also the importance of having chemically-relevant experimental data to enhance the model's performance and provide suitable predictions with statistical relevance.

2. MATERIALS AND METHODS

2.1 Hardware configuration. All the computational work presented in this manuscript was carried out in the Palmetto Cluster at Clemson University. The node was set to 32 cores (ncpus) and the allocated memory was set to 372Gb. As a graphical processing unit (GPU), a NVIDIA Tesla V100 was used to train the foundational chemistry model as well as to fine-tune the generated model into the regressors. It is important to state that while access to the cluster was critical to speed up the initial training of the foundational chemistry model, the trained algorithm can be then executed on a standard computer. As a gauge of the resources applied, the foundational model training and subsequent fine-tuning were completed in approximately 14 hours (12 hours for training + 2 hours of fine-tuning). Notably, the same computational process could require up to a week on an average computer equipped with an NVIDIA GTX 1050.

2.2 uACL antioxidant database. The proprietary antioxidant database (referred as uACL DB) was developed by manually retrieving data from the literature and includes various antioxidant molecules, solvents, samples, and experimental conditions for their evaluation. In all cases, the antioxidant combinations were represented in SMILES notation along with their molar ratio and respective metric to measure the degree of interaction such as the combination index (CI), the difference in FRAP⁸⁷, % of the synergistic or antagonistic effect⁸⁸ as well as Trolox equivalent antioxidant capacity (TEAC)⁸⁹. The resulting

database displayed approximately 1100 entries and the gathered data was analyzed by a python algorithm to avoid duplicates.

2.3 Data splitting and augmentation. The uACL DB was randomly split into training (85%) and test dataset (15%). The decision to allocate 85% the data for training and 15% for testing was based on the balance required to ensure our model had access to enough data to learn the patterns from the chemical space, while also having a representative number of unseen entries to evaluate the model's performance. Aiming to avoid data leaking between the datasets, all the files were compared by an *ad-hoc* Python algorithm. An additional manual check of each entry was also implemented as a safeguard to prevent overoptimistic performance measures.

Then, each dataset was duplicated and assigned either a textual or numerical representation, giving a total of 4 databases (numerical_train, numerical_test, textual_train, textual_test). For the pair assigned as numerical, the stoichiometric ratio of all combinations was represented as a number in between a non-SMILES special character (e.g., \$2\$A \$2\$B). On the other hand, for the pair assigned as textual, the stoichiometric ratio was represented as repetitions of the antioxidants (e.g. AABB). Then, a Python algorithm was used to augment the textual datasets by permuting the antioxidant smiles to all possible non-repeated positions in the final mixture. These processes are presented in Figure 1.

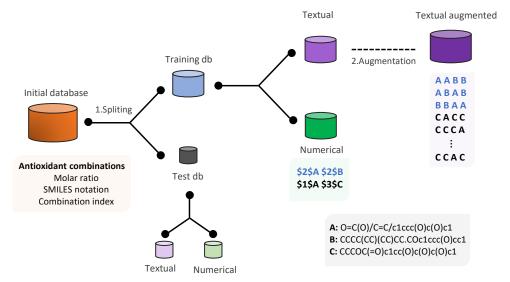


Figure 1: Schematic representation for the proposed data splitting and augmentation.

2.4 Foundational chemistry model. The foundational general chemistry model was developed by following the same strategy described in a previous publication of our group⁹⁰. Briefly, Transformer-type architectures⁹¹ are now commonly used in Natural Language Processing and are pre-trained using Self-Supervised Learning on large amounts of text data to create Foundation Models for different human languages. This pre-training is expensive (in terms of computational resources) but gives the model a broad understanding of the language(s), allowing it to adapt to specific downstream tasks guickly and efficiently. Transformers introduce the concept of an attention mechanism, which allows models to assign different weights of importance to certain words within a sentence during prediction generation.⁹² Uniquely, these models process all words in the text simultaneously, thereby offering a significant boost in computational speed and efficiency. The central component of the Transformer is the self-attention mechanism, which evaluates the influence of each word on others within the same text fragment. This functionality enhances the model's contextual understanding and performance on tasks like translation, summarization, and sentiment analysis. In this manuscript, a general chemistry model was pre-trained on a large corpus of chemical reaction information, which was then fine-tuned for a specific task. The ELECTRA deep learning model used in this manuscript had 4 hidden layers for the generator and 16 for the discriminator, with a vocabulary size of 30,000 and 40 training epochs. The output model containing all trained parameters was stored in a directory called the foundational general chemistry model. The molecular Transformer USPTO MIT Mixed Augmented database91, 93 was used to train as well as to evaluate the proposed chemistry model.

147

148

149

150

151

152

153

146

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

2.5 Fine-tuning method. Both the numerical and the textual databases were used to fine-tune the last layer of general chemistry foundational model into a regressor. The appropriate test dataset for each stoichiometric representation type (text or numerical) was used to investigate the performance of the generated regressor by assessing unseen antioxidant mixtures by the algorithm. Regarding the neural network architecture, the parameters "max_seq_lenght", "train_batch_size", and "learning_rate" were adjusted to 128, 32, and 4E⁻⁵, respectively.

2.6 Spectrophotometric Methodology. The oxidative process of a commercial sample of organic pork lard (Fatworksx, Premium Cooking Oil, EST.M-8757) under heating conditions (85°C for 4 h) was evaluated after adding the corresponding antioxidants. The antioxidants were either individual components or binary mixtures of 10 different phenolic antioxidants, at different ratios. Standard solutions of each antioxidant (propyl gallate, PG; 2,4,5-trihydroxybutirophenone, TBHP; *tert*-butylhydroquinone, nordihydroguaiaretic acid, NDGA; tert-butyl-4-hydroxyanisole, BHA; 2,6 di-tert-butyl-4hidroxymethylphenol, PHENOL; 3.5 di-tert-butyl-4-hydroxytoluene, BHT; lauryl gallate, LG; octyl gallate, OG; ethoxyguin; ETOX) were obtained by dissolving a known amount of the pure standard in ethanol. The abbreviation of each antioxidant compound can be found in. Then, each antioxidant was incorporated into different aliquots of the commercial lard. Accordingly, 15 g of pre-melted commercial lard were mixed with 200 µL of the antioxidant standard solution to acquire a final concentration of 1 mmol.kg-1 of antioxidant. To prepare 1 mL of the antioxidant's binary combinations, proper volumes of lard containing the antioxidants were combined to get antioxidant ratios of 1/4:3/4, 2/4:2/4, and 3/4:1/4, respectively. Under those selected experimental conditions, 145 samples of lard containing antioxidants were evaluated. The oxidative effect of prepared lard samples was evaluated by the TBARS assay. The analytical procedure was carried out by adding 100 µL of lard to a glass vial containing 2 mL reagent solution (Thiobarbituric acid/trichloroacetic acid/ hydrochloric acid mixture). Then, the reaction mixture was heated up in a hot bath set at 100 °C for 15 min. Consequently, the colorless starting solution turned to a pink-colored solution which developed an absorption band centered at 533 nm. Before spectrophotometric measurements, the resulting pink solution was centrifuged at 14500 rpm for 5 min. It is important to point out that lard and olive oil are commonly samples used as a lipid substrate to study rancidity 94-96. While these samples share certain characteristics, they also offer are crucial differences that might influence the outcomes of our investigation. For example, organic pork lard does not contain any synthetic antioxidants while olive oil (particularly commercially available), typically contain multiple antioxidants. These compounds can interfere with the natural oxidation process, making lard a more suitable substrate to investigate the effect of the selected mixtures of phenolic antioxidants, as proposed in our studies.

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

2.7. TBARS assay. Fat-containing foods are highly susceptible to lipid oxidation, especially those containing polyunsaturated fatty acids. After the oxidative process, the generated hydroperoxides decompose into secondary oxidized products which are mainly aldehydes like malondialdehyde (MDA).⁹⁷ Besides peroxide determination to evaluate rancidity, MDA determination is often used in the assessment of lipid oxidation.⁹⁸ Thus, an spectrophotometric method based on the reaction of 2-thiobarbituric acid (TBA) with MDA (described in the Experimental Section) was selected. In this method, TBA is mixed and heated with the sample in acidic media to form a pink compound (maximum absorbance at 532-535nm), a product of the reaction with MDA and other lipid peroxidation products. It is also important to point out that the TBA assay not only allows quantifying MDA (mainly produced) but also other secondary oxidized products generated such as hexanal, and 4-hydroxynonenal (HNE) among others. For that reason, the expression thiobarbituric acid reactive substances (TBARS) assay is more widely accepted than the TBA method.

2.8 Combination Index (CI) Δ_{TBARS}. The CI is crucial to the development and evaluation of our artificial intelligence approach to predict the type and magnitude of interaction in antioxidant combinations. In this sense, it is worth understanding the basics underlying CI and how this metric, although not intended to be directly related to Δ_{TBARS}, can be used to assess the same phenomenon (antioxidant interaction). The combination index (CI) is a common metric used in isobologram analysis, typically deployed to quantitively measure the interaction between two or more drugs at specific concentrations. Interpreting CI values is straightforward. When the CI is greater than 1 (CL >1), it points to antagonistic interactions, suggesting that the combined effect of the active compound is less than what one would anticipate from their separate effects. If CI is equal to 1 (CI =1), additive interactions are expected. This implies that the response level for the combined active compounds is the same as the individual components. Finally, a CI less than 1 (CI <1) indicates synergistic interactions. In this scenario, the combinations of the active compounds surpass what one would predict from their individual effects. More information regarding the calculation of CI can be found elsewhere.⁸⁶

As it will be further explained, the magnitude of antioxidant interaction can be assessed by using the TBARS assay. Briefly, the discrepancy between the readings obtained with samples infused with antioxidants and

their individual controls is noted as (Δ_{TBARS}). Therefore, synergistic interactions would result in a Δ_{TBARS} value greater than 0, whereas antagonistic interactions would yield a Δ_{TBARS} value less than 0. Then, mixtures leading to Δ_{TBARS} values that showed negligible variances compared to the baseline were considered to exhibit an additive antioxidant behavior. In this context, Δ_{TBARS} values display an inverse relationship with the CI value, which was chosen as a metric for the model. Therefore, a heightened level of synergistic antioxidant interactions leads to a reduction in the CI and a corresponding elevation in Δ_{TBARS} .

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

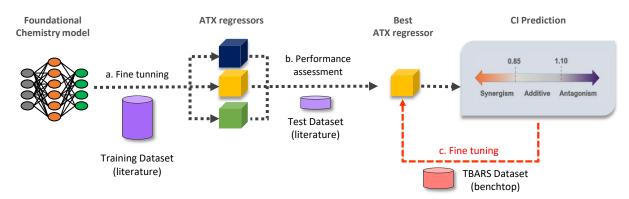
232

233

210

211

212


213

214

215

3. RESULTS AND DISCUSSION

The following paragraphs aim to describe the rational development and implementation of an Al model to predict the antioxidant capacity power of antioxidant mixtures. Beforehand, it is important to point out that the algorithm was initially trained using the MIT Mixed Augmented database⁹³ to generate a foundational general chemistry model. Then, this model was improved by the following three steps: I) Data splitting and augmentation; II) Model fine-tuning and testing, and III) Model enhancement by fine-tuning with chemicallyrelevant experimental data. First, the original database (developed from literature reports) was randomly divided into a training (85% of the database) and a test dataset (15% of the database). For both cases, the stoichiometric ratio of the mixture of antioxidants was represented either by repetitions of the same antioxidant in the SMILES notations or by numbers, as described in the experimental section of this manuscript. Second, both versions of the training dataset (numerical or textual) were used to fine-tune the foundational general chemistry model into a unique AI regressor to predict CI values. Then, the performance of all the generated antioxidant regressors was assessed by using the corresponding test dataset (textual or numerical) to measure key metrics such as root-mean-square error (RMSE), mean absolute percentage error (MAPE), as well as R². Finally, the regressor with the best predictive capability was enhanced by incorporating different amounts of benchtop data (antioxidant capacity of binary mixtures of phenolic antioxidants). An overview of these steps is represented in Figure 2.

Figure 2: General overview of the process to fine-tune the foundational general chemistry model into several antioxidant regressors (a) followed by their respective performance assessments (b). The best antioxidant regressor was then fine-tuned with benchtop data (c) to enhance the CI prediction capability of the model with respect to mixtures of phenolic antioxidants. The relationship between CI values and the antioxidant behavior is described in the Experimental section.

Foundational Chemistry Model. As demonstrated in previous publications^{90, 93, 99}, the general chemistry model was pre-trained from scratch by using the well-known USPTO_MIT mixed augmented database that contains approximately one million unlabeled organic chemical reactions. Briefly, this step was included to increase the model's vocabulary (~5000 unique tokens) by providing sufficient chemical information in the form of text notation. Moreover, the parameters such as weights and bias were continuously adjusted during the training session (training dataset) to improve the model's performance using unseen chemical data (test dataset). This task was accomplished by monitoring the output of the loss function (e.g. "the loss") versus the number of epochs, leading to a loss of 4.00 at epoch number 32, which was considered acceptable. On the other hand, the loss for the training dataset at the same epoch number was 3.87, suggesting that a convergence point was reached by using both datasets and thus suggesting that more training was unlikely to further improve the model. The generated foundational chemistry model was then fine-tuned into several antioxidant regressors under different data representation scenarios.

3.1 Fine-tuning the foundational model into several regressors. A database developed and curated by our research group (ATX_uACL db) was developed from previous literature reports and used to fine-tune the last layer of the foundational general chemistry into several regressors. Our database contains approximately 1100 combinations (binary and tertiary) in the SMILES notation along with quantitative metrics regarding their antioxidant power such as combination index (CI), the difference in FRAP⁸⁷, % of

the synergistic or antagonistic effect⁸⁸ as well as Trolox equivalent antioxidant capacity (TEAC)⁸⁹. Among those, mixtures with their respective combination indexes are the most common entry in our database (approximately 700) and, given their abundance, were selected to fine-tune the general chemistry model into the regressors. It is important to point out that only those combinations that aligned with both these quantitative metrics and established assay methodology described in the literature were incorporated into our database. For comparison purposes, our database displays 297 entries describing synergistic or antagonistic effects in terms of percentage, 161 for TEAC, and 85 for the differences in FRAP. Therefore, the use of CI was considered most appropriate for the proposed task since a higher number of antioxidant combinations leads to a more representative chemical space and to a more robust and accurate regressor. Aiming to further increase the total number of antioxidant mixtures, the stoichiometric number of each combination was represented as repetitions of the smiles strings rather than the numerical value itself (*vide infra*, Figure 1). In this sense, a mixture that contains two components (A and B) in the molar ratio 2:3 would render 10 unique combinations (permutations of B A B A B, for example). The proposed strategy was then implemented and compared to the use of numerical representation for the molar ratio (e.g., 2A 3B) during the model's fine-tuning into regressors as summarized in Table 1.

Table 1: summarized results for fine-tuning the general chemistry model into regressor with numerical and textual representations. RMSE: root mean square deviation; MAPE: mean absolute percentage error. all the equations used for the calculations in this table can be found in the Supporting Information.

		Test o	lataset	Train o	dataset
Model	epoch	RMSE	MAPE (%)	RMSE	MAPE (%)
	001	3.77 x 10 ⁻²	17.5	1.33 x 10 ⁻¹	20.0
	005	4.59 x 10 ⁻²	16.2	1.00 x 10 ⁻¹	17.0
	010	2.90 x 10 ⁻²	12.9	6.20 x 10 ⁻²	12.3
	025	1.82 x 10 ⁻²	10.1	3.90 x 10 ⁻²	12.0
Numerical	100	1.21 x 10 ⁻²	8.73	2.10 x 10 ⁻²	7.34
	250	1.24 x 10 ⁻²	8.65	6.30 x 10 ⁻³	5.50
	350	1.07 x 10 ⁻²	7.76	1.20 x 10 ⁻²	5.24
	500	1.19 x 10 ⁻²	8.11	1.10 x 10 ⁻²	4.97
	750	1.37 x 10 ⁻²	9.21	1.00 x 10 ⁻²	4.82

	001	3.90 x 10 ⁻²	13.9	6.10 x 10 ⁻²	16.4
	005	2.90 x 10 ⁻²	8.81	3.00 x 10 ⁻²	11.5
	010	2.73 x 10 ⁻²	11.3	2.90 x 10 ⁻²	5.60
	025	1.95 x 10 ⁻²	9.49	2.50 x 10 ⁻²	5.27
Textual	100	1.24 x 10 ⁻²	7.94	9.70 x 10 ⁻³	6.21
	250	1.13 x 10 ⁻²	7.02	9.30 x 10 ⁻³	4.92
	350	1.04 x 10 ⁻²	7.01	8.60 x 10 ⁻³	4.60
	500	1.01 x 10 ⁻²	6.64	5.26 x 10 ⁻³	3.72
	750	1.17 x10 ⁻²	6.97	5.10 x 10 ⁻³	3.76

Regarding the models fine-tuned with numerical representations, it can be observed that a minimum value of root mean square deviation (RMSE = 1.07×10^{-2}) and mean absolute percentage error (MAPE = 7.76) was achieved at epoch 350 (~20 minutes) for the test dataset. In other words, the combination index (CI) predicted by the model differs (on average) by 7.76% from the ground truth value. Any additional increase in training negatively impacted the performance of the algorithm assessing new data, indicating that the neural network was overfitted. This idea was also supported by the fact that the RMSE and MAPE are continuously decreasing while assessing the training dataset. On the other hand, the models fine-tuned with text representations performed better (RMSE = 1.01×10^{-2} and MAPE = 6.64) at epoch 500, suggesting that the textual model requires more training (~30 minutes) to achieve its best performance. To further investigate the prediction capability of both model types at their respective best epoch, the predicted CI was evaluated as a function of the target CI (value extracted from literature), results that are summarized in Figure 3.

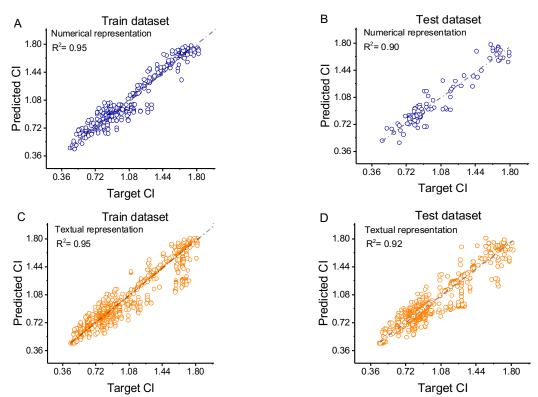


Figure 3: Predicted CI as a function of the target CI for both textual and numerical representation models and using the train and test datasets.

The textual and numerical models displayed a good agreement (R^2 = 0.92 and R^2 = 0.90, respectively) with respect to the target CI in the test dataset, demonstrating a satisfactory prediction capability at their best epochs. For both models, an R^2 of 0.95 was achieved by assessing the training dataset (Figure 3A and Figure 3C), which indicates that the neural network (for the textual model, R^2 = 0.92) is slightly better than the numerical model (R^2 = 0.90) at predicting unseen data (Figure 3B and Figure 3D). Although only a slight difference between the two models was observed, the use of textual representations could benefit the neural network's performance in cases where a limited amount of training data is available. In this scenario, a few experimental points (or data from the literature) could be augmented and then used to train the algorithm. In essence, while there are multiple ways to represent the same combination, the selection does not alter the overall count of unique antioxidant combinations. Although not relevant from a human point of view, this strategy is extremely powerful in the context of transformers-based architectures. The learning process of this deep learning algorithm (Electra in our case) is dependent on the sequence of the input, where subtle rearrangements of the SMILES string are perceived as distinct sequences by the model.

Consequently, this approach expands the model's exposure to the variety of possible input during training, contributing to a more robust and flexible understanding of individual antioxidant components in different contexts (combinations). Moreover, it is important to point out that some parts of the input are randomly 'masked' or hidden during the training phase. Then, the model is subsequently tasked with inferring these hidden sections, relying on the contextual environment offered by the unmasked components (antioxidants). In other words, the proposed permutations ultimately enhance the model's predictive performance and adaptability, allowing it to better handle the intricacies and complexities of antioxidant mixtures in different combinations.

305

306

307

308

309

310

311

297

298

299

300

301

302

303

304

For demonstration purposes, decreasing the size of the training dataset by half still allowed the textual model to display an acceptable performance ($R^2 = 0.86$); while cutting the numerical set by half rendered significantly poorer performances (R² = 0.61) when assessing the antioxidant combinations present in the test dataset (data not shown). Aiming to get further insights regarding the performance of both models, the cumulative distribution function (CDF)¹⁰⁰ was plotted versus the combination index for the target and predicted values (test dataset), as shown in Figure 4.

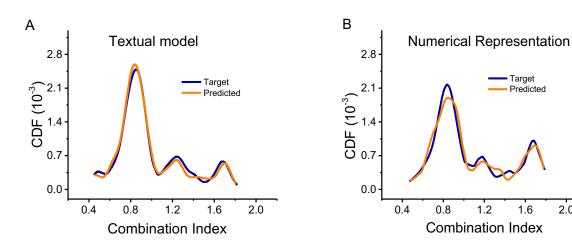


Figure 4: Cumulative distribution function versus the combination index for the textual (A) and numerical model (B).

312 313

314

315

This analysis showed that the cumulative distribution of the true combination index (blue line) falls in three main regions, displaying a higher CDF at a CI value of around 0.85. In other words, there is a higher probability of finding combination indexes with values equal to or lower than 0.85 (synergistic interactions)

2.0

in the test dataset, s finding that is aligned with the structure of our dataset. This characteristic was also observed in the training dataset (data not shown), indicating that the data splitting of the original database into the two subsets (train and test) was unbiased and representative. Moreover, there is a good agreement between the CDF for the predicted values for the textual model (Figure 4A, orange line) and the true output (Figure 4A, blue line) in all three regions. On the other hand, the predicted CDF for the numerical model (Figure 4B, orange line) is slightly off in all three regions, especially the one with CI > 1.10. These findings support the use of the textual model rather than the numerical one to investigate synergistic antioxidant interactions, occurence of great interest when developing novel antioxidant mixtures. Therefore, the textual model was selected and then applied to predict the behavior of antioxidant mixtures.

3.2 Experimental screnning. The antioxidant power of binary combinations of common phenolic compounds was investigated by using the thiobarbituric acid reactive substances (TBARS) assay97, 101 and lard as a lipidic substrate. Briefly, thiobarbituric acid undergoes a complexation reaction with malondialdehyde (MDA), a well-known marker for oxidative stress in samples containing lipids, rendering a pink chromogen compound that can be quantitatively assessed via spectrophotometry.97 Thus, the magnitude of the oxidative stress can be easily related to absorbance changes, allowing for an assessment of the rancidity in food samples in the presence or absence of antioxidants. In this scenario, lard samples were prepared with binary combinations of 10 phenolic antioxidants, incubated in a convection oven, and the resulting absorbance was compared to the absorbance generated in samples containing the individual components. The data analysis was accomplished through the use of a graphical method similar to an isobologram (see Supporting Information) allowing for the calculation of the difference (Δ_{TBARS}) between the absorbance obtained with samples containing antioxidants and the individual controls. Thus, synergistic combinations would render $\Delta_{TBARS} > 0$, while antagonistic interactions would generate $\Delta_{TBARS} < 0$. Following the same rationale, mixtures leading to Δ_{TBARS} values that showed only small differences with respect to the baseline were considered to feature an additive antioxidant behavior. Also in line with this analysis, Δ_{TBARS} values will be inversely proportional to the CI value, selected as an outcome for the model. Thus, a higher degree of synergistic antioxidant interactions results in a lower CI and in an increase in Δ_{TBARS}.

Figure 5 shows representative examples of the experimental Δ_{TBARS} obtained from binary combinations of phenolic antioxidants at either 1:3 or 3:1 molar ratios. Graphical representations of all other combinations are provided as Supporting Information.

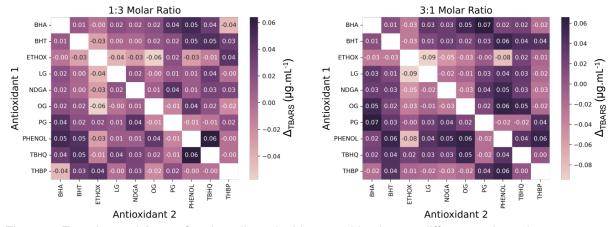


Figure 5: Experimental Δ_{TBARS} for phenolic antioxidant combinations at different molar ratios.

In line with scarce literature reports, 102 it is interesting to note that mixtures containing ETHOX mostly rendered antagonistic interactions (light pink color). On another hand, the vast majority of the synergistic interactions (dark purple) included mixtures containing either BHA or BHT, a finding that is also in good agreement with previous publications 64 , $^{103-105}$ This phenomenon can be attributed to the potent free radical scavenging capabilities of BHA and BHT, which effectively delays the oxidative deterioration of food products. The synergistic effect emerges from their ability to intervene at varying stages of the oxidation process, neutralizing free radicals through the donation of hydrogen atoms. 34 It is worth mentioning that, at the molar ratio of 3:1, propyl gallate (PG) and BHA rendered a notable synergistic effect, displaying a Δ_{TBARS} of approximately +0.07. This elevated synergistic effect observed occurs due to the complementary mechanism of these two antioxidants, regenerating each other and stabilizing free radicals as reported by several groups. 64 , 106 , 107 It is also important to note that Δ_{TBARS} values in the ±0.1 were obtained, defining reasonable limits for our model 108 and allowing us to focus on mixtures featuring -0.05 < Δ_{TBARS} > +0.06.

3.3 Challenging the model against benchtop data. It is worth mentioning that up until this point, our results provided strong evidence about the predictive power of the regressor trained and tested with textual representations of ~1100 antioxidants mixtures from the literature (R²=0.92). Therefore, it was reasonable

to expect that our approach would provide accurate predictions of the CI values of the binary mixtures of phenolic antioxidants (see Supporting Information). Towards this goal, the antioxidant combinations used to obtain the data shown in Figure 5 were translated into SMILES format and used as input for the textual model with the best performance (epoch 500). This strategy relies on the fact that only the textual notation of those mixtures would be necessary to correctly predict their type of interaction rather than the use of chemical descriptors. It's important to emphasize that the SMILES notation is only capable of encoding 2.5D information regarding the antioxidant chemical structure. In this sense, the lack of 3D structural information may hinder critical molecular interactions relevant to understand antioxidant synergism. The predicted combination index for those mixtures versus its ground normalized experimental value (Δ_{TBARS}), is presented in Figure 6. In this initial assessment of the predictive power of the model, there was no evident correlation between the predicted CI value and the experimentally- obtained Δ_{TBARS} values.

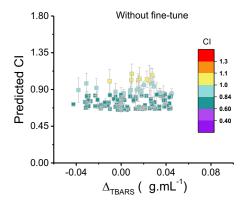


Figure 6: Predicted CI versus Δ_{TBARS} before model fine-tuning for the phenolic antioxidant combinations

Although these results were far from ideal, this outcome was somewhat expected since none of the compounds used in the benchtop experiments had been presented to the algorithm during the training session. In addition, the use of the proposed Δ_{TBARS} as a metric to quantify antioxidant interaction does not directly translate into CI values. These aspects are relevant because they suggest that despite the diversity of the mixtures in the training set, the model could not identify the chemical features of the selected phenolic antioxidants. These findings were somewhat expected, as approaches (based on a natural language processing) present limitations when presented with new structures (not present in the database), often leading to inaccurate predictions.

To address this shortcoming and enhance the predictive capabilities of the algorithm, a second fine-tuning step was implemented (c, in Figure 2), where increasing amounts of experimental data (SMILES notation and Δ_{TBARS} represented in terms of CI) were presented to the model. A summary of the results of the analysis is shown in Figure 7, where the correspondence between the two parameters was evaluated as a function of the amount (% of the experimental dataset, ~225 entries) used for the fine-tuning step.

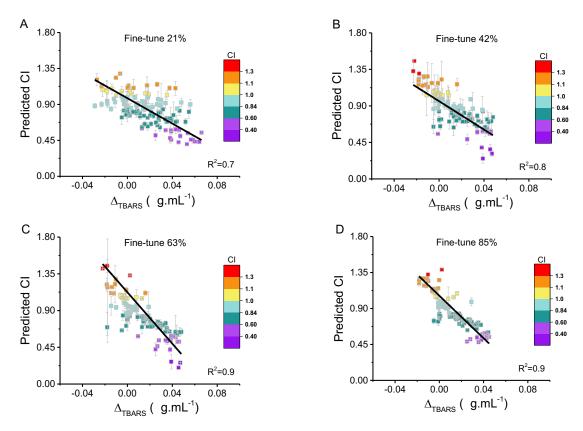


Figure 7: Relationship between the predicted CI and the experimental Δ_{TBARS} at 21%, 42%, 63%, and 85% fine-tune conditions.

As shown in Figure 7A, a fine-tuning step with just 21% of the experimental data (47 randomly selected data points) allowed the model to capture enough chemical patterns to render a positive correlation between the two variables. Despite this improvement, it is important to mention that the correlation within each group of data was rather poor. This trend is evident, for example, for CI values in the 1.1 - 1.3 range (antagonistic behavior), that expand horizontally covering a Δ_{TBARS} range from -0.03 g.ml⁻¹ (antagonistic) all the way to +0.04 g.ml⁻¹ (synergistic). This outcome aligns with our initial expectations, as exposing the model to a modest fraction of the experimental chemical space is only sufficient to elucidate a basic grasp of the

prevent trend between CI and delta Δ_{TBARS} . Fortunately, as more experimental data was presented, the model was able to identify the chemical patterns within each group, leading to more accurate predictions of the CI values. When the model was fine-tuned with 63% of the experimental data (142 randomly selected data points), a substantially better agreement (R²= 0.90) between the CI and Δ_{TBARS} was obtained, showing only a few predicted values erroneously classified. For example, points of the same color should be clustered at a specific region of Δ_{TBARS} and not shift horizontally. In practical terms, this behavior is not critical as long as the predicted points fall in their true interaction category (synergistic: CI < 0.85, additive: 0.85 < CI > 1.10, or antagonistic interaction: CI > 1.10). On the other hand, when the model was fine-tuned with 85% of the experimental data (191 randomly selected datapoints), a full agreement and lower dispersion of the data was obtained, indicating the possibility of using this model for predicting the behavior of the selected antioxidant mixtures.

4. CONCLUSIONS

This work describes the first example of using Artificial Intelligence based on deep learning architecture; to predict antioxidant interactions (synergism, additive, and antagonism) by using SMILES notation to predict combination indexes. The best-generated algorithm (R^2_{test} = 0.92 and R^2_{train} =0.95; assessing our proprietary database) was achieved through a new data augmentation strategy where the stoichiometric ratio in the antioxidant mixture was replaced by repetitions of the corresponding antioxidant in SMILES format. This proposed augmentation approach leads to a more representative chemical space during the model training, which addresses common overfitting problems due to the use of relatively small datasets. Then, the predictive capability of the algorithm was challenged against experimental benchtop data collected through TBARS assay. As a result, an expected inverse correlation between the predicted CI and Δ_{TBARS} increases (R^2 = 0.7 to 0.9) as the amount of fine-tuning data increases (21% to 85%), suggesting that the model successfully recognized chemical patterns from the antioxidant compounds used in the experimental analysis. We believe that the proposed method could be used as an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more rational predictions related to the antioxidant mixtures behavior, information that can't be obtained by using only experimental or computational approaches alone.

426	
127	5. COMPETING INTERESTS
128	The authors declare no competing interest
129	
430	6. SUPPORTING INFORMATION
431	Dependence of the loss with respect to the epoch number (foundational chemistry model training),
132	Equations to calculate root mean square error and mean absolute percentage error equations,
433	Experimental Δ_{TBARS} for all binary phenolic antioxidants mixtures, and SMILES notation of all binary
134	phenolic antioxidant combinations.
435	
436	7. ACKNOWLEDGMENTS
437	Financial support for this project has been provided by the Department of Chemistry at Clemson University,
438	the South Carolina Department of Agriculture ACRE Competitive Grant Program, Clemson's SPRI program,
439	and the NSF REU Program (CHE 2050042 & CHE-222737). Clemson University is also acknowledged for
140	their generous allotment of computer time on the Palmetto Cluster.
141	
142	8. DATA AVAILABILITY
143	The datasets used and/or analyzed during the current study are available from the corresponding author
144	upon reasonable request.
145	
146	9. REFERENCES
147	(1) Ahmad, A.; Ahsan, H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. <i>Biomed.</i>
148	Dermatol. 2020 , <i>4</i> (1), 12.
149	(2) García, C. D.; Ortiz, P. I. BHA and TBHQ Quantification in Cosmetic Samples. <i>Electroanalysis</i> 2000 ,
450	<i>12</i> (13), 1074-1076.

- 451 (3) De Boer, A. A.; Ismail, A.; Marshall, K.; Bannenberg, G.; Yan, K. L.; Rowe, W. J. Examination of
- marine and vegetable oil oxidation data from a multi-year, third-party database. Food Chem. 2018,
- 453 *254*, 249-255.
- 454 (4) Echegaray, N.; Pateiro, M.; Nieto, G.; Rosmini, M. R.; Munekata, P. E. S.; Sosa-Morales, M. E.;
- Lorenzo, J. M. Chapter 7 Lipid oxidation of vegetable oils. In Food Lipids, Lorenzo, J. M.,
- Munekata, P. E. S., Pateiro, M., Barba, F. J., Domínguez, R. Eds.; Academic Press, 2022; pp 127-
- 457 152.
- 458 (5) Negash, Y. A.; Amare, D. E.; Bitew, B. D.; Dagne, H. Assessment of quality of edible vegetable oils
- 459 accessed in Gondar City, Northwest Ethiopia. *BMC Res. Notes* **2019**, *12* (1), 793.
- 460 (6) Redondo-Cuevas, L.; Castellano, G.; Torrens, F.; Raikos, V. Revealing the relationship between
- 461 vegetable oil composition and oxidative stability: A multifactorial approach. J Food Compost Anal
- **2018**, *66*, 221-229.
- 463 (7) Garcia, C. D.; Ortiz, P. I. Determination of tert-Butylhydroxytoluene by Flow Injection Analysis at
- 464 Polymer Modified Glassy Carbon Electrodes. *Electroanalysis* **1998**, *10* (12), 832-835.
- 465 (8) Maestre, R.; Pazos, M.; Medina, I. Role of the Raw Composition of Pelagic Fish Muscle on the
- Development of Lipid Oxidation and Rancidity during Storage. J. Agric. Food Chem. 2011, 59 (11),
- 467 6284-6291.
- 468 (9) Azhar, K. F.; Nisa, K. Lipids and their oxidation in seafood. J. Chem. Soc. Pak. 2006, 28, 298-305.
- 469 (10) Ali, M.; Imran, M.; Nadeem, M.; Khan, M. K.; Sohaib, M.; Suleria, H. A. R.; Bashir, R. Oxidative
- 470 stability and Sensoric acceptability of functional fish meat product supplemented with plant(-)based
- polyphenolic optimal extracts. *Lipids Health Dis* **2019**, *18* (1), 35.
- 472 (11) Amaral, A.; Silva, M.; Lannes, S. Lipid oxidation in meat: Mechanisms and protective factors a
- 473 review. Food Sci. Technol. **2018**, 38.
- 474 (12) Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F. J.; Zhang, W.; Lorenzo, J. M. A Comprehensive
- 475 Review on Lipid Oxidation in Meat and Meat Products. *Antioxidants* **2019**, *8* (10).
- 476 (13) Flores, M. Chapter 13 The eating quality of meat: III—Flavor. In Lawrie's Meat Science (Ninth
- 477 Edition), Toldrá, F. Ed.; Woodhead Publishing, 2023; pp 421-455.

- 478 (14) Théron, L.; Estévez, M. Chapter 6 Recent advances in meat oxidation. In *New Aspects of Meat*
- 479 *Quality (Second Edition)*, Purslow, P. Ed.; Woodhead Publishing, 2022; pp 115-137.
- 480 (15) Desbruslais, A.; Wealleans, A. L. Oxidation in Poultry Feed: Impact on the Bird and the Efficacy of
 481 Dietary Antioxidant Mitigation Strategies. *Poultry* **2022**, *1* (4), 246-277.
- 482 (16) Estévez, M. Oxidative damage to poultry: from farm to fork. *Poult. Sci.* **2015**, *94* (6), 1368-1378.
- 483 (17) Hołda, K.; Głogowski, R. Selected quality properties of lipid fraction and oxidative stability of dry dog 484 foods under typical storage conditions. *J. Therm. Anal.* **2016**, *126* (1), 91-96.
- 485 (18) Kara, K. Effect of stocking conditions on fatty acid composition and oxidation capacities of different 486 class and type dog food. *Ital. J. Anim. Sci.* **2021**, *20* (1), 1042-1053.
- 487 (19) Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. *Molecules* **2022**, 27 (15).
- 488 (20) Shahidi, F.; Abad, A. Lipid-Derived Flavours and Off-Flavours in Food. In *Encyclopedia of Food*
- 489 Chemistry, Melton, L., Shahidi, F., Varelis, P. Eds.; Academic Press, 2019; pp 182-192.
- 490 (21) Christopoulos, M. V.; Tsantili, E. Oil composition in stored walnut cultivars—quality and nutritional value. *Eur. J. Lipid Sci. Technol.* **2015**, *117* (3), 338-348.
- 492 (22) Farag, M. A.; Elimam, D. M.; Afifi, S. M. Outgoing and potential trends of the omega-3 rich linseed oil 493 quality characteristics and rancidity management: A comprehensive review for maximizing its food 494 and nutraceutical applications. *Trends Food Sci Technol* **2021**, *114*, 292-309.
- 495 (23) Kubow, S. Toxicity of dietary lipid peroxidation products. *Trends Food Sci Technol* **1990**, *1*, 67-71.
- 496 (24) Gama, T.; Wallace, H. M.; Trueman, S. J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A 497 review. *Sci. Hortic.* **2018**, *242*, 116-126.
- 498 (25) Makhoul, H.; Ghaddar, T.; Toufeili, I. Identification of some rancidity measures at the end of the shelf 499 life of sunflower oil. *Eur. J. Lipid Sci. Technol.* **2006**, *108* (2), 143-148.
- (26) Gray, J. I.; Gomaa, E. A.; Buckley, D. J. Oxidative quality and shelf life of meats. *Meat Sci.* 1996, *43*,
 111-123.
- 502 (27) Alconada, T. M.; Moure, M. C. Deterioration of lipids in stored wheat grains by environmental 503 conditions and fungal infection – A review. *J. Stored Prod. Res.* **2022**, *95*, 101914.

- 504 (28) Sánchez-Ortega, I.; García-Almendárez, B. E.; Santos-López, E. M.; Amaro-Reyes, A.; Barboza-
- 505 Corona, J. E.; Regalado, C. Antimicrobial Edible Films and Coatings for Meat and Meat Products
- 506 Preservation. Sci. World J. 2014, 2014, 248935.
- 507 (29) Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Martorell Guerola, P.; Tortajada, M.; Cao, Z.; Ji, P. Chemical
- 508 Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and
- 509 Scotch Spearmint. *Molecules* **2019**, 24 (15), 2825.
- 510 (30) Šimat, V.; Čagalj, M.; Skroza, D.; Gardini, F.; Tabanelli, G.; Montanari, C.; Hassoun, A.; Ozogul, F.
- 511 Chapter Two Sustainable sources for antioxidant and antimicrobial compounds used in meat and
- seafood products. In *Adv. Food Nutr.*, Toldrá, F. Ed.; Vol. 97; Academic Press, 2021; pp 55-118.
- 513 (31) Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M. S.; Vijayakumar, R.; Baskaran, D. Role of
- essential oils in food safety: Antimicrobial and antioxidant applications. *Grain Oil Sci. Technol.* **2019**,
- 515 2 (2), 49-55.
- 516 (32) Ribeiro, J. S.; Santos, M. J. M. C.; Silva, L. K. R.; Pereira, L. C. L.; Santos, I. A.; da Silva Lannes, S.
- 517 C.; da Silva, M. V. Natural antioxidants used in meat products: A brief review. *Meat Sci.* **2019**, *148*,
- 518 181-188.
- 519 (33) Aminzare, M.; Hashemi, M.; Ansarian, E.; Bimkar, M.; Hassanzadazar, H.; Mehrasbi, M.;
- 520 Daneshamooz, S.; Raeisi, M.; Jannat, B.; Afshari, A. Using Natural Antioxidants in Meat and Meat
- 521 Products as Preservatives: A Review. *Adv Anim Vet Sci* **2019**, 7.
- 522 (34) Shahidi, F. Antioxidants in food and food antioxidants. *Nahrung* **2000**, *44* (3), 158-163.
- 523 (35) Khan, M. K.; Paniwnyk, L.; Hassan, S. Polyphenols as Natural Antioxidants: Sources, Extraction and
- 524 Applications in Food, Cosmetics and Drugs. In Plant Based "Green Chemistry 2.0": Moving from
- 525 Evolutionary to Revolutionary, Li, Y., Chemat, F. Eds.; Springer Singapore, 2019; pp 197-235.
- 526 (36) de Lima Cherubim, D. J.; Buzanello Martins, C. V.; Oliveira Fariña, L.; da Silva de Lucca, R. A.
- Polyphenols as natural antioxidants in cosmetics applications. J. Cosmet. Dermatol 2020, 19 (1), 33-
- 528 37.
- 529 (37) Cornelli, U. Antioxidant use in nutraceuticals. Clin. Dermatol. 2009, 27 (2), 175-194.
- 530 (38) Moure, A.; Cruz, J. M.; Franco, D.; Domínguez, J. M.; Sineiro, J.; Domínguez, H.; José Núñez, M. a.;
- 531 Parajó, J. C. Natural antioxidants from residual sources. Food Chem. 2001, 72 (2), 145-171.

- 532 (39) Brewer, M. S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential
- 533 Applications. Compr. Rev. Food Sci. Food Saf. **2011**, 10 (4), 221-247.
- 534 (40) Amarowicz, R.; Pegg, R. B. Chapter One Natural antioxidants of plant origin. In Adv. Food Nutr.,
- 535 Ferreira, I. C. F. R., Barros, L. Eds.; Vol. 90; Academic Press, 2019; pp 1-81.
- 536 (41) Hompesch, R. W.; García, C. D.; Weiss, D. J.; Vivanco, J. M.; Henry, C. S. Analysis of natural
- flavonoids by microchip-micellar electrokinetic chromatography with pulsed amperometric detection.
- 538 Analyst **2005**, 130 (5), 694-700.
- 539 (42) Xu, X.; Liu, A.; Hu, S.; Ares, I.; Martínez-Larrañaga, M.-R.; Wang, X.; Martínez, M.; Anadón, A.;
- Martínez, M.-A. Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action.
- 541 Food Chem. **2021**, 353, 129488.
- 542 (43) Poljsak, B.; Šuput, D.; Milisav, I. Achieving the Balance between ROS and Antioxidants: When to
- 543 Use the Synthetic Antioxidants. Oxid. Med. Cell. Longev. 2013, 2013, 956792.
- 544 (44) Augustyniak, A.; Bartosz, G.; Čipak, A.; Duburs, G.; Horáková, L. U.; Łuczai, W.; Majekova, M.;
- Odysseos, A. D.; Rackova, L.; Skrzydlewska, E.; et al. Natural and synthetic antioxidants: An
- 546 updated overview. Free Radic. Res. **2010**, 44 (10), 1216-1262.
- 547 (45) Ding, Y.; Mora, M. F.; Garcia, C. D. Analysis of alkyl gallates and nordihydroguaiaretic acid using
- 548 plastic capillary electrophoresis microchips. *Anal. Chim. Acta* **2006**, *561* (1), 126-132.
- 549 (46) Shahidi, F. 1 Antioxidants: Principles and applications. In *Handbook of Antioxidants for Food*
- 550 Preservation, Shahidi, F. Ed.; Woodhead Publishing, 2015; pp 1-14.
- 551 (47) Siddeeg, A.; AlKehayez, N. M.; Abu-Hiamed, H. A.; Al-Sanea, E. A.; Al-Farga, A. M. Mode of action
- and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2021,
- 553 28 (3), 1633-1644.
- 554 (48) Norma Francenia, S.-S.; Raúl, S.-C.; Claudia, V.-C.; Beatriz, H.-C. Antioxidant Compounds and Their
- Antioxidant Mechanism. In *Antioxidants*, Emad, S. Ed.; IntechOpen, 2019; p Ch. 2.
- 556 (49) Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact
- on human health. *Pharmacogn Rev* **2010**, *4* (8), 118-126.

- 558 (50) Benzie, I. F. F.; Choi, S.-W. Chapter One Antioxidants in Food: Content, Measurement,
- Significance, Action, Cautions, Caveats, and Research Needs. In Adv. Food Nutr., Henry, J. Ed.;
- Vol. 71; Academic Press, 2014; pp 1-53.
- 561 (51) Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem.
- **2020**, *44* (9), e13394.
- 563 (52) Hunyadi, A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen
- species to redox signaling and the generation of bioactive secondary metabolites. *Med. Res. Rev.*
- **2019**, 39 (6), 2505-2533.
- 566 (53) Alamed, J.; Chaiyasit, W.; McClements, D. J.; Decker, E. A. Relationships between Free Radical
- Scavenging and Antioxidant Activity in Foods. J. Agric. Food Chem. 2009, 57 (7), 2969-2976.
- 568 (54) Choe, E.; Min, D. B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci.
- 569 Food Saf. **2009**, 8 (4), 345-358.
- 570 (55) Allen, K. E. 4 Metal chelators as antioxidants for food preservation. In *Handbook of Antioxidants for*
- 571 Food Preservation, Shahidi, F. Ed.; Woodhead Publishing, 2015; pp 79-104.
- 572 (56) Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. In
- 573 Foods, 2017; Vol. 6.
- 574 (57) Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757-781.
- 575 (58) Liu, R.; Xu, Y.; Zhang, T.; Gong, M.; Liu, R.; Chang, M.; Wang, X. Interactions between liposoluble
- antioxidants: A critical review. Food Res. Int. 2022, 155, 111104.
- 577 (59) Slavova-Kazakova, A.; Janiak, M. A.; Sulewska, K.; Kancheva, V. D.; Karamać, M. Synergistic,
- 578 additive, and antagonistic antioxidant effects in the mixtures of curcumin with (-)-epicatechin and
- with a green tea fraction containing (-)-epicatechin. *Food Chem.* **2021**, 360, 129994.
- 580 (60) Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary
- 581 mixtures. *Phytochem Rev* **2020**, *19* (1), 63-103.
- 582 (61) Guo, Y.; Baschieri, A.; Amorati, R.; Valgimigli, L. Synergic antioxidant activity of γ-terpinene with
- 583 phenols and polyphenols enabled by hydroperoxyl radicals. Food Chem. 2021, 345, 128468.
- 584 (62) Crespo, Y. A.; Bravo Sánchez, L. R.; Quintana, Y. G.; Cabrera, A. S. T.; Bermúdez del Sol, A.;
- 585 Mayancha, D. M. G. Evaluation of the synergistic effects of antioxidant activity on mixtures of the

- essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using
- simplex-lattice design. *Heliyon* **2019**, 5 (6), e01942.
- 588 (63) Marinova, E.; Toneva, A.; Yanishlieva, N. Synergistic antioxidant effect of α-tocopherol and myricetin
- on the autoxidation of triacylglycerols of sunflower oil. *Food Chem.* **2008**, *106* (2), 628-633.
- 590 (64) Li, J.; Chen, J.; Bi, Y.; Yang, H. Insight into synergistic antioxidation mechanisms of butyl
- 591 hydroxyanisole with common synthetic antioxidants. *Grain Oil Sci. Technol.* **2022**, *5* (3), 114-130.
- 592 (65) Hyatt, J. R.; Zhang, S.; Akoh, C. C. Comparison of antioxidant activities of selected phenolic
- 593 compounds in O/W emulsions and bulk oil. Food Chem. 2021, 349, 129037.
- 594 (66) Abeyrathne, E. D. N. S.; Nam, K.; Ahn, D. U. Analytical Methods for Lipid Oxidation and Antioxidant
- 595 Capacity in Food Systems. Antioxidants 2021, 10 (10), 1587.
- 596 (67) Esfarjani, F.; Khoshtinat, K.; Zargaraan, A.; Mohammadi-Nasrabadi, F.; Salmani, Y.; Saghafi, Z.;
- Hosseini, H.; Bahmaei, M. Evaluating the rancidity and quality of discarded oils in fast food
- restaurants. Food Sci. Nutr. **2019**, 7 (7), 2302-2311.
- 599 (68) Manzoor, S.; Masoodi, F. A.; Rashid, R.; Ahmad, M.; Kousar, M. u. Quality assessment and
- degradative changes of deep-fried oils in street fried food chain of Kashmir, India. Food Control
- **2022**, *141*, 109184.
- 602 (69) Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by
- a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48 (8), 3396-3402.
- 604 (70) Jing, P.; Zhao, S.-J.; Jian, W.-J.; Qian, B.-J.; Dong, Y.; Pang, J. Quantitative Studies on Structure-
- 605 DPPH• Scavenging Activity Relationships of Food Phenolic Acids. *Molecules* **2012**, *17* (11), 12910-
- 606 12924.
- 607 (71) Thoo, Y. Y.; Abas, F.; Lai, O.-M.; Ho, C. W.; Yin, J.; Hedegaard, R. V.; Skibsted, L. H.; Tan, C. P.
- 608 Antioxidant synergism between ethanolic Centella asiatica extracts and α-tocopherol in model
- 609 systems. Food Chem. **2013**, 138 (2), 1215-1219.
- 610 (72) Mercado-Mercado, G.; de la Rosa, L. A.; Alvarez-Parrilla, E. Effect of pectin on the interactions
- among phenolic compounds determined by antioxidant capacity. J. Mol. Struct. 2020, 1199, 126967.
- 612 (73) Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the ability of antioxidants to counteract lipid
- oxidation: Existing methods, new trends and challenges. *Prog. Lipid Res.* **2007**, *46* (5), 244-282.

- 614 (74) Apak, R. Current Issues in Antioxidant Measurement. J. Agric. Food Chem. 2019, 67 (33), 9187-
- 615 9202.
- 616 (75) Frankel, E. N.; Meyer, A. S. The problems of using one-dimensional methods to evaluate
- 617 multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80 (13), 1925-1941.
- 618 (76) Cui, Z.; Zhang, N.; Zhou, T.; Zhou, X.; Meng, H.; Yu, Y.; Zhang, Z.; Zhang, Y.; Wang, W.; Liu, Y.
- 619 Conserved Sites and Recognition Mechanisms of T1R1 and T2R14 Receptors Revealed by
- 620 Ensemble Docking and Molecular Descriptors and Fingerprints Combined with Machine Learning. J.
- 621 Agric. Food Chem. **2023**, 71 (14), 5630-5645.
- 622 (77) Guo, T.; Pan, F.; Cui, Z.; Yang, Z.; Chen, Q.; Zhao, L.; Song, H. FAPD: An Astringency Threshold
- and Astringency Type Prediction Database for Flavonoid Compounds Based on Machine Learning.
- 624 J. Agric. Food Chem. 2023, 71 (9), 4172-4183.
- 625 (78) Kou, X.; Shi, P.; Gao, C.; Ma, P.; Xing, H.; Ke, Q.; Zhang, D. Data-Driven Elucidation of Flavor
- 626 Chemistry. J. Agric. Food Chem. **2023**, 71 (18), 6789-6802.
- 627 (79) Margulis, E.; Lang, T.; Tromelin, A.; Ziaikin, E.; Behrens, M.; Niv, M. Y. Bitter Odorants and Odorous
- 628 Bitters: Toxicity and Human TAS2R Targets. *J. Agric. Food Chem.* **2023**, *71* (23), 9051-9061.
- 629 (80) Zhang, D.; Jia, C.; Sun, D.; Gao, C.; Fu, D.; Cai, P.; Hu, Q.-N. Data-Driven Prediction of Molecular
- 630 Biotransformations in Food Fermentation. J. Agric. Food Chem. 2023, 71 (22), 8488-8496.
- 631 (81) Liu, S.; Qin, H.-H.; Ji, X.-R.; Gan, J.-W.; Sun, M.-J.; Tao, J.; Tao, Z.-Q.; Zhao, G.-N.; Ma, B.-X. Virtual
- 632 Screening of Nrf2 Dietary-Derived Agonists and Safety by a New Deep-Learning Model and Verified
- 633 In Vitro and In Vivo. *J. Agric. Food Chem.* **2023**, 71 (21), 8038-8049.
- 634 (82) Osborne, A. M.; Beyramysoltan, S.; Musah, R. A. Distinguishing Infested Flour from Uninfested Flour
- 635 through Chemometric Processing of DART-HRMS Data—Revealing the Presence of Tribolium
- 636 castaneum, the Red Flour Beetle. J. Agric. Food Chem. 2023, 71 (22), 8613-8621.
- 637 (83) Ding, Y.; Chen, S.; Liu, H.; Liu, T.; Yang, Q. Discovery of Multitarget Inhibitors against Insect
- 638 Chitinolytic Enzymes via Machine Learning-Based Virtual Screening. J. Agric. Food Chem. 2023, 71
- 639 (23), 8769-8777.

- 640 (84) Ayres, L. B.; Gomez, F. J. V.; Linton, J. R.; Silva, M. F.; Garcia, C. D. Taking the leap between
- analytical chemistry and artificial intelligence: A tutorial review. Anal. Chim. Acta 2021, 1161,
- 642 338403.
- 643 (85) Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology
- and encoding rules. *J. Chem. Inf. Comput. Sci.* **1988**, 28 (1), 31-36.
- 645 (86) Huang, R.-y.; Pei, L.; Liu, Q.; Chen, S.; Dou, H.; Shu, G.; Yuan, Z.-x.; Lin, J.; Peng, G.; Zhang, W.; et
- al. Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Front.
- 647 Pharmacol. **2019**, 10.
- 648 (87) Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I.
- 649 Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model
- Matrices Using FRAP and ORAC Methods. *Antioxidants* **2022**, *11* (9).
- 651 (88) Shi, J.; Qu, Q.; Kakuda, Y.; Xue, S. J.; Jiang, Y.; Koide, S.; Shim, Y.-Y. Investigation of the
- antioxidant and synergistic activity of lycopene and other natural antioxidants using LAME and
- 653 AMVN model systems. *J. Food Compos. Anal.* **2007**, 20 (7), 603-608.
- 654 (89) Arts, M. J.; Haenen, G. R.; Voss, H. P.; Bast, A. Antioxidant capacity of reaction products limits the
- applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem Toxicol. 2004,
- 656 *42* (1), 45-49.
- 657 (90) Lucas B. Ayres, F. J. V. G., Maria F. Silva, Jeb R. Linton, and Carlos D. Garcia. Predicting the
- Formation of NADES Using a Transformer-Based Model. Sci. Rep. 2024 DOI:
- https://doi.org/10.1038/s41598-022-27106-w
- 660 (91) Andronov, M.; Voinarovska, V.; Andronova, N.; Wand, M.; Clevert, D.-A.; Schmidhuber, J. Reagent
- prediction with a molecular transformer improves reaction data quality. Chem. Sci. 2023, 14 (12),
- 662 3235-3246.
- 663 (92) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, L.; Polosukhin,
- I. Attention Is All You Need. arXiv:1706.03762 [cs.CL] 2017.
- 665 (93) Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C. A.; Bekas, C.; Lee, A. A. Molecular
- 666 Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci.
- **2019**, *5* (9), 1572-1583.

- 668 (94) De Leonardis, A.; Macciola, V.; Lembo, G.; Aretini, A.; Nag, A. Studies on oxidative stabilisation of
- lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chem. 2007, 100 (3),
- 670 998-1004.
- 671 (95) Xu, X.; Bi, Y.; Wang, H.; Li, J.; Xu, Z. Transformation of TBHQ in Lard and Soybean Oils During
- 672 Room Temperature Storage. *Eur. J. Lipid Sci. Technol.* **2019**, *121* (8), 1800510.
- 673 (96) Thanaruenin, P.; Sutthasupa, S.; Kanha, N.; Sangsuwan, J. Antioxidation effect of alginate beads
- 674 containing thyme, rosemary or geranium essential oils in lard and coconut oil. *Int. J. Food Sci.*
- 675 Technol. **2023**, 58 (2), 898-906.
- 676 (97) Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde
- 677 Measurement in Oxidized Foods: Evaluation of the Spectrophotometric Thiobarbituric Acid Reactive
- 678 Substances (TBARS) Test in Various Foods. *J. Agric. Food Chem.* **2012**, *60* (38), 9589-9594.
- 679 (98) Reitznerová, A.; Šuleková, M.; Nagy, J.; Marcinčák, S.; Semjon, B.; Čertík, M.; Klempová, T. Lipid
- Peroxidation Process in Meat and Meat Products: A Comparison Study of Malondialdehyde
- Determination between Modified 2-Thiobarbituric Acid Spectrophotometric Method and Reverse-
- Phase High-Performance Liquid Chromatography. In *Molecules*, 2017; Vol. 22.
- 683 (99) Jin, W.; Coley, C.; Barzilay, R.; Jaakkola, T. Predicting organic reaction outcomes with weisfeiler-
- lehman network. Adv Neural Inf Process Syst. 2017, 30.
- 685 (100) Mathew, A. Quantile cumulative distribution function and its applications. *Commun. Stat. Theory*
- 686 *Methods.* **2023**, 1-15.
- 687 (101) Irwin, J. W.; Hedges, N. 13 Measuring lipid oxidation. In *Understanding and Measuring the Shelf-*
- 688 Life of Food, Steele, R. Ed.; Woodhead Publishing, 2004; pp 289-316.
- 689 (102) Maddock, R. J.; Wulf, D. M.; McKenna, D. R. The Effect of Ethoxyquin and Vitamin E
- 690 Supplementation on the Display Life of Beef Steaks. J. Food Sci. 2003, 68 (3), 1072-1074.
- 691 (103) Hossain, M. B.; Ahmed, L.; Martin-Diana, A. B.; Brunton, N. P.; Barry-Ryan, C. Individual and
- 692 Combined Antioxidant Activity of Spices and Spice Phenolics. Antioxidants 2023, 12 (2), 308.
- 693 (104) Omura, K. Antioxidant synergism between butylated hydroxyanisole and butylated hydroxytoluene.
- 694 J Am Oil Chem Soc **1995**, 72 (12), 1565-1570.

695	(105) Murari, S. K.; Shwetha, M. V. Effect of antioxidant butylated hydroxyl anisole on the thermal or
696	oxidative stability of sunflower oil (Helianthus Annuus) by ultrasonic. J Food Sci Technol. 2016, 53
697	(1), 840-847.
698	(106) Nogales-Delgado, S.; Guiberteau Cabanillas, A.; Moro, J. P.; Encinar Martín, J. M. Use of Propyl
699	Gallate in Cardoon Biodiesel to Keep Its Main Properties during Oxidation. In Clean Technol., 2023;
700	Vol. 5, pp 569-583.
701	(107) Rawat, D. S.; Joshi, G.; Lamba, B. Y.; Tiwari, A. K.; Kumar, P. The effect of binary antioxidant
702	proportions on antioxidant synergy and oxidation stability of Jatropha and Karanja biodiesels. Energy
703	2015 , <i>84</i> , 643-655.
704	(108) Singh, D.; Singh, B. Investigating the impact of data normalization on classification performance.
705	Appl. Soft Comput. 2020, 97, 105524.

For Table of Contents Only

Supporting Information for

Predicting Antioxidant Synergism via Artificial Intelligence and Benchtop Data

Lucas Ayres, Tomás Benavidez, Armelle Varillas, Jeb Linton, Daniel C. Whitehead, and Carlos D. Garcia

Table of contents

1. Foundational chemistry model training	2
2. Root mean square error and Mean absolute percentage error equations	. 2
3. Experimental Δ_{TBARS} for all binary phenolic antioxidants mixtures	. 2
4. Smiles notation of all binary phenolic antioxidant combinations	. 6

1. Foundational chemistry model training.

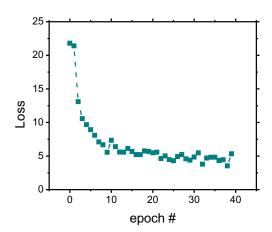
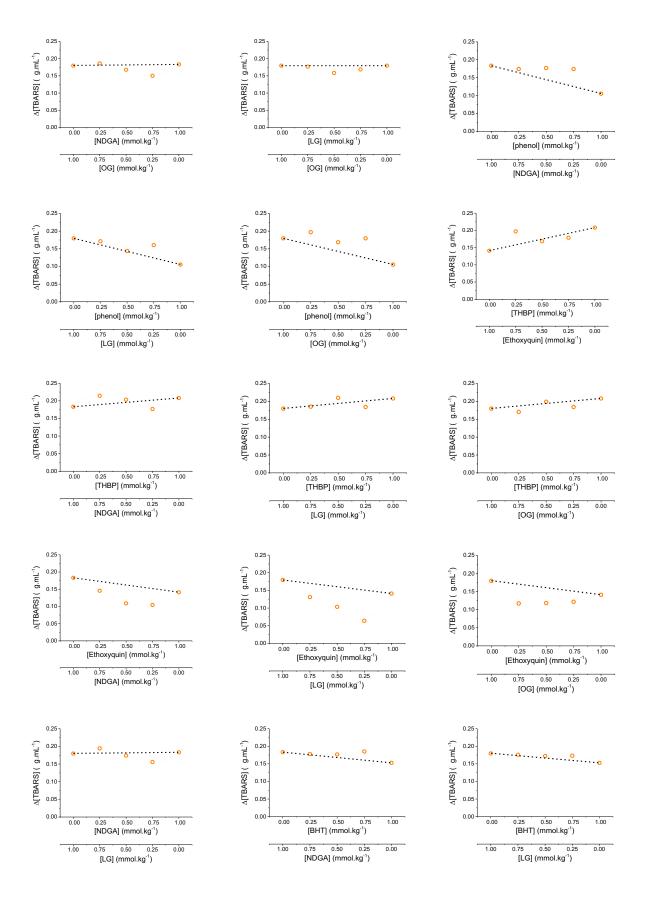
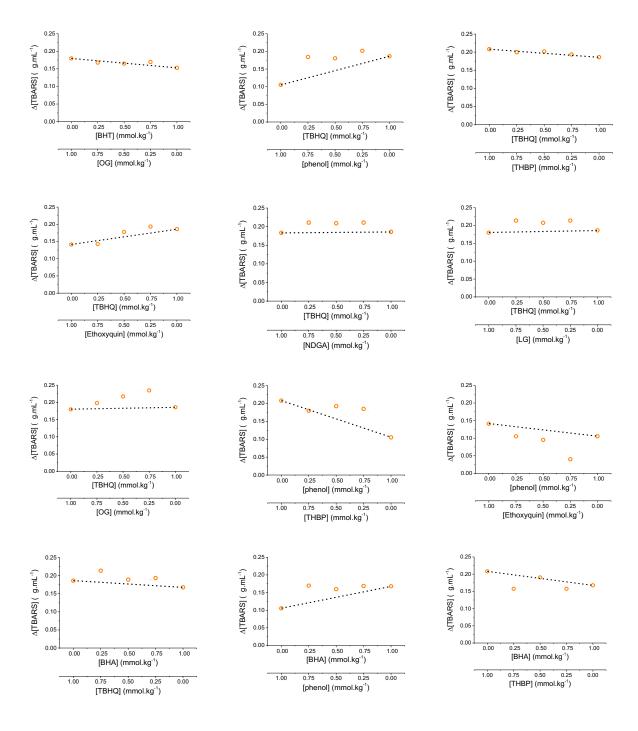


Figure S1: Training loss versus the number of epochs for the foundational general chemistry model

2. Root mean square error and Mean absolute percentage error equations.


Root mean square error


Mean absolute percentage error

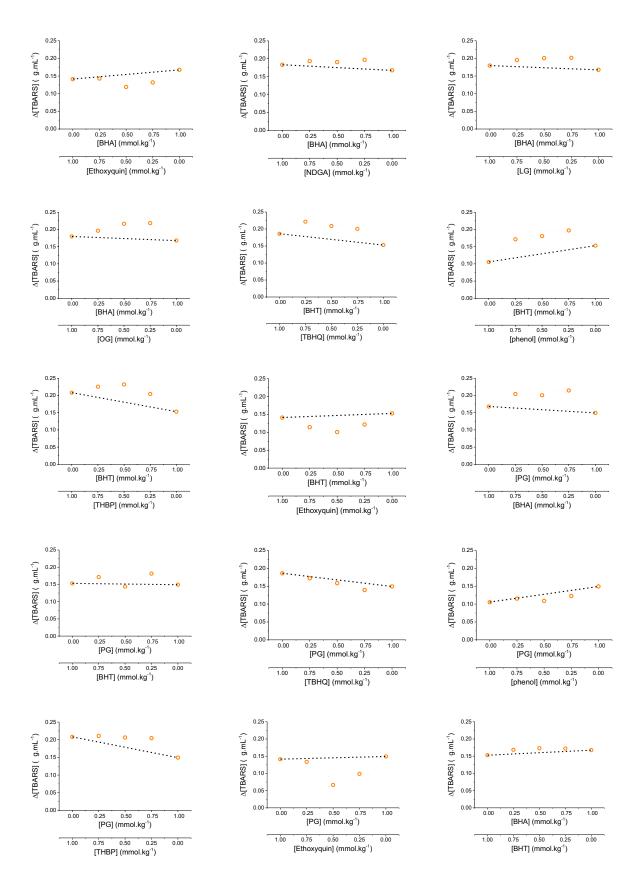

$$RMSE = \sqrt{\sum_{i=1}^{n} rac{(\hat{y}_i - y_i)^2}{n}} \quad \mathbf{M} = rac{1}{n} \sum_{t=1}^{n} \left| rac{A_t - F_t}{A_t} \right|$$

Figure S2: Equations used for calculating root mean square error (RMSE) and mean absolute percentage error (M).

3. Experimental Δ_{TBARS} for all binary phenolic antioxidant mixtures.

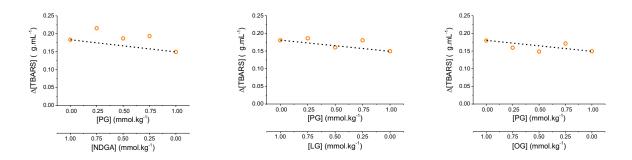


Figure S3: Graphical representation displaying the antioxidant effect for all the phenolic compounds.

4. Smiles notation of all binary phenolic antioxidant combinations.

Table S 1: SMILES notation for all the binary phenolic antioxidant combination.

Combination	Molar ratio	Canonical SMILES
PG BHA	1:3	CCCOC(=O)c1cc(O)c(O)c(O)c1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1
PG BHA	1:1	CCCOC(=O)c1cc(O)c(O)c(O)c1 CCCC(CC)(CC)CC.COc1ccc(O)cc1
PG BHA	3:1	$\label{eq:cccc} \begin{split} &\text{CCCOC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}$
PG BHT	1:3	$\label{eq:cccc} \begin{split} &\text{CCCOC}(=\text{O}) \text{c1cc}(\text{O}) \text{c}(\text{O}) \text{c}(\text{O}) \text{c1} \; \text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{C}) \text{c}(\text{O}) \text{c}(\text{C}(\text{C})(\text{C})\text{C}) \text{c1} \\ &\text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{C}) \text{c}(\text{O}) \text{c}(\text{C}(\text{C})(\text{C})\text{C}) \text{c1} \; \text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{C}) \text{c}(\text{O}) \text{c}(\text{C}(\text{C})(\text{C})\text{C}) \text{c1} \end{split}$
PG BHT	1:1	$CCCOC(=O)c1cc(O)c(O)c(O)c1\;Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1$
PG BHT	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}$
PG TBHQ	1:3	$ \label{eq:cccc} \text{CCCOC}(=\text{O}) \\ \text{c1cc}(\text{O}) \\ \text{c}(\text{O}) \\ \text{c}(\text{O}) \\ \text{c}(\text{C}) \\ c$
PG TBHQ	1:1	CCCOC(=O)c1cc(O)c(O)c(O)c1 CC(C)(C)c1cc(O)ccc1O
PG TBHQ	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=\text{O}) \\ &\text{c1cc}(\text{O}) \\ &\text{c}(\text{O}) \\ &\text$
PG Phenol	1:3	$\label{eq:ccoc} \begin{split} &CCCOC(=O) c1cc(O) c(O) c(O) c1 \; CC(C)(C) c1cc(CO) cc(C(C)(C)C) c10 \\ &CC(C)(C) c1cc(CO) cc(C(C)(C)C) c10 \; CC(C)(C) c1cc(CO) cc(C(C)(C)C) c10 \\ \end{split}$
PG Phenol	1:1	$CCCOC(=O)c1cc(O)c(O)c(O)c1\;CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O$
PG Phenol	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}$
PG THBP	1:3	$\label{eq:CCCC} \begin{split} &\text{CCCC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}($
PG THBP	1:1	CCCOC(=O)c1cc(O)c(O)c(O)c1 CCCC(=O)c1cc(O)c(O)cc1O

PG THBP	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}$
PG ETHO	1:3	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O)\text{c1cc}(O)\text{c}(O)\text{c}(O)\text{c1} \ \text{CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2} \\ &\text{CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2} \ \text{CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2} \end{split}$
PG ETHO	1:1	$\label{eq:CCCC} \texttt{CCCC}(=O)\texttt{c1}\texttt{cc}(O)\texttt{c}(O)\texttt{c}(O)\texttt{c1}\texttt{CCO}\texttt{c1}\texttt{ccc2}\texttt{c}(\texttt{c1})\texttt{C}(C)\texttt{=CC}(C)(C)\texttt{N2}$
PG ETHO	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O) \\ &\text{c1cc}(O) \\ &\text{c}(O) \\ &\text{c}$
PG NDGA	1:3	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O)\text{c1cc}(O)\text{c}(O)\text{c}(O)\text{c1} \; \text{CC}(\text{Cc1ccc}(O)\text{c}(O)\text{c1})\text{C}(C)\text{Cc1ccc}(O)\text{c}(O)\text{c1} \\ &\text{CC}(\text{Cc1ccc}(O)\text{c}(O)\text{c1})\text{C}(C)\text{Cc1ccc}(O)\text{c}(O)\text{c1} \; \text{CC}(\text{Cc1ccc}(O)\text{c}(O)\text{c1})\text{C}(C)\text{Cc1ccc}(O)\text{c}(O)\text{c1} \\ \end{split}$
PG NDGA	1:1	$CCCOC(=O)c1cc(O)c(O)c(O)c1 \; CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1$
PG NDGA	3:1	$\label{eq:ccoc} \begin{split} &\text{CCCOC}(=O)\text{c1cc}(O)\text{c}(O)\text{c}(O)\text{c1} \; \\ &\text{CCCOC}(=O)\text{c1cc}(O)\text{c}(O)\text{c}(O)\text{c}(O)\text{c1} \; \\ &\text{CC}(\text{Cc1ccc}(O)\text{c}(O)\text{c1})\text{C}(C)\text{Cc1ccc}(O)\text{c}(O)\text{c1} \end{split}$
PG LG	3:1	eq:cccccccccccccccccccccccccccccccccccc
PG OG	1:3	eq:cccccccccccccccccccccccccccccccccccc
PG OG	1:1	eq:cccccccccccccccccccccccccccccccccccc
PG OG	3:1	$\label{eq:ccccccoc} \begin{split} &\text{CCCOC(=O)c1cc(O)c(O)c(O)c1 CCCOC(=O)c1cc(O)c(O)c(O)c(O)c1 CCCOC(=O)c1cc(O)c(O)c(O)c1 CCCCCCCCCCCOC(=O)c1cc(O)c(O)c1} \\ &CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$
BHA BHT	1:3	$\label{eq:cccc} \begin{split} &\text{CCCC}(\text{CC})(\text{CC})\text{CC}.\text{COc1ccc}(\text{O})\text{cc1} \ \text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{C})\text{c}(\text{O})\text{c}(\text{C}(\text{C})(\text{C})\text{C})\text{c}1\\ &\text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{c}(\text{O})\text{c}(\text{C}(\text{C})(\text{C})\text{C})\text{c}1 \ \text{Cc1cc}(\text{C}(\text{C})(\text{C})\text{C})\text{c}(\text{O})\text{c}(\text{C}(\text{C})(\text{C})\text{C})\text{c}1\\ \end{split}$
BHA BHT	1:1	$CCCC(CC)(CC)CC.COc1ccc(O)cc1\ Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1$
ВНА ВНТ	3:1	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ \ \text{Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)cc1} \end{split}$
BHA TBHQ	1:3	$\label{eq:ccc} \begin{split} &\text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ &\text{CC(C)(C)c1cc(O)ccc1O} \ \ &\text{CC(C)(C)c1cc(O)ccc1O} \ \ \\ &\text{CC(C)(C)c1cc(O)ccc1O} \ \ &\text{CC(C)(C)c1cc(O)ccc1O} \end{split}$
BHA TBHQ	1:1	CCCC(CC)(CC)CC.COc1ccc(O)cc1 CC(C)(C)c1cc(O)ccc1O
BHA TBHQ	3:1	CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CC(C)(C)c1cc(O)ccc1O
BHA Phenol	1:3	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ \text{CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \\ & \text{CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \ \ \text{CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \end{split}$
BHA Phenol	1:1	$CCCC(CC)(CC)CC.COc1ccc(O)cc1\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O$
BHA Phenol	3:1	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \ \ \ \text{CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \end{split}$
BHA THBP	1:3	$\label{eq:ccc} \begin{split} &\text{CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(=O)c1cc(O)c(O)cc1O CCCC(=O)c1cc(O)c(O)cc1O} \\ &\text{CCCC(=O)c1cc(O)c(O)cc1O} \end{split}$
ВНА ТНВР	1:1	CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(=O)c1cc(O)c(O)cc1O
ВНА ТНВР	3:1	CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(=O)c1cc(O)c(O)cc1O

ВНА ЕТНО	1:3	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COc1ccc}(O)\text{cc1} \ \text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} \\ & \text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} \ \text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} \end{split}$
BHA ETHO	1:1	$CCCC(CC)(CC)CC.COc1ccc(O)cc1 \ CCOc1ccc2c(c1)C(C) = CC(C)(C)N2$
ВНА ЕТНО	3:1	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COclecc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COclecc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COclecc(O)cc1} \\ & \text{CCOclecc2c(c1)C(C)=CC(C)(C)N2} \end{split}$
BHA NDGA	1:3	$\label{eq:ccc} \begin{split} &\text{CCCC(CC)(CC)CC.COclecc(O)cc1} \ \text{CC(Cclccc(O)c(O)c1)C(C)Cclccc(O)c(O)c1} \\ &\text{CC(Cclccc(O)c(O)c1)C(C)Cclccc(O)c(O)c1} \ \text{CC(Cclccc(O)c(O)c1)C(C)Cclccc(O)c(O)c1} \end{split}$
BHA NDGA	1:1	$CCCC(CC)(CC)CC.COc1ccc(O)cc1\ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1$
BHA NDGA	3:1	$\label{eq:cccc} \begin{split} & \text{CCCC(CC)(CC)CC.COclecc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COclccc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COclccc(O)cc1} \\ & \text{CC(Cclccc(O)c(O)cc1)C(C)Cclccc(O)cc1} \\ \end{split}$
BHA LG	1:3	eq:cccccccccccccccccccccccccccccccccccc
BHA LG	1:1	$CCCC(CC)(CC)CC.COc1ccc(O)cc1 \ CCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$
BHA LG	3:1	$\label{eq:ccc} \begin{split} & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \\ & \text{CCCC(CC)(CC)CC.COc1ccc(O)cc1} \\ & \text{CCCCCCCCCCCCCCCCCCCCCC(O)cc1} \\ \end{split}$
вна og	1:3	eq:cccccccccccccccccccccccccccccccccccc
BHA OG	1:1	$\texttt{CCCC}(\texttt{CC})(\texttt{CC})\texttt{CC}.\texttt{COc1ccc}(\texttt{O})\texttt{cc1} \ \texttt{CCCCCCCCCCC}(\texttt{=O})\texttt{c1cc}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}(\texttt{O})$
вна og	3:1	CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)CC.COc1ccc(O)cc1 CCCC(CC)(CC)(CC)CC.COc1ccc(O)cc1 CCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1
BHT TBHQ	1:3	$ \label{eq:colored} \text{Cc1cc}(C(C)(C)C)c(C)c(C)(C)C)c1 \ CC(C)(C)c1cc(O)ccc1O \ CC(C)(C)c1cc(O)ccc1O \ CC(C)(C)c1cc(O)ccc1O $
BHT TBHQ	1:1	$\label{eq:colored} \texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c1} \ \texttt{CC}(\texttt{C})(\texttt{C})\texttt{c1cc}(\texttt{O})\texttt{ccc1O}$
BHT TBHQ	3:1	$ \begin{array}{l} {\sf Cc1cc}({\sf C}({\sf C})({\sf C}){\sf C}({\sf C})({\sf C}){\sf C}({\sf C})({\sf C}){\sf C}) \\ {\sf cc1cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}({\sf O}){\sf c}({\sf C}({\sf C})({\sf C}){\sf C}) \\ {\sf cc1cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}({\sf O}){\sf c}({\sf C}({\sf C})({\sf C}){\sf C}) \\ {\sf cc1cc}({\sf C})({\sf C}){\sf c}({\sf C}){$
BHT Phenol	1:3	$ \begin{array}{l} {\sf Cc1cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}({\sf O}){\sf c}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}1 \; {\sf CC}({\sf C})({\sf C}){\sf c}1{\sf cc}({\sf CO}){\sf cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}10 \\ {\sf CC}({\sf C})({\sf C}){\sf c1cc}({\sf CO}){\sf cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}10 \; {\sf CC}({\sf C})({\sf C}){\sf c1cc}({\sf CO}){\sf cc}({\sf C}({\sf C})({\sf C}){\sf C}){\sf c}10 \\ \end{array} $
BHT Phenol	1:1	$\label{eq:colored} \texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{c})\texttt{c}1 \ \texttt{CC}(\texttt{C})(\texttt{C})\texttt{c}1\texttt{cc}(\texttt{CO})\texttt{cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}10$
BHT Phenol	3:1	$ \begin{array}{ll} \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{CC}(C)(C)c1cc(CO)cc(C(C)(C)C)c1O \\ \end{array} $
ВНТ ТНВР	1:3	$\label{eq:cccc} \begin{aligned} &\text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 \ CCCC(=O)c1cc(O)c(O)cc1O \ CCCC(=O)c1cc(O)c(O)cc1O \ CCCC(=O)c1cc(O)c(O)cc1O \end{aligned}$
BHT THBP	1:1	$\label{eq:cc1cc} \texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c} \texttt{1} \ \texttt{CCCC}(\texttt{=O})\texttt{c1cc}(\texttt{O})\texttt{c}(\texttt{O})\texttt{cc1O}$
BHT THBP	3:1	$ \begin{array}{ll} \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{CCCC}(=O)c1cc(O)c(O)cc1O \\ \end{array} $
BHT ETHO	1:3	$ \begin{array}{l} \texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}1 \ \texttt{CCOc1ccc2c}(\texttt{c1})\texttt{C}(\texttt{C})\texttt{=CC}(\texttt{C})(\texttt{C})\texttt{N2} \\ \texttt{CCOc1ccc2c}(\texttt{c1})\texttt{C}(\texttt{C})\texttt{=CC}(\texttt{C})(\texttt{C})\texttt{N2} \ \texttt{CCOc1ccc2c}(\texttt{c1})\texttt{C}(\texttt{C})\texttt{=CC}(\texttt{C})(\texttt{C})\texttt{N2} \\ \end{array} $
BHT ETHO	1:1	$\label{eq:colored} \texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}1~\texttt{CCOc1ccc2c}(\texttt{c1})\texttt{C}(\texttt{C})\texttt{=CC}(\texttt{C})(\texttt{C})\texttt{N}2$

BHT ETHO	3:1	$ \begin{array}{ll} Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 \\ \end{array} $
BHT NDGA	1:3	$\label{eq:colored} \begin{split} &\text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 \ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1\\ &\text{CC}(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1\\ \end{split}$
BHT NDGA	1:1	$\texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}1 \ \texttt{CC}(\texttt{Cc1ccc}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}1)\texttt{C}(\texttt{C})\texttt{Cc1ccc}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}1$
BHT NDGA	3:1	$ \begin{array}{ll} \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ \text{Cc1cc}(C(C)(C)C)c(O)c(C(C)(C)C)c1 & \text{CC}(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \\ \end{array} $
BHT LG	1:3	$\label{eq:colored} \begin{split} &\text{Cc1cc}(C(C)(C)C)c(O)c(C)(C)(C)C)c1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$
BHT LG	1:1	$\texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}1\ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$
BHT LG	3:1	$ \begin{array}{ll} Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & CCCCCCCCCCCCCCCCC(C(C)(C)c(O)c(O)c(O)c1 \\ \end{array} $
BHT OG	1:3	eq:coccccccccccccccccccccccccccccccccccc
BHT OG	1:1	$\texttt{Cc1cc}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}(\texttt{O})\texttt{c}(\texttt{C}(\texttt{C})(\texttt{C})\texttt{C})\texttt{c}1 \ \texttt{CCCCCCCCCCCC}(\texttt{=O})\texttt{c1cc}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}(\texttt{O})\texttt{c}1$
BHT OG	3:1	$ \begin{array}{ll} Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 \\ Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 & CCCCCCCCCC(C(C)(C)c(O)c(O)c(O)c1 \\ \end{array} $
TBHQ Phenol	1:3	$ \begin{array}{l} {\sf CC(C)(C)c1cc(O)ccc1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C)(C)C)c1O\ CC(C)(C)c1cc(CO)cc(C)(C)C)c1O\ CC(C)(C)C)c1CC(C)C)c1CC(C)C)c1CC(C)C)c1CC(C)C)c1CC(C)C)c1CC(C)C)c1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C)C1CC(C)C1CC(C)C)C1CC(C)C1CC(C)C)C1CC(C)C1C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1C1CC(C)C1C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1CC(C)C1C1CC(C)C$
TBHQ Phenol	1:1	CC(C)(C)c1cc(O)ccc1O $CC(C)(C)$ c1cc(CO)cc(C(C)(C)C)c1O
TBHQ Phenol	3:1	$ \begin{array}{l} {\sf CC(C)(C)c1cc(O)ccc1O\ CC(C)(C)c1cc(O)ccc1O\ CC(C)(C)c1cc(O)ccc1O\ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \\ \end{array} $
TBHQ THBP	1:3	$ \label{eq:ccc} \text{CC(C)(C)c1cc(O)ccc1O CCCC(=O)c1cc(O)c(O)cc1O CCCC(=O)c1cc(O)c(O)cc1O CCCC(=O)c1cc(O)c(O)cc1O } $
TBHQ THBP	1:1	CC(C)(C)c1cc(O)ccc1O CCCC(=O)c1cc(O)c(O)cc1O
TBHQ THBP	3:1	$ \begin{tabular}{ll} $\sf CC(C)(C)$ c1cc(O)ccc1O & CC(C)(C)c1cc(O)ccc1O & CC(C)(C)c1cc(O)ccc1O \\ & CCCC(=O)c1cc(O)c(O)cc1O & \end{tabular} $
TBHQ ETHO	1:3	$ \begin{array}{l} {\sf CC(C)(C)c1cc(O)ccc1O\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} \end{array} $
TBHQ ETHO	1:1	CC(C)(C)c1cc(O)ccc1O $CCOc1ccc2c(c1)C(C)=CC(C)(C)N2$
TBHQ ETHO	3:1	$ \label{eq:ccconstraint} \text{CC(C)(C)c1cc(O)ccc1O CC(C)(C)c1cc(O)ccc1O CC(C)(C)c1cc(O)ccc1O CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} $
TBHQ NDGA	1:3	CC(C)(C)c1cc(O)ccc1O CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1
TBHQ NDGA	1:1	$CC(C)(C)c1cc(O)ccc1O\ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1$
TBHQ NDGA	3:1	CC(C)(C)c1cc(O)ccc1O CC(C)(C)c1cc(O)ccc1O CC(C)(C)c1cc(O)ccc1O CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1
TBHQ LG	1:3	$ \begin{array}{l} {\sf CC(C)(C)c1cc(O)ccc1O\ CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$

TBHQ LG	1:1	$CC(C)(C)c1cc(O)ccc1O\ CCCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$
TBHQ LG	3:1	$ \begin{array}{lll} & & & & & & & & & & & & \\ & & & & & & $
TBHQ OG	1:3	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
TBHQ OG	1:1	CC(C)(C)c1cc(O)ccc1O CCCCCCCCC(=O)c1cc(O)c(O)c(O)c1
TBHQ OG	3:1	$ \begin{array}{lll} & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
Phenol THBP	1:3	$ CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CCCC(=O)c1cc(O)c(O)cc1O\ CCCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cc(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCC(=O)c1cC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCC(O)cCOCCCCC(O)cCOCCCCC(O)cCOCCCCC(O)cCOCCCCCC(O)cCOCCCCCCCCCC$
Phenol THBP	1:1	$CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CCCC(=O)c1cc(O)c(O)cc1O$
Phenol THBP	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
Phenol ETHO	1:3	$ \begin{array}{l} CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O \ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 \\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 \ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 \end{array} $
Phenol ETHO	1:1	$CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2$
Phenol ETHO	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
Phenol NDGA	1:3	$ \begin{array}{l} CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O \ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1\\ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1\\ \end{array} $
Phenol NDGA	1:1	$CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1$
Phenol NDGA	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
Phenol LG	1:3	$ \begin{array}{l} {\sf CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O} \ \ {\sf CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$
Phenol LG	1:1	$CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CCCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$
Phenol LG	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
Phenol OG	1:3	$ \begin{array}{l} CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O \ CCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \\ CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \ CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \\ \end{array} $
Phenol OG	1:1	$CC(C)(C)c1cc(CO)cc(C(C)(C)C)c1O\ CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$
Phenol OG	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
THBP ETHO	1:3	$\label{eq:ccc} \begin{split} &\text{CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2} \\ &\text{CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2 CCOc1ccc2c}(\text{c1})\text{C}(C) = \text{CC}(C)(C)\text{N2} \end{split}$
THBP ETHO	1:1	$CCCC(=O)c1cc(O)c(O)cc1O\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2$
THBP THO	3:1	$\label{eq:ccc} \begin{split} &\text{CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O} \\ &\text{CCOc1ccc2c}(\text{c1})\text{C}(C)\text{=CC}(C)(C)\text{N2} \end{split}$

THBP NDGA	1:3	$\label{eq:ccc} \begin{split} &\text{CCCC}(=\text{O})\text{c1cc}(\text{O})\text{c}(\text{O})\text{cc1O} \ \text{CC}(\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1})\text{C}(\text{C})\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1}\\ &\text{CC}(\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1})\text{C}(\text{C})\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1} \ \text{CC}(\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1})\text{C}(\text{C})\text{Cc1ccc}(\text{O})\text{c}(\text{O})\text{c1} \end{split}$
THBP NDGA	1:1	CCCC(=O)c1cc(O)c(O)cc1O CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1
THBP NDGA	3:1	$\label{eq:CCCC} \begin{split} &\text{CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O} \\ &\text{CC}(\text{Cc1ccc}(O)\text{c}(O)\text{c1})\text{C}(C)\text{Cc1ccc}(O)\text{c}(O)\text{c1} \end{split}$
THBP LG	1:3	eq:cccccccccccccccccccccccccccccccccccc
THBP LG	1:1	CCCC(=O)c1cc(O)c(O)cc1O CCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1
THBP LG	3:1	eq:cccccccccccccccccccccccccccccccccccc
THBP OG	1:3	eq:cccccccccccccccccccccccccccccccccccc
THBP OG	1:1	CCCC(=O)c1cc(O)c(O)cc1O CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1
THBP OG	3:1	$\label{eq:CCCC} \begin{split} &\text{CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O CCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{cc1O} \\ &\text{CCCCCCCCCCC}(=O)\text{c1cc}(O)\text{c}(O)\text{c}(O)\text{c1} \end{split}$
ETHO NDGA	1:3	$\label{eq:coccoc} \begin{split} &\text{CCOc1ccc}(\text{c1})\text{C(C)} = \text{CC(C)}(\text{C)}\text{N2} \; \text{CC(Cc1ccc(O)c(O)c1)}\text{C(C)}\text{Cc1ccc(O)c(O)c1}\\ &\text{CC(Cc1ccc(O)c(O)c1)}\text{C(C)}\text{Cc1ccc(O)c(O)c1)}\text{C(C)}\text{Cc1ccc(O)c(O)c1)}\\ \end{split}$
ETHO NDGA	1:1	$CCOc1ccc2c(c1)C(C) = CC(C)(C)N2 \ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1$
ETHO NDGA	3:1	$ \begin{split} & \texttt{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2\ CCOc1ccc2c(c1)C(C)=CC(C)(C)N2} \\ & \texttt{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2\ CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1} \end{split} $
ETHO LG	1:3	eq:coccccccccccccccccccccccccccccccccccc
ETHO LG	1:1	eq:cccccccccccccccccccccccccccccccccccc
ETHO LG	3:1	$\label{eq:cocccc} \begin{split} &\text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(c1)C(C)=CC(C)(C)N2}\\ &\text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 CCCCCCCCCCCCCC(C)c1cc(O)c(O)c(O)c1} \end{split}$
ETHO OG	1:3	eq:cccccccccccccccccccccccccccccccccccc
ETHO OG	1:1	eq:cccccccccccccccccccccccccccccccccccc
ETHO OG	3:1	$\label{eq:cocccc} \begin{split} &\text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(c1)C(C)=CC(C)(C)N2}\\ &\text{CCOc1ccc2c(c1)C(C)=CC(C)(C)N2 CCCCCCCCC(=O)c1cc(O)c(O)c(O)c1} \end{split}$
NDGA LG	1:3	eq:cccccccccccccccccccccccccccccccccccc
NDGA LG	1:1	$CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \ CCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$
NDGA LG	3:1	$ \begin{array}{lll} & & & & & & & & & & & \\ & & & & & & & $
NDGA OG	1:3	$ \begin{array}{l} CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \ CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \ CCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \ CCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1 \end{array} $
NDGA OG	1:1	$CC(Cc1ccc(O)c(O)c1)C(C)Cc1ccc(O)c(O)c1 \ CCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1$

NDGA OG	3:1	$ \begin{array}{l} {\sf CC}({\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1}){\sf C}({\sf C}){\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1} \; {\sf CC}({\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1}){\sf C}({\sf C}){\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1} \\ {\sf CC}({\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1}){\sf C}({\sf C}){\sf Cc1ccc}({\sf O}){\sf c}({\sf O}){\sf c1} \; \; {\sf CCCCCCCCCC}({\sf C}({\sf O}){\sf c}({\sf O}){\sf c}({\sf O}){\sf c0}){\sf c1} \\ \end{array} $
LG OG	1:3	eq:cccccccccccccccccccccccccccccccccccc
LG OG	1:1	$\texttt{CCCCCCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1} \ \texttt{CCCCCCCCCCC(=O)c1cc(O)c(O)c(O)c1}$
LG OG	3:1	eq:cccccccccccccccccccccccccccccccccccc