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ABSTRACT

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or
components, leading to the formation of low molecular weight species with diverse functional groups that
impart off-odors and off-flavors. Aiming to control this process, antioxidants are commonly added to these
products, often deployed as combinations of two or more compounds, a strategy that allows for lowering
the amount used while boosting the total antioxidant capacity of the formulation. While this approach allows
for minimizing the potential organoleptic and toxic effects of these compounds, predicting how these
mixtures of antioxidants will behave has traditionally been one of the most challenging tasks, often leading
to simple additive, antagonistic, or synergistic effects. Approaches to understanding these interactions have
been predominantly empirically driven, but thus far inefficient and unable to account for the complexity and
multifaceted nature of antioxidant responses. To address this current gap in knowledge, we describe the
use of an artificial intelligence model based on deep learning architecture to predict the type of interaction
(synergistic, additive, and antagonistic) of antioxidant combinations. Here, each mixture was associated
with a combination index value (Cl) and used as input for our mode, which was challenged against a test
(n=140) dataset. Despite the encouraging preliminary results, this algorithm failed to provide accurate
predictions of oxidation experiments performed in-house, using binary mixtures of phenolic antioxidants
and a lard sample. To overcome this problem, the Al algorithm was then enhanced with various amounts
of experimental data (antioxidant power data assessed by the TBARS assay), demonstrating the
importance of having chemically-relevant experimental data to enhance the model's performance and
provide suitable predictions with statistical relevance. We believe the proposed method could be used as
an auxiliary tool in benchmark analysis routines, offering a novel strategy to enable broader and more

rational predictions related to the behavior of antioxidant mixtures.
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1. INTRODUCTION

Lipid oxidation is a major issue affecting products containing unsaturated fatty acids as ingredients or
components. These include, for instance, cosmetics " 2, vegetable oils®*7, seafood®'°, processed meat''-4,
and animal feed'>'®. The oxidative deterioration of these samples can occur via chemical, thermal,
enzymatic, and/or photocatalytic mechanisms. Among these, auto-oxidation (spontaneously initiated in the
presence of atmospheric oxygen) is the least selective and probably the most difficult to control. Among
other targets, the oxidation of lipids leads to the formation of low molecular-weight species with diverse
functional groups (carboxylic acids, aldehydes, and ketones) that impart off-odors'® and off-flavors?°. This
process is also known as rancidity and can not only impart an unpleasant taste but also diminish the
nutritional value?' 2?2 and the overall quality of the sample, which ultimately impacts the health of the end
consumer®, Moreover, the oxidation of lipid-based foods also contributes to the shorter shelf-life of these

products 2?6, resulting in considerable economic losses in all segments of the supply chain?” 28,

Therefore, it is critical to develop strategies to mitigate or prevent lipid oxidation in foods. For this purpose,
the use of antioxidants has proven to be one of the most effective and frequently adopted methods,?°3* a
strategy that has been also extended to pharmaceuticals®> ¢ as well as nutraceutical products®: 3.
Although these antioxidants are derived from natural®+#' (e.g, tocopherols, phenolic acids, polyphenols,
and ascorbic acid) or synthetic sources*?*5, they offer different mechanisms of action6°? and allow
targeting the reaction at different stages, from scavenging free radicals %3, to quenching triplet oxygen %, to
chelating metal cations®®. Regardless of the mechanism of action, antioxidants are normally deployed as
combinations of two or more compounds, a strategy that allows lowering the amount used while boosting
the total antioxidant capacity of the formulation. While this approach allows minimizing the potential
organoleptic and toxic effects of these compounds, predicting how these mixtures of antioxidants will
behave has traditionally been one of the most challenging tasks®®-%8, often leading to simple additive®® (even
antagonistic®) effects, instead of the desired synergistic response®'-63. Although the interaction between
some classes of antioxidants is well known ®, there is a current need for a strategy that could enable
broader and more rational predictions related to the antioxidant capacity of mixtures. Approaches to

understanding these interactions have been predominantly empirically driven, where the total antioxidant
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effectiveness is assessed by using assays such as total oxidation index (TOTOX) 5, thiobarbituric acid
reactive substances (TBARS) ¢, peroxide value (PV)?, p-anisidine test 8, ferric reducing antioxidant power
(FRAP) 9, or DPPH scavenging °. The gathered experimental data can be then analyzed as a function of
the composition of the antioxidant mixture through the use of standard methods such as isobole diagrams
" response curves or interaction index parameters’. Albeit effective for simple experimental designs,
these one-dimensional methods often hinder the evaluation of non-linear interactions’>’® due to the
complexity and multifaceted nature of antioxidant responses, which are often affected by several factors
such as their mechanism of action, structural properties, and matrix effects. On the contrary, machine
learning approaches are particularly well suited to address these complex problems and have been recently

76-79

applied to make predictions related to taste and fermentation®® of foods, screen for Nrf2-agonists 81,

identify flours infested by insects 82, and even discover green insecticides®®.

In this scenario, we describe the first use of an artificial intelligence model based on deep learning
architecture®* to predict the type of interaction (synergistic, additive, and antagonistic) of antioxidant
combinations. The proposed strategy uses the Simplified Molecular Input Line Entry System (SMILES)
notation® to represent the antioxidants combinations as text representations. Each mixture is then
associated with a combination index value (Cl)®, an established metric often used to assess the magnitude
of these interactions. The proposed method also utilizes a self-data augmentation method to overcome
overfitting due to the limited amount of data for the training step. This strategy was implemented by
representing the stoichiometric ratio as a repetition of the same antioxidant compound instead of numerical
representations (vide infra, Figure 1), allowing the rearrangement of the SMILES strings to all possible non-
repeated positions in the final mixture. In this sense, the use of chemical descriptors (density, functional
groups, polarity, etc) can be avoided, reducing the complexity of the Al model and easily allowing its
implementation in benchmark routines. The performance capability of our model was first assessed by
predicting Cl values using a database developed from literature reports (n=700), showing a relatively good
agreement (R%est= 0.92 and R%rin=0.95) between the predicted output and the actual value for both the
training (n=560) and test (n=140) datasets. Despite these encouraging results, this algorithm failed to

provide accurate predictions of oxidation experiments performed in-house, using binary mixtures of
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phenolic antioxidants and a lard sample. To overcome this problem, the Al algorithm was then enhanced
with various amounts of experimental data (antioxidant power data assessed by the TBARS assay)
collected using lard samples. This approach allowed the model to learn from the experimental chemical
space targeted by our research, which was not specifically described in the surveyed literature. Our results
showed that significant improvements in the model's performance were obtained as the amount of fine-
tuning data increased, increasing the correlation between the predicted and experimental results from
R?=0.01 (no correlation) to an R? value of 0.90. These results not only demonstrate the predictive power of
the proposed algorithm but also the importance of having chemically-relevant experimental data to enhance

the model’s performance and provide suitable predictions with statistical relevance.

2. MATERIALS AND METHODS

2.1 Hardware configuration. All the computational work presented in this manuscript was carried out in
the Palmetto Cluster at Clemson University. The node was set to 32 cores (ncpus) and the allocated
memory was set to 372Gb. As a graphical processing unit (GPU), a NVIDIA Tesla V100 was used to train
the foundational chemistry model as well as to fine-tune the generated model into the regressors. It is
important to state that while access to the cluster was critical to speed up the initial training of the
foundational chemistry model, the trained algorithm can be then executed on a standard computer. As a
gauge of the resources applied, the foundational model training and subsequent fine-tuning were completed
in approximately 14 hours (12 hours for training + 2 hours of fine-tuning). Notably, the same computational

process could require up to a week on an average computer equipped with an NVIDIA GTX 1050.

2.2 uACL antioxidant database. The proprietary antioxidant database (referred as uACL DB) was
developed by manually retrieving data from the literature and includes various antioxidant molecules,
solvents, samples, and experimental conditions for their evaluation. In all cases, the antioxidant
combinations were represented in SMILES notation along with their molar ratio and respective metric to
measure the degree of interaction such as the combination index (Cl), the difference in FRAP®’, % of the

synergistic or antagonistic effect®® as well as Trolox equivalent antioxidant capacity (TEAC)®. The resulting
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database displayed approximately 1100 entries and the gathered data was analyzed by a python algorithm

to avoid duplicates.

2.3 Data splitting and augmentation. The uACL DB was randomly split into training (85%) and test dataset
(15%). The decision to allocate 85% the data for training and 15% for testing was based on the balance
required to ensure our model had access to enough data to learn the patterns from the chemical space,
while also having a representative number of unseen entries to evaluate the model's performance. Aiming
to avoid data leaking between the datasets, all the files were compared by an ad-hoc Python algorithm. An
additional manual check of each entry was also implemented as a safeguard to prevent overoptimistic

performance measures.

Then, each dataset was duplicated and assigned either a textual or numerical representation, giving a total
of 4 databases (numerical_train, numerical_test, textual_train, textual_test). For the pair assigned as
numerical, the stoichiometric ratio of all combinations was represented as a number in between a non-
SMILES special character (e.g., $2$A $2$B). On the other hand, for the pair assigned as textual, the
stoichiometric ratio was represented as repetitions of the antioxidants (e.g. AABB). Then, a Python
algorithm was used to augment the textual datasets by permuting the antioxidant smiles to all possible non-
repeated positions in the final mixture. These processes are presented in Figure 1.

Textual Textual augmented
Training db i 2.Augmentation i
Initial database ABAB
e BBAA
1.Spliting
CACC
CCCA

Numerical :
CCAC

Molar ratio Test db ii:ﬁ :;:E
SMILES notation

Combination index
A: 0=C(0)/C=C/clccc(0)c(0)cl

B: CCCC(CC)(CC)CC.COclccc(O)ccl
8 8 C: CCCOC(=0)c1cc(0)c(0)c(0)c1

Antioxidant combinations

Textual  Numerical

Figure 1: Schematic representation for the proposed data splitting and augmentation.
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2.4 Foundational chemistry model. The foundational general chemistry model was developed by
following the same strategy described in a previous publication of our group®. Briefly, Transformer-type
architectures®' are now commonly used in Natural Language Processing and are pre-trained using Self-
Supervised Learning on large amounts of text data to create Foundation Models for different human
languages. This pre-training is expensive (in terms of computational resources) but gives the model a broad
understanding of the language(s), allowing it to adapt to specific downstream tasks quickly and efficiently.
Transformers introduce the concept of an attention mechanism, which allows models to assign different
weights of importance to certain words within a sentence during prediction generation.®? Uniquely, these
models process all words in the text simultaneously, thereby offering a significant boost in computational
speed and efficiency. The central component of the Transformer is the self-attention mechanism, which
evaluates the influence of each word on others within the same text fragment. This functionality enhances
the model's contextual understanding and performance on tasks like translation, summarization, and
sentiment analysis. In this manuscript, a general chemistry model was pre-trained on a large corpus of
chemical reaction information, which was then fine-tuned for a specific task. The ELECTRA deep learning
model used in this manuscript had 4 hidden layers for the generator and 16 for the discriminator, with a
vocabulary size of 30,000 and 40 training epochs. The output model containing all trained parameters was
stored in a directory called the foundational general chemistry model. The molecular Transformer
USPTO_MIT Mixed Augmented database®" % was used to train as well as to evaluate the proposed

chemistry model.

2.5 Fine-tuning method. Both the numerical and the textual databases were used to fine-tune the last
layer of general chemistry foundational model into a regressor. The appropriate test dataset for each
stoichiometric representation type (text or numerical) was used to investigate the performance of the
generated regressor by assessing unseen antioxidant mixtures by the algorithm. Regarding the neural
network architecture, the parameters “max_seq_lenght”, “train_batch_size”, and “learning_rate” were

adjusted to 128, 32, and 4E®, respectively.
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2.6 Spectrophotometric Methodology. The oxidative process of a commercial sample of organic pork
lard (Fatworksx, Premium Cooking Oil, EST.M-8757) under heating conditions (85°C for 4 h) was evaluated
after adding the corresponding antioxidants. The antioxidants were either individual components or binary
mixtures of 10 different phenolic antioxidants, at different ratios. Standard solutions of each antioxidant
(propyl gallate, PG; 2,4,5-trihydroxybutirophenone, TBHP; tert-butylhydroquinone, TBHQ;
nordihydroguaiaretic acid, NDGA, tert-butyl-4-hydroxyanisole, BHA; 2,6 di-tert-butyl-4hidroxymethylphenol,
PHENOL,; 3,5 di-tert-butyl-4-hydroxytoluene, BHT; lauryl gallate, LG; octyl gallate, OG; ethoxyquin; ETOX)
were obtained by dissolving a known amount of the pure standard in ethanol. The abbreviation of each
antioxidant compound can be found in. Then, each antioxidant was incorporated into different aliquots of
the commercial lard. Accordingly, 15 g of pre-melted commercial lard were mixed with 200 uL of the
antioxidant standard solution to acquire a final concentration of 1 mmol.kg™' of antioxidant. To prepare 1
mL of the antioxidant’s binary combinations, proper volumes of lard containing the antioxidants were
combined to get antioxidant ratios of 1/4:3/4, 2/4:2/4, and 3/4:1/4, respectively. Under those selected
experimental conditions, 145 samples of lard containing antioxidants were evaluated. The oxidative effect
of prepared lard samples was evaluated by the TBARS assay. The analytical procedure was carried out by
adding 100 uL of lard to a glass vial containing 2 mL reagent solution (Thiobarbituric acid/trichloroacetic
acid/ hydrochloric acid mixture). Then, the reaction mixture was heated up in a hot bath set at 100 °C for
15 min. Consequently, the colorless starting solution turned to a pink-colored solution which developed an
absorption band centered at 533 nm. Before spectrophotometric measurements, the resulting pink solution
was centrifuged at 14500 rpm for 5 min. It is important to point out that lard and olive oil are commonly
samples used as a lipid substrate to study rancidity %-°. While these samples share certain characteristics,
they also offer are crucial differences that might influence the outcomes of our investigation. For example,
organic pork lard does not contain any synthetic antioxidants while olive oil (particularly commercially
available), typically contain multiple antioxidants. These compounds can interfere with the natural oxidation
process, making lard a more suitable substrate to investigate the effect of the selected mixtures of phenolic

antioxidants, as proposed in our studies.
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2.7. TBARS assay. Fat-containing foods are highly susceptible to lipid oxidation, especially those
containing polyunsaturated fatty acids. After the oxidative process, the generated hydroperoxides
decompose into secondary oxidized products which are mainly aldehydes like malondialdehyde (MDA).%”
Besides peroxide determination to evaluate rancidity, MDA determination is often used in the assessment
of lipid oxidation.®® Thus, an spectrophotometric method based on the reaction of 2-thiobarbituric acid (TBA)
with MDA (described in the Experimental Section) was selected. In this method, TBA is mixed and heated
with the sample in acidic media to form a pink compound (maximum absorbance at 532-535nm), a product
of the reaction with MDA and other lipid peroxidation products. It is also important to point out that the TBA
assay not only allows quantifying MDA (mainly produced) but also other secondary oxidized products
generated such as hexanal, and 4-hydroxynonenal (HNE) among others. For that reason, the expression

thiobarbituric acid reactive substances (TBARS) assay is more widely accepted than the TBA method.

2.8 Combination Index (CI) Arsars. The Cl is crucial to the development and evaluation of our artificial
intelligence approach to predict the type and magnitude of interaction in antioxidant combinations. In this
sense, it is worth understanding the basics underlying Cl and how this metric, although not intended to be
directly related to Atsars, can be used to assess the same phenomenon (antioxidant interaction). The
combination index (Cl) is a common metric used in isobologram analysis, typically deployed to quantitively
measure the interaction between two or more drugs at specific concentrations. Interpreting Cl values is
straightforward. When the Cl is greater than 1 (CL >1), it points to antagonistic interactions, suggesting that
the combined effect of the active compound is less than what one would anticipate from their separate
effects. If Cl is equal to 1 (Cl =1), additive interactions are expected. This implies that the response level
for the combined active compounds is the same as the individual components. Finally, a Cl less than 1 (Cl
<1) indicates synergistic interactions. In this scenario, the combinations of the active compounds surpass
what one would predict from their individual effects. More information regarding the calculation of Cl can

be found elsewhere.

As it will be further explained, the magnitude of antioxidant interaction can be assessed by using the TBARS

assay. Briefly, the discrepancy between the readings obtained with samples infused with antioxidants and
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their individual controls is noted as (Atears). Therefore, synergistic interactions would result in a Atsars
value greater than 0, whereas antagonistic interactions would yield a Artsars value less than 0. Then,
mixtures leading to Artsars values that showed negligible variances compared to the baseline were
considered to exhibit an additive antioxidant behavior. In this context, Arsars values display an inverse
relationship with the CI value, which was chosen as a metric for the model. Therefore, a heightened level

of synergistic antioxidant interactions leads to a reduction in the Cl and a corresponding elevation in Atsars.

3. RESULTS AND DISCUSSION

The following paragraphs aim to describe the rational development and implementation of an Al model to
predict the antioxidant capacity power of antioxidant mixtures. Beforehand, it is important to point out that
the algorithm was initially trained using the MIT Mixed Augmented database® to generate a foundational
general chemistry model. Then, this model was improved by the following three steps: 1) Data splitting and
augmentation; 1) Model fine-tuning and testing, and Ill) Model enhancement by fine-tuning with chemically-
relevant experimental data. First, the original database (developed from literature reports) was randomly
divided into a training (85% of the database) and a test dataset (15% of the database). For both cases, the
stoichiometric ratio of the mixture of antioxidants was represented either by repetitions of the same
antioxidant in the SMILES notations or by numbers, as described in the experimental section of this
manuscript. Second, both versions of the training dataset (numerical or textual) were used to fine-tune the
foundational general chemistry model into a unique Al regressor to predict Cl values. Then, the
performance of all the generated antioxidant regressors was assessed by using the corresponding test
dataset (textual or numerical) to measure key metrics such as root-mean-square error (RMSE), mean
absolute percentage error (MAPE), as well as R?. Finally, the regressor with the best predictive capability
was enhanced by incorporating different amounts of benchtop data (antioxidant capacity of binary mixtures

of phenolic antioxidants). An overview of these steps is represented in Figure 2.
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Figure 2: General overview of the process to fine-tune the foundational general chemistry model into
several antioxidant regressors (a) followed by their respective performance assessments (b). The best
antioxidant regressor was then fine-tuned with benchtop data (c) to enhance the CI prediction capability
of the model with respect to mixtures of phenolic antioxidants. The relationship between CI values and
the antioxidant behavior is described in the Experimental section.
Foundational Chemistry Model. As demonstrated in previous publications®: %3 % the general chemistry
model was pre-trained from scratch by using the well-known USPTO_MIT mixed augmented database that
contains approximately one million unlabeled organic chemical reactions. Briefly, this step was included to
increase the model’s vocabulary (~5000 unique tokens) by providing sufficient chemical information in the
form of text notation. Moreover, the parameters such as weights and bias were continuously adjusted during
the training session (training dataset) to improve the model’s performance using unseen chemical data (test
dataset). This task was accomplished by monitoring the output of the loss function (e.g. “the loss”) versus
the number of epochs, leading to a loss of 4.00 at epoch number 32, which was considered acceptable. On
the other hand, the loss for the training dataset at the same epoch number was 3.87, suggesting that a
convergence point was reached by using both datasets and thus suggesting that more training was unlikely

to further improve the model. The generated foundational chemistry model was then fine-tuned into several

antioxidant regressors under different data representation scenarios.

3.1 Fine-tuning the foundational model into several regressors. A database developed and curated by
our research group (ATX_uACL db) was developed from previous literature reports and used to fine-tune
the last layer of the foundational general chemistry into several regressors. Our database contains
approximately 1100 combinations (binary and tertiary) in the SMILES notation along with quantitative

metrics regarding their antioxidant power such as combination index (Cl), the difference in FRAP®, % of

11
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the synergistic or antagonistic effect®® as well as Trolox equivalent antioxidant capacity (TEAC)®. Among
those, mixtures with their respective combination indexes are the most common entry in our database
(approximately 700) and, given their abundance, were selected to fine-tune the general chemistry model
into the regressors. It is important to point out that only those combinations that aligned with both these
quantitative metrics and established assay methodology described in the literature were incorporated into
our database. For comparison purposes, our database displays 297 entries describing synergistic or
antagonistic effects in terms of percentage, 161 for TEAC, and 85 for the differences in FRAP. Therefore,
the use of Cl was considered most appropriate for the proposed task since a higher number of antioxidant
combinations leads to a more representative chemical space and to a more robust and accurate regressor.
Aiming to further increase the total number of antioxidant mixtures, the stoichiometric number of each
combination was represented as repetitions of the smiles strings rather than the numerical value itself (vide
infra, Figure 1). In this sense, a mixture that contains two components (A and B) in the molar ratio 2:3 would
render 10 unique combinations (permutations of B A B A B, for example). The proposed strategy was then
implemented and compared to the use of numerical representation for the molar ratio (e.g., 2A 3B) during
the model’s fine-tuning into regressors as summarized in Table 1.

Table 1: summarized results for fine-tuning the general chemistry model into regressor with numerical

and textual representations. RMSE: root mean square deviation; MAPE: mean absolute percentage

error. all the equations used for the calculations in this table can be found in the Supporting
Information.

Test dataset Train dataset
Model epoch RMSE MAPE (%) RMSE MAPE (%)
001 3.77 x 1072 17.5 1.33x 10" 20.0
005 4.59 x 102 16.2 1.00 x 10" 17.0
010 2.90 x 1072 12.9 6.20 x 1072 12.3
025 1.82 x 102 10.1 3.90 x 102 12.0
Numerical 100 1.21 x 102 8.73 2.10 x 102 7.34
250 1.24 x 102 8.65 6.30 x 107 5.50
350 1.07 x 102 7.76 1.20 x 102 5.24
500 1.19 x 102 8.1 1.10 x 102 4.97
750 1.37 x 102 9.21 1.00 x 102 4.82

12
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282

001 3.90x 102 13.9 6.10 x 102 16.4

005 2.90 x 102 8.81 3.00x 102 11.5
010 2.73x 102 11.3 2.90 x 102 5.60
025 1.95 x 1072 9.49 2.50 x 102 5.27
Textual 100 1.24 x 10 7.94 9.70x 103 6.21
250 1.13x 1072 7.02 9.30x 10 4.92
350 1.04 x 102 7.01 8.60 x 10°° 4.60
500 1.01 x 102 6.64 526 x 103 3.72
750 1.17 x1072 6.97 5.10x 103 3.76

Regarding the models fine-tuned with numerical representations, it can be observed that a minimum value
of root mean square deviation (RMSE = 1.07 x 102) and mean absolute percentage error (MAPE = 7.76)
was achieved at epoch 350 (~20 minutes) for the test dataset. In other words, the combination index (Cl)
predicted by the model differs (on average) by 7.76% from the ground truth value. Any additional increase
in training negatively impacted the performance of the algorithm assessing new data, indicating that the
neural network was overfitted. This idea was also supported by the fact that the RMSE and MAPE are
continuously decreasing while assessing the training dataset. On the other hand, the models fine-tuned
with text representations performed better (RMSE = 1.01 x 102 and MAPE = 6.64) at epoch 500, suggesting
that the textual model requires more training (~30 minutes) to achieve its best performance. To further
investigate the prediction capability of both model types at their respective best epoch, the predicted ClI
was evaluated as a function of the target CI (value extracted from literature), results that are summarized

in Figure 3.
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Figure 3: Predicted Cl as a function of the target CI for both textual and numerical representation

models and using the train and test datasets.
The textual and numerical models displayed a good agreement (R?= 0.92 and R?= 0.90, respectively) with
respect to the target Cl in the test dataset, demonstrating a satisfactory prediction capability at their best
epochs. For both models, an R? of 0.95 was achieved by assessing the training dataset (Figure 3A and
Figure 3C), which indicates that the neural network (for the textual model, R? = 0.92) is slightly better than
the numerical model (R? = 0.90) at predicting unseen data (Figure 3B and Figure 3D). Although only a slight
difference between the two models was observed, the use of textual representations could benefit the
neural network’s performance in cases where a limited amount of training data is available. In this scenario,
a few experimental points (or data from the literature) could be augmented and then used to train the
algorithm. In essence, while there are multiple ways to represent the same combination, the selection does
not alter the overall count of unique antioxidant combinations. Although not relevant from a human point of
view, this strategy is extremely powerful in the context of transformers-based architectures. The learning
process of this deep learning algorithm (Electra in our case) is dependent on the sequence of the input,

where subtle rearrangements of the SMILES string are perceived as distinct sequences by the model.
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Consequently, this approach expands the model’s exposure to the variety of possible input during training,
contributing to a more robust and flexible understanding of individual antioxidant components in different
contexts (combinations). Moreover, it is important to point out that some parts of the input are randomly
‘masked’ or hidden during the training phase. Then, the model is subsequently tasked with inferring these
hidden sections, relying on the contextual environment offered by the unmasked components
(antioxidants). In other words, the proposed permutations ultimately enhance the model’s predictive
performance and adaptability, allowing it to better handle the intricacies and complexities of antioxidant

mixtures in different combinations.

For demonstration purposes, decreasing the size of the training dataset by half still allowed the textual
model to display an acceptable performance (R? = 0.86); while cutting the numerical set by half rendered
significantly poorer performances (R? = 0.61) when assessing the antioxidant combinations present in the
test dataset (data not shown). Aiming to get further insights regarding the performance of both models, the
cumulative distribution function (CDF)'® was plotted versus the combination index for the target and

predicted values (test dataset), as shown in Figure 4.
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C?C> 2.14 \ Predicted . 2.1 /\ Predicted
] »
Z \ o
LDL 1.4+ ‘ T 14-
L
(@) \ (| / N
0.71 O 0.7 \
. p
0.01 0.0

T T

04 08 12 16 20 04 08 12 16 20
Combination Index Combination Index

Figure 4: Cumulative distribution function versus the combination index for the textual (A) and
numerical model (B).

This analysis showed that the cumulative distribution of the true combination index (blue line) falls in three
main regions, displaying a higher CDF at a Cl value of around 0.85. In other words, there is a higher

probability of finding combination indexes with values equal to or lower than 0.85 (synergistic interactions)
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in the test dataset, s finding that is aligned with the structure of our dataset. This characteristic was also
observed in the training dataset (data not shown), indicating that the data splitting of the original database
into the two subsets (train and test) was unbiased and representative. Moreover, there is a good agreement
between the CDF for the predicted values for the textual model (Figure 4A, orange line) and the true output
(Figure 4A, blue line) in all three regions. On the other hand, the predicted CDF for the numerical model
(Figure 4B, orange line) is slightly off in all three regions, especially the one with Cl > 1.10. These findings
support the use of the textual model rather than the numerical one to investigate synergistic antioxidant
interactions, occurence of great interest when developing novel antioxidant mixtures.Therefore, the textual

model was selected and then applied to predict the behavior of antioxidant mixtures.

3.2 Experimental screnning. The antioxidant power of binary combinations of common phenolic
compounds was investigated by using the thiobarbituric acid reactive substances (TBARS) assay®’: 1% and
lard as a lipidic substrate. Briefly, thiobarbituric acid undergoes a complexation reaction with
malondialdehyde (MDA), a well-known marker for oxidative stress in samples containing lipids, rendering
a pink chromogen compound that can be quantitatively assessed via spectrophotometry.®” Thus, the
magnitude of the oxidative stress can be easily related to absorbance changes, allowing for an assessment
of the rancidity in food samples in the presence or absence of antioxidants. In this scenario, lard samples
were prepared with binary combinations of 10 phenolic antioxidants, incubated in a convection oven, and
the resulting absorbance was compared to the absorbance generated in samples containing the individual
components. The data analysis was accomplished through the use of a graphical method similar to an
isobologram (see Supporting Information) allowing for the calculation of the difference (Atsars) between the
absorbance obtained with samples containing antioxidants and the individual controls. Thus, synergistic
combinations would render Atsars > 0, while antagonistic interactions would generate Atsars < 0. Following
the same rationale, mixtures leading to Atears values that showed only small differences with respect to the
baseline were considered to feature an additive antioxidant behavior. Also in line with this analysis, Atsars
values will be inversely proportional to the Cl value, selected as an outcome for the model. Thus, a higher

degree of synergistic antioxidant interactions results in a lower Cl and in an increase in Atsars.
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Figure 5 shows representative examples of the experimental Atsars obtained from binary combinations of
phenolic antioxidants at either 1:3 or 3:1 molar ratios. Graphical representations of all other combinations

are provided as Supporting Information.
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Figure 5: Experimental Atsars for phenolic antioxidant combinations at different molar ratios.

In line with scarce literature reports,'®? it is interesting to note that mixtures containing ETHOX mostly
rendered antagonistic interactions (light pink color). On another hand, the vast majority of the synergistic
interactions (dark purple) included mixtures containing either BHA or BHT, a finding that is also in good
agreement with previous publications®: 1319 This phenomenon can be attributed to the potent free radical
scavenging capabilities of BHA and BHT, which effectively delays the oxidative deterioration of food
products. The synergistic effect emerges from their ability to intervene at varying stages of the oxidation
process, neutralizing free radicals through the donation of hydrogen atoms.** It is worth mentioning that, at
the molar ratio of 3:1, propyl gallate (PG) and BHA rendered a notable synergistic effect, displaying a Atsars
of approximately +0.07. This elevated synergistic effect observed occurs due to the complementary
mechanism of these two antioxidants, regenerating each other and stabilizing free radicals as reported by

several groups.®* 106197 |t is also important to note that Artsars values in the 0.1 were obtained, defining

reasonable limits for our model'® and allowing us to focus on mixtures featuring -0.05 < Arsars > +0.06.
3.3 Challenging the model against benchtop data. It is worth mentioning that up until this point, our

results provided strong evidence about the predictive power of the regressor trained and tested with textual

representations of ~1100 antioxidants mixtures from the literature (R?=0.92). Therefore, it was reasonable
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to expect that our approach would provide accurate predictions of the Cl values of the binary mixtures of
phenolic antioxidants (see Supporting Information). Towards this goal, the antioxidant combinations used
to obtain the data shown in Figure 5 were translated into SMILES format and used as input for the textual
model with the best performance (epoch 500). This strategy relies on the fact that only the textual notation
of those mixtures would be necessary to correctly predict their type of interaction rather than the use of
chemical descriptors. It's important to emphasize that the SMILES notation is only capable of encoding
2.5D information regarding the antioxidant chemical structure. In this sense, the lack of 3D structural
information may hinder critical molecular interactions relevant to understand antioxidant synergism. The
predicted combination index for those mixtures versus its ground normalized experimental value (Atsars),
is presented in Figure 6. In this initial assessment of the predictive power of the model, there was no evident

correlation between the predicted Cl value and the experimentally- obtained Arsars values.
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Figure 6: Predicted Cl versus Artsars before model fine-tuning for the phenolic antioxidant combinations

Although these results were far from ideal, this outcome was somewhat expected since none of the
compounds used in the benchtop experiments had been presented to the algorithm during the training
session. In addition, the use of the proposed Atsars as a metric to quantify antioxidant interaction does not
directly translate into Cl values. These aspects are relevant because they suggest that despite the diversity
of the mixtures in the training set, the model could not identify the chemical features of the selected phenolic
antioxidants. These findings were somewhat expected, as approaches (based on a natural language
processing) present limitations when presented with new structures (not present in the database), often

leading to inaccurate predictions.
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To address this shortcoming and enhance the predictive capabilities of the algorithm, a second fine-tuning
step was implemented (c, in Figure 2), where increasing amounts of experimental data (SMILES notation
and Arsars represented in terms of Cl) were presented to the model. A summary of the results of the
analysis is shown in Figure 7, where the correspondence between the two parameters was evaluated as a

function of the amount (% of the experimental dataset, ~225 entries) used for the fine-tuning step.
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Figure 7: Relationship between the predicted Cl and the experimental Atears at 21%, 42%, 63%, and
85% fine-tune conditions.

As shown in Figure 7A, a fine-tuning step with just 21% of the experimental data (47 randomly selected
data points) allowed the model to capture enough chemical patterns to render a positive correlation between
the two variables. Despite this improvement, it is important to mention that the correlation within each group
of data was rather poor. This trend is evident, for example, for Cl values in the 1.1 — 1.3 range (antagonistic
behavior), that expand horizontally covering a Atsars range from -0.03 Lig.ml"' (antagonistic) all the way to
+0.04 ['g.ml"! (synergistic). This outcome aligns with our initial expectations, as exposing the model to a

modest fraction of the experimental chemical space is only sufficient to elucidate a basic grasp of the
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prevent trend between Cl and delta Atsars. Fortunately, as more experimental data was presented, the
model was able to identify the chemical patterns within each group, leading to more accurate predictions
of the Cl values. When the model was fine-tuned with 63% of the experimental data (142 randomly selected
data points), a substantially better agreement (R?= 0.90) between the Cl and Arsars Was obtained, showing
only a few predicted values erroneously classified. For example, points of the same color should be
clustered at a specific region of Atsars and not shift horizontally. In practical terms, this behavior is not
critical as long as the predicted points fall in their true interaction category (synergistic: Cl < 0.85, additive:
0.85 < ClI > 1.10, or antagonistic interaction: Cl > 1.10). On the other hand, when the model was fine-tuned
with 85% of the experimental data (191 randomly selected datapoints), a full agreement and lower
dispersion of the data was obtained, indicating the possibility of using this model for predicting the behavior

of the selected antioxidant mixtures.

4. CONCLUSIONS

This work describes the first example of using Artificial Intelligence based on deep learning architecture; to
predict antioxidant interactions (synergism, additive, and antagonism) by using SMILES notation to predict
combination indexes. The best-generated algorithm (R?%est= 0.92 and R?%:in=0.95; assessing our proprietary
database) was achieved through a new data augmentation strategy where the stoichiometric ratio in the
antioxidant mixture was replaced by repetitions of the corresponding antioxidant in SMILES format. This
proposed augmentation approach leads to a more representative chemical space during the model training,
which addresses common overfitting problems due to the use of relatively small datasets. Then, the
predictive capability of the algorithm was challenged against experimental benchtop data collected through
TBARS assay. As a result, an expected inverse correlation between the predicted Cl and Arsars increases
(R?= 0.7 to 0.9) as the amount of fine-tuning data increases (21% to 85%), suggesting that the model
successfully recognized chemical patterns from the antioxidant compounds used in the experimental
analysis. We believe that the proposed method could be used as an auxiliary tool in benchmark analysis
routines, offering a novel strategy to enable broader and more rational predictions related to the antioxidant
mixtures behavior, information that can’t be obtained by using only experimental or computational

approaches alone.
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1. Foundational chemistry model training.
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Figure S1: Training loss versus the number of epochs for the foundational general chemistry model

2. Root mean square error and Mean absolute percentage error equations.
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Figure S2: Equations used for calculating root mean square error (RMSE) and mean absolute
percentage error (M).

3. Experimental Argars for all binary phenolic antioxidant mixtures.
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Figure S3: Graphical representation displaying the antioxidant effect for all the phenolic compounds.

4. Smiles notation of all binary phenolic antioxidant combinations.

Table S 1: SMILES notation for all the binary phenolic antioxidant combination.

Combination

PG BHA

PG BHA

PG BHA

PG BHT

PG BHT

PG BHT

PG TBHQ

PG TBHQ

PG TBHQ

PG Phenol

PG Phenol

PG Phenol

PG THBP

PG THBP

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

Molar ratio

Canonical SMILES

CCCOC(=0)c1cc(0)e(0)e(O)c1 CCCC(CC)(CC)CC.COctccc(O)ect
CCCC(CC)(CC)CC.COcTcec(0)ce! CCCC(CC)(CC)CC.COctcec(O)cct

CCCOC(=0)c1cc(0)e(0)e(O)c1 CCCC(CC)(CC)CC.COctccc(O)ect

CCCOC(=0)c1cc(0)c(0)e(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c! CCCOC(=0)c1ce(0)c(0)c(0)ct
CCCC(CC)(CC)CC.COctcec(O)cet

CCCOC(=0)c1cc(0)c(0)c(O)ct Celec(C(C)(C)C)e(O)e(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et

CCCOC(=0)c1cc(0)c(0)e(O)ct Celec(C(C)(C)C)e(O)e(C(C)(C)C)et

CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c! CCCOC(=0)c1ce(0)c(0)c(0)ct
Cc1cc(C(C)(C)C)c(O)e(C(C)(C)C)et

CCCOC(=0)c1cc(0)c(0)c(O)c1 CC(C)(C)c1ec(O)ccc10 CC(C)(C)eclec(O)cecc10
CC(C)(C)c1ce(O)cec10

CCCOC(=0)c1cc(0)c(0)e(O)c1 CC(C)(C)etec(O)ccc1O

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(O)c(O)c(O)ct
CC(C)(C)c1ce(O)cec10

CCCOC(=0)c1cc(0)e(0)c(O)c1 CC(C)(C)etec(CO)ec(C(C)(C)C)c10
CC(C)(C)c1cc(CO)ec(C(C)(C)C)e10 CC(C)(C)elec(CO)ec(C(C)(C)C)e10

CCCOC(=0)c1cc(0)e(0)c(0)c1 CC(C)(C)elec(CO)ec(C(C)(C)C)e10

CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1ce(0)c(0)c(0)ct
CC(C)(C)c1cc(CO)ec(C(C)(C)C)c10

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCCC(=0)c1cc(0)c(0)ec10 CCCC(=0)c1cc(0)c(0)cc1O
CCCC(=0)c1cc(0)c(O)ec10

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCCC(=0)c1cc(0)e(O)ec1O



PG THBP

PG ETHO

PG ETHO

PG ETHO

PG NDGA

PG NDGA

PG NDGA

PG LG

PG OG

PG OG

PG OG

BHA BHT

BHA BHT

BHA BHT

BHA TBHQ

BHA TBHQ

BHA TBHQ

BHA Phenol

BHA Phenol

BHA Phenol

BHA THBP

BHA THBP

BHA THBP

3:1

1:3

1:1

3:1

1:3

1:1

3:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

CCCOC(=0)c1cc(0)e(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1ce(0)c(0)c(0)ct
CCCC(=0)c1cc(0)c(0)ec10

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCOclcee2e(c1)C(C)=CC(C)(C)N2
CCOc1cee2¢(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(c1)C(C)=CC(C)(C)N2

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCOclcee2e(c1)C(C)=CC(C)(C)N2

CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c! CCCOC(=0)c1ce(0)c(0)c(0)ct
CCOc1cee2c(c1)C(C)=CC(C)(C)N2

CCCOC(=0)c1cc(0)c(0)c(0)c1 CC(Ce1eec(O)c(O)ec1)C(C)Ceicee(O)c(O)e
CC(Cc1ccc(0)c(0)c1)C(C)Celcec(0)c(O)c1 CC(Celeec(0)c(0)c1)C(C)Celeec(O)c(O)ct

CCCOC(=0)c1cc(0)c(0)c(0)c1 CC(Ce1eec(O)c(O)ec1)C(C)Celeee(O)c(O)ce

CCCOC(=0)c1cc(0)c(0)c(O)c1 CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(O)c(O)c(O)ct
CC(Cc1ccc(0)c(0)c1)C(C)Celeec(O)c(O)et

CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c! CCCOC(=0)c1ce(0)c(0)c(0)ct
CCCCCCCCCCCCOC(=0)c1cc(0)c(0)c(0)ct

CCCOC(=0)c1cc(0)c(0)e(O)ct CCCCCCCCOC(=0)c1cc(0)c(0)c(0)ct
CCCCCCCCOC(=0)c1cc(0)c(0)c(0)c! CCCCCCCCOC(=0)c1cc(0)c(0)c(O)et

CCCOC(=0)c1cc(0)c(0)e(0)ct CCCCCCCCOC(=0)c1cc(0)c(0)c(0)ct

CCCOC(=0)c1cc(0)e(0)c(0)c1 CCCOC(=0)c1cc(0)c(0)c(0)c1 CCCOC(=0)c1ce(0)c(0)c(0)ct
CCCCCCCCOC(=0)c1cc(0)c(0)c(0)ct

CCCC(CC)(CC)CC.COctcce(0)cct Celee(C(C)(C)C)e(0)c(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et

CCCC(CC)(CC)CC.COctcce(0)cct Celee(C(C)(C)C)e(0)c(C(C)(C)C)et

CCCC(CC)(CC)CC.COctcec(O)ce! CCCC(CC)(CC)CC.COctcec(O)cct
CCCC(CC)(CC)CC.COctcec(O)cet Celee(C(C)(C)C)e(0)e(C(C)(C)C)et

CCCC(CC)(CC)CC.COc1cec(O)cct CC(C)(C)elec(O)ccc10 CC(C)(C)ectec(O)cec10
CC(C)(C)c1ce(O)cec10

CCCC(CC)(CC)CC.COctccc(0)cct CC(C)(C)elec(O)ecc1O

CCCC(CC)(CC)CC.COctcec(0)ce! CCCC(CC)(CC)CC.COcteec(O)cct
CCCC(CC)(CC)CC.COctcec(O)ce! CC(C)(C)edec(O)ecc1O

CCCC(CC)(CC)CC.COctcec(0)cet CC(C)(C)e1ec(CO)ee(C(C)(C)C)c10
CC(C)(C)c1cc(CO)ec(C(C)(C)C)c10 CC(C)(C)elec(CO)ec(C(C)(C)C)e10

CCCC(CC)(CC)CC.COctcec(0)cet CC(C)(C)e1ec(CO)ec(C(C)(C)C)c10

CCCC(CC)(CC)CC.COctcec(0)ce! CCCC(CC)(CC)CC.COcteec(O)cct
CCCC(CC)(CC)CC.COctcec(O)ce CC(C)(C)elec(CO)ec(C(C)(C)C)e10

CCCC(CC)(CC)CC.COctcec(0)ce! CCCC(=0)ctcc(0)c(0)ec1O CCCC(=0)etcc(O)e(O)ec10
CCCC(=0)c1cc(0)c(O)cc10

CCCC(CC)(CC)CC.COctcec(0)cc! CCCC(=0)ctcc(0)c(0)ccl1O

CCCC(CC)(CC)CC.COctcec(0)ce! CCCC(CC)(CC)CC.COcteec(O)cct
CCCC(CC)(CC)CC.COctcec(O)ce! CCCC(=0)ctcc(0)c(0)ee1O



BHA ETHO 1:3 CCCC(CC)(CC)CC.COctcec(O)cet CCOctccc2¢(c1)C(C)=CC(C)(C)N2
CCOclcee2e(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(c1)C(C)=CC(C)(C)N2

BHA ETHO 1:1 CCCC(CC)(CC)CC.COc1cee(O)cct CCOc1cec2e(c1)C(C)=CC(C)(C)N2

BHA ETHO 3:1 CCCC(CC)(CC)CC.COc1cee(O)cct CCCC(CC)(CC)CC.COc1cec(O)cet
CCCC(CC)(CC)CC.COc1cec(O)ect CCOclecc2e(c1)C(C)=CC(C)(C)N2

BHA NDGA 1:3 CCCC(CC)(CC)CC.COc1cec(O)cct CC(Celeee(0)c(O)c1)C(C)Celeec(O)c(O)ct
CC(Cc1ccc(0)c(0)c1)C(C)Ceicec(0)c(O)ec1 CC(Celeec(0)c(0)c1)C(C)Celeec(O)c(O)ct

BHA NDGA 1:1 CCCC(CC)(CC)CC.COc1cec(O)ecct CC(Celeee(0)c(O)c1)C(C)Celeec(O)c(O)ct

BHA NDGA 3:1 CCCC(CC)(CC)CC.COc1cee(O)cct CCCC(CC)(CC)CC.COc1cec(O)cet
CCCC(CC)(CC)CC.COc1cce(O)cct CC(Celeec(O)c(O)c1)C(C)Celcec(O)c(O)ct

BHA LG 1:3 CCCC(CC)(CC)CC.COc1cec(O)ecct CCCCCCCCCCCCOC(=0)c1cc(0)c(O)c(O)ct
CCCCCCCCCCCCOC(=0)c1cc(0)c(0)c(0)c1 CCCCCCCCCCCCOC(=0)c1cc(0)c(0)c(O)ct

BHA LG 1:1 CCCC(CC)(CC)CC.COc1cee(O)ecct CCCCCCCCCCCCOC(=0)c1cc(0)c(O)c(O)ct

BHA LG 3:1 CCCC(CC)(CC)CC.COc1cee(O)cct CCCC(CC)(CC)CC.COc1cec(O)cet
CCCC(CC)(CC)CC.COc1cee(O)ecct CCCCCCCCCCCCOC(=0)c1cc(O)c(0)c(O)ct

BHA OG 1:3 CCCC(CC)(CC)CC.COc1cec(O)cct CCCCCCCCOC(=0)c1cc(O)c(O)c(O)et
CCCCCCCCOC(=0)c1cc(0)c(0)c(O)c1 CCCCCCCCOC(=0)c1cc(O)c(O)c(O)ct

BHA OG 1:1 CCCC(CC)(CC)CC.COc1cec(O)cct CCCCCCCCOC(=0)c1cc(O)c(O)c(O)et

BHA OG 3:1 CCCC(CC)(CC)CC.COc1cee(O)cct CCCC(CC)(CC)CC.COc1cec(O)cet
CCCC(CC)(CC)CC.COc1cec(O)ecct CCCCCCCCOC(=0)c1cc(0)c(0)c(O)c

BHT TBHQ 1:3 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)ec1 CC(C)(C)ec1ec(O)ececc10 CC(C)(C)elec(O)ececc10
CC(C)(C)c1ce(O)cec10

BHT TBHQ 1:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)ec1 CC(C)(C)c1ece(O)cecec10

BHT TBHQ 3:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)ec1 Celec(C(C)(C)C)e(O)c(C(C)(C)C)et
Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CC(C)(C)clce(O)ccc10

BHT Phenol 1:3 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CC(C)(C)c1ce(CO)ec(C(C)(C)C)ec10
CC(C)(C)c1cc(CO)cc(C(C)(C)C)c10 CC(C)(C)c1ec(CO)cc(C(C)(C)C)ec10

BHT Phenol 1:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CC(C)(C)c1ce(CO)ec(C(C)(C)C)ec10

BHT Phenol 3:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)ec1 Cclec(C(C)(C)C)c(O)c(C(C)(C)C)et
Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CC(C)(C)c1ec(CO)cc(C(C)(C)C)c10

BHT THBP 1:3 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CCCC(=0)c1cc(0)c(0)cc10 CCCC(=0)c1cc(0)c(O)cc10
CCCC(=0)c1cc(0)c(0)cc10

BHT THBP 1:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CCCC(=0)c1cc(0)c(O)cc10

BHT THBP 3:1 Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)ec1 Ceclec(C(C)(C)C)c(O)c(C(C)(C)C)et

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCCC(=0)c1cc(0)c(0)ec1O

BHT ETHO 1:3 Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCOc1cec2c(cl)C(C)=CC(C)(C)N2
CCOcicee2e(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(c1)C(C)=CC(C)(C)N2

BHT ETHO 1:1 Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCOc1cec2c(cl)C(C)=CC(C)(C)N2




BHT ETHO

BHT NDGA

BHT NDGA

BHT NDGA

BHT LG

BHT LG

BHT LG

BHT OG

BHT OG

BHT OG

TBHQ Phenol

TBHQ Phenol

TBHQ Phenol

TBHQ THBP

TBHQ THBP

TBHQ THBP

TBHQ ETHO

TBHQ ETHO

TBHQ ETHO

TBHQ NDGA

TBHQ NDGA

TBHQ NDGA

TBHQ LG

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCOeicec2e(c1)C(C)=CC(C)(C)N2

Cc1cc(C(C)(C)C)c(O)c(C(C)(C)C)c1 CC(Cc1cec(O)c(O)c1)C(C)Cecee(O)c(O)ct
CC(Cc1ccc(0)c(0)c1)C(C)Ceicec(0)c(0)ec1 CC(Celeec(0)c(0)c1)C(C)Celeec(O)c(O)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et CC(Celeec(0)e(0)e1)C(C)Celcec(O)e(O)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e! CC(Celeec(0)e(0)e1)C(C)Celcce(O)e(O)et

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCCCCCCCCCCCOC(=0)c1ce(0)c(0)c(0)ct
CCCCCCCCCCCCOC(=0)c1cc(0)e(0)e(O)ct CCCCCCCCCCCCOC(=0)c1cc(0)c(0)c(0)c

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCCCCCCCCCCCOC(=0)c1ce(0)c(0)c(0)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e! CCCCCCCCCCCCOC(=0)c1ce(0)c(0)c(0)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCCCCCCCOC(=0)ct ce(0)c(O)c(O)ct
CCCCCCCCOC(=0)c1cc(0)c(0)c(0)c1 CCCCCCCCOC(=0)c1cc(0)c(0)c(O)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e1 CCCCCCCCOC(=0)ct ce(0)c(0)c(O)ct

Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)et Celec(C(C)(C)C)e(0)e(C(C)(C)C)et
Cc1cc(C(C)(C)C)e(0)e(C(C)(C)C)e! CCCCCCCCOC(=0)c1cc(0)c(0)c(0)ct

CC(C)(C)c1ec(0)ece10 CC(C)(C)elec(CO)ee(C(C)(C)C)e10 CC(C)(C)elec(CO)ec(C(C)(C)C)e10
CC(C)(C)c1cc(CO)ec(C(C)(C)C)c10

CC(C)(C)c1ec(0)ccc10 CC(C)(C)elec(CO)ec(C(C)(C)C)e10

CC(C)(C)c1ce(O)eec10 CC(C)(C)elec(O)ecec10 CC(C)(C)e1ec(O)ecec10
CC(C)(C)c1cc(CO)cc(C(C)(C)C)c10

CC(C)(C)c1ec(0)ccc10 CCCC(=0)ct ce(0)c(0)eec10 CCCC(=0)c1cc(O)e(O)ec1O
CCCC(=0)c1cc(0)c(O)cc10

CC(C)(C)c1ce(O)cecec10 CCCC(=0)c1cc(0)c(0)cc10

CC(C)(C)c1ce(O)eec10 CC(C)(C)elee(O)ecec10 CC(C)(C)e1ec(O)ecec10
CCCC(=0)c1cc(0)c(O)cc10

CC(C)(C)c1ec(0)ece10 CCOetcec2e(c1)C(C)=CC(C)(C)N2 CCOc1ccc2c(cl)C(C)=CC(C)(C)N2
CCOcicee2c(c1)C(C)=CC(C)(C)N2

CC(C)(C)c1ec(0)cce10 CCOeteec2e(c1)C(C)=CC(C)(C)N2

CC(C)(C)c1ce(O)eec10 CC(C)(C)elec(O)ecec10 CC(C)(C)etec(O)ecec10
CCOc1ccc2e(c1)C(C)=CC(C)(C)N2

CC(C)(C)c1ce(O)cec10 CC(Celeec(0)c(0O)c1)C(C)Celeec(O)c(O)et
CC(Cc1ccc(0)c(0)c1)C(C)Celcec(0)c(0)ec1 CC(Celeec(0)c(0)c1)C(C)Celeec(O)c(O)ct

CC(C)(C)c1ce(O)cec10 CC(Celeec(0)c(0O)c1)C(C)Celeec(O)c(O)et

CC(C)(C)c1ce(O)eec10 CC(C)(C)elec(O)ecec10 CC(C)(C)elee(O)ecec10
CC(Cc1ccc(0)c(0)c1)C(C)Celcec(O)c(O)et

CC(C)(C)c1ec(0)ccc10 CCCCCCCCCCCCOC(=0)ct ce(0)c(O0)c(O)ct
CCCCCCCCCCCCOC(=0)c1cc(0)e(0)e(O)ct CCCCCCCCCCCCOC(=0)c1cc(0)e(0)c(0)c



TBHQ LG

TBHQ LG

TBHQ OG

TBHQ OG

TBHQ OG

Phenol THBP

Phenol THBP

Phenol THBP

Phenol ETHO

Phenol ETHO

Phenol ETHO

Phenol NDGA

Phenol NDGA

Phenol NDGA

Phenol LG

Phenol LG

Phenol LG

Phenol OG

Phenol OG

Phenol OG

THBP ETHO

THBP ETHO

THBP THO

1:1

3:1

1:3

1:1

3:1

1:3

1:1

3:1

1:3

1:1
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