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Abstract- With the development of the web and the internet,
computer networks have become an important tool to transfer
information digitally, that increases the system's threats and
vulnerability. Cyber attackers can use the internet and tools to
compromise the triad of the CIA (confidentiality, integrity, and
confidentiality). Network anomaly detection is challenging while
detecting anomalous behavior in a network due to the large-scale
data, imbalance nature of attacks class, and huge numbers of
features in the dataset. Traditional Machine learning methods are
not very efficient in solving those problems. Deep learning has
proven to be more efficient in detecting network-based anomalies. A
Recurrent Neural Network (RNN) model is designed to recognize the
sequential data characteristics to predict. We proposed a
convolutional neural network with bidirectional long-short memory
(CNN Bi-LSTM) model to analyze the hyperparameters, including
optimizers (Nadam, Adam, RMSprop, Adamax, SGD, Adagrad,
Ftrl), epochs, batch size, learning rate, and neural network model
architecture of CNN-BLSTM algorithms. Those analyzed
hyperparameters provide the highest anomaly detection accuracy of
98.27% and 99.87% on the NSL-KDD and UNSW-NBIS,
respectively. Performance assessment regarding the accuracy and
F1-score revealed that the proposed CNN Bi-LSTM anomaly
detection model exhibited better performance than the other existing
anomaly detection methods.

Keywords— Network Intrusion Detection System, Machine
Learning, Deep Learning, LSTM, CNN, Bi-LSTM, NSL-KDD, UNSW-
NBI15

I. INTRODUCTION

As technology develops rapidly, the method of transmission of
information from source to destination has evolved through the
wired, wireless, or guided network. The development of network
technology plays a vital role in people’s daily activities. Any
system is considered secure if the three computer security
principles of confidentiality, integrity, and availability (CIA) are
properly met. Hence information security is securing information
from an unauthorized agent, preventing access, use, disclosure,
modification, recording, or data destruction.

A firewall and antivirus software cannot completely protect the
traditional network. The antivirus and firewall detect those
activities already defined as anomalous and set the rule to block
those activities by the expert. Outliers and anomalies are
sometimes used interchangeably in anomaly detection. Anomaly
detection has abundant applications, including business, network
intrusion detection, health monitoring systems, credit card fraud
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detection, and fault detection in critical information systems.
Anomaly detection is important in cyber security for solid
protection against cyber adversaries. There must be secure
network resources against cyber threats to protect the system.

Anomalies are classified as point, contextual, and collective
according to the output from the detection method used [1]. Point
anomaly occurs when a certain behavior deviates from the regular
pattern. Contextual anomalies are strange patterns in a particular
context that always differ from many normal behaviors. The
collective anomaly occurs when a group of similar instances acts
anomalously competed with the dataset of normal activities.

There are two categories of intrusion detection methods:
signature-based intrusion detection systems (SIDS) and anomaly-
based intrusion detection systems (AIDS). Anomaly detection
systems are classified into two categories based on the sources:
network-based and host-based intrusion detection systems.
Anomaly detection techniques utilize labels to identify whether the
data is normal or anomalous. There are three different anomaly
detection techniques such as supervised, unsupervised, and semi-
supervised anomaly detection methods. AIDS overcomes the
SIDS's drawbacks by modeling normal behaviors using machine
learning (ML), statistical-based, or knowledge-based methods.
Anomaly-based detection can also produce false results caused by
changes in user habits.

Most traditional machine learning algorithms are shallow
learning methods emphasizing feature engineering suited for small
datasets. Feature engineering requires time and domain expertise
to generate the features and remove those irrelevant features from
the anomaly detection model. The anomaly detection performance
depends on how the feature engineering is implemented and the
data preprocessed carried out. The traditional ML methods are
simple, have low resource consumption, and perform poorly on
computer vision, natural language processing, image translations,
etc.

CNN is mostly used in image datasets where the lower layer’s
neurons reduce the network’s features, usually identifying
important small-scale features, such as boundaries, corners, and
intensity differences. Then in higher layers, the network combines
the lower-level features to form more complex features such as
simple shapes, forms, and partial objects. And on the final layer,
the network combines the lower features to produce the output or
classification results.
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An LSTM works differently than a CNN because an LSTM is
designed to retain long-range information so that the information
is remembered and not lost in a long sequence. Bi-LSTM adds one
more LSTM layer, reversing the information flow direction and
overcoming the vanishing gradient problems.

The deep learning method overcomes the problems in
traditional ML. The performance of the deep learning-based
anomaly detection algorithm depends on neural network
architecture, number of hidden layers, types of activation function,
number of samples (batch size), and epochs during DL model
training and testing. Selecting those hyperparameters and
architecture of neural networks in deep neural networks is vital in
increasing the detection accuracy of network anomaly detection
systems.

II. RELATED WORK

Due to the development of information and technology, many
end terminals are connected to the internet and network. The most
terminal connected to the internet are smart, and they generate a
vast amount of data called big data. Machine learning and deep
learning algorithms process the data and make predictions from
observations and data that generate valuable insights. The volume
of big data is growing daily, so the traditional machine learning
algorithm cannot be performed well and needs intensive feature
engineering tasks. Deep learning greatly improves detection
performance. Still, the nature of the dataset, feature engineering,
the hyperparameters on deep neural networks, and neural network
architecture plays a vital role in detecting the anomaly in network
intrusion detection systems.

Traditional ML depends heavily on feature engineering, which
is often time-consuming, complex, and impractical during real-
time applications. Authors [2] purposed CNN and RNN-based
payload classification approach to detect attacks and achieved an
accuracy of 99.36% and 99.98%, respectively, on the DARPA98
dataset. Authors [3] proposed the CNN with Gated Recurrent Unit
(GRU) model to address the class imbalance problem by adapting
a hybrid sampling algorithm combining Adaptive Synthetic
Sampling (ADASYN) and Repeated Edited nearest neighbors
(RENN). Random forest and Pearson correlation analysis were
used to solve the feature redundancy problem. Their CNN-GRU
model outperformed with an accuracy of 86.25%, 99.69%, and
99.65% on UNSW NBI15, NSL-KDD, and CIC-IDS2017
datasets, respectively.

Authors [4] proposed that the deep learning-based network
intrusion detection model used adaptive synthetic sampling
(ADASYN) to balance the dataset. The autoencoder is used to
reduce dimensionality on NSL-KDD. The CNN-BLSTM-based
deep learning model provided the highest accuracy and F1 score
0f 90.73% and 89.65%, respectively. Authors [5] federal transfer
learning and convolutional neural networks to solve the problem
that arises from data imbalance and different data distribution from
the different information sources. The model provided average
model accuracy of 86.85% on the UNSW-NBI5 multiclass
network dataset. Authors [6] used a Heterogeneous Ensemble

979-8-3503-4731-9/23/$31.00 ©2023 IEEE

Assisted Machine Learning Model for Binary and Multi-Class
Network Intrusion Detection to overcome the data imbalance
problem on KDD99, NSL-KDD, and UNSW-NB15 datasets. The
model provides the 94.5% true positive rate and 96.2% AUC on
the NSL-KDD dataset. In [7], the Authors concluded from the
experimental results that the machine learning classifier's
performance improved when the number of target classes
decreased. Authors examined this concept on traditional machine
learning models, including NB, J48, RF, BayesinNet, Bagging,
and Adaboost on three NIDS datasets: UNSW-NB15, CIC-
IDS2017 Thrusday, and KDD99.

Authors [8] proposed the method to achieve a successful
classification with low computational cost by grouping attributes
according to the conditions on which they are collected and
creating the cluster attributes for each group with K-means with an
accuracy of 98.84% on the KDD99 dataset. The detection
accuracy for U2R is very low, 21.92%, which reduces the overall
model performance. The authors [9] implemented the hybrid
approach combining the CNN and LSTM to improve the anomaly
classification accuracy of 98.1% and 96.7% on NSL-KDD and
CICIDS2017 datasets, respectively. Authors [10] proposed the
hybrid model combining CNN and LSTM to improve the intrusion
detection capabilities of advanced metering infrastructure (AMI)
utilizing the cross-layer features fusion. The model produced the
highest accuracy of 99.95% on KDD Cup99 and 99.79% on the
NSL-KDD dataset, having low U2R detection capabilities.
Authors [11] implemented the hybrid network of CNN and LSTM
to improve intrusion detection to extra network traffic data's spatial
and temporal features.

Authors [12] in this paper implemented the method based on
the mean control of the CNN-BLSTM algorithm to overcome the
traditional data preprocessing and unbalanced numerical
distribution on the NSL-KDD dataset, providing the highest
accuracy of 99.10%. Still, accuracy for the fewer data class shows
poorly. Authors [13] proposed a DL model combining with CNN
and Bidirectional LSTM to incorporate the learning of spatial and
temporal features of the data on the accuracy of 93.84% and
99.30% and binary class UNSW-NBI15 and NSL-KDD datasets,
respectively. Authors [14] used CNN Bi-LSTM algorithms on
multiclass NSL-KDD dataset and obtained an accuracy of 96.3%
where one-hot encoding and min-max normalization are used
during data preprocessing. Authors [15] implemented the CNN Bi-
LSTM algorithm on preprocessed and obtained an accuracy of
95.4% on the NSL-KDD dataset. The C5.0 decision tree model is
combined with the CNN Bi-LSTM model to skip the design
feature selection and directly learn the model to represent features
of high dimensional data. The Authors [16] implemented the deep
learning model based on Bi-directional LSTM on KDDCUP-99
and UNSW-NBI15 datasets with outstanding results with 99%
accuracy for both KDDCUP-99 and UNSW-NBI15 datasets. Most
existing models cannot efficiently detect rare attack types,
especially User-to-Root (U2R) and Remote-to-Local (R2L)
attacks. These two attacks often have lower detection accuracy
than other kinds of attacks. Authors in [17] proposed a Bi-LSTM-
based intrusion detection system to handle the aforementioned



challenges on the NSL-KDD dataset. This Bi-LSTM model
provided an accuracy of 94.26% for binary classification. The
authors [18] proposed a Bi-directional GAN-based approach to the
NSL-KDD and CIC-DDoS2019 datasets. The bidirectional GAN
model works perfectly on the imbalance NSL-KDD dataset
resulting in an accuracy of 91.12% and an f1 score of 92.68%.

The deep learning-based model in [2], [3] overcome traditional
ML problems to detect the anomaly. Data imbalance problems are
addressed [4], [5],[6], and [7] . Feature engineering is the most
important factor in improving the accuracy of the ML/DL model.
Huge numbers of research have been done related to feature
engineering, grouping attributes in [8], [9], [10], [11]. A Bi-LSTM
combines two separate LSTMSs to permit running input in two
directions from the past to the future and from the future to the past
to improve the traditional LSTM. Bi-LSTM was implemented in
[12], [13], [14], [15], [16], [17], [18] to improve the model
anomaly detection accuracy.

Most of the above research works focus on increasing the
accuracy of traditional or deep machine learning models, working
for feature engineering and data imbalance. The research on
selecting the hyperparameters in deep learning-based models,
training testing data ratio, and architecture of deep neural networks
are not focused on. Some researchers do not mention how those
values are adopted in their research works. Hence, our research
focused on improving those limitations on network anomaly
detection systems by experimenting with the NSL-KDD and
UNSW-NBI15 datasets.

The main contributions of this research work are:

1) Investigating the effect of CNN Bi-LSTM architecture Vs.
performance of CNN Bi-LSTM.

2) Investigating model performance Vs. Hyperparameters on
both NIDS datasets, i.e., NSL-KDD and UNSW-NB15.

3) Investing the number of layers and memory elements to
improve the CNN Bi-LSTM.

4) This research presents the development and implementation
of network anomaly detection using a CNN Bi-LSTM
model that can detect anomalies with high accuracy of
98.27 % and 99.87% on NSL-KDD and UNSW-NBI5,
respectively.

The remainder of the paper is as follows. Section II describes
the system model of our proposed CNN Bi-LSTM approach.
Section III illustrates the results and discussion, while Section IV
concludes this research work.

III. SYSTEM MODEL

The overall proposed model encompasses the following steps.

Step-1 Data Collection

Step-2 Data Pre-processing

Step-3 Prepare the training and testing dataset
Step-4 Train and Test CNN Bi-LSTM model
Step-5 Model Evaluation and anomaly detection
Step-6 Model Compare and Decision
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The overall implementation schematic of the CNN
bidirectional LSTM-based model is shown in Fig 1. A detailed
discussion of the above-stated methods is provided in the
subsequent sections. In figure 2, the detailed architecture of neural
networks and CNN and Bi-LSTM layers components are clearly
shown.

1. Data Collection and Modelling

This research used two datasets, NSL-KDD KDDTrain+ [19]
and UNSW-NBI15, where The KDDTrain+ dataset contains the
full NSL-KDD train set, including attack-type labels and
difficulty level. It has 41 features with five distinct attack classes,
Normal, DoS, Probe, R2L, and U2R. Typically, these features are
classified into various groups, such as basic, content, and time-
based features. NSL-KDD is an improved version of the KDD99
network intrusion dataset, does not include redundant records in
the train set, and has no duplicate records in the test sets. The
KDDTraint+ dataset contains 125973 records and 41 features.
This dataset is balanced because 53.46% of records are normal,
and 46.54% are abnormal.

The Australian Centre for Cyber Security (ACCS)
cybersecurity research team created the UNSW-NBI1S5 dataset
[20] to solve issues with the KDD99 dataset. The data used in
this research comprises 42 features. This dataset consists of
various attacks, including Analysis, Backdoor, DoS, Exploit,
Fuzzers, Generic, Reconnaissance, Shellcode, and Worms counts
of 2677, 2329, 16353, 44525, 24246, 58871, 13987, 1511, and
174, respectively. The normal traffic of 93000 data makes the
total data 257673.

2. Data Pre-processing

During the KDDTrain+ data preprocessing, the class label is
assigned 1 for normal and O for abnormal records; hence the
dataset becomes the binary class dataset. Then, three categorical
features: ‘protocol type,” ‘service,” and ‘flag,” are converted into
numeric features using dummy one hot encoding. The standard
scalar method is used to normalize the dataset. For the feature
reduction, attributes with more than 0.5 correlation with encoded
attack label attributes are only preserved, resulting in 93 features
on the final dataset.

UNSW-NBI1S5 data sets consist of test and training separate
files. Both contain 45 features, including attack categories and
labels. The same methods are used to preprocess both test and
training files. Dummy one hot encoding is used for categorical
features (proto, service, state), and the standard scalar method is
used to normalize the numerical features before combining them.
The empty columns are inserted in the location where the features
are missed after one hot encoding. All attack categories are
grouped into a single attack category to create the binary dataset.
After preprocessing, the training and test data sizes become
(82332, 199) and (175341. 199), respectively.
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FIGURE 1. BLOCK DIAGRAM OF CNN BI-LSTM MODEL

3. Prepare the Training and Testing Dataset

The train-test split approach measures how well machine
learning algorithms perform when used to make predictions from
data that was not used to train the model. We choose the 70:30 split
ratio where our CNN Bi-LSTM model for KDDTrain+ dataset
with 70% train and 30% test datasets. There are two separate files
chosen in the case of UNSW-NBI135, one for training and another
for testing the model. The details about the number of training and
testing data are explained in the data preprocessing section above.

Bi-LSTM Layer2 | o DenseLayer

ConviD B-LSTM1

* ConviD() ¢ BrLSTM () B-LSTM2 Dense
o Max-pooling () * Reshape ) « BiLSTM 0 « Dense()
. tk .
Batch 0 * Max-pooling + Dropout () * Activation ()
« Baich-normalization ()

FIGURE 2. CNN BI-LSTM MODEL ARCHITECURE

4. Bi-LSTM Model

Convolutional Neural Network (CNN) are deep neural
networks that can recognize and classify using the image format.
CNN used the convolutional operation to identify the various
features of the images then pooling layers extracts the features
and a fully connected layer that utilizes the output from the
previous layer to classify. Convolutional layers and pooling layers
are used for feature extraction whereas the last fully connected
dense layer is used for classification purpose.

A recurrent neural network (RNN) consists of feedback loops
that process the sequences of data patterns and predict outcomes.
RNN consists of memory to store the previous and future state
information. RNN has been used to solve machine learning
problems such as speech recognition, language processing, and
image classification. LSTM addresses the problem of the
vanishing gradients of RNN. LSTM architecture consists of the
memory block and three multiplicative units- the input, output,
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and forget gates which are analogous to write, read and reset
operations for the cells. The LSTM memory cells can store and
access data for extended periods because of the multiplicative
gates, which prevents the vanishing gradient problem. A
bidirectional RNN often combines two separate RNNs to permit
running input in two directions: from the past to the future and
from the future to the past. The forward and backward LSTM
networks comprise the two LSTM networks that comprise the Bi-
LSTM. The goal of the forward LSTM hidden layer is to extract
features in the forward direction, and the backward one is to
extract features in the backward direction. The bi-directional
LSTM predicts or tags the sequence of each element by using
finite sequences in the context of previous and subsequent items.
This results from two LSTMs processed in series, one from right
to left and the other from left to right. The CNN and Bi-LSTM
model consists of several layers with hyperparameters. The CNN
Bi-LSTM architecture is shown in Figure 2.

5. Model Evaluation and Anomaly Detection

Machine learning (ML) or deep learning (DL) model does not
provide consistency in performance. Hence the model hyper-
parameters need to be examined to obtain better performance. The
determination of optimizer, the number of epochs, batch size,
dropout, and learning rate are determined by comparing the
accuracy and F1-score of the Bi-LSTM model. Finally, the CNN
Bi-LSTM model performance parameters are compared with the
previously published research results to evaluate our Bi-LSTM
model’s performance.

6. Model Comparision and Decision Making

Different sets of experiments to determine the values of the
hyperparameters for the best result. The determination of
optimizer, the number of epochs, batch size, and train-test split
ratio are determined by comparing the accuracy and F1-score of
the Bi-LSTM model. Finally, the Bi-LSTM model performance
parameters are compared with the previously published research
results to evaluate our Bi-LSTM model’s performance. The
performance metrics for NSL-KDD and UNSW-NBI15 binary
NIDS datasets regarding f1-score and accuracy are recorded and
compared.



IV. RESULTS AND DISCUSSIONS

The experiment was performed on the Anaconda Navigator
Jupyter python platform installed on the central processing unit
encompassing a 64-bit Windows 10 machine with 16G RAM and
an 17-1.99GHz processor. The versions of python, Keras, and
TensorFlow used during this research work were 3.7.13, 2.6.0, and
2.9.1, respectively.

The model architecture shown in fig 2 consists of 1
convolution layer with 16 units, max-pooling, and batch
normalization, Bi-LSTM layer 1 with 50 memory units, reshape,
max-pooling, and batch normalization; the Bi-LSTM layer 2 with
100 memory units and dropout. Finally, the output is taken using
a Dense layer with a sigmoid activation function. The model
detection accuracy is compared by tuning optimizers, learning
rate, epochs, batch size, and dropout rate in the different
experiments on NSL-KDD and UNSW-NB15 datasets, which are
explained below.

A. Experiment-1 Optimizers Vs. Bi-LSTM Performance

During the training of the CNN Bi-LSTM model, the selection
of an optimizer is very important because the helps the ML /DL
model to get results faster. Based on the algorithms used by the
optimizer, TensorFlow supports nine optimizer classes, including
Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, RMSprop,
SGD, and gradient descent. During the optimizer Vs. Accuracy
calculation experiment, the relu activation function, and a 20%
dropout rate are used on the model and experimented with seven
optimizers, including Nadam, Adam, RMSprop, Adamax, SGD,
Adagrad, and Ftrl to find the best optimizer for our model. The
performance metrics are recorded in Table 1. the results found
that the Nadam optimizer is the winning optimizer for NSL-KDD,
and adam optimizer provides the highest accuracy for the UNSW-
NBI1S5 dataset. Two optimizers perform differently for both NIDS
datasets; even the same model architecture is used.

TABLE 1. OPTIMIZERS VS. PERFORMANCE

Epochs = 10, Batch Size = 256

SN | Optimizer ACC_NSL | F1 NSL | ACC_UN | F1_UN

1 Nadam 98.13 98.26 99.11 99.34
2 Adam 98.02 98.16 99.15 99.38
3 RMSprop 97.87 98.01 97.93 98.46
4 Adamax 97.65 97.78 95.33 96.51
5 SGD 97.74 97.91 99.14 99.37
6 Adagrad 96.98 97.21 94.043 95.62
7 Ftrl 53.47 69.68 0.8099 80.99

B.  Experiment-2 Learning Rate Vs. Performance

The same model architecture is used to find the learning rate
for better model performance where the optimizers are selected
from the previous experiment [A]. The learning rate determines
how the neural network model weights are updated. The learning
rates vary to tune the model accuracy, keeping the other
hyperparameters unchanged during this experiment. The learning
rate Vs. CNN Bi-LSTM model performance is tabulated in Table
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2. The model provides the highest performance at a learning rate
of 0.01 on UNSW-NB15 and a learning rate of 0.0002 on the
NSL-KDD dataset. The same learning rate provides different
model performances.

TABLE 2. LEARNING RATE VS. PERFORMANCE

epochs = 10, batch Size = 256, KDD (Nadam), UNSW-NB15 (adam)
SN | LR ACC _NSL | F1_NSL ACC_UN | F1 _UN
1 0.01 97.49 97.67 99.67 99.76
2 0.001 98.16 98.29 99.54 99.66
3 0.0001 98.06 98.2 95.81 96.85
4 0.0002 98.18 98.3 97.9 98.44
5 0.0003 98.14 98.27 98.44 98.86
6 0.0004 97.97 98.11 99.13 99.35
7 0.0005 98.11 98.25 99.09 99.32

C. Experiment-3 Drop out Vs. Performance

The dropout rate refers to dropping the neurons during the
training model to prevent overfitting. The CNN Bi-LSTM model
was trained and tested using epochs of 10 batch size 256 for both
datasets. Different values of dropout rate are chosen to study the
model performance. The model performs better at a dropout rate
0f 30% on UNSW-NBI1S5, and a 60% dropout rate performs better
on the NSL-KDD dataset. The hyperparameters values, dropout
rates, and performance are tabulated in Table 3. The experiment
results show the different drop rates for different datasets even
though both data sets are similar.

TABLE 3. DROP OUT VS. PERFORMANCE

epochs = 10, batch Size = 256, KDD (Nadam), UNSW-NB15 (adam)

SN | DropOut | ACC_NSL F1 NSL | ACC UN | F1 UN
1 0.1 98.1 98.24 97.44 98.15
2 0.2 98.02 98.16 98.98 99.25
3 0.3 98.16 98.29 99.87 99.9
4 0.4 98.04 98.17 99.27 99.47
5 0.5 97.93 98.09 99.47 99.61
6 0.6 98.21 98.33 99.81 99.86
7 0.7 98.01 98.15 99.58 99.69
8 0.8 98.04 98.18 98.57 98.94

D. Experiment-4 Batch Size Vs. Performance

Batch size is the number of samples utilized in a single
iteration. The smaller batch size introduces small amounts of data
samples and takes longer to train the CNN Bi-LSTM model
compared to the larger batch size. The batch size is varied, keeping
the other hyperparameters fixed, such as epochs of 5, optimizer’s
learning rate, and dropout rate values assigned on the model to the
respective dataset based on the previous experiment’s (Experiment
1-3) finding.

TABLE 4. BATCH SIZE VS. PERFORMANCE

epochs =5, KDD (Nadam), UNSW-NB15(adam)
SN | batch_size ACC _NSL | F1_NSL ACC_UN F1_UN
1 32 97.89 98.04 99.40 99.55
2 64 97.95 98.10 99.35 99.52
3 128 98.06 98.20 99.33 99.50
4 256 97.64 97.719 96.36 97.26
5 512 97.92 98.08 96.90 97.70




This experimental result in table [4] shows that the combination of
hyperparameters in the neural network provides a different
performance. During this experiment, the CNN Bi-LSTM model
performed better when batch size is 128 for NSL-KDD and 32 for
UNSW-NBI5 datasets with epochs of 5.

E. Experiment-5 Epochs Vs. Performance

The number of times the learning algorithm will go over the
complete training dataset is determined by the hyperparameter
known as the epoch which can be any integer value that lies
between 1 to infinity. The model takes a long time to train when
we choose smaller epoch values and vice versa. The CNN Bi-
LSTM model performance for different values of epochs and
assigned the other hyperparameters values found from previous
experiments are recorded in the table [5].

TABLE 5. EPOCHS VS. PERFORMANCE

Batch size = 256, KDD (Nadam)
SN Epochs ACC_NSL F1_NSL
1 2 95.48 95.94
2 10 98.13 98.26
3 25 98.21 98.33
4 50 98.20 98.33
5 75 98.27 98.39
6 100 98.26 98.39

V. CONCLUSION

The literature review shows that the NSL-KDD and UNSW-
NBI15 have average model accuracy of 99%, but the smaller attack
class (U2R, R2L, etc.) detection is very low. The enemy is the
enemy, and every attack is responsible for destroying network
machines equally. Hence compare the result with the existing
result of 91.12% [18], and 90.83% [4] accuracy for NSL-KDD and
99.70% [16], 82.08% [13] 82.08% for the UNSW-NBI15 dataset.
Our experiment improves accuracy, which is 98.27% on NSL-
KDD and 99.87% on UNSW-NBI15 binary dataset. The values of
CNN Bi-LSTM model hyperparameters, including optimizer,
epochs, batch size, the learning rate, and dropout for the CNN Bi-
LSTM neuron architecture, are investigated for the highest
detecting accuracy for binary NSL-KDD and UNSW-NBI15
dataset.
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