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Abstract- The Internet is vital in daily applications such as 

education, health, business, etc. Increasing the usage of the Internet 

and technology also increases the risk. Cyber attackers can use 

technology to compromise the triad of the CIA (confidentiality, 

integrity, and confidentiality). Malicious activities occur in our 

surroundings without our knowing it. Cyberattacks cannot be seen 

physically, though occurring to our Internet of things (IoT) devices, 

personal computers, laptops, and even our networking devices. 

Network anomaly detection is an efficient way of detecting malicious 

activities. Network-based anomaly detection captures and analyzes 

attributes of abnormal behavior in a network. Machine learning and 

deep learning-based approach are attractive among various known 

methods for network anomaly detection because they can efficiently 

analyze big network traffic data for malicious activities and detect 

zero-day attacks. A Recurrent Neural Network (RNN) model is 

designed to recognize the sequential characteristics of data and then 

use the patterns to predict the coming scenario. In this research 

work, seven different optimizers (Nadam, Adam, RMSprop, 

Adamax, SGD, Adagrad, and Ftrl), epochs, batch size, and the ratio 

of training testing data size are analyzed for the Bidirectional Long 

Short Term Memory (Bi-LSTM) network anomaly detection which 

provides the highest anomaly detection accuracy of 98.52% on the 

NSL-KDD binary dataset. The performance is compared using 

accuracy and F1-score metrics. Performance assessment regarding 

the accuracy and F1-score revealed that the proposed Bi-LSTM 

anomaly detection model exhibited better performance than the 

other existing anomaly detection methods. 

Keywords— Network Intrusion Detection System, Machine 

Learning, Deep Learning, LSTM, Bi-LSTM, NSL-KDD 

I. INTRODUCTION 

 With the invention of information and technology, the most 

crucial information is transmitted in the form of bits from source 

to destination. The transmitted information can be voice, image, or 

data, containing banking information, personal information, 

network traffic, etc. Various tools or methods are available to 

detect and prevent intruders. Anomaly is a pattern in the dataset 

that does not fit into the usual behavior of the data, and some 

detection techniques are required to detect it. Outliers and 

anomalies are sometimes used interchangeably in the field of 

anomaly detection. Anomaly detection has numerous applications, 

including business, network intrusion detection, health monitoring 

systems, credit card fraud detection, and fault detection in critical 

information systems. Anomaly detection is important in cyber 

security for achieving solid protection against cyber adversaries. 

A system is considered secure if the three computer security 

principles of Confidentiality, Integrity, and Availability (CIA) are 

properly met [1]. An intrusion detection system is a method for 

monitoring and examining what is happening in a computer or 

network system to detect potential risks by evaluating how often 

CIA computer security guidelines are broken. 

 There are two categories of intrusion detection methods: 

signature-based intrusion detection systems (SIDS) and anomaly-

based intrusion detection systems (AIDS). Anomaly detection 

systems are classified into two categories based on the sources: 

network-based and host-based intrusion detection systems. 

Anomaly detection techniques utilize labels to identify whether the 

data is normal or anomalous. There are three different anomaly 

detection techniques such as supervised, unsupervised, and semi-

supervised anomaly detection methods. AIDS overcomes the 

SIDS's drawbacks by modeling normal behaviors using machine 

learning, statistical-based, or knowledge-based methods. The 

different anomaly detection approaches are listed below in Fig. 1 

[2].   

FIGURE 1. TAXONOMY OF ANOMALY DETECTION [2] 
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 Deep learning can extract better representations for creating 

efficient anomaly detection models. The traditional machine 

learning-based network anomaly detection algorithms are more 

suited for small datasets and are mostly performance dependent on 

how the feature engineering is implemented. The split ratio is one 

of the dominant elements influencing the performance of 

traditional machine learning-based anomaly detection methods. 

The traditional ML methods are simple and have low resource 

consumption. Still, for huge datasets and large features, poorly 

performed and traditional ML cannot be worked on computer 

vision, natural language processing, image translations, etc. The 

Convolutional Neural Network (CNN) is mostly used in image 

datasets where the lower layer’s neurons do the feature reduction 

in the network, usually identifying important small-scale features, 

such as boundaries, corners, and intensity differences. Then in 

higher layers, the network combines the lower-level features to 

form more complex features such as simple shapes, forms, and 

partial objects. And on the final layer, the network combines the 

lower features to produce the output or classification results. 

LSTM works differently than a CNN because an LSTM is usually 

used to process and make predictions given data sequences. RNNs 

were designed to retain long-range information so that the 

information is remembered and not lost in a long sequence. 

BiLSTM adds one more LSTM layer, reversing the information 

flow direction and overcoming the vanishing gradient problems.  

The deep learning method overcomes the problems in traditional 

ML, such as being suited for huge datasets and large numbers of 

features. The performance of the deep learning-based anomaly 

detection algorithm depends on the number of neurons, number of 

hidden layers, types of activation function, number of samples 

(batch size), and epochs (iterations) during DL model training and 

testing. Selecting those hyperparameters, training testing data 

ratio, and architecture of neural network in deep neural networks 

is vital in increasing the detection accuracy of network anomaly 

detection systems. 

II. RELATED WORK 

The volume of big data is growing daily, so the traditional 
machine learning algorithm cannot be performed well and needs 
intensive feature engineering tasks. Deep learning greatly 
improves detection performance. Still, the nature of the dataset 
used in network anomaly detection (balanced and unbalanced), the 
hyperparameters on deep neural networks, training, testing data 
size, and neural network architecture play a vital role in detecting 
the anomaly. 

Authors [3] implemented the Bi-LSTM model to overcome the 
extensive feature engineering task required for traditional machine 
learning-based anomaly detection. Also, data augmentation used 
during data preprocessing on rare attacks (U2R, R2L) was applied 
to create the balanced NSL-KDD dataset resulting in the accuracy 
and F1 scores better than other comparison methods, reaching 
90.73% and 89.65%, respectively. Authors [4] proposed a network 
intrusion detection algorithm that combined hybrid sampling with 

the deep hierarchical network where SMOTE was used to create 
the balanced dataset. The CNN-based Bi-LSTM hybrid technique 
was used to detect the anomalies on the NSL-KDD and UNSW-
NB15 datasets and found the highest accuracy of 83.58% and 
77.16%, respectively. The authors [5] proposed a Bi-directional 
GAN-based approach to the NSL-KDD and CIC-DDoS2019 
datasets. The bidirectional GAN model works perfectly on the 
imbalance NSL-KDD dataset resulting in an accuracy of 91.12% 
and an f1 score of 92.68%. The authors used the GAN algorithm 
to improve the performance of the imbalanced NSL-KDD data. 
Authors [6] proposed a novel solution based on ACGAN and 
ACGAN-SVM to solve the data imbalance problem using 
generative adversarial networks to synthesize the attack traffic for 
IDS. The synthesized attacks are mixed with the original data to 
form the augmented dataset. The authors performed experiments 
on the NSL-KDD, UNSW-NB15, CICIDS2017, and RAWDATA 
datasets. Among the SVM, DT, and RF models, DT provides a 
higher F1-score of 92% on the NSL-KDD augmented dataset. 
During this work [7], the Authors used a Heterogeneous Ensemble 
Assisted Machine Learning Model for Binary and Multi-Class 
Network Intrusion Detection to overcome the data imbalance 
problem on KDD99, NSL-KDD, and UNSW-NB15 datasets. The 
model provides the 94.5% true positive rate and 96.2% AUC on 
the NSL-KDD dataset. Authors [8] concluded from the 
experimental results that the machine learning classifier's 
performance improved when the number of target classes 
decreased. Authors examined this concept on traditional machine 
learning models, including NB, J48, RF, BayesinNet, Bagging, 
and Adaboost on three NIDS datasets: UNSW-NB15, CIC-
IDS2017_Thrusday, and KDD99. 

Authors [9] studied the Recurrent Neural Network-based IDS 
model's performance in binary and multiclass classification. The 
number of neurons and different learning rates influences the 
proposed model's performance on the NSL-KDD dataset. The 
experimental results show that RNN-IDS is suitable for modeling 
a classification model with high accuracy. Its performance is 
superior to traditional machine learning (J48, artificial neural 
network, random forest, and support vector machine) 
classification methods in binary and multiclass classification. In 
this paper [10], the Authors propose a Convolutional 
Autoencoder-based (CAE) network anomaly detection method 
and found a detection accuracy of 96.87% on the NSL-KDD 
dataset. The CAE method was used to reduce and select the more 
relevant features for the anomaly detection algorithm. In this paper 
[11], the Authors explored the effectiveness of various 
Autoencoders in detecting network intrusions. The authors 
compared the performance of 4 different autoencoders, including 
Sparse Autoencoders, Undercomplete Deep Autoencoders, and 
Denoising Autoencoder, on the NLS-KDD dataset and achieved 
an accuracy of 89.34% by using a Sparse Deep Denoising 
Autoencoder. Authors [12] proposed a 5-layer autoencoder (AE)-
based model better suited for network anomaly detection. The 
optimal model architectures are better equipped for feature 
learning and dimension reduction to produce better detection 
accuracy and f1-score by achieving the detection accuracy and f1-



score at 90.61% and 92.26%, respectively, on the NSL-KDD 
dataset. The authors utilized the reconstruction error function to 
decide whether a network traffic sample is normal or abnormal. 

In this paper [13], the Authors implemented a network 
intrusion detection method combining CNN and Bi-LSTM 
network on the KDD99 dataset. The authors studied the effect of 
hidden layers, nodes, and the number of iterations to improve 
anomaly detection accuracy, where the accuracy of KNN, J48, 
Deep Forest, Naïve Bayes, Random Forest, and CNN-based Bi-
LSTM. The CNN-based Bi-LSTM provides the highest detection 
accuracy of 95.4%. Authors [14] compared the single-layer and 
multilayer LSTM (4 layers) for weather forecasting on the weather 
dataset collected by Weather Underground at Hang Nadim 
Indonesia Airport with the highest validation accuracy of 80.60%. 
The different numbers of nodes on four hidden layers were used 
200, 100, 90, and 50, and the data split ratio taken is 30 % test data 
for 500 epochs. The Authors [15] implemented the deep learning 
model based on Bi-directional LSTM on KDDCUP-99 and 
UNSW-NB15 datasets with outstanding results with 99% 
accuracy for both KDDCUP-99 and UNSW-NB15 datasets. Most 
existing models cannot efficiently detect rare attack types, 
especially User-to-Root (U2R) and Remote-to-Local (R2L) 
attacks. These two attacks often have lower detection accuracy 
than other kinds of attacks. Authors in [16] proposed a 
Bidirectional Long-Short-Term-Memory (Bi-LSTM) based 
intrusion detection system to handle the aforementioned 
challenges on the NSL-KDD dataset. This Bi-LSTM model 
provided an accuracy of 94.26% for binary classification.  

The impact of batch size on the performance of CNN and the 
impact of learning rates were studied for image classification, 
specifically for medical images [17]. According to their findings, 
a larger batch size typically does not result in high accuracy, and 
both the learning rate and the optimizer employed will have a big 
impact. The network will train more effectively, particularly 
during fine-tuning, if the learning rate and batch size are reduced. 

Various methods were implemented to overcome the data 
imbalance problem, including data augmentation on [3], SMOTE 
on [4], GAN technology on [5] [6], Heterogeneous ensemble 
assisted on [7], reducing the target class combining the smaller 
class in another new class on [8]. Huge numbers of research works 
related to network anomaly detection are examined in deep 
learning, including RNNIDS in [9], CAE in [10], Autoencoder in 
[11], multilayer Autoencoder in [12], CNN Bi-LSTM hybrid 
method in [13], and Bi-LSTM in [15] [16]. 

The Authors [16] and [15] do not mention the data 
preprocessing, train-test data ratio, and how those Bi-LSTM 
hyperparameters are adopted during their experiments. The 
authors [14] found Bi-LSTM for weather forecasting without 
referencing the values of the hyperparameters in their experiments. 
The authors [9] did not analyze the number of epochs and did not 
mention the percentages of the split ratio for the KDDTrain+ 
dataset. Most of the above research works are focused on the 
increase the model accuracy of either traditional or deep machine 
learning models. The research on selecting the hyperparameters in 

deep learning-based models, training testing data ratio, and 
architecture of deep neural networks are not focused on. Some 
researchers do not mention how those values are adopted in their 
research works. Hence, our research focused on improving those 
limitations on network anomaly detection systems by 
experimenting with the NSL-KDD dataset. 

 The main contributions of this research work are: 

1) Investigating the effect of optimizers, batch size, and 
the number of epochs Vs performance of the Bi-LSTM. 

2) Investing in the train and test split ratio to improve the 
network anomaly detection accuracy on the NSL-KDD. 

3) Investing the number of layers and memory elements to 
improve the Bi-LSTM on the NSL-KDD dataset.  

4) This research presents the development and implementation 
of network anomaly detection using a Bi-LSTM-based 
RNN model that can detect anomalies in a network with 
high accuracy of 98.52%. 

III. SYSTEM MODEL  

The overall proposed model encompasses the following steps. 

 Step-1 Data Collection and Modelling  

 Step-2 Data Pre-procession 

 Step-3 Prepare the training and testing dataset  

 Step-4 Train and Test the Bi-LSTM Model  

 Step-5 Model Evaluation and  anomaly detection 

 Step-6 Model Compare and Decision 

The overall implementation schematic of the Bidirectional 

LSTM-based model is given in Fig. 2. A detailed discussion of the 

above-stated methods is provided in the subsequent sections. 

1. Data Collection and Modelling  

 In this research, we used the KDDTrain+ dataset, one of the 

datasets available on NSL-KDD. This dataset contains the full 

NSL-KDD train set, including attack-type labels and difficulty 

level. It has 41 features with five distinct attack classes, Normal, 

DoS, Probe, R2L, and U2R. NSL-KDD [18] is an improved 

version of the KDD99 network intrusion dataset, does not include 

redundant records in the train set, and has no duplicate records in 

the test sets. The KDDTrain+ dataset contains 125973 records and 

41 features. This dataset is balanced because 53.46% of records 

are normal, and 46.54% are abnormal. We selected this dataset 

because the normal and abnormal records contained the subset of 

the dataset is balanced.  

2. Data Pre-processing  

 The KDDTrain+ dataset contains 125973 records and 41 

features. During the data pre-processing, the class label is 

assigned 1 for normal and 0 for abnormal records; hence the 

dataset becomes the binary class dataset. Then, three categorical 

features: ‘protocol_type,’ ‘service,’ and ‘flag,’ are converted into 

numeric features using dummy one hot encoding. The standard 



scalar method is used to normalize the dataset. For the feature 

reduction, attributes with more than 0.5 correlation with encoded 

attack label attribute are only preserved.   

3. Prepare the Training and Testing Dataset    

The train-test split approach measures how well machine 

learning algorithms perform when used to make predictions from 

data that was not used to train the model. Since the dataset we pre-

processed is only one set of data, the two set of datasets to 

implement the machine learning algorithms. The train test split 

ratio does not have rules the researcher to follow but the common 

slit ratio are train 80% and test 20%, train 60% and test 40%, train 

70% and test 30%, train 75% and test 25%. We performed the 

experiment to choose the split ratio where our Bi-LSTM model 

provides the best result is 70% train and 30% test dataset.  

4. Bi-LSTM Model 

 A recurrent neural network (RNN) consists of feedback 

loops that process the sequences of data patterns and predict 

outcomes. Those loops allow the data to be shared with available 

nodes and predictions according to the collected information 

called memory. RNN has been used to solve machine learning 

problems such as speech recognition, language processing, and 

image classification. LSTM addresses the problem of the 

vanishing gradients of RNN. LSTM architecture consists of the 

memory block and three multiplicative units- the input, output, 

and forget gates which are analogous to write, read and reset 

operations for the cells. The LSTM memory cells can store and 

access data for extended periods because of the multiplicative 

gates, which prevents the vanishing gradient problem. 

 Conventional RNNs have the limitation that they can only use 

the previous context. Bidirectional RNN overcomes those 

problems by processing the data in both directions with two 

hidden layers, then feeding forwards to the same output layer.  

Generally, in a normal LSTM network, the output is taken 

directly. In the case of a bidirectional LSTM network, the output 

of the forward and backward layers at each stage is given to the 

activation layer. This output contains information on past and 

future patterns or data. The bi-directional LSTM predicts or tags 

the sequence of each element by using finite sequences in the 

context of previous and subsequent items. This results from two 

LSTMs processed in series, one from right to left and the other 

from left to right.  

5. Model Evaluation and Anomaly Detection   

 Different experiments are performed to evaluate the Bi-LSTM 

model. Machine learning (ML) or deep learning (DL) model does 

not provide consistency in performance. Hence the model hyper-

parameters need to be examined to obtain better performance. The 

determination of optimizer, the number of epochs, batch size, and 

train-test split ratio are determined by comparing the accuracy and 

F1-score of the Bi-LSTM model. Finally, the Bi-LSTM model 

performance parameters are compared with the previously 

published research results to evaluate our Bi-LSTM model’s 

performance.  

6. Model Comparision and Decision Making 

Different sets of experiments to determine the values of the 

hyperparameters for the best result. The determination of 

optimizer, the number of epochs, batch size, and train-test split 

ratio are determined by comparing the accuracy and F1-score of 

the Bi-LSTM model. Finally, the Bi-LSTM model performance 

parameters are compared with the previously published research 

results to evaluate our Bi-LSTM model’s performance. The 

performance metrics are recorded and compared for NSL-KDD 

binary NIDS datasets regarding f1-score and accuracy. 

IV. RESULTS AND DISCUSSIONS 

The experiments were adapted on a 64-bit Windows 10 

machine with 16G RAM and an i7-1.99GHz processor. The 

versions of python, Keras, and TensorFlow used during this 

research work were 3.7.13, 2.6.0, and 2.9.1, respectively. The 

determination of training and testing data ratio, epochs, batch size, 

and selection of optimizer for the Bi-LSTM model was examined 

in the different experiments, which are explained below.  

A. Experiment-1 Optimizers Vs Bi-LSTM Model Accuracy 

 In this experiment, the Bi-LSTM model experimented with 

the NSL-KDD dataset, whose specifications are given in the 

previous sections. The right optimizer is necessary for the model 

to improve training speed and performance. The selection of an 

FIGURE 2. BLOCK DIAGRAM OF BI-LSTM-BASED MODEL 



optimizer is very important because it helps the ML /DL model to 

get results faster. TensorFlow supports nine optimizer classes, 

including Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, 

RMSprop, SGD, and gradient descent were compared.

 During this experiment, Bi-LSTM hyperparameters were 

chosen randomly, which are shown in Table 1 below. The Bi-

LSTM model was created using 64 units, two bidirectional LSTM 

hidden layers with 50 units, and one output-dense layer. Each 

layer in Bi-LSTM used a relu activation function and a 20% 

dropout rate.  
TABLE 1. OPTIMIZER VS. ACCURACY 

Test size = 50%, epochs = 105, batch Size = 200 

SN Optimizer Accuracy % F1-Score % 

1 Nadam 98.35 98.47 

2 Adam 98.33 98.44 

3 RMSprop 98.28 98.39 

4 Adamax 98.07 98.21 

5 SGD 96.79 97.03 

6 Adagrad 91.65 92.49 

7 Ftrl 53.36 69.59 

  

 Observing the above results (Table 1), it can easily be found 

that Nthe adam optimizer is the winning optimizer with the 

highest accuracy of 98.35% and the highest f1-score of 98.47%.  

Nadam is an improved version of the Adam algorithm that 

integrates Nesterov momentum, improving the optimization 

algorithm's performance. 

B.   Experiment-2 Train Test Ratio Vs. Accuracy 

 The train-test split ratio and Bi-LSTM model accuracy were 

studied in this experiment. Data splitting is crucial in data science, 

especially when building models from data. The train-test split 

approach is used to quantify how well machine learning 

algorithms perform when used to predict outcomes from data that 

was not used to train the model. After the training is completed, 

the testing data set is utilized. There is no set guideline for how 

the data should be split on training and test data from the given 

data set. The test split ratio is examined to obtain better network 

anomaly detection using Nadam optimizer on the NSL-KDD 

binary dataset.  

 
TABLE 2.TRAIN TEST RATIO VS. ACCURACY 

Optimizer = Nadam, epochs = 105, batch Size = 200 

SN Test Data size % Accuracy % F1-Score % 

1 30 98.48 98.57 

2 25 98.47 98.57 

3 50 98.39 98.5 

4 40 98.35 98.46 

5 20 98.33 98.44 

6 60 98.28 98.4 

7 10 98.17 98.29 

8 70 98.15 98.29 

9 80 98.15 98.29 

10 90 97.98 98.13 

  

 This experiment provides the train-test ratio for the highest 

network anomaly detection for the Bi-LSTM model on the NSL-

KDD dataset. The performance metrics are recorded in Table 2, 

where the test split of 30% achieved the purposed Bi-LSTM 

model with the highest accuracy and f1-score of 98.48% and 

98.57%, respectively.  

C. Experiment-3 Batch Size Vs. Bi-LSTM Accuracy 

 The effect of the batch sizes on the Bi-LSTM accuracy and the 

training time was studied during this experiment. This experiment 

aims to find the optimal batch size for the best model 

performance.   
TABLE 3. BATCH SIZE VS. ACCURACY 

Optimizer = Nadam, epochs = 105, test_size= 0.30 

SN Batch Size Accuracy % F1-Score % Prgm Exe time (sec) 

1 50 98.48 98.58 2127.2346 

2 100 98.46 98.56 1228.779 

3 15 98.45 98.56 5671.738 

4 200 98.45 98.55 796.8976 

5 300 98.45 98.55 553.4444 

6 150 98.42 98.52 858.07 

7 450 98.41 98.51 454.989 

8 350 98.4 98.51 527.1532 

9 400 98.38 98.48 460.8835 

10 500 98.36 98.47 514.7698 

11 250 98.35 98.46 616.4657 

  

 The smaller batch size introduces small amounts of data 

samples and takes longer to train the Bi-LSTM model compared 

to the larger batch size. Model accuracy, F1-score, is shown in 

Table 3. The experimental result shows that the batch size of 50 

during this Bi-LSTM model for the NSL-KDD dataset produces 

the best results in terms of accuracy and f1-score. Larger batch 

sizes take less time to train but are less accurate, which is an 

important trade-off for this Bi-LSTM model.  

D. Experiment-4 Epochs Vs. Bi-LSTM Accuracy 

 The number of times the learning algorithm will go over the 

complete training dataset is determined by the hyperparameter 

known as the epoch. The number of epochs can be any integer 

value that lies between 1 to infinity. Traditionally, the ML/ DL 

model uses large values of epochs.   

 
TABLE 4. EPOCHS VS. BI-LSTM MODEL ACCURACY 

Optimizer = Nadam, batch_size = 50, test_size= 0.30 

SN Epochs Accuracy % F1-Score % Prgm Exe time (sec) 

1 205 98.52 98.62 4103.7667 

2 100 98.48 98.58 1878.8025 

3 125 98.48 98.58 2470.6198 

4 150 98.48 98.58 2934.2485 

5 175 98.48 98.58 3965.207 

6 75 98.46 98.56 1465.5138 

7 50 98.38 98.48 942.1289 

8 45 98.37 98.47 1002.0923 

9 35 98.35 98.46 761.2784 

10 25 98.3 98.41 527.5244 

11 15 98.13 98.25 322.5288 

12 5 97.9 98.03 127.0577 

  



This experiment aims to determine the epochs where the Bi-LSTM 

model provides the highest accuracy. During this experiment, Bi-

LSTM hyperparameters were chosen randomly same as in the 

previous experiment. The larger epochs take a longer time to train 

the model. We chose epochs ranging from 5 to 205 with some 

intervals; the accuracy and f1-score are higher for 205 epochs. The 

training time for Bi-LSTM is increased for a large value of epoch. 

During this experiment, a batch size of 205 improves the Bi-LSTM 

model's accuracy of 98.52% in detecting network anomalies. 

 E. Experiment-5 Bi-LSTM layers parameters Vs. Accuracy 

 We investigated the optimizer, epochs, batch size, and train 

test data split ratio from the above experiments A-D and found that 

the value of the hyperparameter: Nadam optimizer, 205 epochs, 50 

batch size, 30% test data, and 70% train data generate the best 

performance which is measured using performance evaluation 

metrics. During this experiment, we examined the combination of 

the numbers of units for the multilayer Bi-LSTM model. The 

output layer provides the probability of selecting either a normal 

or abnormal class, so the softmax activation function works best 

for binary class classification problems.  

 
TABLE 5. BI-LSTM LAYERS PARAMETERS VS. ACCURACY 

Optimizer = Nadam, batch_size = 50, test_size= 0.30 [ Units (activation fn)] 

SN Input Layer Hidden Layer 1 Hidden Layer 2 Accuracy 

1 64 (relu) 50 (relu) 50 (relu) 98.52 

2 80 (relu) 64 (relu) 64 (relu) 98.48 

3 49 (sigmoid) 128 (Sigmoid) 128 (sigmoid) 98.18 

4 16 (selu) 16 (selu) 16 (selu) 97.97 

5 16 (relu) 16 (relu) 16 (relu) 97.93 

6 4 (relu) 4 (relu) 4 (relu) 97.55 

7 8 (relu) 8 (relu) 8 (relu) 97.48 

8 4 (sigmoid) 4 (sigmoid) 4 (sigmoid) 97.05 

 

 The number of combinations of Bi-LSTM units and activation 

functions was used in input and hidden layers during this 

experiment; some of the experiment results are included in Table 

4. The experimental result shows that the 64 Bi-LSTM units in the 

input layer and 50 Bi-LSTM units in both hidden layers produce 

the highest accuracy of 98.52% during network anomaly detection. 

V. CONCLUSION  

 Comparing our result with existing research [15] for Bi-LSTM, 

our model produces higher accuracy of 98.52%, which is greater 

than 94.26%. The values of Bi-LSTM model hyperparameters, 

including optimizer, epochs, batch size, and the training testing 

dataset ratio for the multilayer Bi-LSTM neuron architecture 

(layers, activation function, and memory units) are investigated for 

the highest detecting accuracy. All the above experimental results 

show that the Bi-LSTM model with those investigated parameters 

can effectively improve the detection accuracy and f1-score.  
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