
Efficacy of Bidirectional LSTM Model for Network-

Based Anomaly Detection
Toya Acharya1, Annamalai Annamalai2, Mohamed F Chouikha3

Electrical and Computer Engineering

tacharya@pvamu.edu1, aaannamalai@pvamu.edu2, mfchouikha@pvamu.edu3

Prairie View A&M University, Prairie View, Texas

Abstract- The Internet is vital in daily applications such as

education, health, business, etc. Increasing the usage of the Internet

and technology also increases the risk. Cyber attackers can use

technology to compromise the triad of the CIA (confidentiality,

integrity, and confidentiality). Malicious activities occur in our

surroundings without our knowing it. Cyberattacks cannot be seen

physically, though occurring to our Internet of things (IoT) devices,

personal computers, laptops, and even our networking devices.

Network anomaly detection is an efficient way of detecting malicious

activities. Network-based anomaly detection captures and analyzes

attributes of abnormal behavior in a network. Machine learning and

deep learning-based approach are attractive among various known

methods for network anomaly detection because they can efficiently

analyze big network traffic data for malicious activities and detect

zero-day attacks. A Recurrent Neural Network (RNN) model is

designed to recognize the sequential characteristics of data and then

use the patterns to predict the coming scenario. In this research

work, seven different optimizers (Nadam, Adam, RMSprop,

Adamax, SGD, Adagrad, and Ftrl), epochs, batch size, and the ratio

of training testing data size are analyzed for the Bidirectional Long

Short Term Memory (Bi-LSTM) network anomaly detection which

provides the highest anomaly detection accuracy of 98.52% on the

NSL-KDD binary dataset. The performance is compared using

accuracy and F1-score metrics. Performance assessment regarding

the accuracy and F1-score revealed that the proposed Bi-LSTM

anomaly detection model exhibited better performance than the

other existing anomaly detection methods.

Keywords— Network Intrusion Detection System, Machine

Learning, Deep Learning, LSTM, Bi-LSTM, NSL-KDD

I. INTRODUCTION

 With the invention of information and technology, the most

crucial information is transmitted in the form of bits from source

to destination. The transmitted information can be voice, image, or

data, containing banking information, personal information,

network traffic, etc. Various tools or methods are available to

detect and prevent intruders. Anomaly is a pattern in the dataset

that does not fit into the usual behavior of the data, and some

detection techniques are required to detect it. Outliers and

anomalies are sometimes used interchangeably in the field of

anomaly detection. Anomaly detection has numerous applications,

including business, network intrusion detection, health monitoring

systems, credit card fraud detection, and fault detection in critical

information systems. Anomaly detection is important in cyber

security for achieving solid protection against cyber adversaries.

A system is considered secure if the three computer security

principles of Confidentiality, Integrity, and Availability (CIA) are

properly met [1]. An intrusion detection system is a method for

monitoring and examining what is happening in a computer or

network system to detect potential risks by evaluating how often

CIA computer security guidelines are broken.

 There are two categories of intrusion detection methods:

signature-based intrusion detection systems (SIDS) and anomaly-

based intrusion detection systems (AIDS). Anomaly detection

systems are classified into two categories based on the sources:

network-based and host-based intrusion detection systems.

Anomaly detection techniques utilize labels to identify whether the

data is normal or anomalous. There are three different anomaly

detection techniques such as supervised, unsupervised, and semi-

supervised anomaly detection methods. AIDS overcomes the

SIDS's drawbacks by modeling normal behaviors using machine

learning, statistical-based, or knowledge-based methods. The

different anomaly detection approaches are listed below in Fig. 1

[2].

FIGURE 1. TAXONOMY OF ANOMALY DETECTION [2]

mailto:aaannamalai@pvamu.edu
mailto:mfchouikha@pvamu.edu

 Deep learning can extract better representations for creating

efficient anomaly detection models. The traditional machine

learning-based network anomaly detection algorithms are more

suited for small datasets and are mostly performance dependent on

how the feature engineering is implemented. The split ratio is one

of the dominant elements influencing the performance of

traditional machine learning-based anomaly detection methods.

The traditional ML methods are simple and have low resource

consumption. Still, for huge datasets and large features, poorly

performed and traditional ML cannot be worked on computer

vision, natural language processing, image translations, etc. The

Convolutional Neural Network (CNN) is mostly used in image

datasets where the lower layer’s neurons do the feature reduction

in the network, usually identifying important small-scale features,

such as boundaries, corners, and intensity differences. Then in

higher layers, the network combines the lower-level features to

form more complex features such as simple shapes, forms, and

partial objects. And on the final layer, the network combines the

lower features to produce the output or classification results.

LSTM works differently than a CNN because an LSTM is usually

used to process and make predictions given data sequences. RNNs

were designed to retain long-range information so that the

information is remembered and not lost in a long sequence.

BiLSTM adds one more LSTM layer, reversing the information

flow direction and overcoming the vanishing gradient problems.

The deep learning method overcomes the problems in traditional

ML, such as being suited for huge datasets and large numbers of

features. The performance of the deep learning-based anomaly

detection algorithm depends on the number of neurons, number of

hidden layers, types of activation function, number of samples

(batch size), and epochs (iterations) during DL model training and

testing. Selecting those hyperparameters, training testing data

ratio, and architecture of neural network in deep neural networks

is vital in increasing the detection accuracy of network anomaly

detection systems.

II. RELATED WORK

The volume of big data is growing daily, so the traditional
machine learning algorithm cannot be performed well and needs
intensive feature engineering tasks. Deep learning greatly
improves detection performance. Still, the nature of the dataset
used in network anomaly detection (balanced and unbalanced), the
hyperparameters on deep neural networks, training, testing data
size, and neural network architecture play a vital role in detecting
the anomaly.

Authors [3] implemented the Bi-LSTM model to overcome the
extensive feature engineering task required for traditional machine
learning-based anomaly detection. Also, data augmentation used
during data preprocessing on rare attacks (U2R, R2L) was applied
to create the balanced NSL-KDD dataset resulting in the accuracy
and F1 scores better than other comparison methods, reaching
90.73% and 89.65%, respectively. Authors [4] proposed a network
intrusion detection algorithm that combined hybrid sampling with

the deep hierarchical network where SMOTE was used to create
the balanced dataset. The CNN-based Bi-LSTM hybrid technique
was used to detect the anomalies on the NSL-KDD and UNSW-
NB15 datasets and found the highest accuracy of 83.58% and
77.16%, respectively. The authors [5] proposed a Bi-directional
GAN-based approach to the NSL-KDD and CIC-DDoS2019
datasets. The bidirectional GAN model works perfectly on the
imbalance NSL-KDD dataset resulting in an accuracy of 91.12%
and an f1 score of 92.68%. The authors used the GAN algorithm
to improve the performance of the imbalanced NSL-KDD data.
Authors [6] proposed a novel solution based on ACGAN and
ACGAN-SVM to solve the data imbalance problem using
generative adversarial networks to synthesize the attack traffic for
IDS. The synthesized attacks are mixed with the original data to
form the augmented dataset. The authors performed experiments
on the NSL-KDD, UNSW-NB15, CICIDS2017, and RAWDATA
datasets. Among the SVM, DT, and RF models, DT provides a
higher F1-score of 92% on the NSL-KDD augmented dataset.
During this work [7], the Authors used a Heterogeneous Ensemble
Assisted Machine Learning Model for Binary and Multi-Class
Network Intrusion Detection to overcome the data imbalance
problem on KDD99, NSL-KDD, and UNSW-NB15 datasets. The
model provides the 94.5% true positive rate and 96.2% AUC on
the NSL-KDD dataset. Authors [8] concluded from the
experimental results that the machine learning classifier's
performance improved when the number of target classes
decreased. Authors examined this concept on traditional machine
learning models, including NB, J48, RF, BayesinNet, Bagging,
and Adaboost on three NIDS datasets: UNSW-NB15, CIC-
IDS2017_Thrusday, and KDD99.

Authors [9] studied the Recurrent Neural Network-based IDS
model's performance in binary and multiclass classification. The
number of neurons and different learning rates influences the
proposed model's performance on the NSL-KDD dataset. The
experimental results show that RNN-IDS is suitable for modeling
a classification model with high accuracy. Its performance is
superior to traditional machine learning (J48, artificial neural
network, random forest, and support vector machine)
classification methods in binary and multiclass classification. In
this paper [10], the Authors propose a Convolutional
Autoencoder-based (CAE) network anomaly detection method
and found a detection accuracy of 96.87% on the NSL-KDD
dataset. The CAE method was used to reduce and select the more
relevant features for the anomaly detection algorithm. In this paper
[11], the Authors explored the effectiveness of various
Autoencoders in detecting network intrusions. The authors
compared the performance of 4 different autoencoders, including
Sparse Autoencoders, Undercomplete Deep Autoencoders, and
Denoising Autoencoder, on the NLS-KDD dataset and achieved
an accuracy of 89.34% by using a Sparse Deep Denoising
Autoencoder. Authors [12] proposed a 5-layer autoencoder (AE)-
based model better suited for network anomaly detection. The
optimal model architectures are better equipped for feature
learning and dimension reduction to produce better detection
accuracy and f1-score by achieving the detection accuracy and f1-

score at 90.61% and 92.26%, respectively, on the NSL-KDD
dataset. The authors utilized the reconstruction error function to
decide whether a network traffic sample is normal or abnormal.

In this paper [13], the Authors implemented a network
intrusion detection method combining CNN and Bi-LSTM
network on the KDD99 dataset. The authors studied the effect of
hidden layers, nodes, and the number of iterations to improve
anomaly detection accuracy, where the accuracy of KNN, J48,
Deep Forest, Naïve Bayes, Random Forest, and CNN-based Bi-
LSTM. The CNN-based Bi-LSTM provides the highest detection
accuracy of 95.4%. Authors [14] compared the single-layer and
multilayer LSTM (4 layers) for weather forecasting on the weather
dataset collected by Weather Underground at Hang Nadim
Indonesia Airport with the highest validation accuracy of 80.60%.
The different numbers of nodes on four hidden layers were used
200, 100, 90, and 50, and the data split ratio taken is 30 % test data
for 500 epochs. The Authors [15] implemented the deep learning
model based on Bi-directional LSTM on KDDCUP-99 and
UNSW-NB15 datasets with outstanding results with 99%
accuracy for both KDDCUP-99 and UNSW-NB15 datasets. Most
existing models cannot efficiently detect rare attack types,
especially User-to-Root (U2R) and Remote-to-Local (R2L)
attacks. These two attacks often have lower detection accuracy
than other kinds of attacks. Authors in [16] proposed a
Bidirectional Long-Short-Term-Memory (Bi-LSTM) based
intrusion detection system to handle the aforementioned
challenges on the NSL-KDD dataset. This Bi-LSTM model
provided an accuracy of 94.26% for binary classification.

The impact of batch size on the performance of CNN and the
impact of learning rates were studied for image classification,
specifically for medical images [17]. According to their findings,
a larger batch size typically does not result in high accuracy, and
both the learning rate and the optimizer employed will have a big
impact. The network will train more effectively, particularly
during fine-tuning, if the learning rate and batch size are reduced.

Various methods were implemented to overcome the data
imbalance problem, including data augmentation on [3], SMOTE
on [4], GAN technology on [5] [6], Heterogeneous ensemble
assisted on [7], reducing the target class combining the smaller
class in another new class on [8]. Huge numbers of research works
related to network anomaly detection are examined in deep
learning, including RNNIDS in [9], CAE in [10], Autoencoder in
[11], multilayer Autoencoder in [12], CNN Bi-LSTM hybrid
method in [13], and Bi-LSTM in [15] [16].

The Authors [16] and [15] do not mention the data
preprocessing, train-test data ratio, and how those Bi-LSTM
hyperparameters are adopted during their experiments. The
authors [14] found Bi-LSTM for weather forecasting without
referencing the values of the hyperparameters in their experiments.
The authors [9] did not analyze the number of epochs and did not
mention the percentages of the split ratio for the KDDTrain+
dataset. Most of the above research works are focused on the
increase the model accuracy of either traditional or deep machine
learning models. The research on selecting the hyperparameters in

deep learning-based models, training testing data ratio, and
architecture of deep neural networks are not focused on. Some
researchers do not mention how those values are adopted in their
research works. Hence, our research focused on improving those
limitations on network anomaly detection systems by
experimenting with the NSL-KDD dataset.

 The main contributions of this research work are:

1) Investigating the effect of optimizers, batch size, and
the number of epochs Vs performance of the Bi-LSTM.

2) Investing in the train and test split ratio to improve the
network anomaly detection accuracy on the NSL-KDD.

3) Investing the number of layers and memory elements to
improve the Bi-LSTM on the NSL-KDD dataset.

4) This research presents the development and implementation
of network anomaly detection using a Bi-LSTM-based
RNN model that can detect anomalies in a network with
high accuracy of 98.52%.

III. SYSTEM MODEL

The overall proposed model encompasses the following steps.

 Step-1 Data Collection and Modelling

 Step-2 Data Pre-procession

 Step-3 Prepare the training and testing dataset

 Step-4 Train and Test the Bi-LSTM Model

 Step-5 Model Evaluation and anomaly detection

 Step-6 Model Compare and Decision

The overall implementation schematic of the Bidirectional

LSTM-based model is given in Fig. 2. A detailed discussion of the

above-stated methods is provided in the subsequent sections.

1. Data Collection and Modelling

 In this research, we used the KDDTrain+ dataset, one of the

datasets available on NSL-KDD. This dataset contains the full

NSL-KDD train set, including attack-type labels and difficulty

level. It has 41 features with five distinct attack classes, Normal,

DoS, Probe, R2L, and U2R. NSL-KDD [18] is an improved

version of the KDD99 network intrusion dataset, does not include

redundant records in the train set, and has no duplicate records in

the test sets. The KDDTrain+ dataset contains 125973 records and

41 features. This dataset is balanced because 53.46% of records

are normal, and 46.54% are abnormal. We selected this dataset

because the normal and abnormal records contained the subset of

the dataset is balanced.

2. Data Pre-processing

 The KDDTrain+ dataset contains 125973 records and 41

features. During the data pre-processing, the class label is

assigned 1 for normal and 0 for abnormal records; hence the

dataset becomes the binary class dataset. Then, three categorical

features: ‘protocol_type,’ ‘service,’ and ‘flag,’ are converted into

numeric features using dummy one hot encoding. The standard

scalar method is used to normalize the dataset. For the feature

reduction, attributes with more than 0.5 correlation with encoded

attack label attribute are only preserved.

3. Prepare the Training and Testing Dataset

The train-test split approach measures how well machine

learning algorithms perform when used to make predictions from

data that was not used to train the model. Since the dataset we pre-

processed is only one set of data, the two set of datasets to

implement the machine learning algorithms. The train test split

ratio does not have rules the researcher to follow but the common

slit ratio are train 80% and test 20%, train 60% and test 40%, train

70% and test 30%, train 75% and test 25%. We performed the

experiment to choose the split ratio where our Bi-LSTM model

provides the best result is 70% train and 30% test dataset.

4. Bi-LSTM Model

 A recurrent neural network (RNN) consists of feedback

loops that process the sequences of data patterns and predict

outcomes. Those loops allow the data to be shared with available

nodes and predictions according to the collected information

called memory. RNN has been used to solve machine learning

problems such as speech recognition, language processing, and

image classification. LSTM addresses the problem of the

vanishing gradients of RNN. LSTM architecture consists of the

memory block and three multiplicative units- the input, output,

and forget gates which are analogous to write, read and reset

operations for the cells. The LSTM memory cells can store and

access data for extended periods because of the multiplicative

gates, which prevents the vanishing gradient problem.

 Conventional RNNs have the limitation that they can only use

the previous context. Bidirectional RNN overcomes those

problems by processing the data in both directions with two

hidden layers, then feeding forwards to the same output layer.

Generally, in a normal LSTM network, the output is taken

directly. In the case of a bidirectional LSTM network, the output

of the forward and backward layers at each stage is given to the

activation layer. This output contains information on past and

future patterns or data. The bi-directional LSTM predicts or tags

the sequence of each element by using finite sequences in the

context of previous and subsequent items. This results from two

LSTMs processed in series, one from right to left and the other

from left to right.

5. Model Evaluation and Anomaly Detection

 Different experiments are performed to evaluate the Bi-LSTM

model. Machine learning (ML) or deep learning (DL) model does

not provide consistency in performance. Hence the model hyper-

parameters need to be examined to obtain better performance. The

determination of optimizer, the number of epochs, batch size, and

train-test split ratio are determined by comparing the accuracy and

F1-score of the Bi-LSTM model. Finally, the Bi-LSTM model

performance parameters are compared with the previously

published research results to evaluate our Bi-LSTM model’s

performance.

6. Model Comparision and Decision Making

Different sets of experiments to determine the values of the

hyperparameters for the best result. The determination of

optimizer, the number of epochs, batch size, and train-test split

ratio are determined by comparing the accuracy and F1-score of

the Bi-LSTM model. Finally, the Bi-LSTM model performance

parameters are compared with the previously published research

results to evaluate our Bi-LSTM model’s performance. The

performance metrics are recorded and compared for NSL-KDD

binary NIDS datasets regarding f1-score and accuracy.

IV. RESULTS AND DISCUSSIONS

The experiments were adapted on a 64-bit Windows 10

machine with 16G RAM and an i7-1.99GHz processor. The

versions of python, Keras, and TensorFlow used during this

research work were 3.7.13, 2.6.0, and 2.9.1, respectively. The

determination of training and testing data ratio, epochs, batch size,

and selection of optimizer for the Bi-LSTM model was examined

in the different experiments, which are explained below.

A. Experiment-1 Optimizers Vs Bi-LSTM Model Accuracy

 In this experiment, the Bi-LSTM model experimented with

the NSL-KDD dataset, whose specifications are given in the

previous sections. The right optimizer is necessary for the model

to improve training speed and performance. The selection of an

FIGURE 2. BLOCK DIAGRAM OF BI-LSTM-BASED MODEL

optimizer is very important because it helps the ML /DL model to

get results faster. TensorFlow supports nine optimizer classes,

including Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam,

RMSprop, SGD, and gradient descent were compared.

 During this experiment, Bi-LSTM hyperparameters were

chosen randomly, which are shown in Table 1 below. The Bi-

LSTM model was created using 64 units, two bidirectional LSTM

hidden layers with 50 units, and one output-dense layer. Each

layer in Bi-LSTM used a relu activation function and a 20%

dropout rate.
TABLE 1. OPTIMIZER VS. ACCURACY

Test size = 50%, epochs = 105, batch Size = 200

SN Optimizer Accuracy % F1-Score %

1 Nadam 98.35 98.47

2 Adam 98.33 98.44

3 RMSprop 98.28 98.39

4 Adamax 98.07 98.21

5 SGD 96.79 97.03

6 Adagrad 91.65 92.49

7 Ftrl 53.36 69.59

 Observing the above results (Table 1), it can easily be found

that Nthe adam optimizer is the winning optimizer with the

highest accuracy of 98.35% and the highest f1-score of 98.47%.

Nadam is an improved version of the Adam algorithm that

integrates Nesterov momentum, improving the optimization

algorithm's performance.

B. Experiment-2 Train Test Ratio Vs. Accuracy

 The train-test split ratio and Bi-LSTM model accuracy were

studied in this experiment. Data splitting is crucial in data science,

especially when building models from data. The train-test split

approach is used to quantify how well machine learning

algorithms perform when used to predict outcomes from data that

was not used to train the model. After the training is completed,

the testing data set is utilized. There is no set guideline for how

the data should be split on training and test data from the given

data set. The test split ratio is examined to obtain better network

anomaly detection using Nadam optimizer on the NSL-KDD

binary dataset.

TABLE 2.TRAIN TEST RATIO VS. ACCURACY

Optimizer = Nadam, epochs = 105, batch Size = 200

SN Test Data size % Accuracy % F1-Score %

1 30 98.48 98.57

2 25 98.47 98.57

3 50 98.39 98.5

4 40 98.35 98.46

5 20 98.33 98.44

6 60 98.28 98.4

7 10 98.17 98.29

8 70 98.15 98.29

9 80 98.15 98.29

10 90 97.98 98.13

 This experiment provides the train-test ratio for the highest

network anomaly detection for the Bi-LSTM model on the NSL-

KDD dataset. The performance metrics are recorded in Table 2,

where the test split of 30% achieved the purposed Bi-LSTM

model with the highest accuracy and f1-score of 98.48% and

98.57%, respectively.

C. Experiment-3 Batch Size Vs. Bi-LSTM Accuracy

 The effect of the batch sizes on the Bi-LSTM accuracy and the

training time was studied during this experiment. This experiment

aims to find the optimal batch size for the best model

performance.
TABLE 3. BATCH SIZE VS. ACCURACY

Optimizer = Nadam, epochs = 105, test_size= 0.30

SN Batch Size Accuracy % F1-Score % Prgm Exe time (sec)

1 50 98.48 98.58 2127.2346

2 100 98.46 98.56 1228.779

3 15 98.45 98.56 5671.738

4 200 98.45 98.55 796.8976

5 300 98.45 98.55 553.4444

6 150 98.42 98.52 858.07

7 450 98.41 98.51 454.989

8 350 98.4 98.51 527.1532

9 400 98.38 98.48 460.8835

10 500 98.36 98.47 514.7698

11 250 98.35 98.46 616.4657

 The smaller batch size introduces small amounts of data

samples and takes longer to train the Bi-LSTM model compared

to the larger batch size. Model accuracy, F1-score, is shown in

Table 3. The experimental result shows that the batch size of 50

during this Bi-LSTM model for the NSL-KDD dataset produces

the best results in terms of accuracy and f1-score. Larger batch

sizes take less time to train but are less accurate, which is an

important trade-off for this Bi-LSTM model.

D. Experiment-4 Epochs Vs. Bi-LSTM Accuracy

 The number of times the learning algorithm will go over the

complete training dataset is determined by the hyperparameter

known as the epoch. The number of epochs can be any integer

value that lies between 1 to infinity. Traditionally, the ML/ DL

model uses large values of epochs.

TABLE 4. EPOCHS VS. BI-LSTM MODEL ACCURACY

Optimizer = Nadam, batch_size = 50, test_size= 0.30

SN Epochs Accuracy % F1-Score % Prgm Exe time (sec)

1 205 98.52 98.62 4103.7667

2 100 98.48 98.58 1878.8025

3 125 98.48 98.58 2470.6198

4 150 98.48 98.58 2934.2485

5 175 98.48 98.58 3965.207

6 75 98.46 98.56 1465.5138

7 50 98.38 98.48 942.1289

8 45 98.37 98.47 1002.0923

9 35 98.35 98.46 761.2784

10 25 98.3 98.41 527.5244

11 15 98.13 98.25 322.5288

12 5 97.9 98.03 127.0577

This experiment aims to determine the epochs where the Bi-LSTM

model provides the highest accuracy. During this experiment, Bi-

LSTM hyperparameters were chosen randomly same as in the

previous experiment. The larger epochs take a longer time to train

the model. We chose epochs ranging from 5 to 205 with some

intervals; the accuracy and f1-score are higher for 205 epochs. The

training time for Bi-LSTM is increased for a large value of epoch.

During this experiment, a batch size of 205 improves the Bi-LSTM

model's accuracy of 98.52% in detecting network anomalies.

 E. Experiment-5 Bi-LSTM layers parameters Vs. Accuracy

 We investigated the optimizer, epochs, batch size, and train

test data split ratio from the above experiments A-D and found that

the value of the hyperparameter: Nadam optimizer, 205 epochs, 50

batch size, 30% test data, and 70% train data generate the best

performance which is measured using performance evaluation

metrics. During this experiment, we examined the combination of

the numbers of units for the multilayer Bi-LSTM model. The

output layer provides the probability of selecting either a normal

or abnormal class, so the softmax activation function works best

for binary class classification problems.

TABLE 5. BI-LSTM LAYERS PARAMETERS VS. ACCURACY

Optimizer = Nadam, batch_size = 50, test_size= 0.30 [Units (activation fn)]

SN Input Layer Hidden Layer 1 Hidden Layer 2 Accuracy

1 64 (relu) 50 (relu) 50 (relu) 98.52

2 80 (relu) 64 (relu) 64 (relu) 98.48

3 49 (sigmoid) 128 (Sigmoid) 128 (sigmoid) 98.18

4 16 (selu) 16 (selu) 16 (selu) 97.97

5 16 (relu) 16 (relu) 16 (relu) 97.93

6 4 (relu) 4 (relu) 4 (relu) 97.55

7 8 (relu) 8 (relu) 8 (relu) 97.48

8 4 (sigmoid) 4 (sigmoid) 4 (sigmoid) 97.05

 The number of combinations of Bi-LSTM units and activation

functions was used in input and hidden layers during this

experiment; some of the experiment results are included in Table

4. The experimental result shows that the 64 Bi-LSTM units in the

input layer and 50 Bi-LSTM units in both hidden layers produce

the highest accuracy of 98.52% during network anomaly detection.

V. CONCLUSION

 Comparing our result with existing research [15] for Bi-LSTM,

our model produces higher accuracy of 98.52%, which is greater

than 94.26%. The values of Bi-LSTM model hyperparameters,

including optimizer, epochs, batch size, and the training testing

dataset ratio for the multilayer Bi-LSTM neuron architecture

(layers, activation function, and memory units) are investigated for

the highest detecting accuracy. All the above experimental results

show that the Bi-LSTM model with those investigated parameters

can effectively improve the detection accuracy and f1-score.

ACKNOWLEDGMENT

The work is supported in part by funding from the NSF awards
#1910868, #2219611, and the NSF CyberCorps SFS program.

REFERENCES

[1] S. Samonas and D. Coss, "The CIA strikes back: Redefining confidentiality,

integrity and availability in security.," Journal of Information System

Security, vol. 10, 2014.

[2] N. Moustafa, J. Hu and J. Slay, "A holistic review of network anomaly

detection systems: A comprehensive survey," Journal of Network and

Computer Applications, vol. 128, p. 33–55, 2019.

[3] Y. Fu, Y. Du, Z. Cao, Q. Li and W. Xiang, "A Deep Learning Model for

Network Intrusion Detection with Imbalanced Data," Electronics, vol. 11,

p. 898, 2022.

[4] K. Jiang, W. Wang, A. Wang and H. Wu, "Network intrusion detection

combined hybrid sampling with deep hierarchical network," IEEE Access,

vol. 8, p. 32464–32476, 2020.

[5] W. Xu, J. Jang-Jaccard, T. Liu, F. Sabrina and J. Kwak, "Improved

Bidirectional GAN-Based Approach for Network Intrusion Detection

Using One-Class Classifier," Computers, vol. 11, p. 85, 2022.

[6] L. Vu and Q. U. Nguyen, "Handling imbalanced data in intrusion detection

systems using generative adversarial networks," Journal on Information

Technologies & Communications, vol. 2020, p. 1–13, 2020.

[7] T. Acharya, I. Khatri, A. Annamalai and M. F. Chouikha, "Efficacy of

Heterogeneous Ensemble Assisted Machine Learning Model for Binary and

Multi-Class Network Intrusion Detection," in 2021 IEEE International

Conference on Automatic Control & Intelligent Systems (I2CACIS), 2021.

[8] T. Acharya, I. Khatri, A. Annamalai and M. F. Chouikha, "Efficacy of

Machine Learning-Based Classifiers for Binary and Multi-Class Network

Intrusion Detection," in 2021 IEEE International Conference on Automatic

Control & Intelligent Systems (I2CACIS), 2021.

[9] C. Yin, Y. Zhu, J. Fei and X. He, "A deep learning approach for intrusion

detection using recurrent neural networks," Ieee Access, vol. 5, p. 21954–

21961, 2017.

[10] Z. Chen, C. K. Yeo, B. S. Lee and C. T. Lau, "Autoencoder-based network

anomaly detection," in 2018 Wireless telecommunications symposium

(WTS), 2018.

[11] M. Ganesh, A. Kumar and V. Pattabiraman, "Autoencoder Based Network

Anomaly Detection," in 2020 IEEE International Conference on

Technology, Engineering, Management for Societal impact using

Marketing, Entrepreneurship and Talent (TEMSMET), 2020.

[12] W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei and F. Sabrina, "Improving

performance of autoencoder-based network anomaly detection on nsl-kdd

dataset," IEEE Access, vol. 9, p. 140136–140146, 2021.

[13] J. Gao, "Network Intrusion Detection Method Combining CNN and

BiLSTM in Cloud Computing Environment," Computational Intelligence

and Neuroscience, vol. 2022, 2022.

[14] A. G. Salman, Y. Heryadi, E. Abdurahman and W. Suparta, "Single layer

& multi-layer long short-term memory (LSTM) model with intermediate

variables for weather forecasting," Procedia Computer Science, vol. 135, p.

89–98, 2018.

[15] T. S. Pooja and P. Shrinivasacharya, "Evaluating neural networks using Bi-

Directional LSTM for network IDS (intrusion detection systems) in cyber

security," Global Transitions Proceedings, vol. 2, p. 448–454, 2021.

[16] Y. Imrana, Y. Xiang, L. Ali and Z. Abdul-Rauf, "A bidirectional LSTM

deep learning approach for intrusion detection," Expert Systems with

Applications, vol. 185, p. 115524, 2021.

[17] I. Kandel and M. Castelli, "The effect of batch size on the generalizability

of the convolutional neural networks on a histopathology dataset," ICT

express, vol. 6, p. 312–315, 2020.

[18] M. Tavallaee, E. Bagheri, W. Lu and A. A. Ghorbani, "A detailed analysis

of the KDD CUP 99 data set," in 2009 IEEE symposium on computational

intelligence for security and defense applications, 2009.

