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A trajectory is a sequence of observations in time and space, for examples,
the path formed by maritime vessels, orbital debris, or aircraft. It is important
to track and reconstruct vessel trajectories using the Automated Identification
System (AIS) data in real-world applications for maritime navigation safety. In
this project, we use the National Science Foundation (NSF)'s Algorithms for
Threat Detection program (ATD) 2019 Challenge AIS data to develop novel
trajectory reconstruction method. Given a sequence of N unlabeled timestamped
observations X = {xq1,%p,..., XN}, the goalis to track trajectories by clustering the
AlS points with predicted positions using the information from the true trajectories
X. Itis a natural way to connect the observed point X: with the closest point that
is estimated by using the location, time, speed, and angle information from a set
of the points under consideration x; Vi € {1,2,..., N}. The introduced method is
an unsupervised clustering-based method that does not train a supervised model
which may incur a significant computational cost, so it leads to a real-time, reliable,
and accurate trajectory reconstruction method. Our experimental results show
that the proposed method successfully clusters vessel trajectories.

KEYWORDS

Automatic Identification System (AlS), clustering, Long Short-Term Memory (LSTM),
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1. Introduction to trajectory reconstruction

The Automatic Identification System (AIS) is an automatic tracking system which all
ships over 300 gross tonnage and passenger ships are required to be installed aboard
according to a mandate for maritime security according to the International Convention
for the Safety of Life at Sea issued by the International Maritime Organization (IMO) to
avoid ship collisions [1, 2]. To address the challenges of tracking moving vessels using
both space and time information to detect anomalous trajectories, the National Geospatial-
intelligence Agency (NGA) has collaborated with the National Science Foundation (NSF)’s
Algorithms for Threat Detection program (ATD) for providing the ATD 2019 Challenge.
The ATD 2019 AIS data [3] contain time-stamped information about a maritime vessel’s
movement including latitude, longitude, course over ground (angle), and speed over ground.
The ATD 2019 Challenge is tracking the vessel trajectories in real time even when the
AIS data may not have completely recorded vessel ID information due to technical issues
or operational concerns. In this situation, there is no training set for applying supervised
methods to identify the vessel and predict trajectories, and hence unsupervised methods are
required. Although the existing unsupervised clustering methods can be used for predicting
trajectories of vessels, they may not be able to provide desired prediction accuracy [4]. We
propose an unsupervised trajectory reconstruction method can be used for space debris path
prediction since space debris typically lack known labels for model training [5], and analyze
and investigate three AIS datasets provided by NSF’s ATD program and collected from the
Ist of June to the 31st of July, 2019 (see Table 1).
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TABLE 1 The three AlS datasets.

AIS dataset

Time span (hh:mm:ss)

Latitude span

10.3389/fams.2023.1124091

Longitude span

1 From 14:00:00 to 17:59:58 From 36.906505° to 37.049995° From —76.329934° to —75.98009°
2 From 14:00:00 to 17:59:59 From 36.906063° to 37.049933° From —76.329982° to —75.98°
3 From 14:00:00 to 17:59:58 From 36.906038° to 37.04974° From —76.329979° to —75.980184°

We use the term trajectory reconstruction for estimating the
AIS positions and connecting them as trajectories [6]. The existing
works of trajectory reconstruction include linear interpolation,
curvilinear interpolation [7], and its improvements [8, 9], and
Recurrent Neural Networks (RNNs) [10]. Some of these methods
employ physical models of movement information such as speeds,
directions, and time, and typically use the speed over ground and
course over ground, and others assume a distribution of vessel
trajectories and train it from historical records [11, 12]. The state-
of-the-art methods for trajectory reconstruction [13-15] generally
have the following three steps: (1) apply a clustering method [16,
17] to group trajectories data according to their route patterns,
(2) assign the vessel to one of these clusters, and (3) interpolate
or predict the vessel trajectory based on the route pattern of the
assigned cluster. However, these methods requires a training set of
stationary patterns such as paths in long time and distances, and
hence they are not applicable to the three AIS datasets that we
analyzed consist of short-term and distances trajectories which lack
the long-term patterns.

Our main contributions include: (1) The design of a novel
big-data-compliant unsupervised algorithm which automatically
learns and extracts useful spatiotemporal information from
AIS data; (2) The proposed spatiotemporal features improve
the accuracy of clustering the AIS points and reconstructing
trajectories; (3) The proposed method has been successfully
applied to reconstructed vessel trajectories with the real AIS
data collected nearby Norfolk, Virginia, and simulated data.
The highlights of this paper are summarized as follows. The
proposed vessel trajectory reconstruction method utilizing the
spatiotemporal characteristics of AIS data is unsupervised, and
therefore it does not require a training set. The experimental
results demonstrate the advantages of the proposed method when
the training set is insufficient. Unlike the traditional clustering
method, the proposed method uses the points with features
represented by its projected positions based on speeds and angles,
so the computation only involve local information and thus
runs fast.

2. Next-point nearest neighbor
clustering method

We first introduce the next-point concept with nearest
neighbor classification method and then develop the nearest
neighborhood clustering (NNC) when the vessel IDs are unknown
using the proposed next-point method. We introduce a basic NNC
method and design an advanced NNC trajectory reconstruction in
this section. We will compare results of all these methods in the
next section.
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2.1. Next-point connection

We convert the longitude and latitude into the Universal
Transverse Mercator (UTM) coordinates, and then group the
AIS points by the proposed nearest-neighbor clustering method.
The next-point connection (NPC) clustering algorithm uses the
distance defined as

min
i€k, tp<s<

et (Es),00)). M

where K is the index set of the AIS points in interval [fy, ¢]
and d is the space-time distance which is the Euclidean distance
using all spatial and temporal features, [fy, t] is a preset search range
of time (the interval length 1,000 s used in our analysis), E and
O stand for the estimated location and observed location at time
t, respectively, and s is the set of variables used for finding the
closest training points. The proposed clustering method contains
the following steps:

e Step 1. Project each points next location using its speed,
direction, and the time differences between the point and its
neighboring points.

e Step 2. Find the closest location for each estimated point’s
location E;(s) from each label i € K before the test point’s time
th <s<t.

e Step 3. Assign the predicted label to the observed point O(t)
based on its closest location E;(s) in Step 2.

Although the NPC method is similar to the minimum spanning
tree (MST) and single linkage cluster analysis (SLCA) [18, 19]
that combine two clusters with the closest pair of points, NPC
uses the estimated position E to measure the distance instead of
the observed positions and NPC only searches AIS points in a
nearby time interval. When the labels of the AIS points in K are
known, the NPC method becomes a classification method and some
points from the same vessel can be removed and only the AIS
point with time closest to ¢t will be used. The NPC methods that
use the nearest neighbors to predict a vessel VID at each time ¢,
they have the weaknesses: (1) NPC classification requires known
labels which may not be available; (2) NPC clustering may merge
different vessels and some feature with large values may dominate
the distance. Therefore, we focus on the clustering method and
propose the following algorithm to solve these issues.

2.2. Trajectory-based clustering

We propose an clustering algorithm which is based on
trajectory reconstruction and thus called CBTR, which builds the
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trajectories of vessels by using local physical information. CBTR is
based on an NPC clustering method which uses doubly checked
distance to improve accuracy. For each point is the data set, we
select another point as its best possible next point (BPNP) and put
them in the same cluster. Like MST and SLCA, BPNP groups all
points into a dendrogram with several tree-type clusters because
two distinct points might have the same BPNP. The trajectory can
be visualized by connecting all points with its BPNP with a line
segment. See Figure 6 for an illustration.

Given an AIS data set, in which points are ordered by their
recording time ¢, we denote each point by x;. The two-dimensional
positions of x; on the earth are denoted as p; = [LAT(x;), LON(x;)]
where LAT and LON stand for latitude and longitude of the AIS
point x, and their speeds and courses are denoted by v; and ¢;,
respectively. For every x;, we use its velocity, namely speed and
course, to predict its future position and look for the best possible
next point x; of it. If there is no point inside a reasonable searching
range, then we consider x; as an endpoint of a trajectory. We trace
each trail till an endpoint occurs and thus finish the clustering. So
the algorithm of CBTR is designed as follows:

e Step 1. For a given point x; at time ¢;, we derive the linearly
approximate future trajectory y; within 1,000 s by using its
instant speed v; and course 6, i.e., the predicted position is
defined by y; = x; + v; - AT, where AT is the time period
which will be chosen in Step 2.

e Step 2. Collect all points appearing in the time zone ¢ € (¢;,t;+
1000) and denote the collection as A;. Consider the closeness
of y; and each point x in N; by computing a bi-directional
distance D between y; and x, where AT is chosen to be the time
difference between x; and x. Impose a spatiotemporal angle
condition to exclude points with exaggerated turning course
and denote the rest points as /T/, Let the BPNP of x; be the
one in the collection /’\7, which has smallest D and satisfies
the angle condition. Denote this smallest D as D;, namely,
D;: = min 5 D(xj, x). When N is empty, D; is defined to
be infinity.

e Step 3. To choose a threshold in Step 3, we use the normalized
distance D(x,-,xj): = D(xi, x))/|t; — t;|?. Sort all AIS points
x; according to D; in descending order. Compute the ratio
D;/Djy and find the first i whose ratio is less than a threshold
(1.2 was used in our experiments). Take D;;; as a threshold
and treat an AIS point as an endpoint of a projected line if its
D is larger than the threshold. At last, cluster vessels by using
these endpoints.

2.2.1. Bi-directional distance

The bi-directional distance D and the turning angle condition
are the most crucial elements in CBTR, so we provide details of
them as follows.

We compute the (squared) distance between y; and points in
N If dz(y,-,xj): = |lx — ¥ill? is small, then xj is probably the
next AIS point of x;. However, as shown in Figure 1, there might
be another vessel (colored in red) appearing in the direction of y;
(the black arrow). In order to catch the correct BPNP x,, for x;,
we use the information of x,, and x, to do double check. Precisely,
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FIGURE 1

The direction of y; is indicated by the black arrow. The directions of
om and o, are indicated by the gray arrow and the red arrow,
respectively. d?(om, X)), the (squared) distance between x; and the

end of gray arrow, is much smaller than d?(o,, x;). Hence xp, is a
better prediction than x,.

we compute the backward locations o, and o, of x,, and x,,
respectively, namely the gray arrow and red arrow in Figure 1. One
sees that the inconsistency between the black arrow and the red
arrow can exclude x, as a BPNP of x;. On the other hand, x,, is
much possible to be the BPNP of x; because x; lies around the
region that the gray arrow indicates. Therefore, we consider the bi-
directional distance D(x;, xj): = %[dz(yi,xj) + dz(aj,xi)] in Step
2. This (squared) bi-directional distance can resolve intersection
problem in trajectory analysis.

On the other hand, to prevent the endpoint of a trajectory
connecting to another vessel, we have to impose a turning
angle condition, which involves both space and time information.
Roughly speaking, if the trajectory has to make a sudden
unreasonable turn to connect its BPNP, then the trajectory should
terminate right there. We cannot just measure the spatial angle
because a vessel sometimes makes a large turn in a reasonable time
period. So we need to consider a spatiotemporal angle. However,
there is no natural exchange rate for temporal and spatial scales and
we shall define a suitable one.

It is important to balance the scales of different spatiotemporal
features for obtaining a meaningful space-time distance. The
pooled normalization (a feature’s values dividing by the range) and
standardization (a feature’s values divided by its standard error) are
not suitable here, since the ranges of the spatiotemporal features of
the vessels vary a lot. Consequently, we propose a dynamic scale
conversion rate according to the vessel’s speed and direction.

Considering that 1 knot is about 5 - 10~* km/sec and the length
of the diagonal of a longitude unit square is about 124.45 km in
our data set, we choose T = 4-107% ~ 5. 10_4/124.45 and
110.57/(111.32 - cos6), which are ratio estimators [20] to
resale the data. The scaling factor « is used to convert unit of

o =

distance from degree of latitude into degree longitude so that they
are comparable; the factor 7 is used to normalize the time scale so
that the temporal number looks in similar scale as spacial distance.
Namely, for any two AIS points x; and xj, the spatiotemporal vector
form x; to x; is defined by

X% = (v (T(x;) — T(xi)), @ - (LAT(x;) — LAT(x;)), LON(x))
— LON(x)), )
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where T(x) means the time of the AIS point x. When the angle
¢ between x,_x>] and y; is too large, say cos ¢ < 0.1, then we remove
x;j of candidates of BPNP of x;.

Definition 2.1 (Turning Angle Condition). The trajectory shall not
make a sudden and unreasonable turn in which the spatiotemporal
angle ¢ is greater than cos™1(0.1).

Thus we obtain ./F\‘/”, from N in Step 2. On the other hand,
steady vessels with very slow movement which may be anchored
float around with water currents and thus have randomly changing
courses [21]. Therefore, for those steady pairs x; and x; with average
speed smaller than 0.15 knots [22], we do not use the forward-
backward distance and simply measure their D(x;, xj) by % (xj, xj).
The spatiotemporal vector representation in Equation (2) of the
AIS points induces a linear model for the next point x;. Suppose
that at the current time #; the point is x; and at time s € (ty, t) the
point is x, and 952 = (y1, 2, ¥3), we use the current speed speed(x;)
and angel 6(x;) to approximate the dynamic speed and angle from
time fy to time s so that the moving distance that has the true value
from an integral of the dynamic speed over time (fo, s) is estimated
by the product of moving time and speed, and y, and y3 come
from the first-order Taylor polynomial of the angle around x; that
is used for cosine and sine. Consequently, we have the following
regression models

}/1 = ‘L'AT,‘, }’2 = - ALAT,', y3 = ALON,’, (3)
where AT; = T(x}) — T(x;), ALAT; = AT; - speed(x;) -

cos O(x;) + EI-LAT, ALON; = AT; - speed(x;) - sin0(x;) + eiLON, and
LAT LON
1 1

from the linear approximations of the speed and angle.

€, and € are white noises that can be viewed as the errors
In pursuit of better performance, we consider different values of

parameter T according to the types of vessels. However, the types of

TABLE 2 The correct-neighbor rates for each method of the AlIS data with
speed > 3 knots in the three datasets.

Methods Set 1 Set 2 Set 3
NPC classification 0.9942 0.9881 0.9942
NPC clustering 0.9732 0.9481 0.9842
CBTR 0.9986 0.9982 0.9973
LSTM 0.6580 0.6749 0.6534
EM clustering 0.1580 0.1749 0.1643

TABLE 3 The correct-neighbor rates for each method of the AlS data with
speed < 3 knots in the three datasets.

Methods Set 1 Set 2 Set 3
NPC classification 0.9942 0.9881 0.9942
NPC clustering 0.9732 0.9481 0.9842
CBTR 0.9986 0.9982 0.9973
LSTM 0.6580 0.6749 0.6534
EM clustering 0.1580 0.1749 0.1643
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vessels are not provided in our AIS data. Alternatively, we adjust the
value of 7 based on the speed of vessels. This method is essentially
a ratio estimator in cluster sampling [23]. For faster vessels with
speed larger than 4 knots, we use larger 7, 4 - 1075, so that the
time difference is scaled to be comparable to the spatial difference
in x,_x)] For slower vessels with speed smaller than four knots, we use
T = 4 - 107> as proposed in the above paragraph. To demonstrate
the performance of CBTR on different types of vessels, we present
individual results of four categories of vessels according to their
speeds: (1) x; and x; are called a high speed pair if the average speed
(in knots) S of them is larger than or equal to 16 knots; (2) fast
pairif 4 < § < 16; (3) slow pair if 0.15 < S < 4; (4) steady
pair if S < 0.15. We use T = 4 - 107> for vessels of the fist
two categories, which have faster speeds, and use v = 4 - 10
for vessels of the last two categories. The results are shown in
Table 5.

The proposed CBTR algorithm can be viewed as a special case
of the weighted-average plug-in classifier [24, 25], with weights
given by wi(x) = 1/k if x; is one of the k nearest neighbors of x
in the search range S, and wi(x) = 0 otherwise. Stone’s theorem
establishes consistency of the proposed clustering method provided
that the weights satisfy certain conditions [26].

TABLE 4 The computational time for each method in the three datasets in
seconds.

Methods Set 1 Set 2 Set 3

NPC classification 20 27 23

NPC clustering 25 26 27

CBTR 19 26 17

LSTM 278 405 262

EM clustering 20 31 27
20

Missed Clusters = 10 = 4 jumps + 6 merges

e
o

-
o
T

«~ Merge - - —

o

Labeling number of clustering group

4000 6000 8000 10000 12000 14000

Data points ordered by VID

0 L
0 2000

FIGURE 2

The clustering results of data set 1. The numbers in the horizontal
axis are ordered by the vessels' VIDs. The red lines are the predicted
labels and the blue lines are the true labels. Most points of vessel no.
7 are merged with vessel no. 5 and the rest points are split into
another cluster independent from other vessels. Vessel no. 15 is
merged with vessel no. 5 and no. 6, and contributes 2 jumps.
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3. Results of data analysis

3.1. Comparison of algorithms

We evaluated the results by the correct-neighbor rate that is
defined as ) 7| I(Y; = Yj)/n, where Y;j is the label of the closest
neighbor of Y;. In the CBTR algorithm, every AIS point is either
assigned a BPNP or determined as an endpoint of a trajectory. We
sum up all mistakes made in this process, say M, and compute
the correct-neighbor rate as 1 — M/n. The proposed method does
not aim to find a correct sequential pattern of a trajectory. The

10.3389/fams.2023.1124091

definition of the accuracy used in this article only considers the
correct clustered labels in the beginning of Section 3.1. It means
that it is possible that the proposed method groups one vessel’s AIS
points in the order of (1, 3, 2) although the true order is (1, 2, 3).
However, in this case, it is considered as a correct clustering result.

We compare the CBTR with other methods including the
LSTM recurrent neural network (RNN) architecture [27-29] and
the EM clustering algorithm [30, 31] which assumes mixed
Gaussian distributed clusters. The Expectation-Maximization (EM)
algorithm using a Gaussian mixture model estimates the probability
of each observation iteratively through the E-step and M-step. Each

w
<]
]

Missed Clusters = 20 = 9 jumps + 11 merges

N
a
T

 Merge —ymm——

N
o

o (&

Labeling number of clustering group
(4]

4000 6000 8000 10000 12000 14000 16000
Data points ordered by VID

0
0 2000

FIGURE 3
The clustering results of data set 2 and data set 3.

N
34

Missed Clusters = 18 = 9 jumps + 9 merges

N
o

Labeling number of clustering group

4000 6000 8000 10000 14000

Data points ordered by VID

0 I
0 2000 12000

The predicted trajectories of all vessels in data set 1 by using CBTR. Poin
actual VIDs. Two red boxed regions will be enlarged in the following figu

shown as Figures 5, 6.
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FIGURE 4

this picture are the merge of vessels no. 1 and no. 19 and the merge of vessels no. 13 and no. 20 (in the middle left). Details in the two red boxes are

ts are colored and lined according to clusters and are numbered by the
res. Most of the trajectories are clustered correctly. The only visible errors in
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EM cluster is determined by its mean and variance, so that it is
suitable for vessels that are anchored or moving randomly in a
fixed location. Since most vessels are moving with varying speeds
and directions, the EM clustering does not perform well in the
datasets. The comparisons of their correct-neighbor rates are listed
in Tables 2, 3.

The time complexity of the proposed CBTR method is O(nr)
with the sample size n and the neighborhood size r. See the
computational time for each method in Table 4.

3.2. Results of CBTR and experiments by
sampling

In Figures 2, 3, one sees that CBTR is able to regroup most
of the trajectories correctly. We leave the detailed explanation of
these plots in the Supplementary material. One may evaluate the
performance of CBTR by two numbers: jumps and merges. The
former counts the total breaks of trajectories done wrongly by
CBTR and the later counts how many wrong groupings CBTR
makes. Instead of counting how many points are connected to
wrong next point, the sum of jumps and merges shows the
performance of CBTR more faithfully. Since each jump creates
a new clustering and each merge cancels a group, the difference
between them is exactly the difference between the number
of vessels of our data and the number of clusters via CBTR.
Namely we have the following identity: merges — jumps =
#{predicted clusters} — #{actual number of vessels}.

In order to evaluate the robustness of CBTR, we conducted
experiments by removing points in the data sets so that the
trajectories become harder to be tracked. Indeed, we consider
validation sets by method 1: removing each fifth point of every
five points (i.e., the fifth, tenth, etc.) and method 2 removing
each second point of every two points (ie., the second, fourth,
etc.). In sum, we take out 20 and 50% points, respectively, in
each validation set and apply CBTR to predict the trajectories.
For the downsampled AIS datasets 1, 2, 3 using method 1, the
correct rates of the estimated neighbors are 0.9977, 0.9977, and
0.9966, respectively. For the downsampled AIS datasets 1, 2, 3
using method 2, the correct rates of estimated neighbors are 0.9947,
0.9943, and 0.9913, respectively. As we anticipated, the more points
are removed, the lower the correct rates of estimated neighbors
are. However, CBTR still performs very well whereas large amounts
of points are removed. Furthermore, we remark that there is a
trade-off between the reduction of the number of jumps and the
increment of the number of mergers. If the upper bound for time
interval is lager than 1,000 in Step 1, it may lead to more candidates
used for selecting BPNP and fewer jumping points while increases
the number of merges.

3.3. Discussion on the performance of
CBTR

The predicted trajectories of all vessels in data set 1 by using
CBTR are shown in Figure 4. From the left-hand boundary of this
picture, we know the data set contains some incomplete trajectories
and it is impossible to cluster them correctly. One can see a
zoomed-in picture of this boundary phenomenon in Figure 5.
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Figure 6 shows another mistake made by CBTR. This kind
of mistakes happens at the endpoint of some trajectories. To be
precise, when a vessel goes back and parks at a pier, it will turn
off the AIS signal transmitter. The last position reported shall be
the endpoint of the trajectory. But sometimes CBTR finds a false
next point for this endpoint and continues the trial. For example,
in Figure 6, vessel no. 7 (colored purple) left toward west, came
back, and parked to the east of vessel no. 5. At that moment, vessel
no. 5 was reporting its last location before turning off its signal
transmitter. CBTR found some point of vessel no. 7 to be a possible
next point of the last point of vessel no. 5. So it makes a wrong
connection from the circled point to the squared point. This is
called a terminal-type mistake and counted as a merge.

These terminal-type mistakes only happen when two vessels are
anchored close to each other. We can prevent this terminal-type
mistakes by using more restrictive connecting criterion, but this
will break some trajectories of moving vessels because AIS points
in moving trajectories are much sparser than AIS points in steady
vessels moored to the piers. In this case, the speed and angle of a
vessel randomly change by wave drift forces, so the variances of
the white noises in our model (3) may be larger than the signals
(speed). These terminal-type mistakes are not that serious because
the AIS data is mainly used to recognize moving vessels. Except
the boundary phenomenon and the terminal-type mistakes, CBTR

T —
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36°58'50"N | /(3 |
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36°58'30"N -
//
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GeoTechnalogies, Inc., Ints 3
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FIGURE 5

Points are colored and lined according to clusters and are numbered
by the actual VIDs. The merge of vessel no. 19 to vessel no. 1 is due
to the limit of boundary of the dataset. Vessel no. 13 is connected to
no. 20, which is outside the plot, due to the same boundary effect.
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performs perfectly on generic situations and is a reliable method
to predict trajectories. Table 5 shows the performance of CBTR for
vessels with different speeds. One can see that slow vessels are the
most challenging ones for CBTR.

3.4. Discussion on the performance of the
LSTM path prediction

Long Short-Term Memory [27] is a type of Recurrent Neural
Networks (RNNs). LSTMs are an example of a recurrent neural
network which has feedback loops allowing time-dependent
problems to be solved. That is, the outputs (i.e., previous outputs)
can be used as an input to help model the current output. More
generally, problems that have a fundamental order can be solved.
LSTMs are capable of modeling sequences of different lengths,
and this is ideal as vessel paths often have a different number of
points [32].

LSTMs have been used for predicting vessel trajectories with
AIS data [33-35] as they can naturally be adapted to multi-target
learning and are capable of learning both simple and complex
patterns. Here we can think of the timestamp, latitude, longitude,
speed, and direction, all at time ¢, as response variables whereas
the predictor variables (i.e., inputs to the LSTM) are the timestamp,
latitude, longitude, speed, and direction at time t—1,¢—2,- - - ,t—k.
We train an LSTM using lagged versions of the timestamp, latitude,
longitude, speed, and direction (i.e., time t — 1,¢ — 2.--- ,t —
k) in order to predict the timestamp, latitude, longitude, speed,
and direction at one time point in the future (i.e., time t). The
goal here is to attempt to predict all characteristics of a vessel

Frontiers in Applied Mathematics and Statistics

TABLE 5 Performance of vessels of different types.

Types Set 1 Set 2 Set 3
Overall 0.9986 0.9985 0.9974
High speed 0.9987 1 0.9994
Fast 0.9994 0.9996 0.9992
Slow 0.9990 0.9882 0.9763
Steady 0.9983 0.9982 0.9972

automatically using previous information. The architecture and
tuning were accomplished via trial an error using a random 20%
validation sample.

The characteristics of the LSTM are the following: an input
dimension of 5 (i.e., timestamp, latitude, longitude, speed, and
direction are lagged by k = 1 time unit), 1 hidden layer, 250
hidden units using the Rectified Linear Unit (ReLU) activation
function: max(0,x), and 5 output nodes (i.e., timestamp, latitude,
longitude, speed, and direction at time f). Additional values for
the number of lags were tried, but the performance was essentially
unchanged and different activation functions were tried and tended
to produce inferior results. The software used was the keras library
in Python [36].

The results from the LSTM using all five variables as outputs
seem to indicate that this approach is unable to distinguish the
different vessel trajectories due to several reasons including the
initial value and the training set of LSTM [33], the changes of

courses and speeds [34] in the given prediction time range, and
X—min

ar—mm [35] which may over-compress

the normalization method
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trajectory data since the some trajectories have large ranges but
others do not.

The performance of the LSTM next point prediction method is
fundamentally dependent on the historical trajectories with labels
used to train the LSTM model to predict the properties of the
node at the next time point [32, 37]. That is, the training set with
labeled trajectories are needed to accurately predict the timestamp,
latitude, longitude, speed, and direction at some future point in
time. However, to make a fair comparison, only the current AIS
point is used in training a LSTM model for predicting the next
point, and this makes the recurrent neurons not able to sufficiently
learn the latent features in the AIS datasets and leads to inaccurate
prediction [38, 39]. LSTM models are known to require a large
amount of data in order to be effective, so the relatively small size
of the individual AIS training datasets also is a contributing factor
to the LSTM’s performance.

An inspection of the LSTM predictions and the resulting
nearest neighbor search indicate that most of the errors are
related primarily to two factors: some vessels rapidly change their
speed and direction while simultaneously other vessels that were
previously similar to the rapidly changing vessel do not change their
speed or direction suddenly and this results in misclassification,
for example, vessels no. 5-8. The second source of error may be
that the predicted AIS points by LSTM have large variations [37]
and in combination with a larger number of candidates within each
time window (i.e., the time window in the nearest neighbor search),
mistakes are accumulated.

4. Conclusions

The proposed CBTR method successfully cluster AIS points
and track a trajectory without knowing the true labels of AIS points.
Step 2 of the proposed CBTR is the essence of our method, which
integrates the forward and backward estimated positions into
measuring the differences between two adjacent points. This step
evaluates how good the fitted path is dynamically instead of using
the static point information by measuring the mutual distances
between points. Thus, CBTR algorithm is able to distinguish
intersecting trajectories. The second feature in Step 2 is to define a
suitable parameter t to exchange time and space scales. Therefore,
CBTR is applicable to various kinds of moving-point data lacking
in labels, and its spatiotemporal features can be used with other
methods [40] to select a safe maneuver crossing scenario with two
target ships.
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