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Abstract
The North American deer mice (Peromyscus maniculatus) have been used as an envi-
ronmental change indicator in North America. Since precipitation and temperature
changes affect plant productivity and deer mouse habitats, they are substantial factors
of deer mouse population radical variations. Therefore, modeling their association is
important for monitoring dynamic changes of the deer mouse amounts per trap and
relationships among weather variables such as precipitation, maximum and minimum
temperatures. We acquired the National Ecological Observatory Network (NEON)
data of deer mouse monthly amounts in traps for 2013 through 2022 in the contiguous
United States from long-term study sites maintained for monitoring spatial differences
and temporal changes in populations. We categorize the contiguous United States into
six regions associated with climates. The proposedmethod identifies important factors
of temperature and precipitation seasonal patterns with the month and year temporal
effect interacting with the proposed climate-related regions.

Keywords Biodiversity · Climate · Deer mouse · Gaussian process · Habitat ·
Precipitation · Spatial and temporal correlation · Temperature

1 Introduction

The North American deer mice (Peromyscus maniculatus) have been used as an indi-
cator for environmental changes and transformation of the landscape Bedford and
Hoekstra (2015) and a sign of reproduction varying by region McLean and Gural-
nick (2021). Their populations play an important role in understanding environmental
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factors that influence survival and building a prediction model of risks for humans
(Loehman et al., 2012; Parsons et al., 2022). The deer mouse, which is abundant
across North America, has been commonly used as a biological indicator to monitor
environmental factors which impact small mammals’ reproduction and biodiversity
dynamically since the deer mouse is a major prey species such as foxes, coyotes,
weasels, and hawks and also a carrier for infectious diseases including hantaviruses,
plague, and Lyme disease (Botten et al., 2000). Therefore, it is important to understand
the population dynamics of this species.

We used the National Ecological Observatory Network (NEON) 2022 capture-
recapture data [6] sampled by box traps to evaluate the use of indices for smallmammal
population and community monitoring using multiple trapping grids per site per year
over the contiguous United States (see Fig. 1). The NEON data for the deer mice have
been collected over 46 sites from 2013 to 2022 in the United States. Each site contains
3 to 8 with a mean of 6 replicate trapping arrays of 100 traps set in grids with 10-m
spacing. The traps were assigned monthly for 6 months during the growing season at a
subset of sites and 3–4months for the rest of the sites.At each site, half of the trap arrays
were run for an average of 3 nights and the other half were run for a single night Parsons
et al. (2022). The NEON dataset has been used to show that climate and urbanization
affect the body size of Peromyscus maniculatus Guralnick et al. (2020). Hence, it
is important to develop a statistical model that characterizes the dynamic amounts
of the captured small mammals changing over time and locations and also provides
statistical inferences to identify important spatial and temporal effects corresponding
to habitats and climates. We propose a Bayesian model between the spatiotemporal
deer mouse population and weather variables such as precipitation (prcp) in tenths of
millimeters, maximum temperature (tmax) and minimum temperature (tmin) which
are in tenths of degreesCelsius in theUnited States obtained from theNationalOceanic
and Atmospheric Administration (NOAA) (Chamberlain et al., 2022) weather data.

Gaussian process (GP) regression has been applied in various fields for modeling
nonlinearly spatiotemporal correlated data (Quinonero-Candela & Rasmussen, 2005;
He et al., 2023). Using BayesianGaussian process regression, we characterize the non-
linear temporal effects at various locations. Based on the modeling results, we identify
factors affecting the deer mouse population changes. We found that their population
varied by location and time due to the temperature and precipitation changes.

2 Gaussian process regressionmodels

We divide the conterminous United States into six regions by using the absolute val-
ues of the latitudes and longitudes as follows: 1. northeast (NE): latitude > 37◦N
and longitude ≤ 88◦W, 2. southeast (SE): latitude ≤ 37◦N and longitude > 88◦W, 3.
northcentral (NC): latitude > 37◦N and 88◦W ≤ longitude ≤ 102◦W, 4. southcentral
(SC): latitude ≤ 37◦N and 88◦W ≤ longitude ≤ 102◦W, 5. northwest (NW): latitude
> 37◦N and longitude > 102◦W, and 6. southwest (SW): latitude ≤ 37◦N and longi-
tude > 102◦W (Schwartz et al., 2013) (see their locations in Fig. 1). The six regions
which are corresponding to the Köppen-Geiger climate classification (Geiger, 1954)
basically reflect the weather and geographic characteristics of the deer mouse habitats
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Fig. 1 The map of the traps with the number of the deer mice per trap as the magnitude in the six regions

Fig. 2 The map of the traps with the number of the deer mice per trap greater than 20, which are all in the
north regions

in the contiguous USA NAVARRO-CASTILLA and Barja (2019). 37◦ N is called the
37th parallel north, which is approximately the northern boundary of the subtropics
(Bannister et al., 2012). The northwest region mostly covers the Rocky Mountains,
and the northcentral region relates to the Great Plains. Recent studies have shown that
the high-elevation (highland) deer mice have many physiological traits different from
the lowland deer mice (Schweizer et al., 2021).
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Fig. 3 The map showing the posterior median of the number of the deer mice per trap for those traps of the
high-value traps

As the amount of deer mice varies by trap and the distribution is sparse, we also
investigate traps that have relatively large amounts of deer mice (named “high-value”
traps). These traps contain more than 20 mice, which is the top 1.4% (the right tail
of the distribution in the top-left panel in Fig. 4). There are in total 24 high-value
traps corresponding to 38 observations from multiple years of record. The high-value
amounts per trap are highly correlated with the precipitation, maximum temperature,
and minimum temperature (see Fig. 5). Therefore, we propose regression models to
the whole data and the high-value data individually. We examined these variables and
had the pairwise plots (Figs. 4 and 5) for the whole data and the high-value data (see
their locations in Fig. 2) using the R package ’GGally’ (Schloerke et al., 2021).

To incorporate with the spatial and temporal correlations, we model yi the number
of deer mice for trap i with covariates xi including month, year, precipitation (prcp) in
tenths ofmillimeters,maximum temperature (tmax) andminimum temperature (tmin),
regions, their interaction terms, spatial random effects and temporal random effects:

log(yi ) =βregionxi,region + βyearxi,year + βmonthxi,month + βprcpxi,prcp
+ βtmaxxi,tmax + βtminxi,tmin + βprcp,region × xi,pcrp × xi,region
+ βtmax,region × xi,tmax × xi,region + βyear,region × xi,year × xi,region
+ βmonth,region × xi,month × xi,region + εi , (1)

where 1 ≤ i ≤ n, n is the number of traps, and εi ∼ N (0, σ 2).
In the Bayesian regression model (1), year and month are two different sources for

the temporal effects where a Gaussian process prior is imposed on the month effects.
The Gaussian kernel is based on the temporal distance to ensure that nearby months
have similar effects. The month effects repeat every year as a result of the seasonal
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Fig. 4 The pairwise plots for the number of the deer mice per trap, the maximum average temperature
(tmax), and the minimum average temperature (tmin) for the whole NEON data

Fig. 5 The pairwise plots for the number of the deermice per trap (value), themaximumaverage temperature
(tmax), and the minimum average temperature (tmin) for the high-value amounts per trap data

assumption of the population data. The time series plot of the monthly level average
counts is in Fig. 7. The plot shows that the abundance of deer mouse is not stable. It is
relatively high in years 2014, 2015, 2016 and 2020, and there are two spikes occurring
in 2014 and 2020.

2.1 The posterior inference

Denote the complete design matrix for (1) by X, and the design matrix that does not
have month information (i.e., month main effects and their interaction effects with
region) by D. Denote the n × 12 design matrix that has the month information by L ,
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Fig. 6 a The sample size per trap of the deer mice of the north central region has high peaks in 2016 and
2022. b Average precipitation for the six regions. c Average maximum temperature for the six regions. d
Average minimum temperature for the six regions

Fig. 7 The time series plot of the monthly level average mouse counts
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where n is the number of traps, �i, j = 1 if i-th observed trap is collected from month
j and 0 otherwise, for i = 1, . . . , n, j = 1, . . . , 12. Similarly, denote the design
matrix for the interaction between month and region by LR. Then, the design matrix
X can be written as

[
D L LR

]
. For the parameters of interest, they can be written as

γ T = [ �βD, �βmonth, �βmonth,region]T . The regression model can be simplified as follows:

y | γ, σ 2 ∼ N(y | X, γ, σ 2).

We assume that the month effects,

�βmonth := (βmonth=1, . . . , βmonth=12)
T ∼ N(�012×1, K ),

where K is a positive definite covariance matrix with element k j j ′ = σ 2 exp(−φ( j −
j ′)2), j, j ′ = 1, 2, . . . , 12,where ( j− j ′)2 is the Euclidean distance between the j-th
month and the j ′-th month, σ 2 denotes the temporal variability, and φ > 0 determines
the speed that the correlation decays with distance. The posterior median and 95%
credible interval (C.I.) of the parameters are shown in Table 1. We define a significant
variable if the 95% credible intervals (C.I.) of its corresponding regression coefficient
does not contain 0 (i.e. the lower bound and upper bound of the C.I. having the
same signs). We manually select variables from the full model using all the variables
and remove insignificant variables step-by-step (i.e. the backward selection). When
the 95% C.I. of the regression coefficient (parameter) contain 0, the corresponding
variable is insignificant and we remove it in the model.

We rewrite the covariance matrix as K = σ 2M for convenience, where M is a 12
by 12 positive definite matrix corresponding to the exponential part of the Gaussian
kernel. We choose one region as the baseline, and assume a diagonal prior covariance
for region contrast effects �βregion, denoted by R = diag (rl) for l = 1, . . . , k−1 where
k is the number of regions (k = 6 for the whole dataset and k = 3 for the high-value
subset). Since the regions are far from each other, we assume their region contrast
effects are mutually independent and thus

�βregion := (
βregion=1, . . . , βregion=k−1

)T ∼ N(�0(k−1)×1, R).

We further define the element of the 12 by 12 positive definite matrix Ml for the
covariance between βmonth=i,region=l and βmonth= j,region=l as (Ml)i j = rlMi j , where
l = 1, . . . , k − 1. The matrix form of this joint region (spatial effects) and month
(temporal effects) covariance structure is the Kronecker product of R and M (i.e.,
R ⊗ M), which is a natural model of spatio-temporal effects. It reduces the number
of parameters, and leads to more accurate estimators (Werner et al., 2008). Besides,
we assume a normal prior with mean μ �βD

and covariance σ 2V �βD
on �βD . With that, a

conjugate prior for inference of γ and σ 2 can be defined conveniently for the Bayesian
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model. Let μT
0 = [μ �βD

, �012×1, . . . , �012×1]T and

V0 =

⎡

⎢⎢⎢⎢
⎣

V �βD
0 0 . . . 0

0 M 0 . . . 0
0 0 M1 . . . 0
0 0 0 . . . 0
0 0 0 . . . Mk−1.

⎤

⎥⎥⎥⎥
⎦

The Bayesian regression model has a conjugate prior for parameters γ and σ 2 as
follows:

p(γ, σ 2) = p(γ | σ 2)p(σ 2),

where

γ | σ 2 ∼ N(γ | μ0, σ
2V0),

σ 2 ∼ IG(σ 2 | a0, b0).

The prior on γ incorporates a normal prior for βD and a GP prior with mean 0 and
covariance σ 2M (i.e., K ) for the monthly main effects, as well as a normal prior on
month and region interaction effects. The joint prior of (γ, σ 2) consists of a normal
conditional prior of γ | σ 2 and an inverse-gamma prior of σ 2. The conjugate normal-
inverse-gamma prior γ, σ 2 ∼ NIG(γ, σ 2 | μ0, V0, a0, b0) has a posterior which is
also an normal-inverse-gamma distribution as follow:

p(γ, σ 2 | X, y) ∝ p(γ | X, y, σ 2) × p(σ 2 | X, y),

where

γ | X, y, σ 2 ∼ N(γ | μn, σ
2Vn),

σ 2 | X, y ∼ IG(σ 2 | an, bn),
Vn = (V−1

0 + XTX)−1,

μn = Vn(μ
T
0 V

−1
0 + XT y),

an = a0 + n

2
,

bn = b0 + 1

2
(yT y + μT

0 V
−1
0 μ0 − μT

n V
−1
n μn).

Achainwith 10,000 iterations including 2000 burn-ins is used for the posterior estima-
tion. In the Bayesian posterior sampling, γ , φ, and σ 2 are updated using the posterior
distribution described above, while φ is updated through theMetropolis-Hasting algo-
rithm (Hastings, 1970) conditioned on σ 2. For the inverse-gamma prior for σ 2, we
set it as IG(a0 = 2, b0 = 1). In the precision matrix for the region variable, we set
ri = 1 for i = 1, . . . , k−1.We use Gamma(aφ = 5, bφ = 1) as the target distribution
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Table 1 The significant
variables of the proposed
Bayesian GP regression model
using the northeast (NE) region
as the baseline to fits for the deer
mouse sample size per trap in
the southeast region

Parameter Posterior median (95% C.I.)

prcp −0.002 (−0.004, 0)

tmax −0.003 (−0.005, −0.001)

southeast −1.047 (−1.956, −0.143)

northcentral::prcp 0.002 (0, 0.005)

northwest::prcp 0.007 (0.004, 0.011)

southeast::prcp 0.013 (0.005, 0.022)

and a normal distribution N(φt , 1) to propose a candidate φ∗ given a current value at
φt at the t-th iteration. As a result, the proposal distribution is a multivariate normal
MVN(0M×1, Kσ,φ∗), where Kσ,φ∗ is an M ×M covariance matrix whose (i, j)th ele-
ment is σ 2 exp

(−φ∗ × (Dt )i, j
)
, and Dt is an M × M matrix whose (i, j)th element

(Dt )i, j measures the difference between months i and j , and M is the number of
months used in the model. M = 12 for the whole data, and M = 6 (May to October)
for the high-value subset. The acceptance probability A for φ∗ is as follows:

A = min

(
1,

π(φ∗)
π(φt )

)
= min

(
1,

p(φ∗)q(φt | φ∗)
p(φt )q(φ∗ | φt )

)
,

where p is the target distribution and q is the proposal distribution.

3 Results and discussion

The NEON small mammal data set provides the opportunity to explore variation in
captured amounts of small mammals over large number of locations and periods.
Despite the challenge of having missing data of temperature and precipitation, using
a Bayesian hierarchical model with Gaussian processes facilitates estimation of the
deer mouse population changes with associated spatial and temporal factors. We aim
to estimate substantial factors affecting the amounts of deer mice per trap with repli-
cate trapping arrays. The results of our study support previous findings that Gaussian
processes can be used for quantifying the correlated spatial and temporal variations.
The model fits are shown in Tables 1 and 2. We notice that the high-value amounts of
deer mice are from the Northern United States, which have relatively smaller precipi-
tation and lower temperature than the Southern United States. This may explain why
the signs of of the posterior medians for prcp and tmax are both negative in the whole
data. The proposed Bayesian model could be extended to allow additional pooling
across species, sites, months, and years to increase the power to generate estimates
for rare species.

We found that the mean of the number of deer mice captured per trapper in the
northcentral region (North Dakota) significantly increased in June 1 and September
1, 2016 and the precipitation amounts on these days are much higher than other
days. The amounts are 60.1 on June 1, 2016 and 72.2 on September 1, 2016 and the
temperatures (see Fig. 9) are between 9 and 27 degrees of Celsius which are suitable
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Fig. 8 The combined interaction terms of (month, region) and (year, region) for each region. The temporal
effects by using the sum of the interaction terms of year:region and month:region from the GP model. Each
region has a monthly pattern and the yearly pattern reveals each region’s temporal effects change relatively
high and low

Table 2 The significant
variables of the proposed
Bayesian GP regression model
for the high-value data using the
northeast (NE) region as the
baseline

Parameter Posterior median (95% C.I.)

prcp 0.008 (0, 0.017)

tmax 0.021 (0.015, 0.027)

tmin −0.016 (−0.025, −0.007)

All the weather variables are significant. The opposite signs of the
maximum temperature and minimum temperature may be caused by
their collinearity among them and between precipitation

for deer mouse breeding (Joyner et al., 1998). This is consistent with the previous
study Gorosito and Douglass (2017) that rainfall is a crucial factor affecting deer
mouse population dynamics. High precipitation which fosters plant growth in a warm
weather increases food availability and hence bolsters the deer mouse populations
(Stinson & Fisher, 1953; Hansson, 1979; Chappell et al., 2004; Gorosito & Douglass,
2017). The combined interaction terms of (month, region) and (year, region) show the
pattern for each region for both the whole and high-value datasets (see Figs. 8 and 10).

The posterior median for each sampling point is shown in Fig. 3, which shows
similar patterns with the actual values in Fig. 2. To measure the goodness of fit of the
proposed model, we apply 5-fold cross-validation which randomly divides the high-
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Fig. 9 The average deer mouse counts per trap a has a related pattern to that of the precipitation by region
(b). The maximum temperature by region c and minimum temperature by region d have similar trends

value data into training (80%) and testing (20%) using stratified sampling based on
year and month. Parameter estimates are obtained from the MCMC posterior means
and used to predict the mouse counts for the testing dataset. The test MAPE (mean
absolute percentage error) has the mean 0.0452 and the standard deviation 0.0328.
We also apply linear mixed regression using the month variable as the random effect
and features–prcp, tmax, tmin, NC, and NW. The resulting average MAPE is 0.0953
with standard deviation 0.0764. The results indicate that the proposed model fits the
data better than the linear mixed model.

4 Conclusion

Statistical modeling and inference for the deer mouse amounts per trap of the NEON
data which may across locations and time with periodic trends is challenging. The
proposed Bayesian regression models of the deer mouse amounts per trap was used
with the proposed regions, weather features, and temporal effects using a Gaussian
process to ensure accurate estimation and meaningful interpretation. Our model fitting
results show that the deermouse amounts per trap generally follow the seasonal pattern
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Fig. 10 The combined interaction terms of (month, region) and (year, region) for each region using the high-
value data. The temporal effects by using the sum of the interaction terms of year:region and month:region
from the GPmodel. Each region has a monthly pattern and the yearly pattern reveals each region’s temporal
effects change relatively high and low

and the proposed regions approximately explain the geographic attributes of deermice.
When the rainfall is extraordinarily high and the temperature is not too low, it causes a
sudden increase in food availability.Consequently, the deermouse populations expand,
and the amounts per trap change accordingly. Our finding results are consistent with
the literature (Hansson, 1979; Loehman et al., 2012; Gorosito & Douglass, 2017;
Guralnick et al., 2020). The proposed method broadens the statistical analysis in the
biodiversity data and it can be applied to modeling data with spatial and temporal
correlated features and identifying important factors.
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