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a b s t r a c t

Spatiotemporal data analysis with massive zeros is widely used in many areas such
as epidemiology and public health. We use a Bayesian framework to fit zero-inflated
negative binomial models and employ a set of latent variables from Pólya-Gamma
distributions to derive an efficient Gibbs sampler. The proposed model accommodates
varying spatial and temporal random effects through Gaussian process priors, which
have both the simplicity and flexibility in modeling nonlinear relationships through a
covariance function. To conquer the computation bottleneck that GPs may suffer when
the sample size is large, we adopt the nearest-neighbor GP approach that approximates
the covariance matrix using local experts. For the simulation study, we adopt multiple
settings with varying sizes of spatial locations to evaluate the performance of the
proposed model such as spatial and temporal random effects estimation and compare
the result to other methods. We also apply the proposed model to the COVID-19 death
counts in the state of Florida, USA from 3/25/2020 through 7/29/2020 to examine
relationships between social vulnerability and COVID-19 deaths.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Zero-inflated models have been widely used for handling count data with excessive zeros (Lewsey and Thomson, 2004;
heung, 2002). By construction, zero-inflated models assume that the zeros come from one of the cases (Greene, 1994):
1) structural zeros corresponding to individuals who are not at risk for an event, and therefore have no opportunity for
positive count and (2) random zeros which correspond to a latent class of individuals who are at risk for an event but
evertheless have an observed response of zero. A zero-inflated negative binomial (ZINB) model is a popular choice for
odeling zero-inflated data as it gives more reliable parameter estimates when the nonzero counts are over-dispersed
ompared to other models like the zero-inflated Poisson model (Yau et al., 2003). Bayesian approaches to fitting zero-
nflated models have gained attention recently (Ghosh et al., 2006; Neelon et al., 2010; Zuur et al., 2012). There is an
abundance of advantages of Bayesian zero-inflated models including using prior beliefs with Bayesian inference instead of
deriving asymptotically approximate distributions for estimation of parameters (Gelman et al., 1995). Bayesian approaches
produce tractable inference for ZINB models and have been implemented through software such as R (R Core Team, 2021),
Stan (Stan Development Team, 2021), and WinBUGS (Lunn et al., 2013).

It is important to account for spatial and temporal structures in areas such as epidemiology and public health. Within
the Bayesian framework, it is natural to build a Bayesian hierarchical model with a prior distribution for spatial and
temporal effects (Kang and Cressie, 2011). Distance-based exponential or Matérn covariance functions are commonly

∗ Corresponding author.
E-mail address: hsin.huang@ucf.edu (H.-H. Huang).
https://doi.org/10.1016/j.jspi.2023.106098
0378-3758/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jspi.2023.106098
https://www.elsevier.com/locate/jspi
http://www.elsevier.com/locate/jspi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jspi.2023.106098&domain=pdf
mailto:hsin.huang@ucf.edu
https://doi.org/10.1016/j.jspi.2023.106098


Q. He and H.-H. Huang Journal of Statistical Planning and Inference 229 (2024) 106098

a
f

a
t
a
c
A
n
a
k
h
B
e
c
l
G
a
t
l
m
u
s
h
s
e
(
n
r

i
m
d
t
m
h
o
t
a
i
e
e

i
X
p
f
f
f
w
d

2

2

W

dopted to specify spatial correlations in geostatistical data, while conditionally autoregressive models are often used
or temporal effects (Cressie and Wikle, 2015; Banerjee et al., 2003; Zhang et al., 2022) through a hierarchical modeling
framework (Cressie and Wikle, 2015). Neelon et al. (2022) proposed a cubic B-spline model to fit both temporal (overall
time trend) and spatial (county-specific trend) random effects in a Bayesian framework, which depends on the number
and locations of the interior knots and specification of the degree of basis functions.

There is limited research with the focus on the Bayesian ZINB model with the consideration of flexible spatial and
temporal effects (Wang et al., 2016; Gu et al., 2020). Neelon (2019) proposed a Bayesian ZINB model with spatial
nd temporal random effects but assumed that temporal effects changed in a fixed increment, which may not reflect
he randomness nature of temporal effects. In this study, we focus on proposing a flexible approach to model spatial
nd temporal effects in a Bayesian ZINB framework. A promising option is using a Gaussian process (GP) prior which
haracterize spatial or temporal effects through a kernel function and enables tractable nonparametric Bayesian inference.
GP prior is a probability distribution over infinite number of possible functions which make it a powerful tool to model
onlinear patterns. GP accounts for quantification of uncertainty, which relies on the predictive conditional distribution of
new spatial location given a set of observed locations (Cousin et al., 2016). GP can be viewed as a spline in a reproducing
ernel Hilbert space with the reproducing kernel of a covariance function (Kimeldorf and Wahba, 1970; Wahba, 1990). It
as become a popular modeling tool in multivariate and geostatistical settings. For example, Diana et al. (2021) proposed a
ayesian hierarchical occupancy model using GPs within a logistic regression framework for spatial and temporal random
ffects. However, the covariance matrix used in GP models may hinder its implementation for large datasets due to
omputational issues. Recent research has developed various approximation techniques to overcome the computational
imitations (Smola and Bartlett, 2001; Quinonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007; Lázaro-
redilla et al., 2010). There are two broad classes of these techniques, i.e., global approximation methods and local
pproximation methods (Liu et al., 2020). For global approximation methods, sparsity of the covariance matrix is achieved
hrough global distillation including using a subset of the training data, exploiting the sparse structure of the matrix, and
ow-rank models (Chalupka et al., 2013; Quinonero-Candela and Rasmussen, 2005; Titsias, 2009). For example, low-rank
odels embed the original process into a lower-dimensional subspace. However, it usually requires a large subspace when
sed for large spatial datasets. Local approximation methods are based on multiple sets of local experts to improve the
calability based on the concept of divide-and-conquer (Liu et al., 2020; Gramacy, 2016). This class of approximations
as the capability of capturing nonstationary features from the localized experts. Depending on the partition of the input
pace, there are inductive local experts which employs static partitioning (Vasudevan et al., 2009) and transductive local
xperts which employ a dynamic partition (Datta et al., 2016a,b). As an example of transductive local experts, Datta et al.
2016a) proposed a nearest-neighbor Gaussian process (NNGP) that uses conditional independence given information from
eighboring points for large geostatistical datasets. It has well-defined sparse precision matrices for its finite-dimensional
ealization and provides fully process-based inference on underlying spatial processes.

In this paper, we adopt the NNGP model (Datta et al., 2016a) to model the spatial and temporal effects because of
ts ease of use and well-defined sparse precision matrix. The proposed Bayesian zero-inflated negative binomial (ZINB)
odel uses nearest-neighbor Gaussian process priors to fit spatial and temporal random effects that account for the over-
ispersed and zero-inflated count response by incorporating the spatial and temporal covariance matrices. It allows us
o obtain more reliable and stable inferences since NNGP yields a lower-dimensional spatial and temporal covariance
atrices and parameter space, therefore requires much smaller matrix inversions. The propose framework is a scalable
ierarchical ZINB model with flexible spatial and temporal effects through GP. First, the hierarchical model is based
n work in Neelon (2019) to estimate regression parameters and the spatial and temporal effects. A key component
o the parameter estimator is to introduce a set of latent variables through the Pólya-Gamma (PG) data augmentation,
n underlying latent variable methodology (Pillow and Scott, 2012; Polson et al., 2013). With the PG scheme, posterior
nference is highly efficient via Gibbs sampling by updating from conditional distributions with conjugate priors and
xplicit conditional normal distributions. To illustrate Gibbs sampling for generating a sequence of samples, we use an
xample of a pair of random variables (X ,Y). A sequence of random variables

X ′

0,Y
′

0,X
′

1,Y
′

1, . . . ,X
′

t ,Y
′

t , . . . ,

s generated iteratively as follows: 1. set X ′

0 at some initial value; 2. sample the rest from Y ′

j ∼ f (y | X ′

j = x′j) and
′

j+1 ∼ f (x | Y ′

j = y′j) alternately (Casella and George, 1992). It has been shown that the PG method yields superior
erformance compared to other Bayesian methods in the context of structural equation models with logistic regression
or binary variables (Kim et al., 2018) and the Bayesian ZINB (Neelon, 2019). Therefore we propose a more flexible structure
or the spatial and temporal random effects through the GP prior in order to achieve fully model-based Bayesian inference
or the spatial and temporal effects. More specifically, to facilitate the computation process, we incorporate the framework
ith a conjugate latent NNGP model (Datta et al., 2016a,b; Zhang et al., 2021a), which is scalable for massive spatial
atasets on modest computing environments (Datta et al., 2016a,b; Zhang et al., 2021a).

. Bayesian inference for ZINB model using NNPG

.1. The Pólya-Gamma scheme

Let yi as the outcome of the ith observation, which may be a count yi = 0, 1, 2, . . . or a binary indicator yi = 0, 1.
T −1 T
e aim to model Yi and a set of covariates Xi = [1, xi1, . . . , xiP ] through E[Yi | Xi] = g (Xiβ), where β = [β0, . . . , βP ]
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re the regression coefficients and g is the canonical link function in generalized linear models (GLMs) (McCullagh and
Nelder, 2019). We utilize the efficient PG scheme for estimating the regression coefficients in GLMs. An advantage of the PG
scheme is that the posterior distributions of the parameters of interest enable us to make use of Gibbs sampling approach
within logistic regression and NB regression frameworks (Polson et al., 2013) through an augmented PG distributed
andom variable ω. Generally, assuming a prior distribution for regression coefficient β ∼ N (b,Σ0), the full conditional
istributions induced by PG for the Gibbs sampler are:

ωi | β ∼ PG(ni, Xiβ), and β | Ω, z ∼ N (µ,Σ),

where

Σ = (Σ−1
0 + XTΩX)−1, and µ = Σ

(
Σ−1

0 b+ XTΩz
)
.

Here PG denotes a PG distribution, Ω = diag(ω1, . . . , ωn) and z is the latent variable with zi =
yi−ni/2
ωi

. Specifically, we
se the PG scheme for estimating the regression coefficients in the Bernoulli and NB parts of the ZINB regression model,
espectively.

In the binomial logistic regression model (logit model), let ni = 1 ∀i and yi ∼ Binom(1, 1
1+e−ηi

) where ηi = xTi β .
Following Polson et al. (2013), the full conditional for β in a binomial regression is

p(β | y, r, ω) ∝ π (β) exp
[
−

1
2
(z − Xβ)TΩ(z − Xβ)

]
,

where π (β) is the prior distribution, z is an n × 1 vector with zi =
yi−1/2
ωi

and Ω = diag(ωi). It is readily seen
that z | β,Ω ∼ N (Xβ,Ω), which leads to the convenient Gibbs sampler for β . In the negative binomial regression
model (Pillow and Scott, 2012), ni = yi + r and r can be obtained using either the Metropolis–Hastings algorithm in
which a uniform prior is applied with positive candidate values of r are drawn from a zero-truncated normal proposal
centered at the current value of r , or the two-stage Gibbs sampling (Zhou and Carin, 2013; Dadaneh et al., 2018). Consider
the following model for a count response Yi,

p(Yi = yi | r, β)
d
=
Γ (yi + r)
Γ (r)yi!

(1− ψi)r (ψi)yi , r > 0, where

ψi =
exp(xTi β)

1+ exp(xTi β)
=

exp(ηi)
1+ exp(ηi)

,

where the NB probability parameter ψi is parameterized using the expit (inverse-logit) function, which allows us to apply
the same properties of the Pólya-Gamma density as in the logistic case.

The mean and variance of Yi are

E(Yi | r, β) =
ψi

1− ψi
= r exp(ηi) = µi,

Var(Yi | r, β) =
rψi

(1− ψi)2
= r exp(ηi)[1+ exp(ηi)] = µi(1+ µi/r).

The parameter r accounts for overdispersion in the data. As r → 0, the counts become increasingly dispersed and the
NB distribution converges to the Poisson distribution. The above parameterization also leads to a Gaussian linear model
where z | β,Ω ∼ N (Xβ,Ω) where z is an n× 1 vector with zi =

yi−r
2ωi

, ωi ∼ PG(yi + r, Xiβ) and Ω = diag(ωi).

3. Zero-inflated negative binomial model

3.1. The proposed spatiotemporal ZINB-NNGP model

We are interested in a spatiotemporal random intercept model on data with excessive zeros. Assume observations
are collected at a fixed collection of distinct locations denoted by S = {1, . . . , S} and across T distinct time segments
(e.g., weeks, months, seasons and years) denoted by T = {1, . . . , T }. We index the observations by j = 1, . . . ,N , where
N is the total sample size. For a sampling unit {s, t} where s ∈ S and t ∈ T, we denote its number of observations by ns,t
ns,t ≥ 0). In a special case, ns,t = 1,∀s ∈ S, t ∈ T, that is there is exactly one observation for each sampling unit {s, t}
nd N = S × T . In the proposed framework, it does not require the sampling units to have equal sample sizes or at least
ne observation. Sparsity and unequal sizes are considered in the simulation study.
Let response Yj be the observed count of the jth observation, φj be the probability of belonging to the at-risk group,

nd ψj be the success rate for observations in the at-risk group. The Bayesian ZINB model (Neelon, 2019) with a latent
t-risk indicator variable Wj is introduced as follows:

Yj ∼ (1− φj)1(Wj=0∧Yj=0) + φjNB(µj, r)1(Wj=1), j = 1, . . . ,N,

here µj is the mean of the NB distribution and r is the overdispersion parameter. A value of 1 for Wj means that the
th observation belongs to the at-risk group, and a value of 0 means the ‘‘not at-risk’’ group. Let s and t be its spatial
j j

3
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n

Table 1
The description of the notations used in the proposed model.
Notation Description

S The number of spatial locations
T The number of temporal points
S = {1, 2, . . . , S} The list of spatial locations
T = {1, 2, . . . , T } The list of temporal points
N The number of observations
Yj, j = 1, . . . ,N The response of the jth observation
sj ∈ S The spatial location of the jth observation
tj ∈ T The temporal point of the jth observation
φj The probability of belonging to the at-risk group
ψj The success rate for observations in the at-risk group
Wj The indicator for belonging to the at-risk group
µj The mean of negative binomial distribution
r The dispersion parameter of negative binomial distribution
asj The spatial random effect in the logit model
ϵ11sj The spatial random noise in the logit model
btj The temporal random effect in the logit model
ϵ12tj The temporal random noise in the logit model
csj The spatial random effect in the negative binomial model
ϵ21sj The spatial random noise in the negative binomial model
dtj The temporal random effect in the negative binomial model
ϵ22tj The temporal random noise in the negative binomial model

location and time point, respectively. We model the at-risk probability φj using a logit model and Yj | Wj = 1 using a
egative binomial regression model:

Pr(Yj = 0) = (1− φj)+ φj(1− ψj)r ,
logit(φj) = logit[Pr(Wj = 1 | α, asj , btj , ϵ11sj , ϵ12tj )]

= xTj α + asj + btj + ϵ11sj + ϵ11tj
= η1j, (1)

p(yj | r, β, csj , dtj , ϵ21sj , ϵ22tj ,Wj = 1) d
=
Γ (yj + r)
Γ (r)yj!

(1− ψj)rψ
yj
j , ∀j s.t. Wj = 1,

ψj =
exp(xTj β + csj + dtj + ϵ21sj + ϵ22tj )

1+ exp(xTj β + csj + dtj + ϵ21sj + ϵ22tj )

=
exp(η2j)

1+ exp(η2j)
, (2)

where asj and ϵ11sj are the spatial random effects and spatial random noise in the logit model, btj and ϵ12tj are the
temporal random effects and temporal random noise in the logit model, csj and ϵ21sj are the spatial random effects and
spatial random noise in the negative binomial regression model, and dt and ϵ22tj are the temporal random effects and
temporal random noise in the negative binomial model. The two models are often referred as the binary component
(the logit model) and count component (the negative binomial model), which we will use extensively in the paper.
The proposed model incorporates additive spatial and temporal random effects as intercepts in the binary and count
component. Compared with the existing Bayesian ZINB model (Neelon, 2019), the proposed model is more flexible through
the use of GP priors on the spatial and temporal random effects. To elaborate the GP priors, first we define the spatial
random effects corresponding to the sampling locations S = {1, . . . , S} as

a⃗ = (a1, . . . , aS)T , in the binary component and

c⃗ = (c1, . . . , cS)T , in the count component.

Similarly, we define the temporal random effects of temporal points T = {1, . . . , T } as

b⃗ = (b1, . . . , bT )T , in the binary component and

d⃗ = (d1, . . . , dT )T , in the count component.

A list of descriptions of the notations is given in Table 1.
To account for correlations between spatial locations or temporal points, we employ GPs for both the spatial and

temporal effects. Specifically, we assume that a⃗ = (a1, . . . , aS)T in the binary component is distributed according
to a GP with parameters (σ11, l11). Let hs be the specific location information of site s (e.g., latitude and longitude)
which can be used to compute distance between different locations. It corresponds to assuming that (a , . . . , a )T ∼
1 S

4
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(0, Kσ11,l11 (h1, . . . , hS)), where Kσ11,l11 (h1, . . . , hS)i,j = σ 2
11e

−
|hi−hj |

2

l211 , i, j = 1, . . . , S. Parameter σ11 determines the overall
ariability of the GP, while parameter l11 measures the correlation between location i and j. Similarly, the autocorrelated

temporal random effect b⃗ = (b1, . . . , bT )T in the count component is distributed according to a GP with parameters
(σ12, l12). Let wt be the index of temporal point t . For example, if the data are at monthly level spanning from January
to December, then the corresponding indices could be (1, . . . , 12). The GP prior can be written as (b1, . . . , bT )T ∼

N (0, Kσ12,l12 (w1, . . . , wT )).
Let V1 and V2 be the N × S and N × T design matrices for the spatial and temporal random effects for the observed

data. The following hierarchical structure completes the definition of the binary component with spatial random effect
a⃗ = (a1, . . . , aS)T , temporal random effect b⃗ = (b1, . . . , bT )T , spatial random noise ϵ⃗11 = (ϵ111, . . . , ϵ11S)T , and temporal
andom noise ϵ⃗12 = (ϵ121, . . . , ϵ12T )T including the prior distributions of relevant parameters. The hierarchical structure
or the negative binomial regression with random effects c⃗ = (c1, . . . , cS)T , d⃗ = (d1, . . . , dT )T , ϵ⃗21 = (ϵ211, . . . , ϵ21S)T , and
ϵ⃗22 = (ϵ221, . . . , ϵ22T )T are in the same fashion.

(a1, . . . , aS)T ∼ N (0, Kσ11,l11 (h1, . . . , hS)),

σ 2
11 ∼ IG(aσ1 , bσ1 ), l11 ∼ Gamma(al1 , bl1 ),

(b1, . . . , bT )T ∼ N (0, Kσ12,l12 (w1, . . . , wT )),

σ 2
12 ∼ IG(aσ2 , bσ2 ), l12 ∼ Gamma(al2 , bl2 ),

ϵ11s
iid
∼ N (0, σ 2

ϵ11
), σ 2

ϵ11
∼ IG(aϵ, bϵ), s = 1, . . . , S,

ϵ12t
iid
∼ N (0, σ 2

ϵ12
), σ 2

ϵ12
∼ IG(aϵ, bϵ), t = 1, . . . , T .

3.1.1. Latent nearest-neighbor Gaussian process
In a spatial regression model at location s ∈ S and time t ∈ T in a spatiotemporal domain D, assume that

y(s, t) = µ+ w1(s)+ w2(t)+ ϵ1(s)+ ϵ2(t), (s, t) ∈ D,

where µ is the mean function that is itself modeled as a linear combination of known covariates, w1(s) follows a latent
GP with mean zero and a positive-definite cross-covariance matrix Cφ(s, s′), and ϵ1(s) follows a normal distribution with
mean zero and variance σ 2. In the same fashion, we can define the temporal random effectw2(t) and the temporal random
noise ϵ2(t). This type of regression model is called a latent GP model since the GP is used as a prior in the latent process
w(s) and w(t), while a response GP model imposes a GP on the outcome y(s, t). In the proposed Bayesian spatiotemporal
ZINB model (2), we use the latent GP model with both spatial and temporal random effects.

In NNGP (Datta et al., 2016b), the joint density of (w1, . . . , wS) was approximated by a series of conditional densities
of size at most m, where m ≤ S and S is the size of distinct spatial locations. It was shown that the approximation
was essentially a multivariate Gaussian density with covariance matrix C̃φ(S, S). Using the spatial random effects w1(S)
described above as an example, by selecting a list of nearest neighbors with size m for each location in S, the Gaussian
density p(w1(S)) can be approximated as follows (Datta et al., 2016b; Zhang et al., 2021a):

p(w1(S)) = N(w1(S) | 0, Cφ(S, S)) ≈ N(w1(S) | 0, C̃φ(S, S)). (3)

The approximation C̃φ(S, S) is computationally efficient because its inverse C̃φ(S, S)−1 is sparse and can be written as:

C̃φ(S, S)−1
= (I − AS)TD−1

S (I − AS),

where AS is a lower triangular matrix and DS is a diagonal matrix. To compute AS , suppose Nm(i) be the set of column
indices of the m nearest neighbors that contain nonzero entries in the ith row of AS , where m = 1, . . . , S − 1 is a
hyperparameter controlling the size of nearest neighbors. Let AS = [a1 : · · · : aS]T and DS = diag(d1, d2, . . . , dS). The
first row of AS has all elements equal to 0 and d1 = Cφ(1, 1). For i = 2, . . . , S, we obtain the nonzero entries at column
positions indexed by Nm(i) in AS and the diagonal elements in DS as follows:

ai(Nm(i)) = Cφ(i,Nm(i))Cφ(Nm(i),Nm(i))−1 and (4)

di = Cφ(i, i)− Cφ(i,Nm(i))Cφ(Nm(i),Nm(i))−1Cφ(Nm(i), i). (5)

3.1.2. Spatio-temporal correlations via NNGP in ZINB
In this section, we describe how to embed spatiotemporal correlations through NNGP in the proposed Bayesian ZINB

framework. As we assume GP priors for both the spatial and temporal random effects in the proposed model, the latent
NNGP can be used for one random process or both when needed. Since the latent NNGP is designed for a spatial process
initially, we use the spatial random effects to demonstrate the application of latent NNGP for easier understanding.
When the number of spatial locations S is large, the computation bottleneck in the conjugate Gaussian regression model
lies in computing K−1 and K−1 when updating σ and σ . To facilitate it, we can find a sparse alternative for
σ11,l11 σ21,l21 11 21

5
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Table 2
Parameter estimates and 95% credible intervals for the proposed model, the spatiotemporal ZINB model by Neelon
(2019), and the traditional ZINB model in simulation 1. Note that the comparative models have different model
assumptions and therefore do not have posterior results for hyperparameters used in the paper.
Para. True value Proposed model Bayesian ZINB by Neelon (2019) Traditional ZINB

α0 −0.25 −0.07 (−1.68, 1.57) 0.25 (−0.05, 0.68) 0.62 (0.43, 0.81)
α1 0.25 0.17 (0.06, 0.29) 0.20 (0.07, 0.35) −0.24 (−0.32, −0.16)
β0 0.50 0.82 (−0.72, 2.47) 0.92 (0.69, 1.14) −0.45 (−0.91, 0.02)
β1 −0.25 −0.20 (−0.27, −0.12) −0.20 (−0.28, −0.12) −0.22 (−0.37, −0.07)
l11 0.35 1.05 (0.64, 1.71)
σ11 0.50 1.81 (1.40, 2.31)
l12 1.00 3.45 (0.45, 4.92)
σ12 0.20 0.77 (0.43, 1.19)
l21 0.35 0.32 (0.25, 1.44)
σ21 0.50 1.21 (0.87, 2.15)
l22 1.00 2.55 (0.15, 4.63)
σ22 0.20 0.81 (0.42, 1.28)
σϵ11 0.05 0.05 (0.03, 0.08)
σϵ12 0.05 0.05 (0.03, 0.08)
σϵ21 0.05 0.05 (0.03, 0.08)
σϵ22 0.05 0.05 (0.03, 0.08)
r 1.00 0.95 (0.63, 1.27) 0.73 (0.52, 1.14)

the Cholesky decomposition of K−1
σ11,l11

and K−1
σ21,l21

. We use the covariance matrix for the spatial random effects from
the binary component as an example to illustrate the methodology. First, we rewrite the covariance matrix Cφ(S, S) =

Kσ11,l11 (h1, . . . , hS) = σ11ρl11 . Let ρ̃l11 be the NNGP approximation of ρl11 with its inverse ρ̃−1
l11

= (I − AS)TD−1
S (I − AS), as

escribed in Section 3.1.1. Nonzero entries in the ith row where i = 2, . . . ,N of AS and DS in (4) and (5) become

ai(Nm(i)) = ρl11 (i,Nm(i))(ρl11 (Nm(i),Nm(i)))−1 (6)

and

di = 1− ai(Nm(i))ρl11 (Nm(si), i). (7)

In this same fashion, we model the temporal correlation. The latent NNGP is applied to facilitate to computation
bottleneck when updating the hyperparameters for the spatial and temporal random effects. Hence, when the spatial
size and/or temporal size are large, the latent NNGP can be used. Otherwise, one may just compute the inverse of the
covariance matrix. The step-by-step posterior sampling procedure is described in the appendix.

4. Simulated and real data analyses

In this section, we apply the proposed Bayesian ZINB-NNGP model to both simulated and COVID-19 fatality data. For
the simulation data, a total number of N observations are generated from S locations across T time points. First, we
consider exactly one repetition for each sampling unit (s, t), we vary the spatial sizes to show if the proposed model can
be generalized well to a large spatial dimension. We set S = 200 and T = 20 in simulation 1 and set S = 500 and T = 20
in simulation 2. Second, we relax the constraint on the number of repetitions for each sampling unit by simulating a
dynamic number of repetitions for each sampling unit from a Poisson distribution. This is shown in simulation 3.

For the COVID-19 analysis, the daily level data on the total number of COVID-19 deaths in Florida counties in the
early stage from 3/25/2020 through 7/29/2020 are analyzed. There are 69 counties (S = 69) and 127 days (T = 127)
n the dataset. The reported death count of county s at day t , denoted by ys,t , is the response variable. We apply
he proposed model to analyze the association of COVID-19 death at-risk and count rates with social vulnerability,
ther sociodemographic characteristics (i.e., health insurance coverage, urbanicity), population health care resources
i.e., primary care physicians), population health measures (i.e., life expectancy, obesity), and population density.

.1. Simulation data

.1.1. Simulation 1: a moderate spatial dimension and one repetition in each sampling unit
In simulation 1, we have simulated a dataset with S = 200 and T = 20, which results in a total sample size of
= 4000. For the fixed effect, we sample x ∼ N (0, 1), set the intercept and slope in the binary component at α0 = −0.25

and α1 = 0.25, and the intercept and slope in the count component as β0 = 0.5 and β1 = −0.25. The spatial locations are
generated from a unit square. The latent NNGP approximation is used when updating σ11 and σ21 for the spatial random
effects. For the size of nearest neighbors used in the latent NNGP model, we have tested different values from 8 to 15 and
found that the results are relatively stable. In the results reported for both the simulations and COVID analysis, we set the
size of nearest neighbors as 13. The posterior means and 95% credible intervals as well as the true values of the parameters
and hyperparameters are presented in Table 2. We also use the Bayesian spatiotemporal ZINB model with random effects
6
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Fig. 1. The true and fitted spatial effects in simulation 1 using the proposed model. Each dot represents a location and the color represent the scale
of the spatial random effects. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. The true and fitted temporal effects in simulation 1 using the proposed model.

roposed by Neelon (2019) and ZINB regression models from R package ‘pscl’ (Jackman et al., 2015) for comparison. Due
o the difference in model structure, both comparative models do not have results for the hyperparameters used in the
roposed framework.
The results in Table 2 show that the 95% credible intervals of the proposed model have covered the true values for

ll the parameters (i.e., α0, α1, β0, β1), while the intervals of the Bayesian ZINB model by Neelon (2019) do not cover the
rue values of α0 and β0 and the intervals of the traditional ZINB do not cover the true values for parameters α0, α1 and
0. Fig. 1 presents the map of the true and posterior mean spatial random effects in the binary component (in the top
anel) and the count component (in the bottom panel). In both components, the fitted spatial pattern closely mirrors the
rue distribution, suggesting the proposed model recovers the underlying spatial pattern in the data. Fig. 2 presents the
rue and fitted temporal effects for each temporal point. The predicted temporal patterns capture the trend of the true
atterns in general.
7
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Table 3
Parameter estimates and 95% credible intervals for the proposed model and the traditional ZINB
model in simulation 2.
Para. True value Proposed model Traditional ZINB

α0 −0.25 0.00 (−1.94, 1.84) 0.32 (0.14, 0.50)
α1 0.25 0.20 (0.13, 0.28) −0.23 (−0.28, −0.17)
β0 0.50 0.07 (−2.05, 2.14) −0.20 (−0.59, 0.20)
β1 −0.25 −0.23 (−0.28, −0.17) −0.23 (−0.34, −0.12)
l11 0.35 3.02 (2.13, 3.54)
σ11 0.50 2.87 (2.34, 3.45)
l12 1.00 3.92 (2.37, 4.94)
σ12 0.20 0.77 (0.44, 1.22)
l21 0.35 0.39 (0.20, 2.89)
σ21 0.50 1.74 (1.22, 3.41)
l22 1.00 3.05 (1.16, 4.79)
σ22 0.20 0.83 (0.43, 1.33)
σϵ11 0.05 0.05 (0.03, 0.07)
σϵ12 0.05 0.05 (0.03, 0.08)
σϵ21 0.05 0.05 (0.03, 0.08)
σϵ22 0.05 0.05 (0.03, 0.08)
r 1.00 1.08 (0.80, 1.29)

Fig. 3. The true and fitted spatial effects in simulation 2 using the proposed model.

4.1.2. Simulation 2: a large spatial dimension and one repetition in each sampling unit
In simulation 2, we use the same setting as simulation 1 and increase the spatial dimension from 200 to 500, which

results in a total sample size of N = 10,000. The latent NNGP approximation is used to update σ11 and σ21 for the spatial
random effects. The true and fitted results are shown in Table 3. The 95% credible intervals of the proposed model have
covered the true values for all the parameters, while the intervals of the traditional ZINB model do not cover the true
values for most parameters. We find that the Bayesian ZINB algorithm proposed by Neelon (2019) breaks in the first few
terations due to singularity issues which are caused by the high spatial dimension.

The true and posterior mean spatial and temporal random effects of simulation 2 are shown in Figs. 3 and 4. Both
how that the fitted random effects are consistent with the true random effects.
8
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Fig. 4. The true and fitted temporal effects in simulation 2 using the proposed model.

Table 4
Parameter estimates and 95% credible intervals in simulation 3 using the proposed model and the spatiotemporal ZINB model.
Para. True value Proposed method Bayesian ZINB by Neelon (2019) Traditional ZINB

α0 −0.25 −0.27 (−2.00, 1.44) −0.34 (−0.48, −0.18) 0.45 (0.30, 0.60)
α1 0.25 0.18 (0.11, 0.26) 0.19 (0.11, 0.26) −0.20 (−0.26, −0.15)
β0 0.50 0.31 (−1.68, 2.25) 0.38 (0.2, 0.55) −0.05 (−0.34, 0.25)
β1 −0.25 −0.20 (−0.26, −0.15) −0.20 (−0.25, −0.15) −0.21 (−0.31, −0.12)
l11 0.35 1.32 (0.98, 1.86)
σ11 0.50 1.95 (1.53, 2.44)
l12 1.00 3.91 (2.04, 4.96)
σ12 0.20 0.74 (0.43, 1.14)
l21 0.35 0.39 (0.26, 1.77)
σ21 0.50 1.37 (0.86, 2.59)
l22 1.00 3.29 (0.99, 4.88)
σ22 0.20 0.80 (0.47, 1.24)
σϵ11 0.05 0.05 (0.03, 0.08)
σϵ12 0.05 0.05 (0.03, 0.08)
σϵ21 0.05 0.05 (0.03, 0.07)
σϵ22 0.05 0.05 (0.03, 0.08)
r 1.00 1.19 (0.93, 1.46) 1.13 (0.90, 0.55)

4.1.3. Simulation 3: dynamic number of repetitions in each sampling unit
In simulation 3, we run the simulation with a dynamic number of repetitions in each sampling unit. We set S = 200

nd T = 20 like simulation 1. For each sampling unit (s, t) the number of repetitions ns,t is randomly sampled from a
oisson distribution with mean 2, which results in a total sample size of N = 7867. The posterior estimates and 95%
redible regions are presented in Table 4. As the spatial size is relatively small and there are repetitions in each sampling
nit in simulation 3, the Bayesian ZINB (Neelon, 2019) is comparable to the proposed model. Figs. 5 and 6 show the true
nd fitted spatial and temporal random effects using the proposed model. The fitted random effects are better than those
n simulation 1 and 2 where there is only one repetition per sampling unit.

.2. COVID-19 fatality rates modeling

COVID-19 has impacted populations around the world, with the fatality rate varying dramatically across counties of
lorida (Karmakar et al., 2021; Khedhiri, 2021; Zhang et al., 2021b). Using statistical methods to identify factors which
re associated with COVID-19 fatality/mortality rates is one of the most important topics. In the early stage of COVID-19,
any counties were at low risk of having positive cases and did not have reported deaths. Hence, the proposed ZINB-
NGP model is a good option to model the mortality rate with excessive zeros. In this section, we apply the proposed
odel to understand the association of COVID-19 mortality at-risk and count rates with social vulnerability, adjusting
ther sociodemographic characteristics (i.e., health insurance coverage, urbanicity), population health care resources
i.e., primary care physicians), population health measures (i.e., life expectancy, obesity), and population density. We are
ot able to include the results of the Bayesian ZINB by Neelon (2019) for the COVID analysis because this Bayesian ZINB
lgorithm cracks after few iterations due to a singularity issue in high-dimensional spatial/temporal covariance matrix
nversions, which also happened in simulation 2.

We consider the daily COVID-19 deaths in Florida at the county level reported from 3/25/2020 through 7/29/2020.
ore specifically, because of the variation in the schedule on which deaths are reported by days of week, we analyze

he 7-day average deaths from the New York Times GitHub repository (https://github.com/nytimes/covid-19-data). The
9
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Fig. 5. The true and fitted spatial effects in simulation 3 using the proposed model.

Fig. 6. The true and fitted temporal effects in simulation 3 using the proposed model.

inal analytic sample comprises 8351 observations (67 counties across 127 study days). The county level deaths in Florida
uring the selected time period are shown in the left plot of Fig. 11. There were approximately 74% counties with zero
eaths reported in total, 14% counties with an average of one death per day and 12% counties with 2 ore more deaths per
ay.
Social vulnerability is measured by the social vulnerability index (SVI), which is a national and state-specific county

anking system and designed to assist public health officials in identifying communities in need of support and resources
n an event of pandemic (Centers for Disease Control and Prevention, 2018). The SVI has four different themes, namely,
ocioeconomic status, household composition, race/ethnicity/language, and housing/transportation, which comprise the
verall SVI. We use the overall SVI in the analysis and categorize it to three levels: high (>75 percentile), moderate
between 25 percentile and 75 percentile), and low (<25 percentile). A higher level of overall SVI indicates more
ulnerability, as suggested in the literature (Hughes et al., 2021; Bruckhaus et al., 2022). We also adjust the following
ounty-level characteristics in the model: other sociodemographic characteristics (i.e., health insurance coverage, urban-
city); population health care resources (i.e., primary care physicians); population health measures (i.e., life expectancy,
10
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Table 5
Data sources.
Variable Year Source

COVID-19 deaths 2020 The New York Times

Social Vulnerability Index and component measures

Overall Social Vulnerability Index 2014–2018 Centers for Disease Control and Prevention
Socioeconomic status index 2014–2018 Centers for Disease Control and Prevention
Poverty rate 2014–2018 Centers for Disease Control and Prevention
Household characteristics and disability index 2014–2018 Centers for Disease Control and Prevention
65 years or older 2014–2018 Centers for Disease Control and Prevention
Minority status and language index 2014–2018 Centers for Disease Control and Prevention
Minority 2014–2018 Centers for Disease Control and Prevention
Housing type and transportation index 2014–2018 Centers for Disease Control and Prevention

No health insurance coverage 2015–2019 US Census Bureau
Public transportation to commute to work 2015–2019 US Census Bureau
Urbanicity 2013 US Department of Agriculture
Total primary care physicians 2019 Health Resources & Services Administration
Life expectancy 2016–2018 Robert Wood Johnson Foundation
Obesity 2016 Robert Wood Johnson Foundation
Population Density 2014–2018 Centers for Disease Control and Prevention

Fig. 7. (a) The map of Florida with colors according to the county’s overall SVI category. (b) The daily average deaths by overall SVI in Florida from
3/25/2020 to 7/29/2020. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

obesity); and population density. The variables used in the analysis and the data sources are listed in Table 5 (Dasgupta
et al., 2020).

A map of the overall SVI among Florida counties (panel (a)) and a time series plot of the reported daily average deaths
for each SVI category (panel (b)) are shown in Fig. 7. In panel (a), it is shown that most counties have moderate overall
SVI (green color in the map). In panel (b), the counties with moderate overall SVI have more deaths than the high and low
group. It is different from the finding that counties with high SVI had more COVID-19 deaths in other research focused on
the U.S. or other locations (Karmakar et al., 2021; Neelon et al., 2022). To further understand how the COVID-19 deaths
pread across the three SVI categories, we show the map of the daily average deaths in four different months in Fig. 8.
ounties at a higher risk such as Miami-Dade and Hillsborough have more COVID-19 deaths and they have moderate
verall SVI scores.
Table 6 shows the estimated coefficients as well as the 95% credible intervals in the binary and count component.

ounties with higher overall SVI levels are more likely to report deaths (binary component). This is consistent with the
revious research (Karmakar et al., 2021). Meanwhile, the percentage of people under age 65 without health insurance
s associated with a higher risk of reporting deaths, which is consistent with finding from other studies (Mountantonakis
t al., 2021; DuPre et al., 2021). It is also found that obesity is associated with a lower risk of reporting deaths, although
tudies have suggested that obesity is a risk factor for death from COVID-19 (Tartof et al., 2020; Rottoli et al., 2020). This
ay be due to potentially confounding effects of obesity with the overall SVI (An and Xiang, 2015). Population density is
ssociated with a higher risk of reporting deaths and more deaths, which is consistent with other research (Neelon et al.,
021; Foo et al., 2021).
The fitted daily average death by overall SVI category is shown in panel (a) of Fig. 9. The fitted trend (solid line)

s consistent with the actual (dotted line). In the earlier time (March 2020 through the middle of July 2020), there is
11
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Fig. 8. The true daily average deaths by month in the study period.

Fig. 9. The true and fitted daily average deaths in Florida by SVI category using the proposed model in panel (a) and the B-splines spatiotemporal
model proposed by Neelon et al. (2022) in panel (b). The dotted lines are the true daily average, solid lines are the fitted daily average, and the
rey ribbons are the 95% credible region.

Table 6
The parameter estimates and 95% credible intervals of the Florida counties’ sociodemographic and health
characteristics with COVID-19 deaths.
Variable Binary component Count component

Overall SVI 1.06 (0.011, 2.109) 0.418 (−0.412, 1.229)
No health insurance coverage 0.308 (0.114, 0.492) 0.014 (−0.118, 0.148)
Urbanicity 0.021 (−0.471, 0.484) −0.261 (−0.706, 0.153)
Total primary care physicians −0.017 (−0.038, 0.004) −0.005 (−0.019, 0.009)
Life expectancy −0.049 (−0.14, 0.051) −0.009 (−0.181, 0.154)
Obesity −0.248 (−0.399, −0.104) −0.062 (−0.187, 0.062)
Population density 1.387 (0.658, 2.109) 1.415 (0.883, 1.993)

approximately one death each day for counties with moderate SVI and zero deaths for counties with low or high SVI.
Starting from July 2020, the death counts has increased for all counties in Florida, and counties in the moderate category
had the most significant increase than others. We also apply a recently developed spatiotemporal model (not in a zero-
inflated setting) (Neelon et al., 2022) which used B-splines to model temporal effects for the COVID-19 analysis. We
notice that it could be difficult to set the location and number of knots appropriately. Its fitted daily average deaths by
SVI category are shown in panel (b) of Fig. 9. There is a higher predictive uncertainty at the end of the temporal period
for all three overall SVI categories.

To further compare the death counts across the three SVI categories, risk ratios (RRs) for the high and moderate SVI
versus the low SVI are shown in Fig. 10, the counties in moderate SVI category have a higher risk of reporting deaths than
12
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Fig. 10. The RRs for counties with high and moderate social vulnerability versus low social vulnerability. The dotted lines are posterior mean RRs
nd the grey ribbons were the 95% credible regions. RRs > 1 indicate higher risk. The black dashed line is the reference line with risk ratio = 1.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The true and fitted daily average deaths in Florida by counties.

the counties in the low SVI category (the blue dotted line). The counties in the high SVI category have a similar risk of
reporting death with counties in the low SVI category between March 2020 and June 2020 and lower risk in July 2020
(red dotted line).

The county level observed average death counts and posterior mean average death counts in the overall SVI model is
shown in Fig. 11. The proposed model identifies counties with high death counts such as Miami-Dade.

In Fig. 12, we select four counties from the three SVI categories to show the individual fitted daily deaths: Hernando
county (moderate SVI), Broward county (high SVI), Polk county (low SVI), and Miami-Dade county (moderate SVI). The
fitted curves capture the overall patterns but are generally more smooth than the observed death curves which are more
wiggly. The model does not capture the downward trend in Miami-Dade (see panel (d) of Fig. 12) in the later period of
July 2020. This may be related to emergency orders of closing certain indoor spaces and outdoor spaces where groups of
people congregated without physical distancing in July 2020, which are not included in the analysis. For comparisons, we
show the fitting results using the spatiotemporal model proposed in Neelon et al. (2022) in Fig. 13. The posterior mean
daily deaths do not capture the trends very well and the 95% CIs fail to cover most the true values for Hernando county
in panel (a), Polk county in panel (c), and Miami-Dade county in panel (d). The result for Broward county in panel (b) is
similar to that of the proposed model.

5. Discussion

We have introduced a Bayesian framework for zero-inflated negative binomial regression models with spatiotemporal
effects. The proposed model is able to simultaneously incorporate a flexible structure for the spatial effects and temporal
for the binary and count component. The Gibbs sampler is efficient for posterior inference via the Pólya-Gamma data
augmentation and latent NNGP conditioned on these latent variables through the Bayesian hierarchical inference. The use
of the latent NNGP to approximate the covariance inverse matrix empowers the proposed to be feasible when the spatial
or temporal dimension is large. Our simulations suggest that the proposed model is comparable to existing methods when
such comparisons are available and more applicable in a higher dimension. It also outperforms other methods when there
is only one repetition in each sampling unit.
13
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Fig. 12. The true and posterior mean daily deaths in Hernando county (a), Broward county (b), Polk county (c), and Miami-Dade county (d) from
/25/2020 to 7/29/2020 using our proposed method. The dotted lines are the true deaths and the solid lines are the fitted deaths. The grey ribbons
re the 95% credible intervals.

Fig. 13. The true and posterior mean daily deaths in Hernando county (a), Broward county (b), Polk county (c), and Miami-Dade county (d) from
/25/2020 to 7/29/2020 using the B-splines spatiotemporal model proposed by Neelon et al. (2022). The dotted lines are the true deaths and the

solid lines are the fitted deaths. The grey ribbons are the 95% credible intervals.

There are several potential improvements for future work. There is potential for selecting important variables in this
Bayesian framework. For example, by using multivariate Bayesian models with polynomial-tailed shrinkage priors (Wang
et al., 2023) for the covariance matrix, one can derive variable selection methods. Such methods would be useful to model
ultrahigh dimensional spatiotemporal data. Additionally, the proposed model assumes a common temporal effect across
different spatial locations and a common spatial effect across different temporal points. Future study could be focused on
dynamic settings that capture the interaction between spatial and temporal effects.

6. Software

Software in the form of R code, together with a sample input data set and complete documentation is available on
request from the corresponding author (hsin.huang@ucf.edu).
14
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ppendix

he step-by-step posterior sampling procedure

The update algorithm for parameters of interests as well as random effects and hyperparameters are shown below.
n each component, we update parameters and random effects together as the posterior distribution are both Gaussian,
hich can facilitate convergence of the MCMC algorithm in simulation studies.
Step 1: Update the latent at-risk indicators
The update for Wj depends on the value of yj. If yj > 0, then the jth subject belongs to the at-risk class and Wj = 1. If

j = 0, Wj is updated by drawing from a Bernoulli distribution with probability

Pr(Wj = 1 | yj = 0, rest) =
πjν

r
j

1− πj(1− νrj )
,

here πj =
exp(η1j)

1+exp(η1j)
is the unconditional probability that Wj = 1 and νj = 1− ψj.

Step 2: Update α, a⃗, b⃗
Denote [α, a⃗, b⃗]T by φ1. Assume a N (φ0,Σ0) prior, we update φ1 from the posterior distribution in two steps:

ω1j | η1j ∼ PG(1, η1j) and φ1 | Ω1, z1 ∼ N (µ,Σ), where

Σ = (Σ−1
0 + V TΩ1V )−1,

µ = Σ
(
Σ−1

0 φ0 + V TΩ1(z1 − V1ϵ⃗11 − V2ϵ⃗12)
)
,

and z1j =
Wj−1/2
ω1j

is the latent variable, Ω1 = diag(ω1j), and V = [X, V1, V2] is the augmented design matrix.
Step 3: Update ϵ⃗11
Conditional on α, a⃗, b⃗, ϵ⃗12, assuming a N (0, σ 2

ϵ11
) prior, update ϵ⃗11 from a N (µ,Σ) distribution where

Σ =

(
1
σ 2
ϵ11

I + V T
1Ω1V1

)−1

,

µ = Σ

(
V T
1Ω1(z1 − Xα − V1a⃗− V2b⃗− V2ϵ⃗12)

)
.

Step 4: Update ϵ⃗12
Conditional on α, a⃗, b⃗, ϵ⃗11, assuming a N (0, σ 2

ϵ12
) prior, update ϵ⃗12 from a N (µ,Σ) distribution, where

Σ =

(
1
σ 2
ϵ12

I + V T
2Ω1V2

)−1

,

µ = Σ

(
V T
2Ω1(z1 − Xα − V1a⃗− V2b⃗− V1ϵ⃗11)

)
.

Step 5: Update l11, σ11
First, we use the Metropolis-Hasting algorithm to update l11. Using a normal proposal distribution which is symmetric,

he acceptance probability can be written as follows:

A = min
(
1,
π (l∗11)
π (l11)

)
= min

(
1,

p(a⃗ | Kσ11,l∗11 (h1, . . . , hS))p(l∗11 | al1 , bl1 )

p(a⃗ | K (h , . . . , h ))p(l | a , b )

)
.

σ11,l11 1 S 11 l1 l1

15
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hen, σ11 can be sampled from the full conditional as

σ 2
11 ∼ IG

(
aσ1 +

S
2
, bσ1 +

a⃗T (Kσ11,l11 (h1, . . . , hS))−1a⃗
2

)
The posterior distribution of σ11 requires the inverse of Kσ11,l11 (h1, . . . , hS), which may be a computation bottleneck

when the size of spatial locations is large. Hence, we apply the latent conjugate NNGP to approximate the inverse matrix.
Step 6: Update l12, σ 2

12
The update for l12, σ 2

12 is similar to the one for l11, σ 2
11. Depending on the size of temporal points, the latent conjugate

NNGP can also be applied in the update for σ 2
12 if T is large. First, we use the Metropolis-Hasting algorithm to update l12.

Using a normal proposal distribution which is symmetric, the acceptance probability can be written as follows:

A = min
(
1,
π (l∗12)
π (l12)

)
= min

(
1,

p(b⃗ | Kσ12,l∗12 (w1, . . . , wT ))p(l∗12 | al2 , bl2 )

p(b⃗ | Kσ12,l12 (w1, . . . , wT ))p(l12 | bl2 , bl2 )

)
.

Then, σ12 can be sampled from the full conditional as

σ 2
12 ∼ IG

(
aσ1 +

T
2
, bσ2 +

b⃗T (Kσ12,l12 (w1, . . . , wT ))−1b⃗
2

)
.

Step 7: Update σϵ11
Assuming a IG(aϵ, bϵ) prior, draw σϵ11 from the posterior distribution:

σ 2
ϵ11

∼ IG

(
aϵ +

S
2
, bϵ +

∑S
s=1 ϵ

2
11s

2

)
.

Step 8: Update σϵ12
Assuming a IG(aϵ, bϵ) prior, draw σϵ12 from the posterior distribution:

σ 2
ϵ12

∼ IG

(
aϵ +

T
2
, bϵ +

∑T
t=1 ϵ

2
12t

2

)
.

Step 9: Update β, c⃗, d⃗
Denote [β, c⃗, d⃗]T by φ2. Assume a N (φ0,Σ0) prior, we update φ2 in two steps:

ω2j|η2j ∼ PG(yj + r, η2j),∀j s.t. Wj = 1
φ2|Ω2, z2 ∼ N (µ,Σ),

here

Σ = (Σ−1
0 + V ∗TΩ2V ∗)−1

µ = Σ
(
Σ−1

0 φ0 + V ∗TΩ2(z2 − V ∗

1 ϵ⃗21 − V ∗

2 ϵ⃗22)
)
,

here z2 is the latent variable with z2j =
Yj−r
2ω2j

, Ω2 = diag(ω2j), and V ∗
= [X∗, V ∗

1 , V
∗

2 ] is the augmented design matrix for
observations at risk (Wj = 1).

Step 10: Update ϵ⃗21
Conditional on β, c⃗, d⃗, ϵ⃗22, assuming a N (0, σ 2

ϵ21
) prior, update ϵ⃗21 from a N (µ,Σ) distribution where

Σ =

(
1
σ 2
ϵ2S

I + (V ∗

1 )
TΩ2V ∗

1

)−1

, (8)

µ = Σ

(
(V ∗

1 )
TΩ2(z2 − Xβ − V ∗

1 c⃗ − V ∗

2 d⃗− V ∗

2 ϵ⃗22)
)
. (9)

Step 11: Update ϵ⃗22
Conditional on β, c⃗, d⃗, ϵ⃗21, assuming a N (0, σ 2

ϵ22
) prior, update ϵ⃗22 from a N (µ,Σ) distribution, where

Σ =

(
1
σ 2
ϵ22

I + (V ∗

2 )
TΩ2V ∗

2

)−1

, (10)

µ = Σ

(
(V ∗)TΩ (z − Xβ − V ∗c⃗ − V ∗d⃗− V ∗ϵ⃗ )

)
. (11)
2 2 2 1 2 1 21
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p

C

C
C
C
D

D

D

D

D

Step 12: Update l21, σ21
The update of l21 is similar to that of l11. The Metropolis-Hasting algorithm is used to update l21 with acceptance

robability

A = min
(
1,
π (l∗21)
π (l21)

)
= min

(
1,

p(c⃗ | Kσ21,l∗21 (h1, . . . , hS))p(l∗21 | al1 , bl1 )

p(c⃗ | Kσ21,l21 (h1, . . . , hS))p(l21 | al1 , bl1 )

)
.

Hyperparameter σ21 is drawn from the full conditional distribution

σ 2
21 ∼ IG

(
aσ1 +

S
2
, bσ1 +

c⃗T (Kσ21,l21 (h1, . . . , hS))−1c⃗
2

)
,

where K−1
σ21,l21

is approximated using latent NNGP.
Step 13: Update l22, σ 2

22
First, l22 is updated using the Metropolis-Hasting algorithm with acceptance probability

A = min
(
1,
π (l∗22)
π (l22)

)
= min

(
1,

p(d⃗ | Kσ22,l∗22 (w1, . . . , wT ))p(l∗22 | al2 , bl2 )

p(d⃗ | Kσ22,l22 (w1, . . . , wT ))p(l22 | bl2 , bl2 )

)
.

Then, σ22 can be sampled from the full conditional as

σ 2
22 ∼ IG

(
aσ2 +

T
2
, bσ2 +

d⃗T (Kσ22,l22 (w1, . . . , wT ))−1d⃗
2

)
.

Step 14: Update σϵ21
Assuming a IG(aϵ, bϵ) prior, draw σϵ21 from the posterior distribution:

σ 2
ϵ21

∼ IG

(
aϵ +

S
2
, bϵ +

∑S
s=1 ϵ

2
21s

2

)
.

Step 15: Update σϵ22
Assuming a IG(aϵ, bϵ) prior, draw σϵ22 from the posterior distribution:

σ 2
ϵ22

∼ IG

(
aϵ +

T
2
, bϵ +

∑T
t=1 ϵ

2
22t

2

)
.
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