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Pre-shared entanglement can significantly boost communication rates in the high thermal noise
and low-brightness transmitter regime. In this regime, for a lossy-bosonic channel with additive
thermal noise, the ratio between the entanglement-assisted capacity and the Holevo capacity—the
maximum reliable-communications rate permitted by quantum mechanics without any pre-shared
entanglement—scales as log(1/N̄S), where the mean transmitted photon number per mode, N̄S � 1.
Thus, pre-shared entanglement, e.g., distributed by the quantum internet or a satellite-assisted
quantum link, promises to significantly improve low-power radio-frequency communications. In this
paper, we propose a pair of structured quantum transceiver designs that leverage continuous-variable
pre-shared entanglement generated, e.g., from a downconversion source, binary phase modulation,
and non-Gaussian joint detection over a codeword block, to achieve this scaling law of capacity en-
hancement. Further, we describe a modification to the aforesaid receiver using a front-end that uses
sum-frequency generation sandwiched with dynamically-programmable in-line two-mode squeezers,
and a receiver back-end that takes full advantage of the output of the receiver’s front-end by employ-
ing a non-destructive multimode vacuum-or-not measurement to achieve the entanglement-assisted
classical communications capacity.

I. INTRODUCTION

An emerging focus has been drawn to architecting the
quantum internet [2, 3]: a global network built using
quantum repeaters [4, 5] and satellites [6] to distribute
entanglement at high rates to multiple distant users on-
demand [7–9]. There are several well-known applica-
tions of shared entanglement, a new information cur-
rency: distributed quantum computing [10], communi-
cations with physics-based security [11], provably-secure
access to quantum computers on the cloud [12], and
entanglement-enhanced distributed sensing [13–16]. In
this paper, we design a system for another impactful ap-
plication of shared entanglement: substantially improv-
ing classical communication rates in certain regimes.
Transmission of electromagnetic (EM) waves in linear

media, such as optical fiber, atmosphere, and vacuum,
can be described as propagation of a set of mutually-
orthogonal spatio-temporal-polarization modes over the
single-mode lossy bosonic channel with additive thermal-
noise N N̄B

η , described by the Heisenberg evolution âR =√
η âS+

√
1− η âE, where η ∈ (0, 1] is the modal (power)

transmissivity, and the environment âE is excited in a
zero-mean thermal state of mean photon number per
mode N̄B. Alice encodes classical information by modu-
lating the state of the âS modes, with the constraint of N̄S

mean photons transmitted per mode. The quantum limit
of the classical communications capacity, known as the
Holevo capacity [17, 18], in bits per transmitted mode, is
given by:

C(η, N̄S, N̄B) = g(N̄ ′
S)− g((1− η)N̄B), (1)

where N̄ ′
S ≡ ηN̄S+(1−η)N̄B is the mean photon number

per the âR mode at the channel’s output received by Bob,
and g(x) ≡ (1+x) log(1+x)−x log(x) is the von Neumann
entropy of a zero-mean single-mode thermal state with

mean photon number x [19, 20]. In this paper, we denote
base-2 and natural logarithms by log and ln, respectively.
If Alice and Bob pre-share an unlimited amount of en-

tanglement as a resource for transmitting classical data
over N N̄B

η with a transmit photon number constraint of

N̄S photons per mode, the capacity (in bits per mode)
increases to: [21–26]:

CE(η, N̄S, N̄B) = g(N̄S) + g(N̄ ′
S)− g(A+)− g(A−), (2)

where CE is the entanglement assisted classical capacity

of the quantum channel N N̄B

η , and A± = 1
2 (D−1±(N̄ ′

S−
N̄S)), with D =

√

(N̄S + N̄ ′
S + 1)2 − 4ηN̄S(N̄S + 1).

In the regime of a low-brightness transmitter (N̄S � 1)
and high thermal noise (N̄B � 1),

CE/C ≈ ln
(

1/N̄S

)

, (3)

which tends to infinity as N̄S → 0 [27]. Physically,
this means that for a fixed number of channel uses,
i.e., transmitted modes, a receiver that has access to a
quantum system entangled with the transmitted modes
can extract many more message bits reliably per mode,
in the low-signal-brightness high-thermal-noise regime,
compared with a receiver that has no such access. The
practical implications are potentially revolutionary in
radio-frequency (RF) communications, since the condi-
tion N̄B � 1 is naturally satisfied at a long center
wavelength. The N̄S � 1 regime is of particular in-
terest to covert communications, where the transmit-
ter tries to hide the presence of the communication at-
tempt [28]. Pre-shared entanglement between Alice and
Bob—distributed, e.g., via the quantum internet—allows
for an order of magnitude or more enhancement in clas-
sical communications rate, depending on the operational
regime of loss, noise, and transmit power (see Fig. 1).
Despite this large capacity advantage attainable with

pre-shared entanglement having been known for decades,
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FIG. 2: Schematic of classical optical communications
over a lossy, noisy channel. Each transmitted symbol of
a length-L code word is a single bosonic mode excited
in a coherent state |αji〉, 1 ≤ i ≤ L, 1 ≤ j ≤ 2nR, which
results in a displaced thermal state at the channel
output: ρ̂th(

√
ηαji, (1− η)N̄B) of mean field

√
ηαji and

mean thermal photon number (1− η)N̄B . The total
mean photon number of each received mode is
N̄ ′

S = ηN̄S + (1− η)N̄B . To achieve the Holevo capacity,
the ultimate limit to the reliable communication rate,
the receiver must perform a joint quantum
measurement on a long code word block. Such a
receiver is called a joint-detection receiver (JDR).

|ψj〉 = |αj1, αj2, . . . , αjn〉, where each symbol of each
code word αji, 1 ≤ j ≤ 2nR, 1 ≤ i ≤ n is chosen i.i.d.

from a Gaussian distribution, p(α) = (1/πN̄S)e
−|α|2/N̄S ,

α ∈ C. If a coherent state |α〉, α ∈ C is transmitted at

the input of the channel, the output state ρ̂th(
√
ηα, N̄

′

B)
is a single-mode displaced thermal state with mean field

amplitude
√
ηα, and thermal-noise mean photon number,

N̄
′

B = (1− η)N̄B . Its density operator is given by:

ρ̂th(
√
ηα, N̄

′

B) =

∫

C

1

πN̄
′

B

e−|β−√
ηα|2/N̄ ′

B |β〉〈β|d2β, (4)

where |β〉, β ∈ C is a coherent state. The receiver per-
forms a joint quantum measurement on the n-mode re-
ceived code word, each of whose n symbols are displaced
thermal states as above, to make a guess ĵ on which
code word was transmitted. Fig. 2 depicts this encoding-
transmission-decoding process schematically. If the rate
of the code is chosen to satisfy R < C(η, N̄S , N̄B) (bits
per transmitted mode), then if the transmitter picks a
random code book as described above and the receiver
uses the square root measurement [18] (a structured op-
tical realization of which is not known), the receiver’s
probability of error in picking the correct transmitted

code word P
(L)
e → 0, as n→ ∞ [17]. The Holevo capac-

ity expression in Eq. (1) can be derived as follows:

C(η, N̄S , N̄B) = max
p(α),α∈C

{

S
(

¯̂ρR
)

− S̄
}

, (5)

where S(ρ̂) = −Tr(ρ̂ log ρ̂) is the von Neumann en-
tropy of the state ρ̂, ¯̂ρR =

∫

p(α)ρ̂th(
√
ηα, N̄T)d

2α

is the average state of the output mode, S̄ =
∫

p(α)S
(

ρ̂th(
√
ηα, N̄T)

)

d2α is the average entropy of the
possible output states, and the maximum is taken over
all probability distribution functions p(α), with α ∈ C,
satisfying the transmit mean-photon number constraint

∫

p(α)|α|2d2α = N̄S . It can be shown that no other
quantum states used at the transmitter can achieve a ca-
pacity higher than that achieved using coherent states
with a Gaussian prior: the Holevo capacity as given in
Eq. (1) [20]. The unrestricted-modulation Holevo capac-
ity, in the lossless (η = 1), noiseless (N̄B = 0) case is
given by C(1, N̄S , 0) = g(N̄S), which in the small-N̄S

limit, can be expanded as [49]:

C(1, N̄S , 0) = −N̄S ln N̄S + N̄S +
N̄2

S

2
+ h.o.t., (6)

where the unit used is nats per mode, with ln 2 nats
equalling 1 bit, and h.o.t. refers to “higher order terms”.

B. Holevo capacity with binary modulation
constellations

If the encoding is restricted to the binary phase-shift
keying (BPSK) alphabet, i.e., coherent states | ± α〉 for
each transmitted mode, |α|2 = N̄S , the maximum possi-
ble communication rate, in bits per transmitted mode, is
the Holevo capacity of the BPSK alphabet,

χBPSK(η, N̄S , N̄B) = max
p∈[0,1]

{

S
(

¯̂ρR
)

− S̄
}

, (7)

where ¯̂ρR = pρ̂th(
√
ηα, N̄T ) + (1 − p)ρ̂th(−√

ηα, N̄T ))

is the average state of the output mode, and S̄ =
pS(ρ̂th(

√
ηα, N̄T ))+(1−p)S(ρ̂th(−√

ηα, N̄T )) is the aver-
age entropy of the two possible output states. To achieve
a rate approaching this capacity, a random code book
should be constructed as explained in Section IIA, but
with each symbol of each code word αji chosen i.i.d. with
equal priors, i.e., p = 1/2, from the two possible am-
plitudes {±α}. In the lossless (η = 1), noiseless case
(N̄B = 0), the BPSK Holevo capacity is given by:

χBPSK(1, N̄S , 0) = h2

(

[1 + e−2N̄S ]/2
)

, (8)

where h2(x) = −x log x− (1− x) log(1− x), x ∈ (0, 1), is
the binary entropy function. Expanding the expression
in the small-N̄S limit, we get [49]:

χBPSK(1, N̄S , 0) = −N̄S ln N̄S + N̄S + N̄2
S ln N̄S + h.o.t.,

(9)
in units of nats per transmitted mode.

If the encoding is restricted to an on-off-keyed (OOK)
modulation alphabet, i.e., coherent state |α〉 or vacuum
|0〉 for each transmitted mode, the maximum communi-
cation rate, the OOK Holevo capacity is given by:

χOOK(η, N̄S , N̄B) = max
p∈[0,1]

{

S
(

¯̂ρR
)

− S̄
}

, (10)

where ¯̂ρR = pρ̂th(
√
ηα, N̄T )+(1−p)ρ̂th(0, N̄T )) is the av-

erage state of the output mode, S̄ = pS(ρ̂th(
√
ηα, N̄T ))+

(1 − p)S(ρ̂th(0, N̄T )) is the average output entropy per
mode, N̄S = p|α|2 is the mean transmitted photon num-
ber per mode, and p is the prior probability with which
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1. Square root measurement—The square-root

measurement (also known as the ‘pretty-good mea-
surement’) acts on the L-mode code word of a ran-
dom code book [17, 18] either in the optical do-
main, or in a matter-qubit processor, after faith-
fully transducing the optical quantum state of the
received code word into a qubit register.

2. Sequential decoding—This receiver acts on the
received L-mode code word of a random code
book, with a coherent displacement (realized us-
ing an array of highly-transmissive beamsplit-
ters and strong coherent-state local oscillators)
matched to the negative amplitude of the j-th code
word, followed by applying an L-mode ‘vacuum-
or-not’ (VON)—a non-destructive binary projec-
tive measurement described by POVM elements
{

|0〉⊗L ⊗L〈0|, Î − |0〉⊗L ⊗L〈0|
}

—stopping with de-

cision ĵ = j if it gets the ‘vacuum’ outcome, and if
not, undoes the displacement on the L-mode post-
measurement output state, increments j → j + 1
and repeats the process [42].

3. Polar code with successive cancellation—
Encodes the information using a classical-quantum
Polar code [52, 53], and implements—all-optically
or in a matter-qubit domain—the successive can-

cellation decoder to decode the R bits successively.

4. Unambiguous state discrimination—
Implements the 2LR + 1 outcome unambiguous

state discrimination (USD) measurement on the
received L-mode code word of a random code,
which unambiguously identifies the transmitted
code word or produces an erasure outcome [54].

5. Belief propagation with quantum messages—
Couples the coherent state in each received mode
(of a N -ary constellation) of the L-mode code word
to the state of logN qubits of a quantum computer,
while preserving the relative inner-products of the
quantum states of the modulation constellation,
followed by acting upon that L logN qubit register
with a quantum belief-propagation decoder [48, 50].

III. ENTANGLEMENT ENHANCED
CLASSICAL COMMUNICATIONS

In parallel with section II, we now describe the task of
classical communication over a lossy noisy bosonic chan-
nel with the added resource of pre-shared entanglement.
In subsection IIIA we review how the Holevo capacity is
defined when the receiver has access to a mode entangled
with the transmitted signal for each transmitted symbol.
Then subsection III B restricts to the case of binary mod-
ulation and TMSV entanglement, and subsection III C
describes the working principle for the transceivers in-
troduced in detail in section IV.

A. Entanglement-assisted capacity of the lossy
thermal-noise bosonic channel

If the transmitter Alice and the receiver Bob pre-share
an unlimited amount of entanglement, with N̄S still de-
noting the mean number of photons transmitted over the
channel N N̄B

η per mode, the capacity for sending classical
data (in bits per mode) increases above the Holevo ca-
pacity C(η, N̄S, N̄B) in Eq. (1) to [21–26] Eq. (2), scaling
like Eq. (3) in the regime of a low-brightness transmitter
(N̄S � 1) and high thermal noise (N̄B � 1), which tends
to infinity as N̄S → 0 [27]. The goal of this paper is to
explore transmitter-receiver designs that can achieve this
ln
(

1/N̄S

)

enhancement in capacity over the Holevo limit.

Intuitively, the scaling CE/C ∼ ln
(

1/N̄S

)

follows from

the dominant term in the expression for CE as N̄S → 0,
being −N̄S log N̄S for any constant N̄B > 0, while the
Taylor series expansion of C at N̄S = 0 yields C =
N̄S log

(

1 + ((1− η)N̄B)
−1
)

+ o(N̄S). Formally, one can
use L’Hôpital’s rule to obtain the following limit:

lim
N̄S→0

CE

C ln
(

1
N̄S

) =
1

(1 + (1− η)N̄B) ln
(

1 + 1
(1−η)N̄B

) ,

(14)

which yields the scaling. Note that the right hand side
(RHS) of (14) is zero when N̄B = 0. This is consistent
with the known fact that the ratio CE/C ≤ 2 in the
noiseless (N̄B = 0) regime.
The plot of CE/C as a function of N̄S and N̄B, shown

in Fig. 1 for η = 0.01 yields further insight. At opti-
cal frequencies, at 300K, the Planck-Law-limited thermal
mean photon number per mode N̄B ranges between 10−5

to 10−6. At such small N̄B, despite the scaling in (3), the
actual capacity ratio is essentially at or below 2 (CE/C
is at most 2 when N̄B = 0) over the range of N̄S: 10

−6 to
102; and hence the entanglement enhancement is signifi-
cant only for the meaninglessly-small values of N̄S. How-
ever, at N̄B = 100 corresponding to the thermal noise at
microwave wavelengths, η = 10−3, and N̄S = 10−3, rea-
sonably achieved with a spontaneous-parametric down-
conversion (SPDC) based entanglement source employed
by our proposed transceiver, CE/C ≈ 7. This is a sub-
stantial improvement over the highest capacity achiev-
able without leveraging pre-shared entanglement.
It was shown in [22] that, in order to achieve CE in

Eq. (2), it suffices for Alice and Bob to pre-share many
copies of the following entangled state:

|ψ〉SI =
∞
∑

n=0

√

N̄n
S

(1 + N̄S)1+n
|n〉S|n〉I, (15)

known as the two-mode squeezed vacuum (TMSV). Let us
consider a pulsed SPDC source that produces entangled
signal and idler pulses, each of duration T seconds and
optical bandwidthW (typically 1-2 THz) around their re-
spective center frequencies. The quantum description of
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the pair of signal-idler entangled pulses is |ψ〉⊗M
SI , where

M ≈WT is the number of mutually-orthogonal temporal
modes in each of the signal and idler pulses.

B. Entanglement-assisted capacity with TMSV
entanglement and binary modulation constellations

In Ref. [13], it was shown that not only does pre-
sharing TMSV entangled states suffice to attain CE, but
that phase modulation of the signal mode (at Alice’s end)
and transmitting that to Bob suffices to attain CE in the
regime of low signal-to-noise (SNR) ratio (N̄S � 1 and
N̄B � 1). This low-SNR is the regime where the scaling
CE/C ∼ ln

(

1/N̄S

)

holds true, and hence of interest here.
Pursuant to phase modulation of the signal modes

of pre-shared TMSV states generated using an SPDC
source, a schematic system diagram for entanglement-
assisted communications is depicted in Fig. 5. Alice maps
her message to a code book C (with |C| ≤ 2Lr), each of
whose code words are L phases, e.g., (θ1, . . . , θL). Al-
ice modulates an SPDC-generated signal pulse, i.e., M
temporal modes, whose entangled idler-mode counter-
parts are assumed pre-shared with Bob, with a single
phase symbol of that code word. So, transmission of one
code word consumes ML uses of the single-mode lossy
thermal-noise bosonic channel N N̄B

η . The receiver Bob
acts on 2ML modes—ML modes of Alice’s code word,
corrupted by channel noise, that he receives, and the cor-
responding ML pre-shared idler modes—with a joint de-
tection receiver (JDR), to produce a guess of the trans-
mitted code word. Bob’s received code word comprises of
L ‘symbols’ (ρ̂RI

1 , . . . , ρ̂RI
L ), where each symbol is uncorre-

lated and un-entangled with the other symbols. Further,
it is instructive to note that even though the signal-idler
modes were entangled, there is no entanglement left amid
the received-idler mode pairs within each symbol, due
to the entanglement-breaking lossy-noisy channel N N̄B

η .
However, the received-idler mode pairs within each sym-
bol hold phase-sensitive cross-correlations, i.e., 〈âRâI〉,
which encode information about the phase value mod-
ulated by Alice on that symbol at the transmitter. If
Bob is able to faithfully recover the transmitted mes-
sage, let the reliable-communications rate achieved by the
above scheme be r modes per transmitted symbol. Then
since each transmitted symbol comprises of M temporal
modes, the rate in bits per mode, R = r/M .

In Fig. 6, we further show that restricting the aforesaid
phase modulation to binary phase shift keying (BPSK),
i.e., each of the L symbols in Alice’s code words compris-
ing only of two phases {0, π}, suffices to attain CE in the
low SNR limit. This observation is reminiscent of the co-
herent state BPSK modulation closely approaching the
Holevo limit for unassisted classical communications, as
shown in Fig. 3. We further evaluate the performance of
an on-off keying (OOK) modulation format, wherein Al-
ice’s transmitted symbols are either an ‘on’ pulse, which
is an M -temporal-mode signal pulse of her pre-shared

(a) Transmission of a L-length phase code word, where
each phase is modulated on to an M -temporal-mode
signal pulse on Alice’s end of the pre-shared
SPDC-generated entanglement. The mean photon
number per mode of each received mode R,
N̄ ′

S = ηN̄S + (1− η)N̄B . Bob’s JDR acts on 2ML modes.

(b) An equivalent parallel representation of the channel,
explicitly showing that Bob’s received code word
comprises of L ‘symbols’ (ρ̂RI

1 , . . . , ρ̂RI

L ), where each
symbol is uncorrelated and un-entangled with the others.
The M received-idler mode pairs within each symbol hold
phase-sensitive cross-correlations, i.e., 〈âRâI〉 6= 0, which
encode information about the phase modulated by Alice
on the M modes of that transmitted symbol.

FIG. 5: Diagram of entanglement-assisted
communication of classical data over a lossy, noisy
quantum channel. The S, I, E and R modes are labels,
respectively, for: the initial signal mode (to be sent over

the channel N N̄B
η to the receiver), the idler mode

retained at the receiver (entangled with the
corresponding S mode), the environment mode in a
thermal state of mean photon number N̄B , and the
received mode at the front end of the receiver.

SPDC-entanglement, or an ‘off’ pulse, which is Alice
staying silent for an entire pulse duration. To evaluate
the entanglement-assisted communication rates using the

BPSK and the OOK modulation formats, C
(TMSV-BPSK)
E

and C
(TMSV-OOK)
E respectively, we calculate the (unas-

sisted) Holevo capacities of the modulated received-idler
code words at Bob’s end. In other words, for BPSK mod-
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FIG. 7: The big picture view of the receivers proposed
in this paper. Joint detection on multiple signal-idler
mode pairs is made possible by using a quantum map
(denoted M) that depletes the cross-correlation
between the received-idler mode pair, converting it to
the coherent displacement of an ancilla mode.

C. Receiver design principles

Although the entanglement-assisted capacity of N N̄B
η

can be saturated by encoding information in the phase
of the signal modes of pre-shared signal-idler SPDC
mode pairs, it is not immediately clear how to design
a structured receiver to extract this information on the
receiver end. Initial guesses at designing a receiver
could be to employ either an optical parametric ampli-
fier (OPA) or the phase-conjugate receiver (PCR) pro-
posed in [30] in the context of building receivers for a
quantum-illumination radar, to convert the information-
bearing phase-sensitive cross correlations 〈âRâI〉 into a
photon-number signature. Such a receiver acts jointly
upon each received noisy-modulated symbol (M tempo-
ral modes) and the corresponding M -mode idler pulse,
either with an OPA or a PCR [27], followed by perform-
ing a maximum-likelihood determination of the phase en-
coded in that symbol. However, the bits-per-mode ca-
pacity attained by such a measurement that acts on one
modulated symbol at a time as they are received, cannot
exceed twice the ultimate classical Holevo capacity C in
the low N̄S , high N̄B regime (see Appendix A for proof).
In order to design a receiver to achieve CE , or for that

matter to exceed 2C bits per mode, we must design a
joint detection receiver (JDR)—along the lines of JDRs
for superadditive classical communications, as described
in Sections II C and IID, and illustrated in Fig. 5—that
acts on multiple modulated symbols collectively. The
challenge is to use a code word block of signal-idler mode
pairs to produce a strong detectable signature (e.g., pho-
ton number at the output of the receiver) to pinpoint
which code word was received. The way in which this is

done in the receiver design proposed here is to first con-
vert phase-sensitive cross-correlations in the return-idler
mode pairs into the coherent displacement of a single
bosonic mode using a non-linear sum-frequency genera-
tion (SFG) module, and then use a coherent state JDR as
described in Sections II C and IID on the (code word of)
coherently-displaced modes, as depicted in Fig. 7. The
next Section describes how this works, in further detail.

IV. JOINT DETECTION RECEIVER DESIGN
FOR ENTANGLEMENT-ASSISTED

COMMUNICATIONS

A. Structure of the transmitter and receiver

Consider the transmitter-receiver structure in Fig. 8.
Alice uses a binary phase shift keying (BPSK) modu-
lation with a Hadamard code of order L, on the signal
(S) modes of TMSV states |ψ〉SI whose idler (I) modes
are pre-shared with Bob. Let us assume L is an inte-
ger power of 2 such that a Hadamard code exists. The
l-th ‘pulse’ (comprising M orthogonal temporal modes)
of the signal output of a pulsed spontaneous paramet-
ric downconversion (SPDC) source, an M -fold tensor

product TMSV |ψ〉⊗M
SI , is modulated by Alice, with the

binary phase θl ∈ {0, π}. The transmission of an en-
tire Hadamard code word thus consumes L SPDC sig-
nal pulses, modulated with phases θl, 1 ≤ l ≤ L, over
ML uses of the single-mode channel N N̄B

η . The corre-
sponding idler modes are assumed losslessly pre-shared
with Bob, e.g., using a fault-tolerant quantum internet.
Given that in our regime of interest: (1− η)N̄B > η, the

channel N N̄B

η is entanglement-breaking. Alice’s phase
modulation of the signal mode âS of a TMSV state, fol-
lowed by its transmission through N N̄B

η , results in an
output mode âR received by Bob with a (large) mean
photon number N̄ ′

S = ηN̄S + (1 − η)N̄B. Mode âR and
the (weak) idler mode of the TMSV âI with mean pho-
ton number N̄S held by Bob, are individually in zero-
mean thermal states. However, their joint quantum state
is a classically-correlated zero-mean Gaussian state (no
longer entangled), with a phase sensitive cross correla-

tion 〈âRâI〉 = ±
√

ηN̄S(N̄S + 1), where the sign depends
on the phase (0 or π) modulated by Alice. Note that
the amount of cross correlation in the received state is
proportional to the amount of cross correlation in the
initially generated state which, being entangled, is corre-
lated by an amount even beyond the maximum allowed
by classical physics. So the term ‘entanglement-assisted’
applies in spite of the entanglement-breaking channel.
The receiver employs the SFG, a non-linear optical

process that runs SPDC in reverse per the Hamiltonian

ĤSFG = ~g
∑M

m=1

(

b̂†âSm
âIm + b̂â†Sm

â†Im

)

, with ~ the re-

duced Planck constant, and g the non-linear interaction
strength. Signal-idler photon pairs from the M input
mode pairs {âSm

, âIm}, 1 ≤ m ≤ M , are up-converted
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FIG. 8: Our first transceiver design JDR1, which uses
the BPSK Hadamard code, and applies a
Green-Machine at the end of each SFG cycle to the kth

set of sum-frequency modes {b(i)k }i and classically adds
the outcomes of the post-green machine photon
detectors. Thin and thick lines depict weak (e.g.,
N̄S � 1) and strong (e.g., N̄B � 1) mean photon
number signals respectively. In an actual realization,
only one L-mode Green Machine is needed as the

sum-frequency modes b̂
(i)
k , 1 ≤ k ≤ K, for each

i ∈ {1, . . . , L}, appear in a temporal sequence.

to a sum-frequency mode b̂. The phase-sensitive cross-
correlation at the input of the SFG, 〈âSm

âIm〉, manifests

as the mean field amplitude of a thermal state of b̂ [31].
A single-mode displaced thermal state with mean field

amplitude α ∈ C, and thermal-noise mean photon num-

ber, N̄ > 0 has the following density operator:

ρ̂th(α, N̄) =

∫

C

1

πN̄
e−|β−α|2/N̄ |β〉〈β|d2β. (18)

For N̄ = 0, it reduces to the pure coherent state |α〉.

The photodetection statistics of ρ̂th(α, N̄) is Laguerre-
distributed [35]. The probability that it produces zero
clicks when detected with an ideal photon detector is

〈0|ρ̂th(α, N̄)|0〉 = (1/(N̄ + 1))e−|α|2/(N̄+1). (19)

As depicted at the top of Fig. 8, Bob inputs the re-
ceivedM modes of each of the L phase-modulated blocks
of the Hadamard code, along with the corresponding M
idler modes (pre-shared with the transmitted block of
M signal modes), into a feed-forward (FF) SFG module.
An FF-SFG module stacks K SFG stages, each unitary
corresponding to applying ĤSFG for a duration of π

2
√
Mg

,

with K beamsplitters and combiners of transmissivities
κ = 1/K and 1 − κ respectively, as shown. The K-
stage SFG ensures that the signal input of each SFG has
much less than one photon per mode, so that we can use
the “qubit-approximation” analysis of the SFG from [31].

b̂
(l)
k denotes the sum-frequency mode of the k-th SFG,
1 ≤ k ≤ K, of the l-th FF-SFG module, 1 ≤ l ≤ L.

In the κ � 1/N̄B limit, the sum-frequency mode

b̂
(l)
k is in a displaced thermal state ρ̂th(±αk, N̄T) [31],
where the ± sign depends on whether the mode block
i is modulated with phase 0 or π. The mean αk =
√

MκηN̄S(1 + N̄S)µk−1, with µ =
(

1− κ(1 + N̄ ′
S)
)2
,

and N̄T = κN̄SN̄
′
S [31]. Let us also define N̄k = |αk|2.

For a fixed k, the L modes b̂
(l)
k , 1 ≤ l ≤ L, produced

by the k-th FF-SFG gates are in a product of displaced
thermal states with the same mean photon number N̄T,
but with mean field amplitudes αk or −αk corresponding
to which Hadamard code word was transmitted. On the
other hand, for a fixed l, theK modes b̂

(l)
k , 1 ≤ k ≤ K can

be approximated as having maximally correlated noise
(see appendix C). Therefore, it is possible, for each l, to

interfere the K sum-frequency modes b̂
(l)
k , 1 ≤ k ≤ K on

an appropriately-tuned beam-splitter array to produce a
displaced thermal state with mean thermal photon num-
ber ≈ KN̄T /7.61, where N̄T is the mean thermal photon

number of each sum-frequency mode b̂
(l)
k , ∀k, l, as de-

scribed above (see Fig. 9 for a schematic).

We will refer to the JDR design in Fig. 8, proposed
in [34], as JDR1. For each k ∈ {1, ...,K}, the L modes

b̂
(l)
k , 1 ≤ l ≤ L are input to an L-mode Green Machine
(GM), a linear-optical circuit comprising L log2(L)/2 50-
50 beasmplitters, denoted GMk. The GM transforms
the L-mode BPSK-modulated coherent-state Hadamard
code word, e.g., |αk,−αk, . . . , αk〉 into one of the L code
words of order-L coherent-state pulse-position modula-
tion (PPM), e.g., |0, . . . ,

√
Lαk, . . . , 0〉 [33]. The bot-

tom of Fig. 8 shows an example binary-phase L = 8
Hadamard code, and the circuit of an 8-mode GM. At
the output of GMk, one of the L output modes (based on
the input Hadamard code word) is in a displaced thermal

state ρ̂th(
√
Lαk, N̄T). We call this the “pulse-containing

output” (mode). The remaining L − 1 output modes of
GMk are in the zero-mean thermal state ρ̂th(0, N̄T).
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choosing the γ-beam splitters to combine the mean fields
into a single mode, as

γk =

∑k
i=1 α

2
i

∑k+1
i=1 α

2
i

=
1− (1− κ(1 + N̄ ′

S))
2k

1− (1− κ(1 + N̄ ′
S))

2(k+1)
, (20)

is not the choice that combines the total thermal noise
into a single mode. Instead, it is shown (numerically) in
Appendix D that when the γk-values are tuned to max-
imally combine the mean fields (Eq. (20)), the thermal

noise on the output modes b̂
(i)
0 is given by:

N̄T0 ≈ KN̄T /7.61 = N̄SN̄
′
S/7.61.

Although one could use JDR2 with a BPSK Hadamard
code as discussed in the context of JDR1, we will con-
sider instead BPSK modulation with the 1st order Reed-
Muller (RM) code. As shown in the L = 4 example in
the top-left corner of Fig. 9, the RM code of code word
length L has 2L code words, i.e., twice as many code
words as the Hadamard code. It has all the Hadamard
code words, and each of their bit-flipped versions in the
code book. Therefore, with RM code words and JDR2,
the pulse-containing mode at the output of the Green
Machine has a phase of ±1 depending on which of the
two L-code word halves of the RM code book the trans-
mitted code word belonged in. To decode this extra bit
of information, JDR2’s final measurement stage uses a
Kennedy receiver as described in Section IIC [41] with
‘exact nulling’, conditioned on detecting a photon.

B. Performance evaluation of JDR1

Let us consider the case of the transmission of the L-
symbol Hadamard phase code along with the JDR1, as
described in the previous subsection. The 2L possible
(click, no-click) patterns at the L classically-combined
detector outputs are classified into L + 1 receiver out-

comes: a click at a given output and no clicks elsewhere,
or an erasure, which is either zero clicks at all L outputs,
or clicks at multiple outputs. Our scheme thus induces
an L-input (L + 1)-output discrete memoryless channel
between the L Hadamard code words and the L+1 out-
comes, which is identical to that induced by coherent-
state pulse-position modulation (PPM) and single pho-
ton detection with non-zero background (or dark) click
probability. The Shannon capacity of this channel [39] di-
vided by ML is the bits-per-mode entanglement-assisted
capacity attained by our design. In other words,

R
(M,L)
E =

1

ML

(

pe logL+ (L− 1)pd log
Lpd
pe

−
(

pe + (L− 1)pd
)

log

[

1 +
(L− 1)pd

pe

])

,(21)

where pd = (1 − pc)pb(1 − pb)
L−2, pe = pc(1 − pb)

L−1,
pc is the click probability at the pulse-containing output,

and pb is the click probability at the non-pulse-containing
output.
To simplify the analysis, we assume that the photode-

tection statistics of i-th outputs of each of the K GMs

are statistically independent, so 1− pc = ΠK
k=1(1− p

(k)
c ),

where 1− p
(k)
c = 1

N̄T+1
e−LN̄k/(N̄T+1). The capacity eval-

uated under this assumption will be a lower bound to
the actual capacity because in reality the photodetection
outcomes of the pulse-containing modes are positively
correlated, reducing the variance of the sum of the out-
comes.
The expressions for the click probabilities simplify to:

pc = 1− 1

(1 + N̄T)K
e
−A

(

1−µK

1−µ

)

, and (22)

pb = 1− 1

(1 + N̄T)K
, (23)

with A =MLκηN̄S(N̄S + 1)/(N̄T + 1).

FIG. 10: The thin magenta lines are plots of R
(M,L)
E /C

for L = 2, 4, 8, . . . , 220 and M = 105. This shows that
the capacity ratio scales as log(1/N̄S), which tends to
infinity as N̄S → 0, for any M . However, this scheme
(BPSK modulation, Hadamard code, and our proposed
structured joint-detection receiver) does not achieve CE.
We assume η = 0.01 and N̄B = 10 photons per mode for
all the plots in this figure.

In Fig. 10, we plot CE/C as a function of N̄S in the
N̄S � 1 regime, for η = 0.01 and N̄B = 10. We also plot

R
(M,L)
E /C, with M = 105, L ∈

{

2, 22, . . . , 220
}

and tak-
ing κ = 1/K with K = 100, which we found to be suffi-
ciently large such that further increasing K did not affect

the rate significantly. The envelope R
(M)
E = supLR

(M,L)
E

shows that our transceiver achieves an entanglement-
assisted capacity gain that exceeds 2 as N̄S → 0, the
best achievable ratio with an OPA [30] or FF-SFG re-
ceiver [27, 31] (see Appendix A).
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In the next subsection we apply the conditions:

ηN̄S � N̄S � 1 � N̄B � K, (24)

and prove that our system design attains the opti-
mal scaling of entanglement-assisted communications ca-

pacity, i.e., R
(M)
E /C ∼ ln(1/N̄S). Despite R

(M)
E not

meeting CE, it achieves the infinite-fold capacity en-
hancement leveraging pre-shared entanglement, but most
importantly—using quantum optical states, processes
and detection schemes that are readily realizable.

1. Capacity scaling analysis

Let us first consider an order-L pulse position modula-
tion (PPM) alphabet over a channel with loss and noise.
PPM encodes information by the position of a pulse (e.g.,
a coherent state of light) in one of L orthogonal modes
(e.g., time bins) at the input, which is direct-detected
at the output (e.g., by a single photon detector). Loss
attenuates the transmitted pulse amplitude, and noise
results in potential detection events in one or more bins.
Ignoring detection events in multiple bins (i.e., treating
them as “erasures”), and assuming an equiprobable selec-
tion over the L inputs (which maximizes the throughput),
the Shannon mutual information—expressed in bits per
mode—of the induced L-input (L + 1)-output discrete
memoryless channel (DMC), is given by [39, Eq. (16)]:

I
(L)
PPM =

pe
L

logL+
(L− 1)

L
pd log

Lpd
pe

−
[

pe + (L− 1)pd
L

]

log

[

1 +
(L− 1)pd

pe

]

, (25)

where pe is the probability of the detection event occur-
ring exclusively in the bin corresponding to the position
of the pulse at the input, and pd is the probability that
a detection event occurs in a single bin that is different
from the one containing the input pulse. Denoting by
pc the probability of a detection event in the bin corre-
sponding to the input pulse and by pb the probability of
a detection event in another bin [39, Sec. IV],

pe = pc(1− pb)
L−1, and (26)

pd = (1− pc)pb(1− pb)
L−2. (27)

We specialize the result by Jarzyna and Banaszek [39]
to find the channel capacity of the DMC induced by the
modulation-code-channel-receiver described in Fig. 8.
Let us recall that our scheme involves BPSK-

modulation of the signal modes of M pre-shared two-
mode-squeezed-vacuum (TMSV) states, repeating the
above L times, encoding an order-L binary Hadamard
code, and transmission of theML modulated modes over
ML uses of the single-mode lossy-noisy bosonic channel
N N̄B

η , followed by demodulation and detection by our
joint detection receiver (JDR). This scheme results in

detection events that are statistically identical to demod-
ulating PPM in the presence of noise. Thus, we seek:

R
(M)
E = max

L

1

M
I
(L)
PPM, (28)

where we determine pe and pd as follows. First, let’s
recall the definitions. The mean number of photons
per mode in the signal modes of the TMSV transmit-
ted by Alice is N̄S, and the mean photon number of the
thermal noise background per transmitted mode is N̄B.
The modal power transmissivity of the bosonic channel
is η ∈ (0, 1], which implies that Bob’s received mean
number of photons per mode is N̄ ′

S = ηN̄S + (1− η)N̄B.
To calculate pc and pb, we assume the photodetection
statistics of the i-th outputs of each of the K Green
Machines in the JDR are statistically independent, and

K � N̄B. Thus, 1 − pc = 1 − ∏K
k=1(1 − p

(k)
c ), where

1 − p
(k)
c = 1

N̄T+1
e−LN̄k/(N̄T+1) with N̄T = N̄SN̄

′
S/K,

N̄k = MηN̄S(1+N̄S)µ
k−1

K , and µ =
[

1− 1+N̄ ′

S

K

]2

. Thus:

pc = 1− 1

(1 + N̄T)K
e
−A

(

1−µK

1−µ

)

, and (29)

pb = 1− 1

(1 + N̄T)K
, (30)

with A = MLηN̄S(N̄S+1)
K(N̄T+1)

. Using the conditions:

N̄S � 1 � N̄B � K, (31)

we can make the following approximations using the lim-
its as N̄S → 0 and K → ∞:

N̄ ′
S ≈ (1− η)N̄B, (32)

(1 + N̄T)
−K ≈ e−N̄S(1−η)N̄B , and (33)

A

1− µ
≈ MLηN̄S

2(1 + (1− η)N̄B)
. (34)

These lead to the following approximations for pc and pb:

pc ≈ 1− exp

[

−N̄S

(

MLηγ

2(1 + (1− η)N̄B)
+ (1− η)N̄B

)]

(35)

pb ≈ 1− exp
[

−N̄S(1− η)N̄B

]

, (36)

where γ = 1 − e−2(1+(1−η)N̄B). Substitution of approxi-
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mations in (35) and (36) into (26) and (27) yields:

pe ≈ exp
[

−N̄S(L− 1)(1− η)N̄B

]

− exp

[

−N̄SL

(

Mηγ

2(1 + (1− η)N̄B)
+ (1− η)N̄B

)]

(37)

≈ exp
[

−N̄SL(1− η)N̄B

]

− exp

[

−N̄SL

(

Mηγ

2(1 + (1− η)N̄B)
+ (1− η)N̄B

)]

,

(38)

pd ≈ exp

[

−N̄SL

(

Mηγ

2(1 + (1− η)N̄B)
+ (1− η)N̄B

)]

− exp

[

−N̄S

(

MLηγ

2(1 + (1− η)N̄B)
+ (1− η)N̄B(L+ 1)

)]

,

(39)

where we assume L � 1 so that L − 1 ≈ L for the ap-
proximation in (38). When N̄S → 0, we can approximate
pe and pd by the Taylor series expansions at N̄S = 0 of
(38) and (39), respectively:

pe ≈
N̄SMLηγ

2(1 + (1− η)N̄B)
, (40)

pd ≈ N̄S(1− η)N̄B. (41)

Substituting (40) and (41) into the last two terms of (25),
and approximating L−1

L ≈ 1, reveals that only the first
term of (25) has a significant dependence on L in our
regime of interest. Thus, for the optimal order, we need:

L∗ = argmax
L

pe
L

logL. (42)

The linear approximation in (41) is insufficient to find
L∗. We follow the methodology in [39] by substituting in

(42) the quadratic Taylor series expansion at N̄S = 0,

pe ≈
LN̄SMηγ

2(1 + (1− η)N̄B)

− L2N̄2
SMηγ

(

Mηγ + 4(1− η)N̄B(1 + (1− η)N̄B)
)

8(1 + (1− η)N̄B)2
.

Let v ≡ N̄2

S
Mηγ(Mηγ+4(1−η)N̄B(1+(1−η)N̄B))

8(1+(1−η)N̄B)2 ln 2
and u ≡

N̄SMηγ
2(1+(1−η)N̄B) ln 2

. This reduces the problem in (42) to

finding the location of the extremal values of f(L) =
(u+ vL) lnL by solving

df(L)

dL
=

u

vL
− 1− lnL = 0 (43)

for L, which involves the principal branch of the Lambert
W -function [61, Sec. 4.13]:

L∗ =
u

v

[

W
(u

v
e
)]−1

, (44)

whereW (xex) = x for x ≥ −1. Using equality lnW (x) =
ln(x)−W (x) for x > 0 [61, Eq. (4.13.3)] and asymptotic
expansion W (x) = ln(x) − ln ln(x) + o(1) as ln(x) → ∞
[61, Eq. (4.13.10)] in our regime of interest N̄S → 0, we
have:

log(L∗) ≈ log

(

w

N̄S

)

− log

(

ln

[

we

N̄S

])

, (45)

where w = 4(1+(1−η)N̄B)
Mηγ+4(1−η)N̄B(1+(1−η)N̄B)

. Substituting (40)

and (45) into (28), we obtain:

R
(M)
E ≈ ηN̄Sγ

2(1 + (1− η)N̄B)

[

log

[

w

N̄S

]

− log

[

ln

[

we

N̄S

]]

− g

[

2(1− η)N̄B(1 + (1− η)N̄B)

Mηγ

]]

, (46)

where g(x) = (x + 1) log(x + 1) − x log x. As N̄S → 0,
the logarithmic term dominates (46), and we obtain the
scaling:

R
(M)
E = O

(

N̄S log

(

1

N̄S

))

. (47)

In Appendix B, we consider a cruder approximation

of R
(M)
E , providing an alternative proof of the scaling

in (47), but one that lets us establish a connection with
a problem that was studied by Wang and Wornell in the
context of coherent-state PPM modulation, where the
dark click probability per mode λ is proportional to the
mean photon number per mode E [60].

2. Numerical rate calculations

In Figs. 11, 12, and 13, we compare the two approxi-

mations for R
(M)
E : the one we derived by modifying the

Jarzyna-Banaszek analysis of PPM applied to our prob-
lem, shown in Eq. (46) and labeled “our approx.” in Figs.
11, 12, 13, and the one we obtained from the Wang-
Wornell PPM analysis, shown in Appendix B, Eq. (B4).
It is seen that the former is closer to the true envelope,
especially for smaller values of M .

In Fig. 15a we plot (the exact) R
(M)
E as a function of N̄S

for M = 10, 102, . . . , 106. For the assumed values of η =
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0.01 and N̄B = 10 photons per mode used for plots in this
figure, the highest capacity occurs at around M ∼ 105

for JDR1 and M ∼ 104 for JDR2. The existence of such
an optimum value ofM can be explained by the negative
sign of the M -dependent second-order term in (46).
For η = 0.01 and N̄B = 10 photons per mode, our

scheme achieves the maximum rate at the modulation-
block lengthM ≈ 105. For a typical SPDC entanglement
source of optical bandwidth W ∼ 1 THz, and M ≈WT ,
M = 105 modes in a signal pulse translates to a pulse
duration of T ∼ 100 ns. This means the BPSK phase-
modulation bandwidth necessary would be ∼ 10 MHz,
which is readily realizable with commercial-grade electro-
optical modulators (EOMs) at 1550 nm.

ÿ

FIG. 11: Plot of R
(M,L)
E /C with M = 103, for

L ∈
{

2, 22, . . . , 220
}

. We assume η = 0.01 and N̄B = 10
photons per mode, for all the plots.

ÿ

FIG. 12: Plot of R
(M,L)
E /C with M = 104, for

L ∈
{

2, 22, . . . , 220
}

. We assume η = 0.01 and N̄B = 10
photons per mode, for all the plots.

ÿ

FIG. 13: Plot of R
(M,L)
E /C with M = 105, for

L ∈
{

2, 22, . . . , 220
}

. We assume η = 0.01 and N̄B = 10
photons per mode, for all the plots.

C. Performance evaluation of JDR2

Let us now consider the RM code (2L binary-phase
code words each of length L) and the JDR2, which to-
gether induce a 2L-input 2L + 1 discrete memoryless
channel. The additional output is the erasure outcome
in which no photons are detected. The transition matrix
X is defined to be the matrix of conditional probabil-
ities such that Xji is the probability that the receiver
decides on outcome i given that code word j was trans-
mitted. In this case, i runs from 1 to 2L + 1, index-
ing the possible outcomes of the receiver and j runs
from 1 to 2L, indexing the code words of the Reed-
Muller code. If the Reed-Muller code book is seen as
a Hadamard code book appended with its sign-flipped
copy with the original copy consisting of ‘plus-words’ and
the sign-flipped copy consisting of ‘minus-words’, even in-
dices of X correspond to minus-words and odd indices to
plus-words. Because of symmetry, we observe that X has
6 independent entries X11, X22, X12, X21, X14, X1,2L+1,
corresponding respectively to the transition probabili-
ties of: a plus-outcome on the pulse-containing mode
of the GM-output given that a plus-word was transmit-
ted, a minus-outcome on the pulse-containing mode given
that a minus-word was transmitted, a minus-outcome
on the pulse-containing mode given that a plus-word
was transmitted, a plus-outcome on the pulse-containing
mode given that a minus-word was transmitted, a minus-
outcome on a non-pulse-carrier given that a plus-word
was transmitted, and erasure (no clicks on any mode).
Moreover, by the same symmetry, the plus-words can
be assumed to have equal priors p+/L, and similarly
the minus-words can be assumed to have equal priors
p−/L = (1 − p+)/L where 0 ≤ p+ ≤ 1. The entirety of
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X can then be written in terms of the above values, as:

(

X2i−1,2i−1 X2i−1,2i

X2i,2i−1 X2i,2i

)

=

(

X11 X12

X21 X22

)

(48a)

X2j,2i = X2j−1,2i = X14 (48b)

Xk,2n+1 = X1,2L+1 (48c)

X2j,2i−1 =X2j−1,2i−1

=
1

L− 1
(1−X1,2L+1−X11 −X12)−X14 (48d)

for k = 1, 2, · · · , 2n; i, j = 1, 2, · · · , L; but i 6= j.
Eq. (48d) says that entries X2j,2i−1 and X2j−1,2i−1 are
obtained for free as result of the normalization condition
of the rows of X.

The information rate in bits per mode is obtained by
dividing the mutual information I(N̄S , N̄B , η, p+) associ-
ated with the transition matrix byML, the total number
of modes transmitted to send one code word. Therefore,

R
(M,L)
E (N̄S , N̄B , η, p+) =

1

LM
I(N̄S , N̄B , η, p+)

=
1

LM

(

log2(L)
(

(L− 1)X13 + (L− 1)X14 + p−(X21 +X22) + p+(X11 +X12)
)

− ((L− 1)X13 + p−X21 + p+X11) log2((L− 1)X13 + p−X21 + p+X11)

− ((L− 1)X14 + p−X22 + p+X12) log2((L− 1)X14 + p−X22 + p+X12)

+ (L− 1)X13 log2(X13) + (L− 1)X14 log2(X14)

+ p−X21 log2(X21) + p−X22 log2(X22) + p+X11 log2(X11) + p+X12 log2(X12)
)

, (49)

where the dependence of the transition probability ma-
trix elements on N̄S , L, M , and N̄B are given in Ap-
pendix F. The optimal p+ is solved numerically to satisfy

∂

∂p+
I(N̄S , N̄B , η, p+) = 0.

In Fig. 14, we plot the bits-per-mode rates of JDR2
and JDR1 as a ratio over the Holevo capacity C.
Note that Eq. (49) subsumes the rate associated with

using a Hadamard code book, which can be obtained by
setting p− = 0 and dividing the mutual information by
M(L − 1) instead of ML, since in the Hadamard code,
all code words share the same initial symbol (θ = 0),
which can hence be appended at the receiver-end instead
of consuming a channel use. The resulting capacity ratio
is only slightly less than using the full Reed-Muller code,
as Fig. 14 shows.
Fig. 15b shows that M ≈ 104 is the new optimal M

for JDR2 as opposed to M ≈ 105 for JDR1. To un-
derstand this effect, note first that repeating modes of
the trasmitted code words M -fold effectively increases
the clarity of the received code words at the expense of
consuming M -times many channel uses. Of course, once
M is high enough, the code words are almost perfectly
distinguishable and further increasing M only hurts the
communication rate by consuming unnecessary channel
uses, but when the receiver’s distinguishing power be-
tween two symbols is low (e.g. because of the shot-noise
associated with the particular design), adding clarity to
the code words is worth the extra channel uses, hence
there is an optimal value of M > 1. Depending on the
signal-to-noise (SNR) ratio of the output of the receiver’s

front-end, this optimal value ofM will be higher or lower.
Note that evaluating the Holevo information of the re-
cieved ensemble ρ̂(RI) for θ ∈ {0, π}, corresponding to
M = 1, in section III B resulted in CE . Thus a lower
value for the optimal M is indicative of a receiver be-
ing closer to optimal. By combining the sum frequency
modes, JDR2 effectively filters out a significant portion
of the noise (into the unused outputs of the γ-beam split-
ters) and reduces the SNR, which brings down the opti-
mal value of M . Since this corresponds to less channel
uses, JDR2 achieves a higher rate than JDR1.

V. PPM AND OOK MODULATION FORMATS
FOR ENTANGLEMENT-ASSISTED

COMMUNICATIONS

In Section III B, we discussed the entanglement as-
sisted capacity achievable with on-off based modula-
tion formats, while leveraging continuous-variable SPDC-
based pre-shared entanglement, and showed that the
log(1/N̄S) capacity-ratio improvement over the Holevo
capacity is attainable with such modulation formats. De-
spite the capacity not being as good as phase-only mod-
ulation formats, and the need for more pre-shared en-
tanglement, the on-off modulation formats are easier to
realize experimentally. Further, the pulse-position mod-
ulation (PPM) scheme, a modulation-code over the on-off
keying (OOK) alphabet, has a close connection to quan-
tum ranging, which also saturates the log(1/N̄S) scal-
ing [32]. The optimal receiver design for OOK and PPM
modulation formats are not known. In this section, we
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For the parameters in Fig. 15a, i.e., η = 0.01, N̄B = 10,
M = 104, we get N̄0 = 0.2, and optimal L ≈ 7. This
implies that that, for N̄S < 0.01, LN̄S . 0.07, and that
the idler pulses are still in the regime that the implicit
“qubit approximation” analysis of the SFG [31] is valid.
There are key operational differences, however, be-

tween the two schemes, which are described below:

1. Peak power usage—Even though the mean pho-
ton number that is transmitted over the channel is
identical for both schemes, the peak power is not.
The PPM scheme uses L times more peak power
than the BPSK scheme. For the aforementioned
parameters, the optimal PPM order L ≈ 7, which
implies the peak power is 7 times that of BPSK.
However, the BPSK scheme is slightly more restric-
tive since Hadamard codes exist only for L that
is an integer power of 2. However, it is possible
to redesign the BPSK scheme with complex-valued
Hadamard codes that would work for all integer L.

2. Entanglement consumption—More important
than the peak power advantage the BPSK scheme
enjoys is that its entanglement consumption is
lower. Despite the fact that the mean photon num-
ber per transmitted mode is N̄S for both schemes,
in the PPM scheme, every M -mode SPDC pulse
that needs to be pre-shared must have LN̄S pho-
tons per mode. This is true, even though (L−1)/L
fraction of the signal pulses of the pre-shared entan-
gled states will never be transmitted in the PPM
scheme. This is a major drawback for this scheme.

3. Receiver complexity—The BPSK scheme needs
the K Green Machine circuits in JDR1 and one in
JDR2 in addition to the FF-SFG modules. That is
an added receiver complexity for the BPSK scheme
over the PPM scheme.

4. Using the noise modes of FF-SFG stages—In
the BPSK scheme described in Section IV, we ig-

nore the LK “noise modes” labeled ê
(i)
k in Fig. 8.

In our operational regime, for both the BPSK and

PPM schemes, the state of ê
(i)
k is close to zero-mean

thermal state of the same mean photon number as

that of the corresponding sum-frequency mode, b̂
(i)
k .

The capacity analyses (for both BPSK and PPM)

above ignores ê
(i)
k modes. There is information

about the transmitted code word in them, which
can only increase the achievable capacity. For the
PPM scheme, one can simply do photon counting

on all the ê
(i)
k modes. For the pulse-containing

block of K noise modes ê
(i)
k , 1 ≤ k ≤ K, on-off

direct detection of those modes effectively doubles
the energy of the “on” PPM pulse, causing the
capacity-ratio plots to shift right by log10 2. This is
a small improvement, but one that only needs addi-
tional single-photon detectors. A similar capacity
improvement for the BPSK scheme leveraging the

ê
(i)
k modes requires a feedback-based scheme like
in [31], where, based on photon-detection events at
the noise modes, one adaptively applies two-mode
squeezing before and after each of the SFG stages
within the FF-SFG modules.

B. On-off keying (OOK)

Finally, PPM can be thought of as a modulation code
over an on-off keying (OOK) alphabet, and hence its ca-
pacity is strictly inferior to that of OOK, although it is
very close to OOK when E � 1. This means that an
OOK version of our modulation format also attains the
log(1/N̄S) capacity ratio. The “on” symbol (transmission
of the M -mode signal pulse) is associated with a prior
probability p and the “off” symbol (no signal transmis-
sion) with a prior probability 1− p, with p ∼ E log(1/E)
assuming the role of the inverse-order 1/L of PPM, ex-
cept that there is now no restriction that there must be
exactly one “on” pulse in every L-pulse block.

As described in Section III B, the entanglement as-
sisted capacity attainable with PPM and OOK based
modulation (with TMSV pre-shared entanglement) is
strictly inferior to that attainable with BPSK modulation
on TMSV pre-shared entanglement. However, BPSK
modulation on TMSV, paired with the GM-based JDR1
described in Section IV, attains the same entanglement
assisted capacity achievable with PPM with TMSV but
without the GM. Despite this, the BPSK-based JDRs
from Section IV may be more practical in the near term
compared to PPM and OOK formats, which require Alice
and Bob to pre-share more entanglement (i.e., the pre-
shared signal-idler mode pairs need a higher mean pho-
ton number per mode). High-rate fault-tolerant entan-
glement distribution to pre-share the resource necessary
for supporting entanglement-assisted communications is
likely to be the most expensive process in a future imple-
mentation.

VI. RECEIVER DESIGNS TO ATTAIN CE

As discussed in section III, BPSK modulation on
TMSV pre-shared entanglement suffices to closely attain
CE in the N̄S � 1, N̄B � 1 regime (the regime where
the most entanglement assisted gain CE/C ∼ ln(1/N̄S))
holds. In Section IV, we developed and analyzed two re-
ceivers for BPSK modulation on TMSV, the JDR1 and
JDR2, both of which attain entanglement-assisted com-
munication rates that exceed the 2C limit (C being the
unassisted Holevo capacity) associated with symbol-by-
symbol measurements. However, these JDRs are not op-
timal, as there is still a large gap to CE . We refer to
the JDR2 design depicted in Fig. 9 for notation, in this
section.
There are two distinct sources of information inefficien-

cies that must be addressed to close this capacity gap:
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wiched by two-mode-squeezing stages as in [31] to suc-
cessively null the mean field amplitudes of the ther-
mal states of the sum-frequency modes and the mean
thermal photon numbers of the environment modes un-
used by JDR1 and JDR2. In addition, we would like
to note that as N̄B → ∞, CE/(C ln N̄S) → 1, while

R
(M)
E /(C ln N̄S) → 1/2 [46], which indicates a possible

check, to see if the entanglement-assisted capacity at-
tained by an improved receiver design improves this ratio
from 1/2 to 1. Finally, as an alternative to the originally-
proposed random-coding method to achieve CE [21], “po-
sition based encoding” was proposed to achieve CE over a
general quantum channel [32, 55–58]. However, a struc-
tured optical receiver of the associated receiver’s joint-
detection measurement is unknown, and is an interesting
topic for future work.

Pre-shared entanglement improves capacity when the
transmitted power is low and thermal-noise mean pho-
ton number is high, despite the entanglement not sur-
viving these conditions. While typically uncommon, this
regime corresponds to covert communications, a security
modality where the mere attempt to transmit data must
be hidden. Covert transmission using n total modes is
constrained to per-mode photon number N̄S = c/

√
n

for a constant c that depends on N̄B, η, and the de-
sired stringency of covertness [44, 45]. Thus, one can
transmit covertly and reliably only O(

√
n) bits using n

modes without entanglement assistance, however, pre-
shared entanglement breaks this square root law, allowing
transmitting O(

√
n log n) bits covertly [46].
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Appendix A: OPA receiver analysis

In the low photon number regime (N̄S � 1) the com-
munication capacities are well-approximated by the Tay-
lor series expansion around N̄S = 0. For example, the
Holevo capacity C(η, N̄S, N̄B) is:

C(η, N̄S, N̄B) = ηN̄S log

(

1 +
1

(1− η)N̄B

)

+ o(N̄S).

(A1)
Here we derive the Taylor series expansion of the

entanglement-assisted communication capacity with an
SPDC source, BPSK modulation, and the OPA re-
ceiver [30] of gain G. We use it to evaluate the
entanglement-assisted capacity gain achieved by an OPA
receiver over the Holevo capacity. This channel’s capacity
is the classical mutual information between the random
binary phase input θ ∈ {0, π}, P (θ = 0) = q, modulating
the block of M transmitted symbols (i.e., M -fold tensor
product of TMSV states) and the photon-count output
L of Bob’s detector, optimized over the probability dis-
tribution of the input defined by q:

CEA-OPA(η, N̄S, N̄B) = max
q
I(θ; N̄S). (A2)

The probability that the photon counter records k pho-
tons over M modes is:

P (k|θ;M) =
1

(1 + N̄θ)M

(

k +M − 1

k

)(

N̄θ

1 + N̄θ

)k

.

(A3)

When phase θ is transmitted, the mean received photon
number per mode is:

N̄θ = GN̄S + (G− 1)N̄ ′
S + 2Cp

√

G(G− 1) cos(θ), (A4)

where N̄S is the mean photon number in each signal and
idler mode, N̄B is the mean thermal noise injected by
the environment, η is the channel transmissivity, N̄ ′

S ≡
ηN̄S + (1 − η)N̄B + 1, G is the gain of the OPA, and

Cp ≡
√

ηN̄S(N̄S + 1).
The Taylor series of mutual information I(θ; N̄S) at

N̄S = 0 is:

I(θ; N̄S) = −N̄S

∞
∑

k=0

∑

θ∈{0,π}
Qθ(k, N̄S)

∣

∣

N̄S=0
+ o(N̄S),

where
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Qθ(k, N̄S) =







q dP (k|0;M)
dN̄S

log
(

q + (1− q)P (k|π;M)
P (k|0;M)

)

, θ = 0

(1− q)dP (k|π;M)
dN̄S

log
(

(1− q) + q P (k|0;M)
P (k|π;M)

)

, θ = π
. (A5)

Substitution of (A3) and evaluation of Qθ(k, N̄S)
∣

∣

N̄S=0

by taking the limit limN̄S→0Qθ(k, N̄S) yields:

I(θ; N̄S) = N̄S8q(1− q)η

×
∞
∑

k=0

G(G− 1)k−1(N̄ ′
B)

k−2(G+ (1− η)(G− 1)N̄B)
k−M−2(k + (G− 1)M(N̄ ′

B)
2

(

k +M − 1

k

)

+ o(N̄S), (A6)

where N̄ ′
B ≡ 1 + (1 − η)N̄B. Well-known results for the

moments of binomial distribution are used to evaluate
the sum in (A6). Maximizing over q yields:

CEA-OPA(η, N̄S, N̄B) =
2ηGMN̄S

N̄ ′
B(G+ (1− η)(G− 1)N̄B)

+ o(N̄S). (A7)

The maximum gain from using the SPDC source,
BPSK modulation and the OPA receiver over the Holevo
capacity when N̄S � 1 and N̄B � 0 is thus:

lim
G↓1

lim
N̄B→∞

CEA-OPA(η, N̄S, N̄B)

M × C(η, N̄S, N̄B)
= 2, (A8)

where limG ↓ 1 indicates a one-sided limit taken from
above, and we normalize the denominator by M to ac-
count for employing block encoding of M symbols. We
note that, with such normalization, the gain does not
depend on M . There is also no dependence on the trans-
missivity η.

Appendix B: Connection with PPM with dark-click
rate proportional to mean energy per slot

In this Appendix, we consider a cruder approximation

of R
(M)
E , providing an alternative proof of the scaling

in (47), but one that lets us establish a connection with
a problem that was studied by Wang and Wornell in the
context of coherent-state PPM modulation, where the
dark click probability per mode λ is proportional to the
mean photon number per mode E [60].

Recall that R
(M)
E = supLR

(M,L)
E is the envelope of ca-

pacities attained by our scheme over all L, for a given
M . Approximations in (32)-(34) lead to the following

simplified asymptotic expressions: 1 − pc ≈ e−(LE+λ),
and 1− pb ≈ e−λ, λ = cE , with

E =
MηN̄S

2(1 + (1− η)N̄B)
(B1)

c =
2(1− η)N̄B(1 + (1− η)N̄B)

Mη
. (B2)

This is exactly the setting of L-mode coherent-state PPM
modulation and direct detection, where the dark click
probability per mode λ is proportional to the mean pho-
ton number per mode E [60]. The leading-order terms
of the optimal capacity for this setting, in the regime of
E � 1, is given by:

CPPM(E) ≈ E log
1

E − E log ln
1

E − E ln(1 + c), (B3)

with the optimal PPM order, L = b(E log(1/E))−1c [60].
Applying this result to our problem, we get

R
(M)
E =

CPPM(E)
M

, (B4)

with R
(M)
E ≈ (ηN̄S/(2(1 + (1 − η)N̄B))) log(2(1 + (1 −

η)N̄B)/(MηN̄S)) in the leading order. In the same regime
as above, κN̄S � N̄S � 1 � N̄B, the leading order
term for the Holevo capacity (attained using coherent
states and Gaussian amplitude-and-phase modulation),
C ≈ ηN̄S/N̄B, and that of the entangled-assisted capac-
ity (achieved via an SPDC transmitter and phase-only
modulation), CE ≈ (ηN̄S/N̄B) log(1/N̄S) [27]. It there-
fore follows that,

R
(M)
E

C
∼ log

(

1

N̄S

)

, ∀M, (B5)

proving that our transmitter-receiver structure attains
the optimal capacity scaling.
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Appendix E: Argument for the factor of
√
2 in the

collective treatement of the SFG output noise modes
and sum-frequency modes

Let r
(i)
k , the squeezing parameter of the kth sandwich-

ing squeezer (depicted by dark blue boxes in Fig. 20)
of the ith FF-SFG module (depicted without squeezers
by light blue boxes in Fig. 9), be proportional to αk, the
magnitude of the coherent amplitude of the kth SFG gate
in the SFG module, as

r
(i)
k = λiαk (E1)

where λi ∈ R is the proportionality constant. The
squeezing parameter is defined as in [31], such that

S(r
(i)
k ) applied on the quadratures of the signal and idler

modes âS and âI results in

â
′
S =

√

1 + (r
(i)
k )2 âS + r

(i)
k â†I (E2)

â
′
I =

√

1 + (r
(i)
k )2 âI + r

(i)
k â†S . (E3)

It can be shown based on the single-cycle analysis in the
supplementary material of [31] that under BPSK phase
modulation, the true output of the ith FF-SFG module
of JDR2 is approximately

ρ̂±true :=

[

K
⊗

k=1

ρ̂th(0, ((λi ± 1)αk)
2)

]

⊗ρ̂th((λi±1)α0, N̄T0).

(E4)

What follows is an argument that when evaluating the
Holevo capacity of the FF-SFG receiver’s output, ρ̂±true
can effectively be treated as a single mode displaced ther-
mal state

ρ̂±eff := ρ̂th(±
√
2α0, N̄T0). (E5)

This argument is based on two lemmas, the first of which
we leave as a conjecture:

1. The Holevo capacity for BPSK amplitude modu-
lation of a displaced thermal state is approach-
able with a joint-detection receiver that uses se-
quential code word nulling followed by a nonde-
structive multi-mode vacuum-or-not measurement
(known to attain the Holevo capacity for coherent
state bpsk modulation [1]) such as the receiver de-
picted in Fig. 22.

2. The transition probability matrix of the channel in-
duced by the vacuum-or-not (VON) receiver where

received code words are encoded in the states ρ̂±eff
is identical with that of the channel whose received
code words are encoded in the states ρ̂±true.

Proof of Lemma 2. First note that overall displace-
ment of an ensemble will not affect its Holevo capacity
since displacement can be thought of as the limit of a
unitary transformation, so ρ̂±eff can be redefined without

loss of generality to be ρ̂th((λi ± 1)
√
2α0, N̄T0).

Let c ∈ {±1}L be a random code word. Then set ~λ
to null ρ̂cltrue and ρ̂cleff, i.e. λl = −cl ∀l ∈ {1...L}. Let
b ∈ {±1}L be the transmitted code word. Then the true
and effective received states are

ρ̂b,true :=

L
⊗

l=1

([

K
⊗

k=1

ρ̂th(0, (2αkδbl,cl)
2)

]

⊗ ρ̂th(2α0(bl − cl), N̄T0)

)

(E6)

ρ̂b,eff :=

L
⊗

l=1

ρ̂th(2
√
2α0(bl − cl), N̄T0), (E7)

where δ is the Kronecker-Delta symbol.
Let |0n〉 denote the n-mode vacuum state and |α〉 a

coherent state with mean field α. Calling the channel in
which the received states are ρ̂b,true the true channel and
the channel in which the received states are ρ̂b,eff the ef-
fective channel, the transition probability matrix of the
true channel induced by the VON receiver is determined,
up to asymptotically insignificant residual terms associ-
ated with the small perturbation of the “not vacuum”
outcome, by the probabilities

〈0L(K+1)|ρ̂b,true|0L(K+1)〉

=

L
∏

l=1

(

[

K
∏

k=1

〈0|ρ̂th(0, (2αkδbl,cl)
2)|0〉

]

× 〈0|ρ̂th(2α0δbl,cl , N̄T0)|0〉
)

(E8)

and that of the effective channel is determined entirely
by the probabilities

〈0L|ρ̂b,eff|0L〉 =
L
∏

l=1

〈0|ρ̂th(2
√
2α0δbl,cl , N̄T0)|0〉, (E9)

which are enumerated by varying the transmitted code
word b.
So the proof of assumption 2 reduces to showing that

the factors in the outermost products of Eq.s (E8) and
(E9) equal each other.
It is shown in section E 1 that the product over k in

Eq. (E8) approaches 〈0|2α0δbl,cl〉〈2α0δbl,cl |0〉 in the large
K limit. Then eq. E8 can be reduced to write
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P (1; t|RM(1,±)) =

lim
∆t→0

Tr
(

M̂2 †
|0〉M̂2

|0〉ρ̂
(0)
(t;∆t)

)L−1

Tr
(

(̂I⊗3 − M̂2 †
|0〉M̂2

|0〉)ρ̂
(±1)
(t;∆t)

)

(F3a)

P (2; t|RM(1,±)) =

lim
∆t→0

Tr
(

M̂2 †
|0〉M̂2

|0〉ρ̂
(0)
(t;∆t)

)L−2

Tr
(

M̂2 †
|0〉M̂2

|0〉ρ̂
(±1)
(t;∆t)

)

Tr
(

(̂I⊗3 − M̂2 †
|0〉M̂2

|0〉)ρ̂
(0)
(t;∆t)

)

(F3b)

PKen1

(

−|RM(1,±); t
)

= lim
∆t→0

Tr



M̂3 †
|0〉M̂3

|0〉D̂3
β(t)

(̂I⊗3 − M̂2
|0〉)ρ̂

(±1)
(t;∆t)(̂I

⊗3 − M̂2 †
|0〉)

Tr
(

(̂I⊗3 − M̂2 †
|0〉M̂2

|0〉)ρ̂
(1)
(t;∆t)

) D̂3 †
β(t)



 (F3c)

PKen1

(

+|RM(1,±); t
)

= 1− PKen1

(

−|RM(1,±); t
)

(F3d)

Perasure = Tr
(

|0〉〈0|ρ̂th(
√
Lα0, N̄T0)

)

Tr
(

|0〉〈0|ρ̂th(0, N̄T0)
)L−1

(F3e)

and additional non-zero probabilities for the non-pulse-containing outputs

PKen2

(

−|RM(1,±); t
)

= lim
∆t→0

Tr



M̂3 †
|0〉M̂3

|0〉D̂3
β(t)

(̂I⊗3 − M̂2
|0〉)ρ̂

(0)
(t;∆t)(̂I

⊗3 − M̂2 †
|0〉)

Tr
(

(̂I⊗3 − M̂2 †
|0〉M̂2

|0〉)ρ̂
(0)
(t;∆t)

) D̂3 †
β(t)



 (F3f)

PKen2

(

+|RM(1,±); t
)

= 1− PKen2

(

−|RM(1,±); t
)

(F3g)

where

ρ̂
(σ)
(t;∆t) = e

ηLα2
0

ηN̄T0+1
ηN̄T0 + 1

πN̄T0

∫

C

d2γ e
− |γ−σ·

√
Lα0|2

N̄T0 e−η|γ|2 |0〉〈0| ⊗ | −√
∆t
T
γ〉〈−√

∆t
T
γ|

⊗ |√1− t+∆t
T

γ〉〈√1− t+∆t
T

γ|

is a green machine output mode (with σ ∈ {−1, 0, 1})
sliced at times t and t+∆t (with a succession of splitting
operations of transmissivity t/T and ∆t

T−t respectively as
shown in Fig. 33 whose first slice has been measured to
have no clicks, D̂3

β(t) is the displacement operator acting

on the third slice with Kennedy nulling β(t), and M̂i
|0〉

with i ∈ {1, 2, 3} is the measurement operator of the
vacuum (no clicks) outcome for the ith slice of the mode.

For example M̂1
|0〉 = |0〉〈0| ⊗ Î⊗ Î[67].

Equations F3 evaluate to[68]

P (1; t|RM(1,±)) =
e
− t

tN̄T0+T
Lα2

0

T

(

T

tN̄T0 + T

)L+2

(
t

T
N̄2

T0 + N̄T0 + Lα2
0) dt (F4a)

P (2; t|RM(1,±)) =
e
− t

tN̄T0+T
Lα2

0

T

(

T

tN̄T0 + T

)L+2

(
t

T
N̄2

T0 + N̄T0) dt (F4b)
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PKen1
(−|RM(1,±); t) =
(

tN̄T0 + T

T

)3

(
t

T
N̄2

T0 + N̄T0 + Lα2
0)

−1(1 + N̄T0)
−3

× e
t Lα2

0
tN̄T0+T

−
Lα2

0±2
√

Lα0β(t)

√
T−t
T

+β(t)2(1+N̄T0
t
T

)

1+N̄T0

×
(

N̄2
T0(1 + β(t)2 T−t

T
) + N̄T0(1∓ 2

√
Lα0β(t)

√

T−t
T

) + Lα2
0

)

(F4c)

PKen1(+|RM(1,±); t) = 1− PKen1

(

−|RM(1,±); t
)

(F4d)

Perasure = (1 + N̄T0)
−Le

− Lα2
0

N̄T0+1 , (F4e)

PKen2
(−|RM(1,±); t) =

(tN̄T0 + T )2

T 3(N̄T0 + 1)3
(

(T − t)N̄T0β(t)
2 + T (N̄T0 + 1)

)

e
− (tN̄T0+T )β(t)2

N̄T0+1 (F4f)

PKen2
(+|RM(1,±); t) = 1− PKen2

(−|RM(1,±); t) (F4g)

where the nulling β(t) =
√
Lα0 is taken to be exact. To

evaluate the transition probabilities, we plug in expres-
sions F4 into Eq.s (F1) and numerically integrate over
the pulse duration.
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