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Abstract—Single-photon cameras (SPCs) have emerged as a promising new technology for high-resolution 3D imaging. A
single-photon 3D camera determines the round-trip time of a laser pulse by precisely capturing the arrival of individual photons at each
camera pixel. Constructing photon-timestamp histograms is a fundamental operation for a single-photon 3D camera. However, in-pixel
histogram processing is computationally expensive and requires large amount of memory per pixel. Digitizing and transferring photon
timestamps to an off-sensor histogramming module is bandwidth and power hungry. Can we estimate distances without explicitly
storing photon counts? Yes—here we present an online approach for distance estimation suitable for resource-constrained settings
with limited bandwidth, memory and compute. The two key ingredients of our approach are (a) processing photon streams using race
logic, which maintains photon data in the time-delay domain, and (b) constructing count-free equi-depth histograms as opposed to
conventional equi-width histograms. Equi-depth histograms are a more succinct representation for “peaky” distributions, such as those
obtained by an SPC pixel from a laser pulse reflected by a surface. Our approach uses a binner element that converges on the median

(or, more generally, to another k-quantile) of a distribution. We cascade multiple binners to form an equi-depth histogrammer that
produces multi-bin histograms. Our evaluation shows that this method can provide at least an order of magnitude reduction in
bandwidth and power consumption while maintaining similar distance reconstruction accuracy as conventional histogram-based

processing methods.

Index Terms—Computational Photography, 3D Sensing, SPAD LiDAR, Race Logic

1 INTRODUCTION

A wide range of computer vision applications—
including industrial robotics, machine vision, au-
tonomous driving, and augmented reality—mneed low-
power 3D perception. Image sensors capable of capturing
single photons (e.g. single-photon avalanche diode (SPAD)
sensors, high-gain avalanche photodiodes, and silicon pho-
tomultipliers) have gained popularity recently as detectors
of choice for such applications. SPAD-based 3D cameras
have now found their way into commercial devices such
as smartphone cameras [1], light detection and ranging
(LiDAR) sensors for autonomous robotics [2] and cameras
for scientific imaging [3]. Due to their compatibility with
CMOS fabrication technology, there is increasing availabil-
ity of high (kilo-to-megapixel) resolution arrays of SPAD
pixels with additional data processing embedded in the
same hardware chip. Unfortunately, their high sensitivity
and speed is a two-edged sword: the amount of raw data
generated by these sensors is orders of magnitude higher
than can be reasonably processed or transferred in real time.
This aspect limits their applicability in many real-world
applications, especially those that are power and bandwidth
constrained.

A single-photon camera (SPC) captures distance infor-
mation using the direct time-of-flight (dToF) principle [4].
A pulsed laser source illuminates each scene point and
the corresponding camera pixel captures a stream of return
events that represent the delays of the photon arrivals rel-
ative to the time the laser pulse was emitted. These return
events capture not only the returning laser photons but also
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spurious photons due to ambient light and other sources
of noise. Traditional methods estimate the time-varying
distribution of light intensity, called the transient distribution,
by digitizing and storing photon return events in the form
of an equi-width (EW) histogram where each histogram
bin represents a fixed time interval, usually ~10-100s of
picoseconds. The location of the peak in this EW histogram
provides an estimate of the true distance of the scene point.
Although this EW histogram-based processing technique
provides reliable distance estimates, time-to-digital conver-
sion of individual photon delays and transferring these off-
sensor for histogram formation consumes a large amount of
power. It is infeasible to build high-resolution histograms
on the image sensor due to the limited memory and com-
putational resources available at each pixel. The inherent
power- and bandwidth-hungry nature of histogram-based
SPC data processing poses a significant hurdle to scaling
this technology to higher pixel resolutions.

One way to compress EW histogram data is to use
coarser histogram bins. However, as shown in Fig. 1, this
approach causes severe quantization artifacts in the distance
map. We propose a radically different approach for direct
time-of-flight imaging that enables high resolution 3D scene
reconstruction while consuming orders of magnitude lower
bandwidth. An example result achieving > 100X compres-
sion is shown in Fig. 1. Our technique relies on two key
ingredients: (a) temporal encoding using race logic, and (b)
equi-depth histograms.

(a) Temporal encoding using race logic: Instead of attempt-
ing to digitize and store each individual photon delay using
time-to-digital converters (TDCs) which often consumes a
large fraction of the pixel area and total power, we perform
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Fig. 1. Comparison of direct time-of-flight 3D sensing techniques:
Single-photon 3D cameras enable higher spatial and distance resolu-
tions compared to conventional analog LiDAR sensors that are based on
low resolution arrays of photodiodes with spinning assemblies. However,
conventional histogram-based SPCs suffer from severe bandwidth bot-
tlenecks that limit their frame rates. Using coarsely binned histograms
can reduce bandwidth requirement but at the cost of severe loss in
distance resolution. Our method is count-free and provides an on-sensor
compressed representation suitable for distance estimation.

as much of the processing as possible in the analog time-
delay domain. To this end, we harness recent advances in
the field of race logic, where information is encoded not
in the voltage levels of signals but in their precise arrival
times [5]. Temporal processing using race logic is naturally
suited to single-photon time-of-flight 3D sensing because
the arrival times of the photon-return events carry useful
scene information (scene distance and reflectivity). Recent
work [6], [7] has shown the advantages of performing time-
differential measurements instead of capturing each photon
arrival timestamps using time-to-digital converters (TDCs).
We avoid the need for TDCs by operating in the time-delay
domain.

(b) Count-free equi-depth histograms: The second key
ingredient of our method is to construct equi-depth (ED)
histograms for summarizing the detected photon streams,
rather than the conventional equi-width (EW) histograms
that other methods employ (see Fig. 2(b)).” We present a

*The word “depth” in equi-depth histograms should not be con-
fused with scene point distances captured by a 3D camera. In this
paper, we will use the terms “distance” and “distance map” to avoid
confusion.

technique that directly extracts ED histogram bin bound-
aries without explicitly storing photon counts, providing
a parsimonious power- and bandwidth-efficient summary
of the shape of the transient distribution. Unlike an EW
histogram, where most of the histogram bins are spent
on storing ambient photons, our count-free ED histogram
technique provides finer granularity around the peak of the
transient distribution where signal photons arrive.

We combine these ingredients in a “binner” element (see
Section 3) that tracks the median of a transient distribution.
Because of ambient light and asymmetry in the distribution,
that median might be displaced from the peak of that
distribution. Therefore, we cascade multiple binners into
a “histogrammer” that produces an ED histogram with
multiple boundaries. Our novel contribution is using race
logic pre-processing to estimate equi-depth histograms in
an online fashion while avoiding the large power and band-
width requirements of current TDC-based designs.

Limitations: Although we do not show a complete hard-
ware implementation of our proposed binner circuit, we
believe the binner element is simple enough to fabricate on
a sensor chip. We note that a histogrammer will require a
binner per ED histogram bin boundary which may increase
circuit complexity. However, if the required circuitry proves
too extensive to include on a per-pixel basis, we can share it
across pixels. We show some possible pixel and pixel-array
designs in Suppl. Sec. S.4.

2 RELATED WORK

Single-photon 3D sensing: Almost all existing approaches
for single-photon 3D imaging rely on explicitly constructing
an EW histogram of photon arrival delays [8] and extracting
high-resolution distance information from them [9], [10],
[11], [12], [13]. Recent attempts at compressing this data
rely on ideas from sketching [14], coding theory, and sig-
nal processing such as Fourier-domain compression [15],
random projections based on compressed-sensing theory
[16], and directly measuring a compressed representation
such as a low-dimensional parametric model [17]. Hardware
approaches involve on-chip resource-sharing schemes [18],
or two-step histogram capture (first acquire a coarse EW
histogram, then zoom into a sub-region of interest [19], [20]).
The adaptive zooming strategy was also explored in a differ-
ent context of distance resolution enhancement [21], where
an SPC with a fast time-gate adaptively selects photons from
a specific distance of interest. Methods exist to compress EW
histograms on the fly using a linear compression schemes
that can be implemented in hardware. However, on-sensor
compression techniques often require additional in-pixel
memory and compute to implement these compression
matrices [15]. Our work bypasses the need to explicitly
form an EW histogram and directly generates a compressed
representation of the full transient distribution, reducing the
bandwidth and power requirements by at least an order of
magnitude. Our method does not store any coding matrices
and can be implemented with minimal in-pixel memory and
compute.

Data-Stream and Time-Series Processing: Our work on
compressing transient distributions is inspired by database
literature on adaptive methods for characterizing data
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Fig. 2. SPC image formation model and optimal histogramming for peaky distributions: (a) An SPC captures a return stream of photon events
at different time delays with respect to the transmission time of a laser pulse. The photon stream contains both signal and ambient photons. (b)
Data with peaky distributions are better summarized by an ED histogram because the narrow bins around the true peak location capture the shape
of the peak more reliably. Using bins B7 and B8 gives a more accurate estimate (543) of the number of students (554) in the age range 28 to 30 as

opposed to using the single bin B3 (1189) in the EW histogram.

streams and time series. Methods such as variable-window
data-stream aggregation [22] and piecewise representations
[23], [24], [25] can provide better task performance under
constraints on the number of bins. However, such methods
are not suitable for on-line implementations because they
make a complete pass over the entire history of data stream
events. In contrast, our method processes the photon delay
stream on a per-laser-cycle basis, without explicitly storing
the complete history of photon arrival events. Scan statistics
try to identify areas of above-average density in a dataset
[26], but these methods also suffer from limitations for
large datasets [27]. Multiple authors have studied optimal
histogram formulations over data streams, including ap-
proximate methods for histograms and related summaries
with good time, space and error bounds [28], [29]. However,
applying these methods in our setting requires first convert-
ing delays to digital values, which we are trying to avoid.

Race Logic: Conventional digital logic encodes information
in the form of specific voltage levels that denote binary
digits (usually a low voltage for a 0 and a high voltage for a
1). Instead of encoding information in the voltage levels, race
logic encodes information in the time of arrival of a voltage-
level change. The term “race” originates from the idea of
exploiting race conditions in digital circuits [30]. Signals
encoded using their times of arrival can be treated as math-
ematical objects that lead to a type of computational logic—
different from conventional Boolean algebra—called space-
time algebra [31]. Since photon-arrival delays are the smallest
unit of scene information captured by an SPC, the race
logic paradigm is naturally suited to our problem.” Recent
work shows that standard digital circuits (e.g. FPGAs) can
implement race logic and can provide orders-of-magnitude
reduction in power while maintaining accuracy similar to
digital counterparts [5].

*The idea of using signal races has been used to implement Boolean
functions [32]. In this work we use the term race logic in the sense
of Madhavan et al. [33] where the time delays themselves encode
information.

3 IMAGE FORMATION

Fig. 2(a) shows the image formation model for a single scene
point using a dToF imaging system. A pulsed laser sends
out a short light pulse s(t) with a repetition period T into
the scene.” Photons traveling at the speed of light ¢ bounce
off the scene point located at a distance d and are received
by the corresponding pixel in the camera. The same pixel
also recieves a background signal oy, which we assume
is a constant and does not vary with time. The camera
pixel receives a shifted and scaled version of this light pulse
together with the background signal:

p(t) = <Psig(t) + Pbkg (1)

where ¢(t) is periodic with period T, which is the spacing
of the laser pulses. Thus for t > T, ¢(t + nT) = ¢(t) for
n € Z. For 0 <t < T, gg5(t) = ns(t — 74). The shift
Tq = 2d/c corresponds to the distance of the scene point
and the unknown scaling 0 < 1 < 1 accounts for scene
reflectivity and signal loss terms due to imperfect optics and
sensor quantum efficiency.® The ideal time-varying distribu-
tion of light intensity (Eq. 1) received by the camera pixel is
called the transient distribution. An SPC pixel captures a
return stream of events consisting of photons that follow
a periodic inhomogeneous Poisson process with rate ¢(t).
The total signal strength is given by &g, = fOT wsig(t) dt,
the background strength is given by @y, e ©bkg ', and the
signal-to-background ratio is defined as SBR = Dgig / Pk
The background strength subsumes all sources of random
noise that introduce unwanted counts (including ambient
light and dark counts).

Conventional SPC (equi-width histograms): A conven-
tional SPC pixel uses a time-to-digital converter (TDC) to
digitize and aggregate photon arrival times into an EW
histogram of photon counts. Assuming a time bin resolution
of A, the histogram has B = [T'/A] bins. Most practical

*A common choice for s(t) is Gaussian pulse model with a known
width (FWHM). This model can also include an instrument response
function (IRF) h(t) by convolving it with s(t).

$We assume that all scene points are located within a maximum
distance range of dmax = ¢T'/2.



systems today construct such histograms with ~1000 time
bins, where each bin stores photon counts as 8-bit unsigned
integers. EW histograms are constructed for each scene
point by repeating the measurement process over many
(~100-1000’s) laser pulses. Intuitively, the location of the
peak of this measured histogram provides an estimate for
the true distance. In practice, distance is estimated by pick-
ing the “arg max” bin of this histogram or using techniques
such as log-matched filtering in combination with statistical
[9] or data-driven [34] spatio-temporal processing methods.

Although this approach provides high-quality distance
maps, the process is resource hungry: Imagine a megapixel
SPC with dedicated 1024-bin histogrammers in each pixel,
where each histogram bin maintains a one-byte photon-
count register. Such a camera running at 30 fps would
generate over 200 gigabits per second, an impractically large
amount of data to transfer off the image sensor. An alter-
native is to stream each digitized timestamp off the image
sensor to a dedicated histogrammer circuit. This alternative
is undesirable because of the need to move large amount of
timestamp data, which not only consumes power but also
places a large bandwidth bottleneck at the image sensor.

What if, instead, we could capture distance information
without explicitly capturing photon-count histograms?

Towards count-free histograms: The basic building block of
our method is a binner circuit shown in Fig. 3(a) that proba-
bilistically tracks a certain k-quantile (usually the median) of
the transient distribution. As shown in Fig. 3(b), the binner
consists of a reference signal (RS) that divides the incoming
photon stream (SR) into early and late streams (SE and
SL), and a control value (CV) that determines the duration
of RS and which the binner adjusts during operation. The
reference signal drives a PASS-INHIBIT operation found in
race logic [5], [31]. In each laser cycle, the binner circuit
tracks the number of photons in SE and SR and and adjusts
the control value to move the reference-signal boundary in
the direction where more photons were received, with the
objective of eventually having equal numbers of events on
either side of this boundary.

The movement of the bin boundary is probabilistic and
can be modeled as a random walk. Suppose that the binner
operates over a window length of L. We assume an un-
derlying discrete time-grid; the binner’s CV is updated by
discrete step sizes of 1. In practice, the SPAD pixel’s jitter
limits the smallest possible step size to ~ 100 picoseconds
[35], [36]. Let E; denote the CV after 7 laser cycles have
elapsed. The number of photons in SE and SL are inde-
pendent Poisson random variables (with possibly unequal
means depending on the current CV location). Hence, the
transition probabilities P(E; = k£ 1|E; = k) are given by a
Skellam distribution. (See Supplement S.1 for details). After
sufficient laser cycles have elapsed, the limiting distribution
of E; is the stationary distribution of this Markov chain.
The shape and spread of this limiting distribution can be
computed numerically; it is a function of the true peak
location, the signal strength and SBR. Although we are not
guaranteed movement towards the true median on every
cycle, the mode of the stationary distribution (for realistic
SBR levels) is at the overall median of the transient distribu-

tion (Fig. 5).1

The following theoretical result shows that, with high
probability, CV moves closer to the median on subsequent
laser cycles if its current position is sufficiently far from the
true median.

Theorem. Let € > 0 be an arbitrarily small probability threshold
and suppose that CV # true median. Then, for sufficiently large
total photon rate (signal+background), the probability that CV
does not move closer to the median on the next cycle is < e.

The proof uses a Chernoff bound argument for the differ-
ence between two independent Poisson random variables.
See Supplement S.1 for details.

A key feature of the binner approach is that it is count-
free. Therefore our theoretical guarantee is weaker than pre-
viously known results for streaming median estimation [37],
[38], which require maintaining some history of past photon
timestamps. We do not store the history of photon counts
across cycles to form a histogram. The binner updates its CV
immediately and locally in each laser cycle based only on
photons received in that cycle. Each pixel need only main-
tain its CV, providing a large reduction in data requirements.
While our simulations represent the CV as a register, our
method is also compatible with purely analog implemen-
tations without in-pixel time-to-digital conversion, using,
for example, a comparator that outputs an analog quantity
proportional to difference in the number of photons in SE
and SL. Either approach allows us to adjust the CV on a
finer scale than what is afforded by the fixed-size bins of an
EW histogram.

A median-tracking binner generates a two-bin equi-
depth histogram where the CV corresponds to the esti-
mated location of boundary between the two bins. In an
ideal scenario of extremely high SBR (negligible background
strength), the median will closely track the true peak, and
we can estimate distance by simply reading out and digi-
tizing CV. More generally, a quantile-tracking binner circuit
can track other quantiles of the transient distribution, by
changing its increment-decrement logic. For example, mak-
ing CV increments 3x as large as decrements, the binner can
track the 75 percentile of the transient distribution.

Effect of Photon Pileup: A SPAD pixel cannot capture
incident photons that arrive too close to each other because
it needs time to reset after each photon detection. This effect
is called the dead-time and is on the order of 10-100 ns. In case
of extremely high incident photon flux, the measurements
are biased towards early arriving photons, which results in
pileup distortions. Existing computational pileup correction
techniques that operate on EW photon histograms [39], [40]
cannot be used for the output of a binner because it does not
keep track of the full history of photon counts. However, our
method is compatible with existing optical and hardware
approaches [12], [41] that mitigate both ambient- and signal-
induced pileup during acquisition.

TWe use the terms “median-tracking” and “quantile-tracking” in
this probabilistic sense. The binner circuit does not “lock on” to the
exact median of the transient distribution because it does not store the
full history of photon arrivals and those arrivals are random in any
given cycle.
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Fig. 3. Proposed “binner” circuit tracks the median (or other quan-
tiles) of a transient distribution. (a) The basic binner circuit receives a
photon event stream as its input which it splits into early and late events.
The difference between the two sides is used to update a control value
that converges towards the true median over multiple laser cycles. (b)
An example timeline showing the photon stream that is split into early
and late streams using a race logic-inspired reference signal that applies
an INHIBIT-PASS operation around the current control value.

4 ANALYSIS OF A MEDIAN-TRACKING BINNER

In this section we explore binner behavior—convergence,
bias and accuracy—via simulation and formal models. Our
simulation produces cycles of photon return events sampled
from an underlying transient distribution. (In this section,
the transient distribution is based on a Gaussian pulse plus
random ambient light; in later sections we also use transient
distributions generated from 3-D scene models.) For each
cycle, we sample this distribution using an inhomogeneous
Poisson process that simulates shot noise, dark counts and
quantum efficiency of a real-world SPAD pixel. For our
simulation, the range, B, is 1000 units and we adjust the
CV in steps of size 1. We also use a Markov-chain model,
detailed in Supplement S.1.
Binner convergence: The CV is an estimate of the true
median of the transient distribution (including background).
If CV is away from true median, then more photons will
likely arrive on the side towards true median, so it is more
likely that CV will move towards the true median than
away. Intuitively, in the absence of noise, the binner’s CV
must settle at the location where the numbers of events
in the SE and SL streams (Fig. 4) are—on average—equal,
which is the median. Once CV reaches true median, it will
fluctuate around it.

The speed of binner convergence depends on the signal
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Fig. 4. Simulated trajectories of a binner’s control value for varying
signal strength and SBR. We plot the evolution of a binner’s control
value as a function of laser cycle number under different signal and
SBR conditions. The ground truth transient consists of a laser pulse with
FWHM 2 ns, located at 100 with B = 1000. The binner step size is set to
+1. (a) For fixed SBR, convergence is faster for higher signal strengths.
(b) For fixed signal strength, as SBR increases, the true median location
moves closer to the true peak location.

strength and SBR. Fig. 4(a) shows the CV for example runs
of a simulated binner over multiple laser cycles with fixed
SBR=1.0 and varying signal strength from low to high. We
see in general that convergence is faster with higher signal
strength (since a cycle is less likely to have balanced or
no photons), but is slowed by higher background levels of
(since there is a greater chance of a move in the wrong
direction). These runs used a fixed step size of 1. See
Supplement S.2 for initial results with stepping strategies
that can help speed up convergence.

Bias due to ambient light: In low ambient light, a binner’s
CV moves towards the location of the peak of the transient
distribution and eventually settles at or near it. However,
with strong ambient light, the final boundary can be farther
away from the peak because the median of the transient
distribution depends on not only the signal but also the
background. The stronger the background, and the farther a
peak is from the midpoint of the range, the larger the bias.
Fig. 4(b) shows example runs of a binner under fixed signal
and varying SBR. The shift in the true median is apparent.



At high SBR, the median is close to the peak position,
and “wandering” is more constrained. As the background
increases (SBR decreases), the median shifts from the peak
position towards the midpoint (500) of the total range.
While it might be possible to adjust for bias if signal strength
and background are known, in Sec. 5 we present a more
robust approach to this issue.

Binner accuracy: We saw that once a binner reaches the
vicinity of the true median, its CV can continue to “wander”
around that position. Thus, even after convergence, there is
still a range of possible values we might obtain on read-out
of the CV. Several factors influence how much deviation we
expect to see from the true median, such as signal strength,
SBR and the position of the signal peak. Supplement S.1
provides a Markov-chain model of binner behavior, which
we have used to study convergence and accuracy. While
we do not have a closed-form solution for the stationary
probability distribution (SPD) of this model, we can de-
rive SPDs numerically for different combinations of signal
strength, background level and peak position. These SPDs
provide insight on the degree of “wandering” of the CV
under different conditions. Fig. 5 shows a variety of SPDs for
different signal-peak positions (100, 250, 400) and SBRs (1.0,
0.5, 0.2, 0.01). For each SPD, the gray line indicates the true
median of the corresponding transient distribution. Some
observations:

e The modes of the SPDs are always at the true medi-
ans.

e The true median is closer to the range midpoint with
decreasing SBR.

e The spread of the SPD around the true median is
greatest for intermediate SBRs. At those ratios, the
transition probabilities for the CV roughly balance to
the left and right.

We quantify the spread for these SPDs in Table 1, which
shows the probability of the CV being within 5, 10 and 20
units of the true median (after convergence). One means to
cope with the “spread” of CV values is to read out the CV
multiple times. We evaluate that strategy in Section 5.

TABLE 1
Probability of the binner control value is within +5/ + 10/ £ 20 units of
the true median location after Markov chain convergence at two
different signal strength of 0.1 and 1.0 and varying SBRs.

% probability +5/ 4= 10/ £ 20 from median

peak  signal SBR SBR SBR SBR
location level 0.01 0.2 0.5 1.0
100 0.1 40/71/97 24/46/78  21/41/72 64/89/99
1.0 63/93/100 34/62/92 27/50/83 76/95/100
250 0.1 40/71/97 24/46/78 20/40/71 92/99/100
1.0 63/93/100 34/62/92 24/49/82  97/100/100
400 0.1 40/71/97 25/47/79 89/99/100  98/100/100
1.0 63/93/100 32/61/92 96/100/100 100/100/100

A single binner might not provide a good estimate of
the peak of the transient distribution, because of bias and
greater “wandering” resulting from ambient light. Asym-
metric and multiple peaks also present challenges. The
next section describes how a cascade of binner circuits can

Binner stationary distribution: Effect of SBR and peak location
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Fig. 5. Stationary distributions of a binner’s control value at different
signal and background levels and varying peak locations as predicted
by the Markov chain model. The median of the transient distribution is
closer to the true peak location at high SBRs and closer to the midpoint
of the overall range as the background increases. Observe that the
mode of the stationary distribution is always aligned with the true median
location which suggests that the control value probabilistically tracks the
true median. The spread depends on the peak location and SBR.

capture multi-bin equi-depth histograms of the transient
distribution. We will see that the adaptive nature of ED
histograms can cope with bias and increase SBR in the
critical region of the signal. We show that it is possible to
obtain accurate distance estimates with as few as 8 or 16
ED histogram bins due to their adaptive nature and ability
to reliably focus attention around the true peak, as shown
intuitively in Fig. 2(b).

5 COUNT-FREE EQUI-DEPTH HISTOGRAMMER

This section describes a method for cascading multiple
binner circuits to capture a multi-bin ED histogram. We call
this implementation an equi-depth histogrammer (EDH). In
this binary-tree arrangement of binners, the early and late
streams from each binner are fed into two binners in the
next stage of the tree. For illustration, Fig. 6 shows a 3-stage
EDH (that produces eight bins) and some example outputs.
The seven bin boundaries DJ[1..7] correspond to an inorder
traversal of the EDH tree outputs.

Robustness to ambient light: An advantage of the tree-
based approach is that binner stages at deeper levels in
the tree that are at or near the true peak location are not
significantly affected by the presence of ambient photons
outside the sub-windows that are enforced by the higher
levels in the tree. This property not only provides ambient-
light rejection, but also optimizes readout bandwidth. Un-
der realistic SBR levels, upper binner stages of an EDH
partition off background light, while most of the binners
automatically and adaptively focus on the interesting re-
gions of the transient distribution where the peak is located
(Fig. 6(c)). In contrast, conventional EW histograms allocate
equal number of bins throughout the measurement window.
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Fig. 6. Equi-depth histogrammer consisting of a tree of binners. (a) Binners shown in Fig. 3 can be cascaded into a 3-stage binary tree. An
inorder traversal of this tree gives the 7 ED bin boundaries DJ1..7]. The binner outputs of an 8-bin (7-boundary) EDH for a simulated transient
distribution are shown in (b) and (c). (b) In the presence of low ambient light, most of the ED bin boundaries cluster at the true peak location in this
simulated distribution. (c) In case of higher ambient light, the bin boundaries are spaced farther apart with additional bins absorbing the ambient
light, but the narrowest ED bins still cluster around the true peak location.

When using an EW histogram in the presence of strong
ambient light, a significant fraction of the total readout
bandwidth and energy is spent on digitizing and transfer-
ring background photons. Although this aspect could be
improved by focusing EW histogramming resources around
the true peak location, a priori knowledge of the peak loca-
tion may not be available. An EDH focuses its bins around
the true signal peak without prior knowledge of its location.

The adaptive nature of EDHs also helps limit CV
“spread” at low SBRs. A narrow bin around a signal peak
will have a higher SBR than the overall ratio. (“Background”
bins will have lowered SBR.) As a notional example, con-
sider an EDH with a window width of B = 1000 where
both signal and background levels are at 2.0, so SBR is 1.
Consider a stage-4 binner whose input is a narrow bin from
its stage-3 parent. Suppose that bin is 50 units wide. At stage
3, there are 8 bins, and the total level is 4.0, so each bin is
expected to have 4.0/8 = 0.5 units. Since the background
level is uniform across the whole range, the background
contributes (50/1000) - 2.0 = 0.1 units to the bin. Thus,
the other 0.5 — 0.1 = 0.4 units must be signal, hence the
SBR for the bin is 4. As another example, if the stage-3 bin is
20 units wide, we will have 0.04 units of background in the
bin and 0.46 units of signal, for an SBR of 0.46/0.04 = 11.5.
Hence we can expect less variance in boundary positions for
the narrow bins around the signal peaks as we go down the
EDH tree.

At this point it is natural to wonder: How should the
different stages of an EDH be initialized? How many laser
cycles does it take for the different stages to converge? How
do we estimate scene distance from the ED histogram bin
boundaries obtained from an EDH? And finally, how do dif-
ferent signal and background strengths affect performance?
We now analyze practical design aspects of an EDH, then
turn to performance evaluation in Sec. 6.

EDH initialization and updates: Assuming no a priori
information about the true peak location or the shape of
the transient distribution, at the outset, we initialize the
CV of the first stage BN1 at half of the maximum distance
range. After a certain number of laser cycles have elapsed,
we freeze BN1 and initialize the next stage of binners BN1.1

and BN1.2 at the midpoints of their respective sub-ranges
and then adjust their CVs over subsequent laser cycles.
For example, if binner BN1 has a CV D[4] when frozen,
we initialize BN1.1 and BN1.2 to D[4]/2 and (T' + D[4])/2,
respectively, where T' is the overall window size (laser cycle
duration). In general, we launch binners at stage ¢ + 1
after freezing the binners at stage i, initializing each of the
former at the midpoint of the range prescribed by the binner
feeding it from the previous stage. In our simulations, we
typically run a 4-stage EDH for 5000 cycles; each stage runs
for 1250 cycles.

The CV of a given binner are adjustable on a finer time
scale than for TDC-based systems, since we do not digitize
photon arrivals. When seen from the perspective of the
bin locations of a high-resolution EW histogram, the EDH
control values can span “fractional” bins and lie between
two bin edges. Although a fundamental limit is imposed by
the timing jitter of the SPC pixel (~30ps for SPADs), we
can allow the control value to adjust on an even smaller
timescale to average out the effect of this jitter.

EDH convergence: The Markov chain analysis of conver-
gence of a single stage binner (Supplement S.1) can be
extended to each stage of the multi-binner EDH. Conver-
gence is probabilistic. While we expect a binner’s CV to
generally move towards the true median of its sub-range, on
any given laser cycle the photon events might split exactly
around CV, or may even be higher on the side away from the
median. So there will not necessarily be progress on every
cycle. Stronger peaks lead to faster convergence. A stronger
signal peak means more return events expected in a cycle,
meaning they are more likely to to reflect the distribution,
and hence result in a step in the correct direction for CV.
Higher background levels will slow convergence. It is pos-
sible to accelerate convergence towards the median by using
a larger adjustment to the binner CV in the initial laser cycles
and gradually reducing the step size towards the end.

Distance estimation: The width of each bin in an ED his-
togram is, by definition, inversely proportional to the local
density of the underlying transient distribution. Assuming
that the transient distribution has exactly one sharp peak,
distance of the scene point can be estimated by simply
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locating the narrowest ED bin (highlighted in red in Fig. 7).

Suppose the tree-based EDH consists K stages giving
2K — 1 bin boundaries D[1,2,3,...,2% — 1]. The first and
last bin edges are, by definition, located at the extreme
ends of the time window, i.e., D[O] = 0 and D[2%] = T.
Let i* = argmax;<j<ox W be the right edge of
the narrowest bin. The “argmax” distance estimator is the
midpoint of the narrowest ED bin:

def C

C/l\argmax = 1 (D[Z*] - D[Z* - 1]) ()

where c is the speed of light. We can extend this method
of distance estimation to handle multiple peaks (say due to
multiple reflections, or presence of semi-transparent materi-
als along the viewing direction) by replacing the argmax
operation by a more general peak finding routine which
may return locations of all “locally narrow” bins (those
narrower than adjacent bins).

Although a locally narrow bin provides a first order
estimate of the location of the true signal peak, there are
situations where two ED bins split the peak in a way that
the midpoint of the narrowest bin gives a biased estimate
of the peak location. This effect may be exacerbated in real-
world settings where the laser peak is often not symmetric
and has a sharper leading edge and a longer trailing edge.
To handle such cases, we also use a quadratic curve fitting
method that provides finer estimates of the peak location.
Denoting x; = (D[i] — D[ — 1])/2 and y; = m, we
fit a quadratic y = ax® + Sz + ~ using the (z;,y;) pairs for
ED histogram bin indexes surrounding the narrowest bin.
The number of bins on either side of the narrowest bin is
chosen adaptively to lie within one-standard deviation of all
the ED bin widths. We have found that this usually results
in a subset of the bins {i* —2,¢* — 1,4*,i* + 1,i* + 2} being
chosen for curve fitting (shaded gray in Fig. 7). The scene
distance is estimated using:
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Fig. 8. Single-pixel Monte Carlo simulation results. These box-
plots aggregate information over the range of signal and background
strengths for a laser pulse width of 5ns with 100 randomly chosen
ground-truth distance values.

Other more sophisticated distance estimation routines that
use ED histogram boundaries as inputs are also possible.
Due to in-pixel memory and compute constraints, we en-
vision these will be implemented in an off-sensor compute
module.

The next section provides simulation results for distance
estimation in various signal and background levels, and
distance-map reconstructions of rendered scenes.

6 RESULTS

We evaluate our EDH-based method and compare it against
conventional EW histogramming methods using single-
pixel simulations and a transient rendering dataset. The
single-pixel simulations cover a range of signal/background
strengths and ground truth distances. The rendered scenes
provide greater variety in the shapes of the transient distri-
butions due to multi-path effects. Finally, we test the method
with real-world hardware data.

6.1

For our single-pixel simulations we model the laser pulse
shape as a Gaussian with two different FWHM values of
1ns and 5ns (which we refer to as “narrow” and “wide”
pulses).'" This model is common in the literature for the
time-varying light intensity seen from a pulsed-laser source.
We use a Poisson distribution to generate photon arrival
delays from this time-varying Gaussian intensity profile.

Single-Pixel Simulations

Simulation parameters: Our baseline method is an EW
histogram consisting of 1024 bins and a bin-width of

""Note that although there are picosecond FWHM lasers commer-
cially available, they are costlier than nanosecond lasers. Thus we
deliberately chose ns-range pulse widths for our simulations to assess
performance in low-cost, resource-constrained settings.
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Fig. 9. Rendered results for “kitchen” and “bedroom” scenes: (a,i) RGB images of rendered scenes. (b,j) Ground-truth distance maps with (note
different color scales for the two scenes). (c,k) Distance maps reconstructed using a coarse EW histogram method that uses 16 equi-width bins
(128 x compression over a 2000 bin EW histogram) show strong quantization noise. (d,l) Distance maps reconstructed using Gray code-based
compressive histograms (CSPH) [15] provides improved visual quality. (e,m) Our method provides reliable distance estimates with just 16-bin EDH,
achieving 128 x compression over a conventional 2000-bin EW histogram. This approach uses a per-pixel ED histogrammer with the “argmax”
distance estimator with no additional post-processing. (f,n,g,0,h,p) Details in the distance maps are preserved even with an 8-bin EDH, achieving a
256 x compression over a full-resolution EW histogram and comparable distance map quality to the CSPH method.

A = 128ps, which corresponds to a laser pulse rate of
~7.5 MHz (maximum distance ~ 20 m). The laser strength is
varied over &g, € {0.1,0.2,0.5,1.0, 2.0} signal photons, on
average, per laser cycle. The constant offset introduced by
the background strength is varied over @y, /B € {107%,5 x
1074,1073,5 x 1073} ambient photons per laser cycle per
EW bin. Our simulations are of a 16-bin (four-stage) EDH
with a window size of 1024 units of 128 ps each. For each
combination of signal and background, we conduct a Monte
Carlo session of 100 histogrammer runs (of 5000 laser cycles
each), with the peak position chosen uniformly randomly
over the 20 m range.

We evaluate performance using three different error
metrics: (@) § = 0.05 metric (fraction of estimates that fall

within 5% of the ground truth); (b) 6 = 0.01 metric (fraction
that fall within 1% of the ground truth); and (c) mean
absolute error with respect to the ground truth. For the EDH
simulation, we estimate the peak location using both the
argmax and quadratic curve fit methods from Sec. 5. For the
EW baseline we use the bin position with maximum photon
count as the distance estimator.

The boxplots in Fig. 8 show the 5% and 1%-error metrics
using a wide (5 ns) Gaussian pulse. Each box plot represents
results over 20 different combinations of signal strength and
background light level. The left-hand plots show results for
a single readout per run; the right-hand plots are for the
median estimate over five readouts closely spaced after the
initial 5000 cycles in a run. The EW histogram baseline that



uses 1024 bins generally performs well, although at the cost
of requiring at least an order of magnitude more data. See
the supplement for additional boxplots for mean-absolute
error metric that show similar trend as the J-metrics.

6.2 Flash LIiDAR Dataset

We use the “iToF2dToF” dataset [42], which is generated
using a transient rendering engine. This dataset consists
of rendered RGB images of various scenes together with
corresponding transient distributions for each scene point
captured by an ideal time-resolved camera. The rendering
technique uses flash illumination, where the entire field of
view is flood-illuminated by the laser pulse. This method
allows the possibility of multiple reflections between scene
points before the photons return to the camera. The transient
distributions in this dataset exhibit more complex shapes
and multiple peaks, unlike the single Gaussian peak model
used for the single-pixel evaluations. (The supplement pro-
vides some examples of these transient distributions.) Treat-
ing the ideal transient as the scene “impulse response”, we
convolve it with a Gaussian kernel (¢ = 0.6 ns) to emulate a
FWHM = 1ns laser pulse.

The sum of the ground truth transients along the time-
axis for each pixel is used as a proxy albedo map. We assume
a mean signal strength and a mean background strength
for the whole scene and weight the ground truth transients
proportional to the albedo of each pixel. The ground truth
transients in this dataset consist of B = 2000 samples over
a maximum distance range of 20 m.

We use these transients to generate photon arrival delays
by sampling an inhomogeneous Poisson distribution at each
discrete distance location over N = 5000 laser cycles. As a
baseline comparison, we use a full resolution EW histogram
with 2000 bins, where each bin has a width of 33.33 ps.
Recent hardware implementations use coarse binning [8],
[43] to reduce the amount of data that must be transferred
off-sensor. We compress these histograms by 128x and
256 by coarsely binning them into 16-bins and 8-bin EW
histograms. We use the center of the peak bin in an EW
histogram as a distance estimate.

Fig. 9 show results for two scenes assuming an average
signal strength of &g, = 2.0 and average background
strength of ®p,/B = 0.0001 for both scenes. For both
the 16-bin and 8-bin EDH results, we use the argmax
method with no additional smoothing or post-processing.
Remarkably, the degradation in overall distance reconstruc-
tion quality is almost imperceptible with our EDH method,
even for the 8bin case. In contrast, the coarse-binning
compression method shows a clear degradation in distance
estimates due to severe quantization noise. Observe that in
the “kitchen” scene, the EDH method shows distance esti-
mation errors near the top corner (where the two walls and
the ceiling meet) where the transient distribution contains
multiple peaks. In the “bedroom” scene, the low reflectivity
scene points (black picture frames on the back wall) have
larger errors in the 8-bin case. Suppl. Sec. 5.3 shows a table
of all quantitative metrics for the 25 scenes in this dataset.

Fig. 9 also shows simulated comparison with the Gray-
coding-based compressive histogram (CSPH) method [15].
Observe that the distance maps with the CSPH method

are visually smoother while those with our method have a
“grainy” appearance. This artifact arises from the slight jitter
in bin boundary locations estimated by our EDH method
and could be addressed by additional spatial smoothing
during post processing. Still, our method performs better
in terms of mean-absolute-error and 5% inlier metrics than
the CSPH method. Additional comparisons are shown in
Suppl. Fig. 8. Note that the CSPH method requires a global
shared memory to store the compression matrix, while our
method only needs the pixel CV registers.

6.3 Hardware Emulation

A hardware implementation of an in-pixel binner circuit
based on race logic is currently not available. Our simu-
lation study includes the effect of Poisson noise, detector
quantum efficiency, and low levels of dark-count noise, but
not other sources of noise, such as afterpulsing. Here we
show hardware emulation results using real-world SPAD
data that includes all realistic sources of noise, including
dark counts, afterpulsing, and effects of dead-time. We
use raw photon timestamp data from a publicly available
SPC dataset of experimentally captured photon-timestamp
streams [12]. This data was captured using a single-pixel
SPAD-LiDAR prototype with a dead-time of 100ns, dark
count rate of ~ 100 counts/s and afterpulsing probability of
~ 1%. We emulate the behavior of both a 16-bin EWH and
EDH by replaying the photon timestamp stream over 5000
laser cycles. Each stage of the EDH runs for 1250 cycles
before being frozen and running the next stage of the tree.

A result is shown in Fig. 10. The final distance maps
are denoised using a 3 x 3 median filter. The transient
distribution in this dataset contains multiple peaks (due to
interreflections). The EDH result is generated by picking the
first locally narrow bin location as the distance estimate. The
final result appears grainy because the method occasionally
locks into the wrong peak. Our method provides a better
MAE and inlier metric compared to a 16-bin EW histogram
result, which suffers from strong quantization errors. Our
method also performs comparably to the Gray code-based
compressive histograms method [15] in terms of the MAE
and inlier metrics, although the visual quality of the CSPH
result is much smoother. Additional results at varying SBR
levels are shown in Suppl. Fig. 9.

7 DisScUSSION AND FUTURE DIRECTIONS

We have proposed equi-depth histograms as a bandwidth-
and energy-efficient representation for capturing scene dis-
tance information using SPCs. Using a binner—which adap-
tively finds a given quantile—as our basic building block,
we describe an equi-depth histogrammer that determines
multiple bin boundaries without explicitly storing a history
of photon counts. The binner is amenable to implementation
with race logic, a technology that operates in the delay
domain, which is well suited to processing return events at a
single-photon pixel. Our approach shows promise for reduc-
ing bandwidth while maintaining similar distance accuracy
as existing resource-hungry methods that rely on storing
and processing equi-width histograms with thousands of
bins. An EDH-based SPC can achieve an energy savings
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Fig. 10. Experiment result with real-world “elk” dataset [12]. (a) RGB image of the elk. (b) Ground truth distance map. (c) A conventional 16-
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of ~ 10 — 100x, depending on various factors such as the
number of laser pulses needed for convergence and energy
consumption of each readout. Supplement S.4 provides an
energy-budget analysis.

Future work will experimentally evaluate real-world
hardware implementations of this proposed method. This
work will require developing custom binner hardware that
implements a high-speed race logic (PASS-INHIBIT) opera-
tion either in the analog domain or using an FPGA [5]. Some
speculative hardware designs (both analog and digital) are
shown in Supplement S.4.

The ED histogram bin boundaries can be treated as
a novel low-level scene representation. Additional scene
information (more than just scene distances) can be directly
inferred from an 8- or 16-bin ED histogram. The binner
circuit can be repurposed for intensity estimation by using
the binner’s register memory as a passive photon counter,
or by artificially injecting fake pulses at a known rate to
calibrate the absolute bin populations of the ED histogram.
In the future we will investigate algorithms to directly learn
scene properties such as reflectance, material properties,
camera pose, and motion cues using ED histogram bin
boundaries as the scene representation.
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S.1 SINGLE-STAGE BINNER: MARKOV-CHAIN ANALYSIS

We model the control value of a 2-bin median-tracking binner as a Markov chain (Suppl. Fig. 1). For simplicity we consider
a window length L with a binner that only takes discrete integer valued steps of size 1. At each laser cycle ¢ in a run,
the binner’s control value F; is a random variable that lives in the set £ = {0,..., L}, where L denotes the number of
window locations. After each laser cycle the sensor pixel receives photons in different window locations 7 with independent
non-identically Poisson-distributed counts N; ~ Poisson(r;), where r; is the mean of the Poisson observation at location i,
1<i< L

P(Eys1=k|E,=k)
P(Eyp1=k—1|E, = k) P(Ey 1 =k+1|E;=k)
delay=0 k=1 E=k k+1 delay=L
(a) Binner state updates

Y

P11 P22 Pk1,k—1 Pkk Pk+1,k+1 PrL—,L1
Po.1
OlOIORNCIOITRN IO
Pro D21 Pk.k—1 Pk+1,k

(b) Markov chain transition probabilities

Supplementary Figure 1. Markov chain model for online updates of a binner. (a) After the ¢! laser cycle the binner’s control value (denoted by
E}) is updated to a new value E:; depending on the number of photons received between the delay ranges of [0, E;) and [E¢, L). In the case of a
step size of 1, the control value is decremented (incremented) by one if the total on the left is larger (smaller) than the total on the right. Otherwise
it stays unchanged. (b) The binner’s control value can be modeled using a Markov chain with transition probabilities p; ; where 0 <4, j < L. These
probabilities are time-homogeneous (i.e. they do not change over time).

In our race logic-based binner implementation, we do not directly observe the N;’s. We track if the total photons on the
left of E; is larger or smaller than the total on the right. On the th laser cycle, our algorithm increments or decrements the
estimate depending on the which side of current control value F; receives more photons:

max(0, B, — 1) if 70 N; > S8 g N
By =< min(E +1,L) if 270 N, < X p N
E; if Efzto N; = ZiL:E,, N,

where the max and min checks ensure that we do not overflow the limits 0 and L.
We will denote the transition probabilities by p; ; = P (Ety1 = j|E¢ = i) . For convenience, define s,, « gl_l r; for

1<m< Landt,, = Zﬁl—lm for 0 < m < L — 1, and note that s;, = t; = é_lri. For 1 < k < L — 1, the probability

“*Note that in this model we assume that the binner chooses the boundaries between the discrete window locations, hence there are L + 1
possible control value locations for L window locations. With small modifications to indexing, the following analysis will still hold in the case
where the binner output is the same length as the number of window locations.



that the estimate moves to the right is given by:

L-1 k—1
Pk.k+1 = P (Z Nz > ZNZ>
= L*lz:Okfl
_1S(O’ZTZ’ZTl)

i=k =0
=1- S(O;tk,sk)

where S(-; {11, f12) is the cumulative distribution function (cdf) of a Skellam distribution with parameters p; and po. The
probability that the estimate moves to the left is given by:

k=1 L-1
Prk—1 =P (Z N>y Ni)
i=0 i—k
k—1 L—1
21—5<0;ZH, Ti)
=0 i

i=k
=1- S(O, Sk,tk).
Finally, the probability that the estimate does not move is given by

Pk.k = S(O;Ifl€7 Sk) + S(O; Sk,tk) —1=e°1] (2\/tk8k)

where Ij(+) is the zeroth-order modified Bessel function of the second kind [44]. The edge cases k = 0 and k = L are
handled separately:

poo =€ °F

po1=1—e""
ppL-1=1—¢€"*
prL =e °".
The right stochastic transition matrix of this Markov chain is a tri-diagonal:

_po,o Po1
Pio DP1,1 P12

DP2,1 D22 P23
P= b32 P33 P34 (S1)

PL—2,L—-1 PL-1,L—1 PL-1,L
PrL,L—1 pL,L

Note that this Markov chain is irreducible and aperiodic. By the Perron-Frobenius theorem [45], it must have a stationary
distribution. If we start with an initial state chosen uniformly randomly and allow the chain to run for a long time, we
expect the chain to live close to the median of r;. Note, however, that there is still a non-zero probability the Markov
chain will make excursions around these expected settling locations; the larger the excursions, lower the probability. These
settling locations, therefore, should be understood as the modes of the stationary distribution of the Markov chain after the
chain runs for a long time.

Theorem. Let the total photon rate (signal+background) for the transient distribution be p = ZiLzl 4. Suppose the binner control
value CV # true median and it splits the transient distribution into two fgactions fand 1 — f where 0 < f < 1. Let € > 0 be an
arbitrarily small probability threshold. Then, as long as (1 > (ﬁ) log (%) , the probability that CV does not move towards

the median on the next cycle is < e.

Proof. Without loss of generality, suppose that the current control value CV < true median. This case implies that

cv L
H1=Z7“i< Z Ty = H2-
i=0

i=CV+1

Let the total photon rate (signal+background) be denoted by = 1 + pe and f = p1/p be the fraction of the total photon
flux to the left of CV. Since p; < po, f < 0.5. At the subsequent laser cycle, the number of photons N; and N, in the
early and late streams respectively are independent Poisson random variables with rates 1 = fu and s = (1 — f)u. The
probability that CV does not move closer to the true median on the next laser cycle is equal to the probability that the early



stream contains at least as many photons as the late stream (N; > Nj). This probability can be bounded above using a
Chernoff bound [46]:
P(N; > Ny) < e~ WiT—vi2)? _ o~ (VTu—/(1=Hp)?

. 2
Observe that e~ VTV (1=Hi* < ¢ provided p > (ﬁ) log (1) , which completes the proof. O

For example, suppose that the current CV splits the transient distributions into two segments in the ratio 1 : 9, i.e.,
f = 0.1. Then as long as the total photon rate y > 9.8, the probability that CV does not move closer to the true median in
the next laser cycle is less than € = 2%. Note that this photon rate is much higher than what we would expect to see in a
single laser cycle in a real SPAD-based 3D camera. This observation suggests adding a low-bit-depth memory element to
each pixel that accumulates photons and updates CV every few (~ 10) laser cycles. We find that the bound provided by
this theoretical result is quite loose in practice, and there is a much higher probability of moving towards the true median
even for lower values of .

It is instructive to study the behavior of the Markov chain model in simulation for some simple cases. Setting the
window length L = 1000 and step size of 1, we can numerically compute the stationary distributions over a wide range
of signal strengths, SBR and scene distances. We first compute the one-step transition matrix (Eq. S1). Since this matrix
is right stochastic, the stationary distribution is the left (row) eigenvector corresponding to an eigenvalue of 1. Suppl.
Fig. 2 shows example stationary distributions for distances (true peak locations) in {100, 250,400}, signal strengths in
{0.1,0.5,1.0} and SBRs in {0.01,0.2,0.5,1.0}. We make the following key observations:

o The true median does not necessarily lie at the true peak location; it is pulled towards the overall midpoint for low
signal and high background cases.

o The peaks of the stationary distributions are always aligned with the true median locations, implying that the most
likely location of the CV is at the true median.

e The spread of the stationary distribution around the median is distance dependent; the spread is smaller when the
SBR is high or when the true peak location is closer to the overall midpoint (L/2 = 500) of the range.

The spread of the stationary distribution is related to how far a binner will wander away from the true median once
it converges. A smaller spread is desirable. Suppl. Fig. 3 shows the probability mass around small neighborhoods of
£5,+10, £20 from the true median. Higher probabilities are desirable because they indicate tighter concentration around
the true median. These probabilities depend on the signal strength, SBR and scene distance (peak location). The higher
the signal and SBR, the higher the probability of finding the binner’s control value close to the true median. The largest
spread is seen for intermediate SBR levels (second row): in this regime, the signal and background exert similar pulls on
the control value, the former towards the peak location while the latter towards the overall midpoint of 500. The effect of
this spread can be mitigated by averaging multiple readouts. By the central limit theorem, we expect the spread to reduce
by a factor of /M if M readouts are averaged.

Extensions: Although the analysis show above was for a single-stage 2-bin binner, the theory can be applied to arbitrary
binners in a tree-based EDH by restricting the window to a sub-range dictated by the parent binner. Our model assumes
that the step sizes are +1. We can derive transition matrices for larger step sizes. For example, the £10-step-size case will
still be a tri-diagonal matrix with non-zero entries along the main diagonal and the 10" off-diagonals. In the next section
we study some heuristics to speed up binner convergence to the median by using larger step sizes.



Numerically Computed Stationary Distributions for Varying Signal, SBR and Distance
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Supplementary Figure 2. Stationary distributions of the Markov chain for different combinations of signal, SBR and scene distances. These
stationary distributions are computed numerically for a window length L = 1000 and a range of signal, SBR and peak locations. The true median
location does not necessarily line up with the true peak location; in case of weak signal or low SBR, the median is pulled away from the peak
towards the overall midpoint of the range (L/2 = 500). Observe that in all cases, the true median is always located at the location of maximum
probability (mode) of the stationary distributions.
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Supplementary Figure 3. Concentration of the stationary distributions around the true median location. We study the spread of the stationary
distribution around the true median location as a function of signal strength, SBR, and the true peak location (distance) for a window length of 1000.
At low SBRs, the binner control value may wander farther from the true median, but the probability of wandering farther than +20 is small. At high
SBRs, the binner is within +5 of the true median with probability > 75%. At intermediate SBRs, both the peak location and the overall midpoint of
the range exert similar pulls, hence the probabilities have a stronger dependence on the true peak location.



S.2 HEURISTICS FOR SPEEDING UP BINNER CONVERGENCE

Heuristics for Speeding up Convergence
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Supplementary Figure 4. Simulation study of rate of convergence. We analyze three different stepping schemes: a naive method that takes small
constant steps of size 1, a weighted step method that uses steps equal to the difference in the number of return events in a cycle, and finally an
ad hoc stepping schedule that takes large steps initially and then reduces the step size for subsequent laser pulses. A variable step-size schedule
gives the best rate of convergence. (a) In a high-signal, low-background regime the variable step-size method quickly converges to the median. (b)
In a high-signal, high-background regime we observe quick convergence but the final estimate is still quite noisy. (c) In a low-signal, low-background
regime, the convergence takes longer than with a high-strength signal, but a variable step-size schedule achieves 10x improvement over the other
schemes. (d) In the low-signal, high-background regime, the final estimates show large excursions from the true median location. These plots also
suggest that there is an advantage in averaging multiple measurements post-convergence, especially in high-background situations.

We performed a Monte Carlo simulation study of a single binner with three different stepping schemes over different
operating conditions (low and high signal power in the presence of low and high background light levels) for 5000 laser
cycles:

o Constant small step size of 1,
e Photon-number-weighted step size: the step size is the difference between the number of early and late events,
o 4-stage coarse-to-fine step-size schedule (8 — 4 — 2 — 1), each for one-quarter of the total cycles.

Suppl. Fig. 4 shows the evolution of a single binner’s control value as a function of laser cycles. (Although we ran the
simulation to 5000 cycles, these plots are only shown up to 3000 cycles to focus on the interesting regions of the convergence
trends.) The coarse-to-fine stepping scheme gives the fastest convergence in all operating conditions. It is faster than the
constant-step-size method by a factor of at least 10x in most SBR regimes. In the high-signal-strength regime, the scheme
settles to an optimum quite rapidly but then it is limited by the step size. This effect is visible in Suppl. Fig. 4(a) and (c)
where the blue plot seems to converge quite rapidly at first but then it makes further improvement with a finer step size
as seen from the discrete jumps at 1250 and 2500 cycles. The results suggests that signal-dependent step-size optimizations
can further speed up convergence. In high-strength regimes, it helps to rapidly decay the step sizes to the finest level,
whereas in low-strength regimes, larger steps should persist for larger fractions of the total exposure time budget. How
do we choose step sizes in practice? We can use a heuristic step-size schedule informed by this simulation study. We can
perform an initial “calibration” scan to assess SBR conditions at different scene points. High-SBR pixels can rapidly decay
to small step sizes, while low-SBR pixels use large step sizes for longer durations.

The difference between the constant-small-step-size and weighted schemes is less marked, though the weighted scheme
(magenta) does converge faster than the constant-size scheme (gold). In Suppl. Fig. 4 we only see a slight advantage for the



low-strength regimes where the weighted scheme has similar convergence rate as the constant-step scheme. This behavior
arises because in the low signal plus background regimes, very few photon events are generated in each cycle, so there are
very few cases where the boundary moves more than one unit per cycle. In the high-strength regime, the weighted scheme
does noticeably better than the constant-step scheme. However, with a strong signal, convergence is fast with all schemes,
although the variable-step-scheme does wander more around the median until it gets to a small step size.



S.3 ADDITIONAL RESULTS
S.3.1 Single-pixel simulations

Single-Pixel Simulations: Mean Absolute Errors

3 4 (a) Single measurement 3 (b) Median of 5 measurements

log10(mean abs err)
log10(mean abs err)

conventional argmax quadratic conventional als;max quadratic
1024-bin EW [Gurs] [Ours] 1024-bin EW [Ours] [Ours]

Supplementary Figure 5. Results of mean absolute error. Each box plot represents the mean absolute error in distance estimates for 20
combinations of signal and background strengths (see main text). (a) Error plots with a single measurement from each binner. (b) Results after
computing the median of distance estimates obtained from a series of 5 EDH read-outs.

We record the mean absolute error (MAE) in the distance estimate where the mean is computed over 100 runs and each
run has a different randomly chosen ground-truth distance value. The parameter combinations are the same as those for
the single-pixel simulations described in the main text. The absolute errors can be quite large (observe the logarithmic scale
on the y-axis of these plots). Suppl. Fig. 5 shows results for a wide (5 ns) Gaussian pulse.

When using a single EDH readout for estimating distance, the quadratic curve fitting method has a wider spread in
MAE values as seen in Suppl. Fig. 5(a). We posit this behavior arises from the fluctuations in the binner outputs. If they do
not precisely line up around the peak location, the curve fitting can “amplify” the error further. This effect can be avoided
by averaging multiple measurements.

Suppl. Fig. 5(b) shows the effect of averaging multiple readouts on the mean absolute error of the final distance
estimates. With averaging, the quadratic fitting method achieves almost the same MAE as the conventional EWH method
with a narrow Gaussian pulse. Looking at the results in the figures, we believe that combining read-outs improves expected
accuracy in all conditions, but especially for quadratic curve fitting. Multiple read-outs do increase the bandwidth per run
five-fold; nevertheless, that is still well less than a tenth of the data for a single 1024-bin EWH read-out.

S.3.2 Example EDH Outputs for Rendered Transient Distributions

Simulated transient-distribution data generated with a rendering engine [42] give us some insights into the diversity of
transient shapes that one may encounter in analysis and simulation. A vast majority of the simulated transients consist
of a single peak. However, there are situations where (due to inter-reflections and multi-path effects) transient shapes can
deviate significantly from the simple single-Gaussian-peak model that is widely used in practice. We show some simulated
plots of EDH outputs in Suppl. Fig. 6. Note that this sample is biased in that we choose to show transients that we deemed
“interesting” and challenging for an EDH because they have unusual shapes, including asymmetrical peaks, overlapping
peaks, or long tails.

A 16-bin EDH performs well in when there is a single distinct peak (Suppl. Fig. 6(a)). Observe that around 6 side-bins
of the 16 ED histogram bins are spent absorbing the background light while the remaining 10 bins are all quite narrow
and clustered around the peak. In cases with a peak followed by a long trailing edge (Suppl. Fig. 6(b)) there is a gradual
increase in the widths of the ED histogram bins. In case of multiple peaks (Suppl. Fig. 6(c,d)) the locally narrow bins are
clustered around the strong peaks.

S.3.3 Additional Scene Results

Suppl. Fig. 7 shows additional distance map reconstructions for three scenes. Conventional low-bin-count coarse EW
histogramming methods fail due to heavy quantization artifacts. Our EDH method recovers fine details even with as few
as 8 ED bins (over 200x data compression). Our method also outperforms Gray-coding-based compressive histograms
method [15] both in terms of mean absolute error and 5% inlier metrics as seen in Suppl. Tab. 2 and 3.
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Supplementary Figure 6. EDH outputs for complex transient distributions. (a) In case of a single strong peak, most of the bins cluster around
the main peak. (b) In case of a long trailing edge, the last few bins have monotonically increasing bin widths, which capture the overall shape. (c) In
case of two peaks, the locally narrow bins do a good job of clustering around the peak locations. (d) In case of more than 2 peaks, additional EDH

stages may be needed to capture additional weak peaks such as the last peak shown here.
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Supplementary Figure 7. Additional simulated distance map results. (a—f) In the “bathroom” scene, our method preserves details such as the
shape of the sink) even with just an 8-bin EDH. Heavy quantization noise makes it difficult to discern any structures in the distance maps from
coarse 16-bin and 8-bin EW histograms. (g—I) In the “living room” scene, conventional coarse-bin EWH does not cause severe loss of depth details
because the coarse depth bins happen to line up close to the true depth values. However, notice that our EDH method recovers finer details such as
the arch around the windows and the feet of the table. (m—r) In this “interior” scene, our method still recovers finer depth details in the background
shelf that are heavily quantized in the coarse EWH reconstructions. Note that these scenes have different ranges of minimum and maximum scene
distances as denoted by their respective color bars.
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Supplementary Figure 8. Additional comparisons with compressive histograms [15]. Our method gives comparable quality as the recent Gray-
code-based CSPH method without the need for additional global memory for the compression matrix.



Supplementary Table 2
Quantitative metrics for simulated scenes show large improvements in MAE with our method.

mean absolute error (cm)

scene name
EWH 8 bin EWH 16 bin CSPH 3 bit CSPH 4 bit L1 6 bin EDH 16 bin
[Proposed] [Proposed]

kitchen 17.01 7.94 10.87 6.77 4.16 2.76
kitchen-2 12.66 7.60 1.82 1.24 0.81 1.01
bedroom 16.32 7.98 12.18 7.08 2.77 147
veach-ajar 16.71 7.32 17.78 10.24 3.99 1.40
living-room 15.21 7.26 716.01 714.64 4.70 3.37
office 16.04 6.18 63.74 59.36 3.60 2.38
interior-scene 19.22 7.47 491 3.48 2.25 2.04
bathroom-cycles-2 19.26 6.80 7.22 3.70 1.19 0.90
bathroom2 14.12 8.68 14.03 7.09 4.13 2.68
bathroom 14.99 7.56 5.75 3.56 191 1.52
staircase2 10.29 4.95 191.12 189.12 5.57 4.98
hot-living 14.21 7.34 43.13 39.12 3.50 2.41
staircase 18.00 6.65 46.50 44.71 7.25 6.81
the-sitting-room 15.76 7.71 19.19 14.85 3.20 2.02
dining-room 16.11 8.55 2.56 1.96 1.85 1.68
classroom 11.04 5.94 24453 241.65 6.69 6.11
cbox 16.14 9.44 3.55 2.09 2.73 1.48
cycles-modern-kitchen-scene 14.58 7.74 14.44 8.25 3.61 2.35
living-room-3 14.15 8.82 14.24 9.49 3.32 1.97
living-room-2 14.36 6.55 7.80 4.30 3.23 1.92
my-office 15.74 7.98 17.20 10.82 4.63 2.95
veach-bidir 14.24 9.14 11.37 5.46 1.24 0.87
vgroove 28.30 2.95 1.84 1.71 0.57 0.81
living-room-4 19.95 7.56 11.35 6.86 1.12 0.79
breakfast-hall 6.53 3.06 540.80 538.37 1.97 1.69

Supplementary Table 3
Quantitative metrics for simulated scenes show large improvements in 5% inlier metric with our method.

% pixels within 5% of true distance

EDH 8 bin EDH 16 bin
[Proposed] [Proposed]

scene name

EWH 8 bin EWH 16 bin CSPH 3 bit CSPH 4 bit

kitchen 36.1 82.4 719 88.8 94.9 97.2
kitchen-2 17.2 25.0 84.7 95.4 98.6 99.1
bedroom 317 68.9 66.9 829 95.3 98.8

veach-ajar 44.9 93.1 56.9 85.7 95.1 99.2
living-room 34.0 729 733 773 91.8 93.4
office 26.3 66.1 56.9 78.9 84.7 85.9
interior-scene 15.8 56.1 92.1 95.1 96.9 98.0
bathroom-cycles-2 14.9 49.0 38.7 88.2 98.3 99.6
bathroom?2 50.3 76.5 57.5 86.7 95.4 97.6
bathroom 235 44.2 73.1 89.2 93.6 97.0
staircase2 35.7 61.7 56.1 57.5 61.8 62.3
hot-living 48.1 80.6 76.0 86.2 88.4 89.1
staircase 17.8 67.2 729 76.8 84.0 84.3
the-sitting-room 48.8 87.0 79.9 90.8 95.5 96.5
dining-room 20.9 449 91.5 94.7 95.0 97.1
classroom 39.3 62.4 58.7 66.0 73.4 74.0
cbox 33.8 63.0 94.1 97.3 97.8 99.3
cycles-modern-kitchen-scene 46.1 82.6 68.3 90.4 96.5 97.8
living-room-3 36.1 62.5 49.3 80.6 93.9 97.5
living-room-2 47.6 81.3 87.5 94.0 96.3 98.7
my-office 29.6 57.6 45.1 72.8 89.5 94.5
veach-bidir 28.2 44.1 41.9 75.6 99.3 99.6
vgroove 0.0 349 25.2 343 97.1 90.1
living-room-4 7.5 28.3 34 31.6 97.2 99.1

breakfast-hall 20.7 38.4 38.1 38.1 40.5 40.7




S.3.4 Additional Hardware Emulation Result
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Supplementary Figure 9. “Elk” distance maps under varying SBR. (a) Ground truth distance map. (b) Distance map at high SBR shows various
details such as the vertical edges on the elk’s nose. (c) At mid SBR finer distance details are lost but the overall structure is still visible. (d) At low
SBR the distance map reconstruction suffers from severe artifacts due to background light.



S.4 HARDWARE CONSIDERATIONS: PIXEL DESIGNS AND ENERGY CONSUMPTION
S.4.1 Pixel and Pixel-Array Designs

(a) Digital Implementation
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Supplementary Figure 10. Conceptual designs of binner and pixel array hardware implementations. (a) In a digital implementation, an
increment—decrement register holds the control value for an in-pixel binner circuit. (b) An analog implementation the control value is updated by
integrating the difference in accumulated voltage from the early and late photon streams using two capacitors. (c) Due to limited on-chip resources,
it may not be possible to have dedicated multi-bin EDH circuit in each pixel. A single EDH can be shared between groups of pixels that are in spatial
proximity.

Suppl. Fig. 10(a) shows one possible digital implementation of an in-pixel binner circuit. It uses an up—down register to
represent the binner’s control value. The initial value of this register is set to the midpoint of the distance-range window.
Each early (late) photon decrements (increments) this register. The duty cycle of the monostable circuit sets the reference
signal switch point splitting the incoming photon stream into early and late streams. and the number of early and late
photons. The new register value is fed back to the monostable circuit to set its duty cycle. The early and late stream
readouts are available to feed to the next stage of a multi-binner EDH. Purely analog implementations that store early
and late streams as proportional voltage values and generate a difference signal as the control value may also be possible
(Suppl. Fig. 10(b)).

In an array of SPC pixels, chip area may be limited, preventing each pixel from having multiple binner stages for
a multi-bin EDH. Groups of pixel may need to share a single EDH as shown in Suppl. Fig. 10(c). For example, a spatial
neighborhood (called a “macropixel”) of 2 x 2 pixels can be routed through a 4:1 multiplexer to a single EDH that generates
a B-bin equi-depth histogram.

S.4.2 Energy Consumption Estimates

A fair comparison of energy and bandwidth requirements for different methods can be quite challenging because
precise numerical estimates depend on low-level hardware implementation details. We show some “back-of-the-envelope”
calculations to informally motivate the idea that it may in fact be possible to radically reduce both power and bandwidth
requirements by adopting EDHs instead of conventional EWHs.

One concern is that our EDH method requires longer exposure times to converge and settle at a good estimate (bin
median). With conventional EWH methods, the rule of thumb is about 100 laser pulses. Our empirical convergence analysis
suggests that a 16-bin EDHs require an order of magnitude more laser pulses to converge (perhaps 1000, using variable step
size). Do we still save any power if we end up using more laser pulses? The answer depends on the energy consumed by
each laser pulse versus that for producing and transferring histogrammer output. Our estimates, given in Suppl. Table 4,
suggest that an EDH can still give a 10-fold energy savings (numbers from Morimoto et al. [47]). We assume that a
conventional EWH reads out individual photon timestamps and builds a histogram off-sensor. (Some designs build partial
histograms on sensor, but require larger in-pixel memory and still must perform multiple read-outs per run.) Such readouts
require significantly higher energy per readout than the energy per laser pulse. Our estimate of energy per laser pulse is



based on an average power of 10mW to 100mW for a 1 MHz repetition rate (corresponding to an unambiguous range of
150 m). For fair comparison, we assume that the EDH is constructed using similar hardware as the conventional EWH (that
is, using SPAD detectors with built-in time-to-digital conversion circuits). These estimates will differ for alternative detector
technology and hardware implementation. We also assume that there is negligible energy consumed by any control signals
that are needed to program the sensor module.

Supplementary Table 4
Energy consumption estimates of conventional EWH and proposed EDH. Rough calculations suggest that there is at least a 10x reduction in
energy requirement with EDH versus EWH.

Symbol Description Conventional (EWH) Proposed (EDH)
Naser number of laser pulses 100 1000
FElreadout energy in each window readout  1pJ to 10 puJ 11 to 10J
Nreadout number of readouts 100 5to 10
Flaser energy per laser pulse 10nJ to 100nJ 10nJ to 100 nJ
Niaser Blaser + Nreadout Breadout  total energy consumed 100 p1J to 1000 nJ 151J to 200 p1J

We obtain a basic estimate of bandwidth by observing that a conventional EWH must allocate enough memory to
build a complete photon-count histogram consisting of around 1000 bins, where each bin has at least an 8-bit (unsigned)
integer counter. Thus the total information (per pixel) is 8000 bits. The proposed EDH on the other hand only requires
around 15 10-bit numbers to be transmitted, corresponding to ~ 150 bits of information per pixel, a 50x reduction in
storage and bandwidth requirements. This size differential highlights a hurdle that EWH designs must face that EDH
designs do not. The size of an EW histogram makes it infeasible to store the full histogram on sensor, but constructing
the histogram off-sensor introduces energy and latency overheads. These constraints severely limit the frame rate and
resolution of today’s single-photon 3D cameras. Our EDH-based designs circumvent both of these limitations: we do not
construct a full histogram and only transfer a handful of numbers off-chip.



