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Abstract

While matrix-covariate regression models have been studied in many existing works, classical statistical and computational
methods for the analysis of the regression coefficient estimation are highly affected by high dimensional matrix-valued
covariates. To address these issues, this paper proposes a framework of matrix-covariate regression models based on a low-
rank constraint and an additional regularization term for structured signals, with considerations of models of both continuous
and binary responses. We propose an efficient Riemannian-steepest-descent algorithm for regression coefficient estimation.
We prove that the consistency of the proposed estimator is in the order of O (/7 (g + m) + p/+/n), where r is the rank, p x m
is the dimension of the coefficient matrix and p is the dimension of the coefficient vector. When the rank r is small, this rate
improves over O(\/gm + p/+/n), the consistency of the existing work (Li et al. in Electron J Stat 15:1909-1950, 2021) that
does not apply a rank constraint. In addition, we prove that all accumulation points of the iterates have similar estimation
errors asymptotically and substantially attaining the minimax rate. We validate the proposed method through a simulated
dataset on two-dimensional shape images and two real datasets of brain signals and microscopic leucorrhea images.

Keywords Electroencephalography (EEG) - Generalized linear model (GLM) - High dimensionality - £; norm - Microscopic
leucorrhea images - Rank constraint - Riemannian steepest descent - Sparsity

1 Introduction

In numerous modern scientific applications, matrix-valued
covariates of interest naturally exist in massive datasets, for
example, a grayscale image that quantifies the intensities of
image pixels is represented as a two-dimensional (2D) data
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matrix (Zhou and Li 2014), and the recommendation system
of online service records the preferences of users over their
products as a matrix (Elsener and Geer 2018). Other applica-
tions include the brain signal electroencephalography (EEG)
dataset (Hung and Wang 2012; Zhou and Li 2014), the micro-
scopic leucorrhea images (Hao et al. 2019), and the diabetes
data (Li et al. 2021). To analyze such datasets, it is of great
interest to investigate matrix-covariate regression and logistic
regression models with regularization. While we may vector-
ize a matrix-valued covariate as a vector and apply standard
procedures, the size of the vector might be large and standard
algorithms are inefficient and computationally expensive.
To induce such a sparse or low-rank structure, a variety
of regularization-based matrix regression tools have been
recently proposed. For example, nuclear-norm penalized
optimization has been applied in several works (Elsener and
Geer 2018; Lu et al. 2012; Negahban and Wainwright 2011;
Fan et al. 2021) to induce a low-rank structure. In particu-
lar, (Negahban and Wainwright 2011) considered a standard
M-estimator based on regularization by the nuclear or trace
norm over matrices and analyzed its performance under a
high-dimensional setting, and (Elsener and Geer 2018) con-
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sidered robust nuclear norm penalized estimators using two
well-known robust loss functions: the absolute value loss and
the Huber loss, and derive the asymptotic performance of
these estimators. (Fan et al. 2021) applied the nuclear-norm
penalized least-squares approach to appropriately truncated
or shrunk data to four popular problems: sparse linear mod-
els (Tibshirani 1996), compressed sensing (Donoho 2006),
matrix completion (Candes and Recht 2009), and multitask
learning (Caruana 1997), as well as robust covariance esti-
mation (Campbell 1980).

Our work has three main contributions. First, we inves-
tigate a framework of matrix regression problems with a
low-rank constraint and ¢; or total variation (TV) regu-
larization. Second, we propose a computationally efficient
Riemannian gradient descent algorithm that has a smaller or
comparable computational cost than existing methods and
has a convergence guarantee. Third, we establish theoreti-
cal guarantees by showing that the proposed estimates are
consistent. In addition, we show that when the rank is small,
our estimation error O (/r (g + m) + p/+/n) is smaller than

O(/qm + p/+/n), the estimation error by regularization-
based methods without rank constraints (Li et al. 2021), and

acquires the desired statistical accuracy in a minimax sense
(Tsybakov 2008; Koltchinskii et al. 2011; She et al. 2021).
Our consistency theorem (Theorem 4) does not depend on
the convexity of the loss function, and hence it applies to
various choices of loss functions, including robust loss func-
tions such as redescending v’s (Huber 1964), Hampel’s loss,
or Tukey’s bisquare, etc. (Maronna et al. 2018; She and Chen
2017; Huang and Zhang 2020).

2 Methodology

Following existing works such as Zhou and Li (2014), Rohde
and Tsybakov (2011) and Li et al. (2021), we use a matrix-
covariate regression model that includes a coefficient matrix
C* € R™*4 and acoefficient vector y* € R?. We remark that
the trace regression model in Rohde and Tsybakov (2011)
and Elsener and Geer (2018) can be considered as a special
case of this model when y* is zero.

In regression problems, the responses are continuous uni-
variate variables. For such applications, we assume that for
each 1 < i < n, the i-th response y; is generated from the
matrix predictor X; € R"*4 and z; € R? by
yi = (Xi, C*) + (7, y™) + &, 2.1
where (X;, C*) is defined as the trace of C*TX;, (z;, y*) is
defined as zl.T y™, and {¢;}_, are the observation errors.

In binary classification problems, the responses are binary
with value 1 or 0 to indicate the presence or absence of the
target category. For such applications, we follow the matrix-
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covariate logistic regression model from Hung and Wang
(2012) and Li et al. (2021) and assume that the response y;
is a binary variable such that

logit (Pr(y; =11 X))
Pr(yi = 1|Xi)
= log
1 —Pr(y; = 11X;)

= (X;, C*) + (zi, v"),

2.2)
and the explicit formula is
. el
y; ~ Bernoulli(p;), where p; = e and
0 = (Xi, C*) + (zi, y™). (2.3)

The matrix-covariate regression model (2.1) and the matrix-
covariate logistic regression model (2.2) are generalizations
of the regular regression model and the regular logistic
regression model. We aim to estimate the coefficient matrix
C* € R™*4 and the coefficient vector y* € RP, based
on covariates {X;,z}!_; C R™*9 x R? and the associ-
ated responses {y;}7_, generated from the matrix-covariate
regression model (2.1) or the matrix-covariate logistic regres-
sion model (2.2).

In this work, C* is assumed to have a low-rank structure
(or can be approximated by a low-rank structure), and we
propose an estimator under the rank constraint as follows:

(C.9)=  argmin  F(C,y),
yeRP,CeR™*4 rank(C)=r

2.4)

where F(C,y) = Y1 1(vi, (Xi, C) + yT2z)) + AP(C, y),
[(-, -) is a loss function that measures the difference between
the observed response y; and predicted response (X;, C) +
)/Tzi, and P(-) is a penalty function for (C, y). For the
matrix-covariate regression model (2.1) and the binary
response model following Eq. (2.2), we apply different loss
functions as follows.

e The matrix-covariate regression model with continuous
responses. For model (2.1), we apply the least-square loss
function I(y;, fi) = %(y,- — £i)%. We remark that we can
also apply a robust loss function such as Huber’s loss
function (Huber 1964).

e The binary response and matrix-covariate logistic regres-
sion model. For model (2.2), we apply the logistic loss
function

L(yi, fi) =log (1 +exp(fi)) — yi fi-

In addition, the penalty function P in F(C, y) of Eq. (2.4)
can be chosen according to specific applications and the prior
knowledge of C* and y*. For example, if C* is known to be
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sparse element-wisely, we may apply P(C, y) = ||C|;. If
C* is known to be piecewise constant, we may apply the
total variation penalty P(C,y) = [|Cllrv = 3_; ;ICi,j —
Cit1,j1+1Ci j — C; jy1]. In this work, we leave the choice
open for the theoretical analysis and choose the penalty P
accordingly in experiments.

2.1 An efficient parameter estimation algorithm

The minimization problem (2.4) can be considered as a
manifold-constrained optimization in the form of

argmin F(C, y) s.t. (C,y) € M x R?,
Cy

(2.5)

where M = {C € R™*? | rank(C) = r} is the fixed-rank
manifold. Since it is defined as a product of two manifolds,
M x R?, Riemannian approaches can be applied to solving
(2.4), and we refer readers (Absil et al. 2009) and (Boumal
et al. 2014a) for more technical details. Here we apply the
Riemannian steepest descent method and our implementa-
tion is based on package manopt (Boumal et al. 2014b).
The algorithm is described in Algorithm 1. It depends on the
projection R at C, denoted by R, which is a mapping from
R™*4 to M that preserves local gradients at C, and has an
explicit expression (Vandereycken 2013).

For Algorithm 1, we establish a theoretical guarantee that
it converges to a stationary point of the objective function as
follows. Here || - || 7 is the Frobenius norm.

Algorithm 1 Regularized low-rank matrix-covariate regres-
sion

Input: The samples {(y;, X;, z;)}}"_,, initial (cO, y(o)). Error
tolerance € and maximum iteration K.

1: Fork=0,1,2,--- do

2 Set(61.0) = BF(CW, y®), 8, F(C®, 5 ®)),

3: Use line search to select a step size «f such that

F(Rew @81, y (k) —akgp) < F(C®, y®).

4: Set (CHFD p &y = (Rew (@¥z1), y® — k).

5: Stop until

(F(C®, y®) — F(C*HD y *tDyy /P B, y®) <eork = K
Output: Set C = CH, p = y®,

Proposition 1 (Algorithmic convergence) (a) The functional
values F(CU®) ()Y gre nonincreasing and converge. (b)
Each accumulation point of the sequence (C1", (i)
is a point where the subgradients of the objective function
F(C, y) contain zero, and is a stationary point of F when F
is smooth.

Algorithm 1 can be implemented efficiently by storing
C® using its low-rank expression. Then both step 2 and step
3 require computational costs per iteration in the order of

O(nr(q + m) + np + gm), and step 4 requires O (rqm).
Combining them, Algorithm 1 has a computational cost per
iteration of O (nr(q + m) +np + gm), which is an improve-
ment over the computational cost of the existing algorithm
without a rank constraint (Li et al. 2021) when r is small,
which is given by O (ngm + np).

3 Asymptotic theory

This section is devoted to analyzing the statistical consis-
tency property of the estimator (2.4) and Algorithm 1. First,
Sect. 3.1 presents the consistency rate of the proposed estima-
tor (2.4) in Theorem 2. Second, Sect. 3.2 presents our result
on the minimax rate of the estimation problem (2.4) in The-
orem 3. Finally, Sect.3.3 proves the statistical convergence
rate of Algorithm 1 when the algorithm is well-initialized in
Theorem 4.

3.1 Consistency of the proposed estimator

This section establishes the consistency of the proposed esti-
mator (2.4) in Theorem 2 and shows that for large n, our
estimator converges to the true underlying solution (C*, y*).
This result holds for general penalty P and regularization
parameter 1. The detailed proof is deferred to the appendix.
This consistency result depends on Assumptions 1-3 that are
described in the appendix in detail, where Assumptions 1-2
can be considered as a generalization of the commonly used
restricted isometry property (RIP) (Candes and Tao 2005;
Recht et al. 2010) to the setting of matrix regression. We
remark that these assumptions ensure that the landscape of
the objective function is well-behaved around the true solu-
tion (C*, y*), and similar assumptions also appeared in the
literature of matrix regression in (Li et al. 2021, Conditions
1,2,5,6).

Theorem 2 (Consistency of the proposed estimator) Under
Assumptions 1-3 (see the appendix), then for some large
constant C and assume that

n > C(r(gm+ p)+iP(C", y") (3.1
and for all t > 2, we have the following upper bound on the

estimation error of the proposed estimator (2.4) with proba-
bility at least 1 — C exp(—Cn) —C exp(—Ct(r(g+m)+p)):

dist(€C. 7). (C*, y*) < €1, LUTHD)
n

+c,/ APCT YY)
n

Here dist(-, -) is the distance induced by the Frobenius norm.

(3.2)
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Comparison of the convergence rate with existing
works. The main result, Inequality (3.2), shows that the esti-
mation error is in the order of

O (\/r(q+;n)+p+\/kP(C:,y*))_

When A is bounded by a constant, then the first term is the
dominant term and the estimation error is in the order of

Op (,/ W). In comparison, the rate in the existing

work (Li et al. 2021) is Op <\/‘1’"H+P + \/”ﬁ*’y’”) . Our

result improves the factor mq + p to r(q + m) 4+ p, which
is a significant improvement when rank r is smaller than ¢
and m. This improvement can be explained by the fact that
by fixing the rank constraint, our estimator has r (g +m) + p
parameters which are fewer than the gm + p parameters in the
estimator of Li et al. (2021). With fewer parameters to esti-
mate, our estimator achieves a better convergence rate, and
this improvement is also clear from our simulation experi-
ments. Op and op represent the standard big and small O
notation in probability.

Comparison with minimax rate. We derive our minimax
analysis in Theorem 4, which shows that under the setting that
C* is low-rank, the minimax rate of estimating (C, y) isin the

order of Op (,/ W’#) In comparison, our rate in The-

orem 2 achieves this rate when the regularization parameter
A is zero or bounded by O (1). In literature, (Luo et al. 2020)

shows that the minimax rate is in the order of O p (, / r(qn;m)

when the vector covariate y does not existand p = 0 and can
be considered as a special case of our result. In the future, we
plan to derive an improved minimax rate of our model under
the setting that C* is both sparse and low-rank based on the
technique of She et al. (2021), and show that our estimator
with a well-chosen A # 0 and P(C, y) = ||C||| achieves the
improved rate.

MLE argument when A = 0 In addition, the adaption
of the usual arguments of MLE to manifold optimization
can be applied when A = 0, in which we may show that
Vn(C—C, 7 —y) converges to a Gaussian-like distribution
(the result is similar to Theorem 3.1 of (Hung and Wang
2012)), where the covariance/Fisher information matrix can
be obtained following the techniques used in Le Cam (1990)
and Boumal (2013). However, we skip the rigorous statement
here as we use A > 0 in practice.

A generic choice of P In this work, we leave the choice of
the penalty P open for theoretical analysis. However, there
are natural choices of P in certain applications. For example,
when we have the prior knowledge that C* is sparse, we may
choose P(C, y) = ||C||; for variable selection.

@ Springer

Choice of rank r The choice of r has a large impact on the
solution. In fact, the objective value of (2.4) is nonincreasing
as r increases, since the set of matrices of rank r; contains
the set of matrices of rank r, when r, > r;. We expect that a
choice of r can be obtained using either cross-validation or
the elbow method (Choi et al. 2017) that chooses a rank such
that a larger rank doesn’t lead to a much smaller objective
value.

3.2 Minimax rate of the estimation problem

This section proves that the rates attained by our estimator
are optimal using the minimax lower bound of our estimation
problem.

Theorem 3 (Minimax rate) Consider the class of parameters

A(r,a) = {(C,y) e R™* x R :
rank(C) < r, [ClI% + Iy I < a}.

Under Assumptions 5-6 (see the appendix) and assume
in addition that n > r(m + q) + p, then for any B €
0, Ut
< > 1420 (m+q)+p)/4

that

), there exists co > 0 depending on 8 such

inf sup
C.7 (C*,y*)eA(r.a)

> o /w)zﬂ
n

Combining it with the convergence rate in Theorem 2, it
implies that the rate of our estimator in Theorem 2 is optimal
when A is reasonably chosen, such as zero or a parame-
ter smaller than r(¢ 4+ m) 4+ p. The proof is based on the
arguments used by Tsybakov (2008) and is deferred to the
appendix.

Pr (dist((C*, v, (€, ;9))

3.3 Convergence of the proposed algorithm

This section shows that the output of Algorithm 1 is suffi-
ciently close to the ground truth with a good initialization and
an additional assumption on the second-order information of
the “Hessian matrix”.

Theorem 4 (Statistical convergence rate of the proposed
algorithm) Under Assumptions 1—4, the initialization (C©,

yOYis “good” in the sense that both its distance to (C*, y*),
dist((C(()), y(o)), (C*, ™)), and the objective value F(C(O),
v ) are bounded by a constant, and the number of samples
nislarge: n > C(gm + p). Then for all t > 2, with a proba-
bility at least 1 — C exp(—Cn) — C exp(—t(r(q +m) + p)),
all accumulation points of the iterates {(C1", y GOy
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denoted by (C, y), have small estimation errors:

tJr(g+m)+p

Ji

AC partial
+c=—L ,
n

dist((C, 7), (C*, y*)) < C
(3.3)

where Cpartial is the upper bound of the magnitude of the
derivative of the penalty function within a neighborhood of
the gmund truth: Cpartial = Max{dist((C,y),(C*,y*))<c}

Naren[+|prenl

Remark 1 Unlike Theorem 2, Theorem 4 does not depend on
the convexity of the loss function /. As a result, it applies to
various choices of /, including popular loss function functions
in robust statistics such as redescending v’s, Hampel’s loss,
or Tukey’s bisquare, etc. (Huber 1964; Maronna et al. 2018;
She and Chen 2017; Huang and Zhang 2020) that can detect
outliers with moderate or high leverages.

Convergence rate The key result in this section, (3.3),
shows that the algorithm achieves a similar estimation error
as the result in the consistency result in Inequality (3.2), with

6LP(C*,y*) . 4)chartial
the term , / e replaced with —¢, - Formany com-
mon penalty functions, Cp4ytiql is bounded. For example, for

the €1 loss function that P(C, y) = ||C||; used in our simu-
lations, we have Cparrial < o/qm.

Condition on initialization Theorem 4 makes two assump-
tions on the initialization. The first condition on the distance
is straightforward, and the second condition on the initial
objective value is satisfied when

dist((C?, y ), (C*, y*) = op(1)

and A = o(l) as n — o0, which can be justified using
Assumption 4.

Obtaining initialization that satisfies the conditions
Theorem 4 requires an initialization that is within a neighbor-
hood of the true solution of radius O(1). While empirically
we initialize C? and y @ as a zero matrix and a zero vec-
tor individually, it is possible to obtain initialization with
theoretical guarantees. For example, for the matrix-covariate
regression with the continuous response setting, we may let
the initialization to be the solution of the standard regression
problem, i.e., the solution of argmincgy Z?:l (yi—(X;, C)—
yTzl-)z, which has an initial estimation error in the order of

Op ( @) For the matrix-covariate logistic regression

setting, we may solve argmincvy Yo i, (Xi, C) + yTz)
as well. These are convex problems, and the standard asymp-
totic analysis shows that the estimation errors would converge
to zero as n — 00, that is, the initialization conditions will
be satisfied as n — oo.

Convergence rate Unfortunately, it is difficult to obtain
a general result of the convergence rate to (C, y) without
assumptions on the penalty P. However, our proof implies
that Algorithm 1 converges linearly to aneighborhood around
the optimal solution (C*, y*), and empirically Algorithm 1
converges quickly in our simulations.

4 Simulations

In this section, we carry out several numerical studies to
investigate the empirical performance of our proposed meth-
ods on synthetic data, brain signal electroencephalography
(EEG) data and leucorrhea data. For the continuous response
and the matrix-covariate regression model, we compare our
estimator with the spectral regularized regression estimator
(SRRE) proposed in Zhou and Li (2014) and the low-rank
estimation-testing matrix regression estimator (LEME) pro-
posed in Hung and Jou (2019). In addition to assessing the
accuracy of matrix estimation and prediction, we also com-
pare the computational efficiency of our estimator with SRRE
in terms of implementation time. For the binary response
and the matrix-covariate logistic regression model, we com-
pare our estimator with LEME and the SDNCMV method
described in Chen et al. (2021).

It should be noted that although Li et al. (2021) intro-
duced the double fused Lasso regularized matrix regression
(DFMR) and its logistic version (DFMLR), we do not include
acomparison with these methods in our study. This is because
the DFMR and DFMLR assume a specific structure for the
matrix-covariate C* and the vector-covariate y*, where the
difference between successive rows of C* is sparse and the
vector-covariate y* is also sparse.

4.1 Simulation I: matrix-covariate regression

In this section, we investigate the continuous response and the
matrix-covariate regression model (2.1). The predictors X; €
RO4x64 and Z; € R3, as well as the observation errors € €R,
are randomly sampled from a standard Gaussian distribution
N, 1). We set y* = (1, 1,1, 1, 1), and the matrix C* €
[0, 1164%64 represents a 64 by 64 image displayed in the first
column of Fig. 1.

4.1.1 Sparse penalty

To validate the consistency analysis presented in Theorem 2,
we utilize the ¢; penalty P(C) = |C||; and explore dif-
ferent sample sizes: n = 300, 500, 700, 1000. The RMRE
method utilizes the true ranks of the first three images (square,
T-shape, cross) that exhibit simple shapes, whereas approx-
imate ranks (5 for triangle and circle, and 10 for butterfly)
are employed for the last three images (triangle, circle, but-
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terfly) with more intricate shapes. The selection of A is
performed using the validation set approach across all three
methods: RMRE, LEME, and SRRE. The estimation results,
presented in Table 1, include the average root-mean-square

error (RMSE) ,/ ||C — Cx ||% /gqm and its standard deviation.
The findings reveal that RMRE consistently outperforms
SRRE and LEME in terms of estimation accuracy, except
for the circle and butterfly shapes when n < 500, which
can be attributed to the non-low-rank nature of C* and the
complexity of the shapes. Moreover, the estimation errors
demonstrate a decreasing pattern on the order of 1/./n, thus
providing evidence to support the consistency analysis out-
lined in Sect. 3.

Furthermore, Fig.1 illustrates the estimated matrix-
covariate C using RMRE and SRRE with A determined
through the validation set approach, as well as the unregular-
ized RMRE with A = 0, for n = 500. Several observations
can be made from Fig. 1: (a) RMRE with the low-rank con-
straint leads to improved estimation accuracy compared to
SRRE, particularly for shapes such as square, T, and cross,
where the true C* is strictly low-rank. Notably, even the
unregularized RMRE (with A = 0) outperforms SRRE
in estimating the matrix-covariate C*; (b) The regulariza-
tion in RMRE further enhances the estimation quality for
shapes such as triangle and circle compared to the unregu-
larized RMRE; (c) Given the intricate nature of the butterfly
shape, both RMRE and SRRE fail to produce clear images
at n = 500, indicating the need for larger sample sizes to
achieve more accurate estimations of C* (as demonstrated in
Table 1).

We conducted a comparison of the three methods in terms
of computational time, and the results are depicted in Fig. 3.
To ensure a fair assessment, we performed four sets of sim-
ulations using two different images (a square and a T-shape)
that were resized to dimensions of p x p. We varied the
sample sizes for each simulation scenario. For comparison,
we fine-tuned the parameters of the three methods using
an independent dataset and measured the CPU times. The
rank used in the RMRE is the true rank of the images. The
curves in the figure represent the average results obtained
from 30 repeated simulations. Notably, our proposed method,
RMRE, along with LEME, exhibited significantly faster exe-
cution times compared to SRRE. However, RMRE has much
smaller errors than LEME (see Table 1).

4.1.2 Total variation penalty

It is important to note that our method allows for various
choices of regularization.
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In addition to the ¢-regularization utilized in Table 1 and
Fig. 1, another natural option for image denoising is total vari-
ation (TV) regularization. We select the £;-based isotropic
TV regularization Beck and Teboulle (2009), defined as
PC) =3, ;1Ci jr1 — Cijl +1Cit1; — Cijl.

To assess the performance of this variant of our estima-
tor, we compare it with SRRE and SIG-TV, a generalized
scalar-on-image regression model proposed by Wang et al.
(2017) that incorporates TV regularization while considering
X as an image predictor to predict a scalar response y. We
do not include a comparison with LEME because although it
enforces a low-rank structure on the signal, it does not take
into account sparsity or small total variation. The predictors
X; € ROx04 z. ¢ RS, and the observation errors ¢; € R
are randomly sampled from a standard Gaussian distribu-
tion N (0, 1). The true signal C* consists of four 2D images,
and the number of samples used in this simulation varies
with n = 300, 350, 350, 1000. We utilize the true ranks for
the first three images (square, T-shape, and cross) and set
the rank for the fourth image (Phantom image) as 20. Fig-
ure 2 displays the images recovered by our proposed method
(RMRE) using the £1-regularization and TV-regularization,
SIG-TV, SRRE, as well as the regression without any regu-
larization. The results presented in Fig.2 demonstrate that
the TV-regularization produces similar effects to the ¢i-
regularization in our model. For simpler images such as the
T-shape, the low-rank constraint effectively regularizes the
estimation and leads to improved accuracy. Moreover, these
estimated images indicate that both the £; and TV regular-
izations perform better than the nuclear norm regularization
employed in SRRE.

4.2 Simulation Il: matrix-covariate logistic
regression

In this subsection, we consider the binary response and
logistic regression model in Eq. (2.3) using simulation data.
Similar to Sect. 4.1, the predictors X; € R*64 and z; € R,
as well as the observation errors €; € R, are elementwise
sampled from the standard Gaussian distribution N (0, 1),
and y* = (1,1, 1,1, )T, Following the approach in Zhou
and Li (2014), we generate the binary matrix-covariate C* €
0, 171%P2 a5 C* = AAT, where A| € RP1*" A, € RP2X",
and r is the rank of C*. Each entry of A| and A, which fol-
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Fig.1 Comparison of the True RMRE SRRE RMRE (A=0)
estimators RMRE and SRRE. ——
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B’Z‘ﬁé’ S‘Egﬁga;‘l’; Egﬁ;‘i Shape Method 7 =300 7 = 500 7 =700 7 = 1000

maltrix regression Square RMRE 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
SRRE 0.19 (0.02) 0.06 (0.01) 0.03 (0.00) 0.02 (0.00)

LEME 0.06 (0.09) 0.02 (0.03) 0.03 (0.04) 0.03 (0.04)

T RMRE 0.05 (0.06) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

SRRE 0.21 (0.01) 0.14 (0.01) 0.07 (0.01) 0.03 (0.00)

LEME 0.25 (0.10) 0.05 (0.05) 0.03 (0.00) 0.04 (0.03)

Cross RMRE 0.05 (0.06) 0.01 (0.01) 0.01 (0.00) 0.01 (0.00)

SRRE 0.19 (0.01) 0.13 (0.01) 0.07 (0.00) 0.03 (0.00)

LEME 0.23 (0.09) 0.04 (0.03) 0.04 (0.04) 0.02 (0.03)

Triangle RMRE 0.18 (0.01) 0.10 0.02) 0.06 (0.01) 0.06 (0.00)

SRRE 0.18 (0.01) 0.14 (0.01) 0.12 (0.00) 0.09 (0.00)

LEME 0.21 (0.04) 0.18 (0.05) 0.12 (0.02) 0.10 (0.01)

Circle RMRE 0.25 (0.01) 0.15 (0.02) 0.05 (0.01) 0.04 (0.00)

SRRE 0.22 (0.01) 0.15 (0.01) 0.12 (0.01) 0.08 (0.00)

LEME 0.24 (0.06) 0.18 (0.05) 0.13 (0.00) 0.10 (0.04)

Butterfly RMRE 0.30 (0.00) 0.27 (0.01) 0.23 (0.01) 0.16 (0.01)

SRRE 0.29 (0.01) 0.26 (0.01) 0.23 (0.01) 0.20 (0.01)

LEME 0.32 (0.02) 0.27 (0.02) 0.26 (0.03) 0.23 (0.03)

The mean (standard deviation) of the RMSEs of C* with 100 repetitions are reported. The smallest RMSEs
for each setting are highlighted in bold

Fig.2 Comparison of the True, n=300 4 TV SIG-TV SRRE No Reg
estimators RMRE, SIG-TV and
SRRE. The first column are the 20 20 20 20 20 = 20
true signals with the number of . . . . !ﬂa .
samples is used in each case. 40 40 40 40 40 40
The images recovered from 60 60 60 60 60 60
RMRE with El‘reg}llarization 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
and TV regularization are True, n=350 4 TV SIG-TV SRRE No Reg
present in the second and the s e
third column respectively 20 20 20 201 - 3'53?. 20 S 20 .
40 I 40 I 40 I 40| LTET a0 -~ 40|
60 60 60 60 : 60 60 |
20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
True, n=350 40 TV SIG-TV SRRE No Reg
20 20 20 20 20 20 =
40 + 40 + 40 + 40 + ao| HHR g0 PERMELY
60 60 60 60 60 60 1| i
20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
True, n=1000 4 TV SIG-TV SRRE No Reg
20 20 20 20 20 20
40 40 40 40 40 ‘ 40
60 60 60 60 60 60

20 40 60

lows a Bernoulli distribution is equal to /1 — (1 —s)!/R

with probability 1, where s controls the sparsity level of
C*. Given the estimation C, the prediction y; for (X;, z;)
is defined as § = 1 if log(1 + exp((X;, C) + 77z)) > 0.5,
and y = 0 otherwise.
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We compare the performance of RMRE with £;-norm
regularization, SRRE, and LEME with various ranks and
sparsity levels, and report the prediction errors in Table 2
and the estimation accuracy of C* in Table 4. The predic-
tion error is defined as the ratio of mislabeled responses,
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Fig.3 The computational times of RMRE, SRRE and LEME. The dimension of the matrix covariate is p x p and the number of samples is n. The

computational times of RMRE and LEME are very close

i lyi — Jil/n, and the estimation accuracy is measured
by the RMSE of C. From Tables 2 and 4, we make the
following observations: First, when the signal is sparse or
low-rank, our proposed method RMRE demonstrates signif-
icantly better performance, which confirms the effectiveness
of simultaneously employing regularization and the low-rank
constraint in our approach. Second, for small ranks, both
RMRE and LEME outperform SRRE, providing evidence
that the low-rank constraint enhances the performance of
algorithms when the underlying signal is low-rank. Finally,
SRRE tends to perform better when the rank is large and the
signal is denser, as it does not impose a rank constraint or £
regularization.

4.3 Real-world dataset I: EEG

We conducted a comparative analysis of RMRE, SRRE,
SDNCMYV, and LEME on electroencephalography (EEG)
data related to alcoholism (Zhang et al. 1995). The dataset
consists of 77 individuals with alcoholism and 45 control
individuals (non-alcoholic). During the experiment, subjects
were exposed to a stimulus, and voltage values were recorded
from 64 channels of electrodes placed on their scalps. The
measurements were taken for 256 time points and 120 trials.
To derive meaningful insights from this data, we averaged the
measurements across the 120 trials, resulting in 122 matrices
of size 256 x 64 for each individual.

The response variable in this study is binary, representing
the presence or absence of alcoholism (0 for non-alcoholic
and 1 for alcoholic). As the classical linear model is designed
for vector-valued covariates, directly vectorizing the matrix
data into a high-dimensional vector (e.g., 256 x 64 = 16, 384
dimensions) may yield poor performance due to the limited
sample size of 122. Additionally, vectorization neglects the
valuable structural information inherent in the matrix repre-
sentation of the data (Zhou and Li 2014). To address these

challenges, we adopted a fair approach for regularization
parameter tuning by performing k-fold cross-validation to
divide the entire dataset into training and testing samples.
When k equals the sample size, it corresponds to leave-
one-out (LOO) cross-validation. Subsequently, within the
training data, we applied 5-fold cross-validation to select the
optimal shrinkage parameter A. Finally, we evaluated the per-
formance of the tuned model on the testing data by calculating
the misclassification rate.

Through the utilization of this rigorous methodology,
our objective is to evaluate the efficacy of RMRE, SRRE,
SDNCMY, and LEME in accurately classifying individuals
with alcoholism based on EEG data. In Table 5, we report the
average misclassification rates along with their correspond-
ing standard deviations across 100 repetitions (reflecting the
randomness resulting from the cross-validation procedure’s
random partitioning). The results in Table 5 indicate that
RMRE achieves the smallest misclassification rate among
SRRE, SDNCMYV, and LEME in the leave-one-out CV, 5-
fold CV, and 20-fold CV. Specifically, RMRE achieves a
misclassification rate of 0.23, which is slightly higher than
the best-performing method, SRRE.

Beyond achieving improved prediction performance, our
proposed method provides valuable insights into the under-
lying structure of the EEG dataset, which SRRE fails to
capture. In Fig. 4, we present heatmaps displaying the esti-
mated coefficient matrices obtained using RMRE and SRRE,
respectively. The heatmap generated by our method reveals
the spatial dependence structure of the predictors, which are
sampled from electrodes placed on the scalp, aligning with
the electrode locations as defined in the standard electrode
position nomenclature (Epstein 2006). In contrast, SRRE and
SDNCMV fail to exhibit this spatial-temporal dependence
structure. Notably, while LEME incorporates a low-rank
structure that induces some spatial dependence among the

@ Springer
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;ﬁlﬁé SPliel{d];t:r)lrtll ir]rE(l)\SISEoifn Sparsity (%) Method Rank
the logistic model r=1 r=>5 r=10 r=20
1 RMRE 0.12 (0.02) 0.25 (0.04) 0.30 (0.04) 0.33 (0.03)
SRRE 0.24 (0.03) 0.35 (0.03) 0.36 (0.03) 0.38 (0.03)
LEME 0.23 (0.08) 0.40 (0.01) 0.40 (0.00) 0.41 (0.01)
5 RMRE 0.10 (0.02) 0.35 (0.03) 0.39 (0.03) 0.40 (0.02)
SRRE 0.20 (0.02) 0.37 (0.03) 0.40 (0.02) 0.41 (0.03)
LEME 0.18 (0.02) 0.38 (0.01) 0.43 (0.02) 0.43 (0.02)
10 RMRE 0.12 (0.02) 0.37 (0.03) 0.41 (0.02) 0.41 (0.02)
SRRE 0.20 (0.03) 0.37 (0.03) 0.40 (0.02) 0.41 (0.02)
LEME 0.13 (0.01) 0.42 (0.00) 0.40 (0.01) 0.44 (0.01)
20 RMRE 0.13 (0.02) 0.38 (0.03) 0.41 (0.03) 0.41 (0.02)
SRRE 0.20 (0.03) 0.35 (0.03) 0.38 (0.03) 0.40 (0.02)
LEME 0.14 (0.04) 0.41 (0.07) 0.44 (0.00) 0.41 (0.02)
50 RMRE 0.13 (0.02) 0.36 (0.03) 0.39 (0.02) 0.41 (0.02)
SRRE 0.19 (0.03) 0.28 (0.03) 0.31 (0.04) 0.35 (0.03)
LEME 0.16 (0.00) 0.39 (0.04) 0.43 (0.02) 0.45 (0.01)

The mean (standard deviation) of prediction error in ¥ with 100 repetitions are reported. The smallest RMSEs
for each setting are highlighted in bold

Table 3 Estimation errors of

RMRE, SRRE. and LEME in Sparsity (%) Method r=1 r=>5 r=10 r=20
the logistic model Rank
1 RMRE 0.07 (0.03) 0.08 (0.02) 0.09 (0.02) 0.10 (0.01)
SRRE 0.09 (0.03) 0.09 (0.02) 0.10 (0.02) 0.10 (0.01)
LEME 0.07 (0.01) 0.10 (0.01) 0.08 (0.01) 0.09 (0.00)
5 RMRE 0.19 (0.03) 0.22 (0.03) 0.22 (0.03) 0.22 (0.02)
SRRE 0.21 (0.03) 0.23 (0.03) 0.22 (0.03) 0.22 (0.02)
LEME 0.19 (0.09) 0.24 (0.01) 0.23 (0.06) 0.22 (0.01)
10 RMRE 0.28 (0.04) 0.33 (0.04) 0.33 (0.03) 0.33 (0.03)
SRRE 0.30 (0.05) 0.33 (0.04) 0.33 (0.03) 0.33 (0.03)
LEME 0.29 (0.04) 0.31 (0.06) 0.31 (0.01) 0.34 (0.04)
20 RMRE 0.41 (0.04) 0.50 (0.04) 0.52 (0.04) 0.51 (0.04)
SRRE 0.44 (0.05) 0.50 (0.04) 0.52 (0.04) 0.51 (0.04)
LEME 0.42 (0.05) 0.53 (0.05) 0.50 (0.02) 0.47 (0.03)
50 RMRE 0.66 (0.04) 0.98 (0.07) 1.03 (0.07) 1.05 (0.06)
SRRE 0.69 (0.04) 0.99 (0.07) 1.03 (0.07) 1.05 (0.06)
LEME 0.71 (0.03) 0.88 (0.06) 1.09 (0.09) 1.05 (0.03)

The mean (standard deviation) of the RMSEs of C* with 100 repetitions are reported. The smallest RMSEs
for each setting are highlighted in bold

electrodes, it is less apparent compared to our proposed
method.

4.4 Real-world dataset ll: Leucorrhea

The second experiment involves the classification of IEEE
leucorrhea microscopic images (Hao et al. 2019), which are
categorized into 6 classes: Erythrocytes (Ery), Leukocytes
(Leu), Molds, Epithelial Cells (Epi), and Pyocytes (Pyo).

@ Springer

Figure 5 shows some sample images from this dataset. For
this experiment, we randomly sample 120 images, with 60
images each from the Leu and Pyo categories. The resolution
of each image is downsampled to 32 by 32 pixels.

The performance of the proposed method, RMRE, in
classifying the EEG data and the leucorrhea data using
leave-one-out, 5-fold, 10-fold, and 20-fold cross-validation
is summarized in Table 6. These tables present the mean mis-
classification rates along with their standard deviations, aver-
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Table 4 Estimation errors of

RMRE. SRRE, and LEME in Sparsity (%) Method r=1 r=>5 r=10 r=20
the logistic model Rank
1 RMRE 0.07 (0.03) 0.08 (0.02) 0.09 (0.02) 0.10 (0.01)
SRRE 0.09 (0.03) 0.09 (0.02) 0.10 (0.02) 0.10 (0.01)
LEME 0.07 (0.01) 0.10 (0.01) 0.08 (0.01) 0.09 (0.00)
5 RMRE 0.19 (0.03) 0.22 (0.03) 0.22 (0.03) 0.22 (0.02)
SRRE 0.21 (0.03) 0.23 (0.03) 0.22 (0.03) 0.22 (0.02)
LEME 0.19 (0.09) 0.24 (0.01) 0.23 (0.06) 0.22 (0.01)
10 RMRE 0.28 (0.04) 0.33 (0.04) 0.33 (0.03) 0.33 (0.03)
SRRE 0.30 (0.05) 0.33 (0.04) 0.33 (0.03) 0.33 (0.03)
LEME 0.29 (0.04) 0.31 (0.06) 0.31 (0.01) 0.34 (0.04)
20 RMRE 0.41 (0.04) 0.50 (0.04) 0.52 (0.04) 0.51 (0.04)
SRRE 0.44 (0.05) 0.50 (0.04) 0.52 (0.04) 0.51 (0.04)
LEME 0.42 (0.05) 0.53 (0.05) 0.50 (0.02) 0.47 (0.03)
50 RMRE 0.66 (0.04) 0.98 (0.07) 1.03 (0.07) 1.05 (0.06)
SRRE 0.69 (0.04) 0.99 (0.07) 1.03 (0.07) 1.05 (0.06)
LEME 0.71 (0.03) 0.88 (0.06) 1.09 (0.09) 1.05 (0.03)

The mean (standard deviation) of the RMSEs of C* with 100 repetitions are reported. The smallest RMSEs
for each setting are highlighted in bold

Table 5 Misclassification rates

. Method Leave-one-out 5-fold CV 10-fold CV 20-fold CV
(standard deviation in
parentheses) of RMRE, SRRE, RMRE 021 0.23 (0.03) 0.23 (0.02) 0.22 (0.01)
SDNCMYV, and LEME for the
EEG dataset SRRE 0.21 0.23 (0.02) 0.22 (0.02) 0.22 (0.01)
SDNCMV 0.25 0.23 (0.01) 0.23 (0.01) 0.26 (0.01)
LEME 0.25 0.25 (0.02) 0.26 (0.01) 0.24 (0.02)

The smallest misclassification rates for each setting are highlighted in bold

aged over 100 runs (excluding the leave-one-out CV, which
has a deterministic nature). The results in Table 6 demonstrate
that RMRE achieves the smallest misclassification rates in
the 5-fold, 10-fold, and 20-fold CV, outperforming SRRE,
SDNCMYV, and LEME. However, it does not exhibit good
performance in the leave-one-out CV.

4.5 Discussion of experimental results

We have made several general observations from the simu-
lations conducted in Sects.4.1-4.4:

(1) RMRE demonstrates superior performance over LEME
in the 2D shape experiments and performs comparably
in the EEG data experiment. We attribute this differ-
ence to the regularization choices employed by RMRE
and LEME. RMRE utilizes ¢; (Lasso) regularization
(P(C) = |IC|l1), which promotes sparsity, while LEME
uses a smoother regularization of P(C) = ||A||%,||B||%,
for C = ABT. This proves beneficial in the 2D shape
experiments, where the underlying parameters are sparse.

2)

3)

“4)

RMRE exhibits faster computational speed compared to
SDNCMYV, SRRE, and RLRME. This can be explained
by the analysis presented in Sect. 2.1, which demonstrates
that RMRE incurs a lower computational cost per iter-
ation. SDNCMYV is notably slower as it minimizes an
objective function similar to (2.4) without the rank con-
straint, resulting in a larger number of parameters to
estimate. In contrast, RMRE and SRRE only estimate
a smaller number ( 7(g + m — r) + p) of parameters,
making them more efficient, especially when the rank is
small.

Both SRRE and RLRME employ nuclear norm-based
regularization, which naturally encourages a low-rank
structure (Koltchinskii et al. 2011). In comparison,
RMRE incorporates both sparse regularization and a low-
rank constraint. Our numerical experiments demonstrate
that this “double regularization” approach of RMRE out-
performs SRRE and RLRME in most scenarios.

The performance of RMRE is found to be robust and not
highly sensitive to the choice of the rank r. The estimation
errors remain stable over a wide range of rank choices.
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Fig.4 Heatmaps for C of RMRE (top left), SRRE (top right), LEME (bottom left), and SDNCMV (bottom right) in the EEG dataset
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Table 6 Misclassification rates

L Method Leave-one-out 5-fold CV 10-fold CV 20-fold CV
(standard deviation in
parentheses) of RMRE, SRRE, RMRE 0.23 (0.02) 0.25 (0.02) 0.25 (0.02)
SDNCMYV, and LEME for the
leucorrhea data SRRE 0.26 (0.03) 0.26 (0.01) 0.26 (0.02)
SDNCMV 0.26 (0.01) 0.25 (0.01) 0.27 (0.01)
LEME 0.26 (0.02) 0.26 (0.03) 0.25 (0.02)

The smallest misclassification rates for each setting are highlighted in bold
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5 Conclusion

In this paper, we have proposed a comprehensive framework
for matrix-covariate regression models, offering a versa-
tile approach to handle a variety of response variables. Our
method incorporates a general regularization function, allow-
ing for the application of specific techniques such as the
lasso, total variation (TV), and fused lasso penalties in practi-
cal scenarios. By leveraging a regularization-based objective
function and a low-rank constrained optimization approach,
our framework stands out from existing methods.

Moreover, we have developed an efficient Riemannian-
steepest-descent algorithm and provided rigorous theoretical
analysis. Our algorithm guarantees convergence, and we have
shown that all accumulation points of the iterates exhibit esti-
mation errors in the order of O (1/4/n), effectively attaining
the minimax rate. Extensive numerical studies have sub-
stantiated the advantages of our algorithm, particularly in
cases where the underlying signals exhibit both low-rank
and sparse structures. These promising results highlight
the efficacy and applicability of our proposed framework
in matrix-covariate regression problems. Future research
directions may involve exploring specific regularization tech-
niques and extending the framework to accommodate other
types of response variables.
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Appendix A: Technique proofs

A.1 Proof of Proposition 1

Proof (a) By the line search rule, we have that F (C*+D
y &y < p(clten ey forallk > 1. Since F is bounded
below, the limit limg_ o, F(CUteD) y(teD) exists. Assume
that one of the limiting point of the sequence (C1te"), y (iter))
is (C, ), then the line search rule implies that % F(C, y) =
0 and %F(C, 7) = 0.
(b) The proof follows (Absil et al. 2009, Theorem 4.3.1).
O

A.2 Proof of Lemma 5

Proof We assume that for any x in the neighborhood of x*,

X —X* can be uniquely decomposed into x —x* = x(I) +-x?

such that X € Ty (M) and x?@ € Ty 1 (M). Let b =

Ix—x*]|, thenif b < co, then ||x|| < band ||xP| < Cyb2.
Letv = H::—i:\l be the direction from x* to x, then

£ = £ = [ VA0 = (x =X V0]

X

+/ (v, VL) — Vf(x))dt,

where the first term can be bounded by
(x —x", V(")) = x0 +x@, v 7))

= x, Mz, )y VL&) + (xP, Tz, 0y, 1 V(X))
< blIT7. Ay V &)+ Crb? Mg vy, LV F (X))

On the other hand, the second term can be bounded by

/ X<v, Vf(t) — Vf(x*))dt > %bzcﬂ,l.

*

Combining these two inequalities, the lemma is proved.

A.3 Technical Assumptions

We first present a few conditions for establishing the model
consistency of the proposed estimator in (2.4).

Assumption 1 There exists a positive constant C; > 0 such
that
1) T
—H ZVGC(Xn z;)vec(X;, z;) H < Cy,
n
i=1

where vec(X;,z;) € R4""P is a vector consisting of the
elements in X; € R"™*4 and z; € R”.

Assumption 2 For H(C, y) € R@"+P)x@m+D) defined by

n
H(C,y) =) wyvee(X;, z)vec(Xi, ;)"

(AD)
i=1
where
2, for the ordinary matrix
-covariate regression model,
u)2,l- — (Xv.C)+z.Ty L. .
¢ T for the logistic matrix
(1+6(X,~.C)+zi y)2

-covariate regression model,
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and %H(C, y) is positive definite with eigenvalues bounded
from below for all (C, y) in a neighborhood of (C*, y*).
Specifically, there exists positive constants C2 > 0 and ¢y <
0,(C*)/2 such that 1 2.in (H(C, y)) > Csandforall (C, y)
such that

dist((C. ). (C*, ™) = /IC = C*I2 + Iy — v*I < co.

Assumptions 1 and 2 can be considered as the gener-
alized versions of the restricted isometry property (RIP)
(Candes and Tao 2005) in Recht et al. (2010) and are com-
parable to (Li et al. 2021, Conditions 1,2,5,6). In particular,
Assumption 1 ensures that the sensing vectors vec(X;, z;) €
R9™+P are not the same or in a similar direction, and it
is satisfied if the sensing vectors are sampled from a dis-
tribution that is relatively uniformly distributed among all
directions. Assumption 2 ensures that the Hessian matrix of
Z?:l [(yi, X;,C) + yTz,-), H, is not a singular matrix.

Remark2 Assumptions 1 and 2 are reasonable when n >
O(pm + q) and (X;, z;) are sampled from a reasonable dis-
tribution that does not concentrate around certain directions.
For example, if vec(X;, z;) are i.i.d. sampled from a distribu-
tion of N (0, I), then the standard concentration of measure
results (Wainwright 2019) imply that for the matrix-covariate
regression model, H = 2 Z?:l vec(X;, z;)vec(X;, z,-)T,
and the standard concentration of measure results (Wain-
wright 2019) imply that Assumption 1 holds with a high
probability when n = O(gm + p) and Assumption
2 holds for the regression model as well since H =
2 Z?:l vee(X;, zj)vee(X;, )T . Assumption 2 holds for the
logistic regression model as long as a; = (X;, C) + ziTy is
bounded above for most indices i as wp; > 1/(2¢%).

Assumption 3 (Assumption on the noise for the matrix-
covariate regression model): For the matrix-covariate regres-
sion model, the error ¢;’s in Eq. (2.1) follow an inde-
pendent and identically distributed (i.i.d.) zero-mean and
sub-Gaussian distributions with zero mean and variance one,
i.e., E(¢;) = 0 and Var(¢;) = 1 to ensure that the distribution
of outliers is limited as this model is not designed to handle
outliers.

Assumption 4 There exists a positive constant C3 > 0
such that %”H(C, y)” < (3 for all (C,y) such that

dist((C. ). (€, 7)) = JIC — C*[3 + Iy —y*I < co.
Combining it with Assumption 2, it suggests that H is a well-
conditioned matrix. Hence, Assumption 4 can be considered
as the generalized version of the Restricted Isometry condi-
tion in Recht et al. (2010) and comparable to Conditions 2,6
of (Li et al. 2021).

Assumptions 4 is reasonable when n > O(pm + ¢) and
(Xi, z;) is sampled from a reasonable distribution that does

@ Springer

*

G 7. vy (x — x*)

7. (m),L(x—x%)

Fig.6 A visualization of the manifold M, two points x, x* € M, the
tangent space Tx+ (M), and the projectors Iz, (a1) and Tz, (), L

not concentrate around certain directions. For example, if
vec(Xj, z;) are i.i.d. sampled from a distribution of N (0, I),
then the standard concentration of measure results (Wain-
wright 2019) imply that Assumption 2 holds for all three
models with a high probability, since wy ; are bounded above.
With Assumption 4, we have the following result showing the
convergence of Algorithm 1, with its proof deferred to the
appendix. It shows that with a good initialization, all accu-
mulation points have estimation errors converging to zero as
n — oo.
We will need the following assumptions:

Assumption 5 There exists Cypper > 0 such that for all
(C,y) € A(r, a),

n

2
> (0. ) +y72) " < Cuppernlivee(©. ).

i=1

Assumption 6 There exists ¢ > 0 such that for all x € R,
KL(Pco, Pex) < cex?, where P, represent the distribu-
tion of €; + x for the matrix-covariate regression with con-
tinuous responses models, and Pc , represent the Bernoulli
distribution with parameter x for the logistic regression
model with binary responses. In addition, K L represents
the Kullback—Leibler divergence: For distributions P and
QO of a continuous random variable with probability den-
sity functions p(x) and g (x), it is defined to be the integral

KL(P, Q) = [, p(x)log(p(x)/q(x))dx.

Assumption 5 is less restrictive of Assumption 1 as it only
needs to be true for all (C, y) € A(r, a), and Assumption
6 holds under both the matrix-covariate logistic regression
model for binary responses and matrix-covariate regres-
sion models for continuous responses, Assumption 6 holds
for zero-mean, symmetric distributions with tails decaying
not faster than Gaussian, including Gaussian distribution,
exponential distribution, Cauchy distribution, Bernoulli dis-
tribution, and Student’s t distribution.
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A.4 Sketch of the Proof of Theorem 2

We start with the intuition of the proof with a function f :
R?P — R. To show that f has a local minimizer around x*,
it is sufficient to show that the gradient V f(x*) ~ 0 and
the Hessian matrix of f(x), H(x), is positive definite with
eigenvalues strictly larger than some constant ¢ > 0. The
intuition of the proof follows from the Taylor expansion that

1
F&) ~f) + x—x)T V") + 7= X H(x*)(x — x*)

> () + (x - x)T V(&) + gnx—x*nz. (A2)

As a result, there is local minimizer in the neighbor of x*
V6O e B (x* w). To extend this
c ’ ’ ’ c

proof to (2.4), the main obstacle is the nonlinear constraint
in the optimization problem. To address this issue, we con-
sider the constraint set in (2.4) as a manifold and generalize
the “second-order Taylor expansion” in (A2) to the func-
tion defined on a manifold. With this generalized Taylor
expansion, a similar strategy can be applied to prove that
the minimizer of (2.4) is close to (C*, y™*).

To analyze functions defined on manifolds, we introduce
a few additional notations. We assume a manifold M C R?
and a function f : R” — R, and investigate f(x) for
X € B(x*,r) N M, i.e., alocal neighborhood of x* on the
manifold M. We denote the first and second derivatives of
f(x) by Vf(x) € R? and H(x) € RP*? respectively, the
tangent plane of M at x* by Ty« (M), and let Iz, (Aq) and
[7,. (M), L be the projectors to Tx+(M) and its orthogo-
nal subspace respectively. These definitions are visualized
in Fig.6.

Then, we say that a manifold M is curved with parame-
ter (co, Cr) at x* € M, if for any x € B(x*, cgp) N M, we
have | Tz, vy, L (X=X || < CrllT 7, (A0 (X —x)[|. Intu-
itively, it means that the projection of x — x* to the tangent
space T+ (M) has a larger magnitude than the projection to
the orthogonal subspace of the tangent space (see Fig. 6).We
remark that a larger C7 means that the manifold M is more
“curved” around x*. Then, Lemma 5 establishes the lower
bound of f based on the local properties such as the first and
second derivatives of f atx*, the tangent space of M around
x*, and the curvature parameters (cg, Cr).

with radius

Lemma5 Consider a d-dimensional manifold M C R? and
a function f : R > R, define Cy 1 = Mingep(x*,cq)
Amin(H(X)), and assume that M is curved with parameter
(co, Cr) atx* and 4Cy 1 > Cr |1, My, LV f(XF), then
we have the following lower bound for any x € B(x*, cp) N
M:

1
fx) — f(x*) > Ebzcy,l — b7 AV f )|

—Crb?* Mz, My, LV F (X,

where b = ||x — x*|.

Lemma 5 can be viewed as a generalization of Inequal-
ity (A2): when M = RP”, then we have Cr = 0,
II7.1 = ¥ and as a result, ||HTX*(M),in(X*)” = 0.
To apply Lemma 5 to our problem, we need to esti-
mate the parameters co, C7, Cy.1, [T, AV f (X¥) ][, and
M7, (M), LV f (x| in the statement of Lemma 5. In par-
ticular, (co, Ct) depends on the manifold M used in the
optimization problem (2.4), which is
M ={(C,y) € R”" x R? : rank(C) = r}. (A3)
By treating M as the product space of R” and the manifold
of low-rank matrices {C € R?*™ : rank(C) = r} and fol-
lowing the tangent space of the set of low-rank matrices in the
literature (Absil and Oseledets 2015; Zhang and Yang 2018),
we obtain the following lemma of “curvedness” parameters
(co, C1) of M at (C*, y™*).

Lemma 6 The manifold M defined in (A3) is curved with
parameter (co, Ct) at (C*, y*), for any ¢y < 0,(C*)/2 and
Cr = 2/0,(C*), where o,(C*) represents the r-th (i.e., the
smallest) singular value of C*.

In addition, the parameter Cg 1 in Lemma 5 can be esti-
mated from Assumption 2, and the derivatives || I17, A1)
Vx| and [Tz, Ay, V(X" in Lemma 5 can be
estimated from Assumptions 1 and 3. Then the proof of The-
orem 2 follows from Lemma 5 and the intuition introduced at
the beginning of this section, with technical details deferred
to the appendix.

A.5 Proof of Lemma 6

Proof By following the tangent space of the set of low-rank
matrices in the literature (Absil and Oseledets 2015; Zhang
and Yang 2018), we have the following explicit expressions
of the tangent space of M at (C*, y*) that

Ticr yoy.m = {AV*VT L UUB,y) : A, B € R7*" y € R},

where U* € R7*" and V* € R™*" are obtained from the sin-
gular value decomposition of C* such that C* = U*ZV*T,
The projection operators in Lemma 5 are given by

M7 e 0 D, y) = U U D+ DVVT —U*U DV VT y),
M7 LD, y) = (X = UUHDA - VVT), 0).

By choosing U*+ e R?*@~") guch that [U*L, U*] e
R9%4 is orthogonal and choose V*+ e R”* "= guch that
[V*, V*¥] € Rm>m jg orthogonal, then we can express the
projectors as follows: for any (C, y) close to (C*, y*), we

may write C—C* = U*D; V*" +U*LD, V*T 4+ U*D3 VL7 +

@ Springer
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U*LD4v*lT’

Mz ) 00t (C = €y =y )| = [(UTDyVE,0)[| = D4l £,

and
”HT(C*,}/*)‘M (C - C*a Y — V*)”

= \/IID1II% + D217 + D311 + lly — y*I%.

By rank(D) = r, we have D4 = D, (D + U*T C*V*)~1D;.
Thus, when |C — C*||p < 0,(C*)/2,
M7 e ey pgo t (€ = CFy = ¥D)I
D2l FIID3 F
~ oD —[|C—CHF
_ UM o i (€= €y =12
- or(C*) '

and Lemma 6 is proved. O
A.6 Proof of Theorem 2

Proof In the proof, we mainly work with

FCy) =) 1k, (X0, ©) + v m),

i=1

and it is sufficient to show that for all (C, y) € M such that

JIC =12+ 1y = 7#12 = Corrrn.

To prove it, we first calculate the constants and the opera-
tors in Lemma 5 as follows. For all three models, the constant
on the curvature of M is the same. Hence, we may choose
Cr = 2/0min(C*). In addition, as discussed in the proof of
Lemma 6, the projectors 17 and 7 | at (C*, y*) can be
defined by

HT(C*,y*)(M)(C’ V) = (C - HU*,LCHV*,J_’ y)v

O7e oy My, L(C, ) = (Tgx, L CIy+ 1, 0), (A4)

where U* € R?*" and V* € R™*" are the left and right
singular components of C*, Ty = U*U*T, My+, =1-
My«, My+ = V*V*T and Mys , =T — V*V*T | As for the
first derivative, we have

n
VAC y*) =Y wiivecXi, i),
i=1

where
2¢;, for the matrix variate regression model;
Wi, = . . . . .
l €;, for the logistic matrix variate regression model.
Combining it with (A4),

07wy (M VA€ y™) = (MuX; + X Ty — MyX; Ty, 7)),
T iy (M), LV (CF, y™) = X — TyX; — XiTly + MyX; Ty, 0).

Now let us introduce a lemma as follows.

Lemma7 For any projection matrix U € R"*? and a ran-
dom vector x € R" with each element i.i.d. sampled from a
sub-Gaussian distribution of parameter oy, then fort > 2,

Pr(|[x"U|| > togv/d) < Cexp(—C1).
Proof This lemma follows from the McDiarmid’s inequal-

ity (Maurer and Pontil 2021, Theorem 3). In particular, we
have that

< opd,

n d
E|x"U| < VEXTUUTx] = |E|> x?) U}
i=1  j=l

and let x*) € R” be defined such that xi.i) =x;ifj#i
and x{” = 0, then |IX"U|| — xXDTU|| < x[IUG, 2,
where ||U(i, :)|| represents the norm of the i-th row of U. As
aresult, |x7U| — |x?TU| is sub-Gaussian with parameter
oollU@, :)||. Combining it with the fact that Y 7, [|U(, :
)||> = d and the sub-Gaussian version of the McDiarmid’s
inequality (Maurer and Pontil 2021, Theorem 3), the lemma
is proved. O

Assumption 1 and Lemma 7 imply that with a probability
of atleast 1 — C exp(—Cn) — Cexp(—Ct(r(g +m) + p)),

n
H > w1,iveC(Hr(C*,y*)(M)Vf(C*, J/*)) H < 1Citogy/n(r(q +m) + p),

i=1

n
” > wl,iVCC(HT(C*YV*)(M),J_VJC(C*7 V*)) H < 1Citogy/n(gm — r(g +m) + p),

i=1

(AS5)
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where

o — o, for the matrix-variate regression model;
0 1, for the logistic matrix-variate regression model.

For the Hessian matrix, it is as defined in (A1). As aresult,
we have Cy 1 = Can. Plug in Lemma 5, we have that for

b= JIE— CI% + 17 — I, we have

1
f(C,y)— f(C*y%) > Ebzcz — bz, Ay V LX)

— Crb* | Ty (), LV F (X
which is larger than A P if

b2Cy

—2 = max (AP bl 7 vty VS O B2 My v, 1 VO

or equivalently, if Caa/n > 6C1t09+/(gm + p), and

<6C1t(fo«/_n(r(q Tm)+p) |6LP(C* y*))
b > max .

Cy ' &)
(A6)
As a result, we have
f(C,y) = f(C*, ™) = AP(C*,y™)
for all {(C, y) € M :dist((C, y), (C*, y™)) € T},
(A7)

where

6Citoo/n(r(q +m)+ p) |6AP(C*, y*
7 = | max ,
Cy C

)]

Next, for all (C, y) such that dist((C, y), (C*, y*)) =
\/||C — C*II%p + |ly — ¥*|I> = b where b < ¢, we have

\%

1
— f(C*, y*) > Ecznbz
1

Ecznb2 — bCitogy/n(gm + p).

F(C.y) — DIV F(C* v

v

That is, when b > 4C1m°v"(qm+”) and Cznb2 >
AP(C*, y*). By (3.1), such a ch01ce of b ex1sts and we
have f(C,y) — f(C*, y*) > AP(C*, y*) for all {(C, y) :
dist((C, y), (C*, ¥*)) = b}. Since f is convex, it holds
for all {(C,y) : dist((C, y), (C*, y*)) > b}. Combin-
ing it with (A7), we have that for all (C,y) € M such

that \/IC— C*I% + Iy —y*I> = Cerrar1. f(C.7) —
f(C*, y*) > AP(C*, y*), and the theorem is proved. O

A.7 Proof of Theorem 4

Proof First, by Assumption 2, for all {(C, y) :
JIC—C R tly -y 2 =¢f

F(C,y) > f(C,y) > TC +;l<y,,<xl,c*>+y”

Since F(Ctr) ey i nonincreasing, we can choose a
small initial step size oy > 0, such that if the initial step size
« in line search satisfies @ < o, then (CU") y ey ¢ 3

for all iter > 1.
By the proof of (A5) we have

1 Tccx,y), MV f(C, vyl < nCrtogy/n(r(g +m) + p)

1Ty, M, LV F(CF 9 < nCitogy/n(gm — (g +m) + p).

As a result, for (C, y) with dist((C, y), (C*, y*)) = b, we
have

1 Tc,y), MV F(CH ¥y

> nCob — Cytop/n(r(q +m) + p)
1 Tcy.m LV F(CH D)
<nCsb+ Cltao\/n(qm —r(g+m)+ p).

That is, if

nCyb — Citopg/n(r(g +m) + p) >

Crb(nCsb + Citagy/n(gm — r(g +m) + p)) + ACparsial,

then (| T(c,), MV f(C*, y*)|| # 0. This is satisfied if

1
31k > maX{Cltao\/n(r(q +m) + p), CrC3nb?,

CTCItUO\/n(qm - V(CI +m) + P)l% )\Cparlial}v

. ST
i.e., when \/n > 4CrCitog (‘ig; r@+m+p) 404

4C1tog/(r(g +m) + p) 4)\Cpartial C
<b< .
C2\/_ nCy 4CrC3

By assumptions, this is satisfied with initialization b =
dist((C?, y ), (C*, y*)). s0
(D () e BV iter > 1.

It remains to prove (3.3), which is similar to the proof of
(3.2). O

@ Springer
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A.8 Proof of Theorem 3

Proof of Theorem 3 WLOG assume that m > ¢g. Let 6 =
(C,y),and

C= {(C, y) : C = [C/, 0] where C' € R™*"

and 0 € R"*4™") C}; € {s, —s}, m € {s. —s}},

where s = cp,/ w. Then we have |C| = 2"TP, and

for any (Cy, 1), (C2,12) € C, dist((Cy, y1), (C2, 2)) =
2 s. In addition, for any (C, y) € C and Py represents the
model when C =0 and y =0,

Ko, Py < e Y (%0 4y 75)

=

IA

ce Cupper (ICI1% + 7 11%)
Cecupper(r(m +q) + P)SZ~

IA

Applying (Tsybakov 2008, Theorem 2.5) and note that
log|C| = log(2"™*P) = (rm + p)log2, we may choose
o = 2c¢, Cuppers2 /log?2, and « can be sufficiently small by
choosing cq to be small. The rest of the proof following apply-
ing (Tsybakov 2008, Theorem 2.5). O
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