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ABSTRACT

Single photon counting avalanche diodes (SPADs) are versatile sensors for active and time-correlated measure-
ments such as ranging and fluorescence imaging. These detectors also have great potential for passive or uncor-
related imaging. Recently, it was demonstrated that passive imaging of photon flux is possible by determining
the mean photon arrival time. For ambient light illumination, timestamp data can be interpreted as a metric
for the photon impingement rate. Various applications have been investigated including high-dynamic-range
imaging, single-photon imaging, and capture of fast-moving objects or dynamic scenes. However, the appearance
of noise and motion blur requires sophisticated signal processing that enables sub-pixel resolution imaging and
reconstruction of the scene by motion compensation. In this paper, we present new results on the evaluation of
global scene motion. In our approach, motion is intentionally generated by a rotating wedge prism, resulting in
continuous global motion on a circular path. We have studied scenes with different optical contrast.
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1. INTRODUCTION

Due to their ability to precisely measure the time of arrival of individual photons, single photon-counting
avalanche diode (SPAD) sensors are gaining popularity for use in various optronic sensing applications in re-
cent years. SPAD sensors can be integrated and manufactured inexpensively in standardized semiconductor
manufacturing processes with a wide range of pixel array sizes, from single pixel detectors to megapixel SPAD
arrays.1–6 SPAD sensors have an outstanding sensitivity, low dark count rates and high time resolution of a few
picoseconds.

Typically, SPAD sensors are used in conjunction with an active light source (e.g. a pulsed laser) to record
the photon timestamps in synchronization with the pulsed illumination source such as in fluorescence lifetime
microscopy,7 range imaging,8–11 super-resolution ranging,12 transient13,14 and non-line-of-sight sensing.15–18

Recent publications focused on the passive sensing capabilities of single photon counting devices by, for
instance, restoring intensity images from binary photon detection19–24 for both static and dynamic scenes. Fur-
thermore, the timing ability of SPAD sensors was used to determine the physical intensity by estimation of
the photon flux from the photon impingement rate.25–30 In this approach, the time between photon events is
determined from the mean event time. It was shown that with photon flux measurements SPAD sensors are able
to perform sensing with high dynamic range.
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Figure 1. The intensity of the photon flux impinging the SPAD detector is often estimated from (a) the count rate C(u, v)
by analyzing binary intensities that is the counting of photon events, only. In contrast, we analyze (b) the statistical
behavior of the photon event time to obtain the photon flux ϕ(u, v).

In prior work, we have demonstrated27 the compensation of motion by accumulating photon information
along motion trajectories in these 3D (spatio-temporal) photon timestamp data sets. Further, we have published
some investigations on the application of deep neutral network (DNN) image up-scaling.29,30

In the current paper, we use a rotating wedge prism (RWP) in the sensor’s field of view to intentionally
introduce a moving shift of the scene within the image. We use this motion to apply our aforementioned motion
compensation algorithm to reduce noise and motion blur, and to increase the resolution within the observed
scene.

2. RELATED WORK

Passive Single-Photon Imaging: The passive single-photon imaging aspect is related to work discussing
quanta image sensors (QIS),20–23 binary single photon intensities,24,31 low noise sCMOS32 and EMCCD33 cam-
eras with low light sensitivity. We consider SPAD based imaging here because they provide much higher time
resolution compared to these other sensor technologies. Moreover, SPADs can be manufactured cheaply as they
are compatible with the CMOS photolithography processes.

Motion De-blurring: Motion de-blurring is an ill-posed inverse problem. Conventional de-blurring techniques
pose this as a de-convolution problem, where the blur kernel may be assumed to be known or can be estimated
from the image itself .34,35 Recent methods also use data driven approaches36 to handle the ill-posed situation

The idea closest related to our work is burst photography where a rapid sequence of images (usually around
10) are captured and merged after motion compensation.23 Our method takes this idea to the extreme limit
where the burst is composed of single-photon frames.22,28

Super-resolution and binary Image Up-sampling: The task of image up-scaling is a well studied problem.
Many methods use a sub-pixel movement through deliberate changes in the position of the image plane37–40 or
analyze in-scene motion41,42 for resolution enhancement through analysis of image sequences. For single image
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processing, state-of-the-art methods apply data-driven approaches to train and employ deep neural networks43

to obtain super-resolution images from low resolution data-sets. Several studies were published refining, using
and comparing different approaches.44–51 Here we leverage these developments and apply them to the new kind
of data provided by a single-photon camera.

3. PASSIVE PHOTON TIMING

In principle there are two approaches to derive information about the amount of light impinging a single photon
counting detector, as depicted in Fig. 1. First, (a) we can determine the intensity as a count rate from binary
samples and second (b), we estimate the photon flux from the photon timing data.

In the first case, the count rate from binary samples approach, we simply count the number of photon events
Nτ within a certain time span τ e.g. exposure time. The count rate cτ is the quotient of both, see Eq. 1. Some
groups are working on methods to estimate the intensity from a only few samples.19,24

cτ =
Nτ

τ
(1)

We proposed a second approach based on analyzing to timing behavior of passive photons or ambient light.
Generally speaking, we try to estimate the mean waiting time t̄ between two photon events to derive the photon
flux ϕ̂ as the inverse waiting time, see Eq. 2. We assume that we have a limited number of samples m and will
detect n ≪ m photons. Further, ϕ̂ is an estimator which comply with the Poisson statistics.

ϕ̂ =
1

t̄
, with t̄ =

m∑
j=1

tj
nj

=

∑m
j=1 tj

n
(2)

In previous work,25–30 we have shown that, in principle, we can reduce the number of detected photons to a
single photon, nmin. → 1. ϕ̂ becomes the instantaneous photon flux ϕ̂inst.

ϕ̂inst. =
1

tinst.
, with tinst. =

µ∑
j=1

tj and

µ∑
j=1

nj ≡ 1 (3)

4. COMPENSATION OF AN ARBITRARY MOTION

(a) (b)

Figure 2. We have developed an algorithm to calculate the photon flux and blurring due to compensate motion. The
data stack (a) is analyzed locating statistical change-points. Each frame of the data stack (b) is transformed (rotation,
translation) to minimize blurring and to enable the photon flux calculation along the motion trajectories. Using prior
up-scaled data frames can enable super-resolution.
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Figure 3. Experimental results imaging a rotating fan (from left to right): a single time stamp frame, the corresponding
estimated photon flux at that instant and result of the algorithm (preMC) performing motion compensation of pre-scaled
data frames.

It is obvious that the instantaneous photon flux estimation (Eq.3) is prone to noise due to the direct impact of
the photon detection statistics. To compensate this effect, we have developed a high performance noise reduction
algorithm based on the evaluation of the photon statistics in the whole data set (time series of photon detection
frames) and on the analysis of statistical change points. The full algorithm is described in detail elsewhere.27,30

In short, we detect statistical change points in the data stack, as illustrated in Fig. 2. These change points
are caused by changes in the photon flux due to motion of areas with high optical contrast in the observed scene.
In a second step we estimate the transform matrix (e.g. Euclidean transforms) between consecutive data frames
and re-orientate the data stack to compensate motion in the scene, as illustrated in Fig. 2 (b). Finally, we can
calculate the mean photon flux a long the motion trajectories for every position. Additionally, we have shown
that using prior scaled data sets (e.g. scaling from 32×32 to 128×128) we can obtain sub-pixel resolution while
reducing significantly the motion blur in the scene.27,30

In Figure 3 we show some results obtained with our motion compensation algorithm. On the left, a single
frame of our data stack is shown containing timestamp data. In the middle, a fist estimate of the photon flux
is presented. This frame illustrates the low resolution (32× 32 pixel) image before up-scaling and compensation
of motion is applied. The final result is given on the right side. After applying our algorithm, we obtain a
high-resolution (128 × 128 pixel) image in which many details can be seen that were previously not visible due
to low resolution and noise. Thanks to the continuous movement in the image and the precise realignment of
the image frames, we can detect structures with sub-pixel resolution.

5. COMPENSATION OF AN INTENDED MOTION

Although we have achieved impressive results with our motion compensation algorithm that detects arbitrary
motion in the scene, as described above, we run into a few problems. First, we only obtain super-resolution for
objects that are constantly moving. Imaging static scenes or non-moving areas of the scene does not benefit
from the previously up-scaled resolution and can become blurry. Second, imaging non-monotonic or very dy-
namic motion (such as an exploding balloon) is also problematic, as our approach works best with Euclidean
transformations and motion that persists over many frames.

As illustrated in Fig. 4 (a), we use a single photon counting avalanche diode (SPAD) camera (PF32, Pho-
tonForce, UK) with an array of 32 × 32 sensors to observe a scene illuminated by an un-correlated light source.
Further, to overcome the aforementioned main problems, we have modified our experimental setup with the goal
of ensuring constant motion throughout the scene. In detail, we introduced a rotating wedge prism into the
sensor’s field of view.

This prism (Thorlab, US, PS810-A) deflects the field of view by a few degrees. The prism is installed on a
flat frame-less motor (Maxon, CH, EC frame-less 90 flat) which rotates the prism around the optical axis and
thus the deflection direction of the field of view. As illustrated in Fig. 4 (d), we can observe a linear displacement
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Figure 4. Illustration of the modified setup (a) setup using a SPAD camera with a rotating wedge prism (RWP) to deflect
the field of view by an angle θ and experimental results imaging a letter board (upper row) and a person (bottom row).
In both cases we show the raw SPAD array resolution and the super-resolution obtained with the preMC algorithm.

of the field of view which moves circularly around a center. In the experiments, we used a rotation speed of
5000 rpm or 83 Hz. In our approach we do not use the rotation state to estimate the motion in the image.

Some first results are shown in Figure 4. First, we imaged the face of a person (one of the authors) sitting
in front of the sensor, see Fig. 4 (b) and (c). Although, the optical contrast in this scene is low, we are able
to apply the motion compensation algorithm and obtain a significant resolution enhancement. In this enhanced
image, we can start to distinguish between different areas of the face and can identify, for instance, nose, mouth,
eyes and eyebrows.

In a second experiment, we investigate a ”letter” scene (Fig. 4 (d)) with high optical contrast consisting of a
black board and randomly selected white letters (”I”, ”S” and ”L”). In the image, we indicate in the sensor’s
field of view (red dots) and its movement along a circular path (red circle). The fist estimation of the photon
flux is shown in (e). Here, we obtain the original low resolution of the camera. Using our motion compensation
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algorithm with a prior scaled dataset (f), we can reconstruct a super-resolution image of the scene.

Finally, we used a high contrast board (Fig. 4 (g)) with a letter ”F” (right) and ArUco-tags52 with different
patterns and sizes (left). Low resolution and super-resolution images are shown in Fig. 4 (h) and (i), respectively..
With our method, we are able to detect structures (frames around ”F” and small tags) and read tags whose
structures are below the spatial resolution of the sensor.

6. DISCUSSION AND CONCLUSIONS

We have investigated passive single photon timing to estimate the photon flux impinging the sensor. We have
introduced the concept of instantaneous photon flux using the timing of a single photon event and explained
the motion compensation algorithm using prior scaled imaging. This approach can result in high resolution
reconstruction of the photon flux and suppresses statistical noise and motion blur. Further, we have identified
two main problems of this approach: we cannot obtain super-resolution in areas without motion and areas with
short or non-continuous motion. To overcome these problems, we have modified our setup and introduced a
rotating wedge prism into the sensor’s field of view to introduce a constant motion of the whole scene.

We have investigated three different scenes and obtained high resolution reconstruction of the photon flux in
both scenes. The first scene was a person sitting in front of the camera, second, a ”letter” board with very high
optical contrast and third, a board with small tags. All scenes represent static or low motion scenarios. Further,
in all cases, it was possible to reconstruct an up-scaled image with significantly increased resolution (sub-pixel).

In further research, we need to clarify whether this modified detection approach can also be used to detect
non-continuous motion in a scene, such as an exploding balloon, a person waving their hands or persons walking
in different directions.
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