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While linear discriminant analysis (LDA) is a widely used classification method, it is highly affected by
outliers which commonly occur in various real datasets. Therefore, several robust LDA methods have been
proposed. However, they either rely on robust estimation of the sample means and covariance matrix
which may have noninvertible Hessians or can only handle binary classes or low dimensional cases. The
proposed robust discriminant analysis is a multi-directional projection-pursuit approach which can clas-
sify multiple classes without estimating the covariance or Hessian matrix and work for high dimensional
cases. The weight function effectively gives smaller weights to the points more deviant from the class
center. The discriminant vectors and scoring vectors are solved by the proposed iterative algorithm. It
inherits good properties of the weight function and multi-directional projection pursuit for reducing the
influence of outliers on estimating the discriminant directions and producing robust classification which
is less sensitive to outliers. We show that when a weight function is appropriately chosen, then the
influence function is bounded and discriminant vectors and scoring vectors are both consistent as the
percentage of outliers goes to zero. The experimental results show that the robust optimal scoring dis-

criminant analysis is effective and efficient.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Linear discriminant analysis (LDA) [10] is a widely used classifi-
cation method, which searches a linear boundary with the optimal
discrimination between two classes [13]. However, the classical
LDA could be improved by solving the following issues. First, LDA
is sensitive to the outlying observations. There are two approaches
of robust discriminant analysis [26]. Approach I: To replace the un-
known population parameters, group means ({1, /) and covari-
ance matrix (X) by estimators of multivariate location and scatter
[6,11,23,25,29-32,35,36] such as Robust Regularized LDA (RRLDA)
[5,11,12], Robust Mixture Discriminant Analysis (RMDA) [2], and
Robust Linear Discriminant Analysis (Linda) [31]. Croux and Dehon
[6] proposed robust linear discriminant analysis using s-estimators
of the means and covariance. Kim et al. [22] proposed a robust LDA
method which searches the worst-case performance of a discrimi-
nant over all possible means and covariances. Guo et al. [12] devel-
oped shrunken centroids regularized discriminant analysis. How-
ever, it does not work well for high dimensional data, since there
may exist ill-conditioned covariance matrices in this setting [26].
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Approach II: To replace the unknown univariate population pa-
rameters along the projections, a’tq, a’it», and a”%a by univari-
ate estimators of location and scatter. Approach II is a projection-
pursuit approach. Pires and Branco [26] proposed the robust LDA
with Projection Pursuit (LDAPP), which is a one-directional projec-
tion pursuit of location and scatter, and hence only can handle bi-
nary classification. In this study, we proposed a novel robust dis-
criminant analysis by multi-directional projection-pursuit of opti-
mal scores, and named it as the robust optimal scoring discriminant
analysis (ROSDA), which can classify multiple classes. It provides a
supervised projection of the predictors by using the W loss func-
tion which is less sensitive to outliers in the fashion of the pre-
vious work of robust principal component analysis [19,20]. The W
loss function results in a weight function which effectively gives
smaller weights to the points more deviant from the class center.
ROSDA inherits good properties of the W loss function and multi-
directional projection pursuit for reducing the influence of out-
liers on estimating the discriminant directions and producing ro-
bust classification which is less sensitive to outliers. We propose an
iteration algorithm to solve the ROSDA problem effectively and ef-
ficiently, since ROSDA is a multi-directional projection-pursuit ap-
proach which can classify multiple classes without estimating the
covariance or Hessian matrix and work for high dimensional data.
We show that the proposed algorithm has the same computational
complexity as LDA and RRLDA. Moreover, we derived the associ-
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ated influence function and its properties. All the technical proofs
are in Appendix.

2. Methodology

The linear discriminant analysis can be reformulated as an op-
timal scoring least square problem [14]. Let Y denote a n x K ma-
trix of dummy variables for the K classes. Yj an indicator vari-
able defined by y; =1, if the ith observation belongs to the kth
class; y; = 0 otherwise. Assuming that data matrix X is an n x p
with each row X; corresponding to ith observation in RP sampled
from K classes, and the data has been centered. The optimal scor-
ing discriminant analysis (OSDA) [14] finds the discriminant scores
by finding at most K — 1 discriminant directions, where K is the
number of classes. The OSDA problem is expressed as

.1
min - [Y® —XB||2, s.t. ®TYTYO = nlg,q, (1)
where || - || is the Frobenius norm, ® = (65, ...,6,) € RKxQ, B =

Bi,.-.. Br) eRP*Q k=1,...,Q <K—1, § are the scoring vec-
tors, B are the discriminant vectors. B is a matrix mapping X;, i =
1,..., n from RP to R, and the rows of ® represent the K classes
in RQ. Though Problem (1) is not convex, the OSDA problem could
be solved iteratively by a decomposition of the least squares prob-
lem in 6 and By, since the estimates of B, and 6, have closed
forms individually [14,15].

2.1. The asymptotic expectation of OSDA

In this section, we show the asymptotic expectation of Prob-
lem (1) when W is the identity function. Following Hastie et al.
[14], © is the eigenvector matrix of YTPyxY. We assume that
for all 1 < k < K, each sample is from the kth class with
probability 1/K. In addition, the samples in the kth class fol-
low from a distribution with mean p;, and covariance I. Then
YTRY/mprob._ [puy. ... ug) T oy T+ D] e - k]
(prob.__, : convergence in probability) with Py = X (XTX)~1XT [28].
As a result, ® ¢ RK*Q is the matrix given by the Q top right
eigenvectors of the matrix [u1, ..., ux] € RP*K and B is given by
(XTX)7IXTY prob. _ [Yk_y (I + peie] )17 141, - ... g ]®. Assuming
that the singular values of the matrix [u1,..., uxlisoy >0y > ...,

i i i i 01 ) 9Q T
then B is the matrix given by dlag(ﬁ12+K,(722+K,...,05+K)V ,

where V e RP*Q is the top Q left eigenvectors of the matrix
[M]s ""MK] € RPXK'

3. Robust optimal scoring discriminant analysis
3.1. ROSDA with ¥ function

Like other least squares problems, the OSDA is easily influenced
by outliers. Inspired by Huang et al. [19] and Huang and Yeh [20],
we propose a supervised dimension reduction method that can be
considered as a robust version of OSDA using W function. Higuchi
and Eguchi [18] discussed the W loss function and their param-
eter tuning procedures. Here are a few choices of W(z) and the
corresponding weight function W’(z) (the first derivative with re-
spect to z): 1) Wy(z) =z with ¥[(z) =1, 2) ¥1(z) = (1 - e~%%) /¢
with W] (2) = €767, 3) Wy(2) = -1 log{ =<5} with W) (2) = 1 -
He_lw. We used W, in our data analysis since it requires only
one tuning parameter and provides weights which reduce the
influences of outliers effectively. Note that lim,_ V1 = Wy, the
identify function, is the loss function of the OSDA problem. The
W function is applied to the loss function in Problem (1) in order
to reduce the influence of outliers. The proposed ROSDA solves the

following problem
1y TyT
min E;w(zi), st OTYTY® =nly,q, (2)

where W(z;) is a monotonic increasing concave, and differentiable
function of z; = ||Y;® —XiB||§ with the Euclidean norm || - ||, B is
the p x Q matrix with columns consisting of the Q coefficient vec-
tors B1,..., Bg. and O is the K x Q matrix with columns consist-
ing of the Q scoring vectors 0y, ...,0p with 1 <Q <K —1. We aim
to use W functions for reducing influence of outliers on the resid-
ual sum of squares (RSS) [18-20]. The W function assigns higher
weights to the points with small RSS and gives smaller weights to
the points with large RSS.

An iterative algorithm for solving ® and B in the minimization
problem (2) is introduced as follows. First, calculate the weight
matrix WU-D = diag(Wl(J’”, ... WU™Dy e R1*1 with the element
w9 — v/ ([ly;@0-D — X;BU-D|2), and ¥'(z) = 4@ In the jth
iteration, the weights W;, W5, ..., W, are given by the estimates of
®U-1 and BYU=D from the (j— 1)th iteration. Second, in the jth
iterative update, the target problem is

1 i1
min - le WYY@ — XiB) |12, s.t.O'DO = Iyq.
1=

where D = %YTY. As a result, Problem (2) is reduced to
1 . )
min - [WU-DY® —wU-DXB||2, s.t. ®'DO = Iyq. (3)

Here n x n matrix By 1)y denotes a projection matrix of the
subspace spanned by the p columns of WU=DX. Problem (3) is
equivalent to

1 .
min gll (Inxn — Pya-o )WUDYQ|12, s.t. @7DO = Iy, q. (4)

Let Py be a matrix of size R"™K such that B/ = Ix,k, and Py
has the same column space as Y. Here we choose Py as the matrix
of the left singular vectors of Y. Let ®y € RK*Q be defined such
that %Y@ =R 0y, then (-DOT@)O =lpxq and the problem can be
written as

n(1)in | Unsn = Pyo—o )WY DR@g |12, s.t. ©f @ = Ipyq. (5)
Yo
Therefore, ®, can be obtained by the Q smallest right singular

vectors of (Inxn — By -1y )WY DR, and then © = ﬁD”YTPy@)O.
Consequently, we have Algorithm 1 and the following properties.

Algorithm 1 Robust OSDA (ROSDA).

: Input: Y is a n x K matrix, X is a n x p matrix, and Q = K — 1.

: Output: (BEJJX)Q,G),((JX)Q).

: Initialize B® and ®© as matrices of 1's.

: Standardize X.

: Compute D= 1yTy.

: Run a loop until the criterion, |old RSS — RSS|/RSS < Tolerance and the
number of i.terations reach a maximum number, is achieved.

: Compute zl.“’” = lY,@U-1 —X;BU-D |12,

: In jth iteration, compute the weight matrix W = diag(W4, ..., W) € R™1
with W; = W' (z97Y).

9: Assign RSS as the old RSS

10: Compute BY) = (XTWX)~'XTWY®U-D by backward substitution.

11: Compute B, as the matrix of the left singular vectors of Y.

12: Compute ®y as the Q smallest right singular vectors of (Inxn — Byx)WFR.

13: Compute © = %D*YTH/@O.

14: Update RSS asl 31 | W(z;),where z; = ||Y;,00) — X;BD|2.

15: Repeat the above procedure 5-13 until the stopping criterion is satisfied.

16: For each data X;, predict classes by finding which ®, is closest to X;B for

1<k<K

A UhA W N =

[N
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Proposition 1. Assume that the V(z) function is differentiable with
0 < W/'(0) < oo, and W(z) is strictly increasing and strictly con-
cave in zeR*. Then the empirical loss functions generated by
Algorithm 1 are strictly decreasing:

LBV, 0M;¥) > L(B?, 0@, v) > ..,

where L(BYD,0W; W) =11 W(z), and z=|Y,00 -

XiBD|12.

It is necessary to have strict concavity to get strict inequality.
The strict decrease of the loss function guarantees the convergence
of Algorithm 1 regardless of where the initial point starts.

Theorem 2. Given a dataset {(X;,Y;)}_, or (X, Y) in a matrix form,
the optimal solution (B, ®) satisfies the following stationary equa-
tion:

B=X"WX)"IX"TWYO®, © = inlyTPy@o, (6)
NG

where ®¢ can be obtained by the Q smallest right singular vec-
tors of (I — Byx)WPRy, Py is the matrix of the left singular vectors of
Y, W; = V' (z), z; = |Y;® — X;B||2, and D = 1YY, B is the K x Q co-
efficient matrix with columns B4, ..., Bq and © is the K x Q scoring
matrix with columns 6y, ..., 0q, and V' (z) = %.

Notice that if (B, ®) is a solution for Eq. (2), then (BU, ®U) is
also a solution for all Q x Q orthogonal matrix U. Therefore, in
this study, the solution (B, ®) expresses the collection of all the
(BU, ®U) in which the classification is invariant.

3.2. Computational cost

In this section, we describe the computation cost per iter-
ation in Algorithm 1. Step 7 requires a computational cost of
0(nKQ + npQ); step 10 requires O(p%n + p> + pnk + pKQ); step 11
requires O(nKmin(n, K)); the calculation of R, =Y (YTY)"05 re-
quires 0(nk? + K3); the calculation in step 12 with given Py is

WBR — (WX)XTWTWX) > (XTWTWER,,

which has a complexity of O(nK +np? + p3 + npK) (note that W
is a diagonal matrix); the calculation of step 13 with given Py is
O(K3 + K?n). Therefore, the computational cost per iteration is in
the order of O(max(n, p)(K2 + p?)) by adding them together with
the implicit assumption that n > K. In comparison, the computa-
tional cost of LDA or RRLDA per iteration is about the calculation of
sample covariance matrix or robust covariance matrix and its ma-
trix inversion, which is in the order of O(max (n, p)p?). As a result,
ROSDA, LDA, and RRLDA have the same computational complexity.

3.3. Influence function

The influence function (IF) of an estimator is an asymptotic ver-
sion of its sensitivity curve. It is an approximation to the behav-
ior of the estimator when the sample contains a small fraction €
of identical outliers. Assuming that for any distribution Hy in RP,
the statistical functional T outputs an estimator in RY, then the
influence function is defined by IF(zg, T, Hy) = lim._.¢ w
where Hy = (1 —€)Hp + €A, and Az, is a Dirac measure putting
all its weights on zg € RP. We first consider the generic estima-
tion T(H) = argmin,,¢; B,y f(z, w), where L is a subspace in RY
and f is a function from RP x RY to R. Then we have the following
generic result.

Theorem 3. Let F(w)=E,y,f(z,w), P, be the pro-
jector to the subspace L, and * represents the Moore
Penrose  inverse  (pseudo  inverse), then  IF(zg,T,Hp) =

[P HessianwF (W) |y—r#g) PLIT [PLVw f (20, W) lw=r (1) -

It can be applied to the following setting of our estimator: z
corresponds to the samples (X;, Y;) in our notation; w corresponds
to the estimation (®, B); flz, w) is WV (||Y® —XB||%) as in the ob-
jective function; the constraint w € L corresponds to the assump-
tion ®TYTY® =1 (when this constraint in not linear, for pertur-
bation result we may assume that L is the tangent plane of the
set ©®TYTY® =1). Theorem 3 shows that the influence function
strongly depends on fu (2o, W)|y—r,)- Assuming that (©, B) is es-
timated under distribution Hy, fw (2o, w)|w=T(HO) is

Vol (Yo® — XoBl|2) = W' (||Yo® — XoB12) Ve 51| Yo® — XoB2,

and only the part W/(||Yo® —XoB|3) depends on the outlier (X,
Yp). The outlier (Xp, Yp) have a large value of ||Yy® —XOB||%. If we
choose W such that W’'(z) is small and bounded (and decreases
to zero) as z — oo (which holds for the choices W; and W),
fw(zg, w)|W:T<H0) is small. As a result, the influence defined by the
influence function would be small and bounded. The above anal-
ysis gives useful insights about the robustness of our estimator.
While it is possible to write down the Hessian explicitly (and the
influence function) for our estimator, the calculation is rather com-
plicated and does not give too much additional information or in-
tuition about the robustness, so we skip the calculation here.

As a special case, we may assume that ith class contains an
equivalent number of samples from N(u},I). When the classes are
well-separated, i.e., [|; — u|| is much larger than 1. We reformu-
late the problem as follows. Let y; € [1,...,K] be the index of the
class for the ith sample. With the goal is to find the K centers
M wy for all K classes and a matrix B € RP*K-1 we solve

n
argmin » "W (||X;B - 6),]|*), suchthat®@'D® = Iyq.
My k. © i=1

The estimation satisfies éi ~ Bu; (as shown in Section 2.1 with
o; > > 1forall 1 <i < Q), and the solution B is a matrix
with image in the span of {u?}f:]. If we introduce an outlier (Xp,
Yo), then the component Vy, f(zo, W)|w_r(,) in Theorem 3 would
be W'([[XoB — By, 1) ~ W' (|| (Xo — ,u;;O)I§||2), where kg €[1,...,K]
is the index of class Yy. If (Xp, Yp) is an outlier, Xy is not close
to the center of the class uj . and (|| (Xo — /Ll’go)ﬁnz) would be
small since Xy — /Lzo is large.

Theorem 3 is proved using Lemma 1, with F = Ezep, f(z, w)
and B, = E,ey, f(z, w), with L being the tangent space of the con-
straint set. Here, Lemma 1 is a perturbation result stating that for
two comparable functions, their roots are close to each other as
well.

Lemma 1. Assuming that F;: R" — R" is a twice differentiable func-
tions, x; is a root of Fi(x), and VF{(X;) # 0. Let F, — F, be an-
other twice differentiable function such that its absolute value and
its Lipschitz constant Lg,_p, are bounded above by Ce and Ce re-
spectively in a neighborhood of x;, and z € R" be a value defined by
z=[VFE )] 1((F, — F)(x1)). Then there exists a root of F,, denoted
by x,, such that ||x; — (x; +2)|| <C"€, where C" is a constant de-
pending on F; and x;.

The proofs of Lemma 1 is rather technical and deferred to the
Appendix.

3.4. Illustrative examples

Ionosphere data: The Johns Hopkins University lonosphere
dataset [27] contains 351 observations on 32 quantitative elec-
tromagnetic signal predictors and binary classes: good and bad
radars. The error rates of the whole dataset for LDA and the pro-
posed ROSDA with ¢ =0.6 are 0.1054 and 0.0969, respectively.
The proposed ROSDA improves classification while it projects the
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Fig. 1. The top panel is the scatter plot of the projected observations in which cir-
cles and squares stand for groups Good and Bad, respectively, the solid circles and
squares are the observations with the 5% smallest weights of groups Good and Bad
individually, the dashed lines are the group means (0.0690, 2.4708) (groups: Bad,
Good), and the solid line is the classification boundary. The bottom panel is the
plot of weights corresponding to the scatter plot. The weights of the points on the
wrong side of categories are apparently smaller. [J: the points of Group Bad; o: the
points of Group Good; M: the points of Group Bad with the bottom 5% weights; e:
the points of Group Bad with the bottom 5% weights.

data on the discriminant vector. The bottom 5% smallest weights
correspond to the observations far from their group centroids or
closer to the opposite class, and the observations of Group Good
with weights smaller than the 5% quantile of the weights in each
group are located in the opposite side of the classification bound-
ary (Fig. 1).

Iris data with simulated outliers The iris data consists of 150
observations, four predictors and three classes: Setosa, Versicolor,
and Virginica [10]. We simulated 16 points from a multivariate
normal distribution with the mean and covariance as the sample
mean and sample covariance of the observations of Setoda, and la-
beled 8 of them as Versicolor and the rest 8 points as Virginica.
Moreover, we simulated 4 points from a multivariate normal dis-
tribution with the mean and covariance as the sample mean and
sample covariance of the observations of Versicolor, and simulated
4 points from a multivariate normal distribution with the mean
and covariance as the sample mean and sample covariance of the
observations of Virginica, and then labeled these 8 points as Se-
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Fig. 2. The top panel is the projected training X on the first two discriminant vec-
tors, and the down panel is the weights of the training observations. Square: Setoda,
circle: Versicolor, triangle: Virginica, and the solid points are simulated 24 outliers
corresponding to each class. The 24 simulated outliers have smaller weights than
the original observations.

tosa. Therefore, total 24 simulated points were plugged into the
original Iris dataset as outliers.

We first divided the data into two equal portions (75,75) as
the training and test sets, and then fitted the models of LDA and
ROSDA on the training set, and predict the classes on the test set.
The ROSDA with tuning parameter { = 0.06. The test error of LDA
is 24 misclassified observations, while the ROSDA has only 12 mis-
classified points by projecting data into the first two discriminant
vectors. Notice that the test set does not contain the 24 simu-
lated outliers. The weights of the simulated outliers are generally
smaller than the original points (Fig. 2).

4. Experiments for model comparisons

We evaluated the proposed ROSDA with LDA [33], RRLDA,
LDAPP, RMDA [2], and Linda [31] with their best tuning parame-
ters using four simulated datasets and seven real-world data ap-
plications.
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Table 1

The test accuracy rates of each data set using ROSDA, LDA, RRLDA, LDAPP,
Linda, and RMDA. Notice that LDAPP can only classify binary classes (K =
2), where K is the number of classes. Simulation 1 is an example of Gaus-
sian noises and Simulation 2 is an example of heavy tailed distribution
(tg.r=1) in low dimensional spaces. Simulation 3 is an example of Gaussian
noises in a high dimensional space.

Data ROSDA  LDA RRLDA LDAPP Linda RMDA
Sim 1 1.0000 0.8750 1.0000 n.a. 1.0000  0.9875
Sim 2 0.8500 0.7000 0.8625 n.a. 0.8625  0.5750
Sim 3 0.5875 0.5500 0.9500 n.a. n.a. n.a.

Iris 0.9714 09286 09286 n.a. 0.9571 0.7000
Hemo. 0.8000 03500 0.7000 0.4000 0.5000 0.9500
Biting 0.8571 0.7857  0.8571 0.8571 0.9286  0.5000
DMD 0.8718  0.8461 0.8461 0.8461 n.a. 0.6154
Anor. 0.5714  0.5000 0.6429 n.a. 0.5714  0.3571
Fish 0.9063 0.9063 0.7185 n.a. n.a. n.a.

Heart 0.8333  0.8000 0.8667 0.8333 0.8333  0.7000
Faces 09286 0.8214 0.7500 n.a. n.a. 0.2857

4.1. Simulated data

Simulation 1 consists of classes 1, 2 and 3 in R2. Each class i has
80 points sampled from identical and independent normal distri-
butions with mean w; and variance 1, where pq = (0,2v/3), uy =
(3,—+/3), and u3 = (-3, —+/3). We add 20 outlying points into
class 1. Theses outliers are sampled from identical and indepen-
dent normal distributions with mean (—+/3, —3) and variance 1. In
Simulation 2, we simulate 80 points from the t distribution with
degree of freedom 1, t; ;_; for each of classes 1, 2, and 3 with cen-
ters w1 = (0,3v3), uy = (6,-2v3), and 3 = (-6, -2+/3), and
then insert 20 t, ;_; outliers labeled class 1 of center (-9, —-53).
We sampled 80 out of the original 240 data points as the test set,
and trained the classification models on the rest data points in-
cluding the outliers. Simulation 3 is multivariate Gaussian in R200
with the group means as in Simulation 1 in the first two dimen-
sions and zeros in the rest dimensions.

The fourth simulation example is the Iris dataset with simu-
lated outliers. We generated 6 outliers by replacing the 132th data
point in variable 1, the 16th measure in variable 2, the 119th mea-
sure in variable 3, and the 101th, 110th, and 145th measures in
variables 4 with —10. All of these measures were identified as out-
liers by the x2 outliers test [9], and the substitute values are more
further from the average of each variable in order to enhance the
effect of outliers. The accuracy rates of the test sets are reported in
Table 1. The results shows that the outliers strongly influences the
classification of LDA and the proposed ROSDA reduced the effect of
the outliers.

4.2. Real data applications

The first example is the Hemophilia data [16], which consists of
n; = 30 observations of normal women and n, = 45 of hemophilia
A carriers, with two variables (AHF activity and AHF antigen). We
sample 20 out of the original 75 data points as the test set, and
train the classification models on the rest data points combined
with the generated outliers. The second application is the Biting
Flies data [21]. The data set consists of two groups (Leptoconops
torrens and Leptoconops carteri) of 70 flies with seven variables.
There are five outliers (the 15th, 36th, 51st, 59th, 60th) of variable
wing width in second group found by Van Aelst and Willems [32].
We sample 30 out of the 65 data points excluding the five outliers
as the test set, and train the classification models on the rest data
points. The third is the Duchenne Muscular Dystrophy (DMD) data
set [1]. This data set contains measurements of n; = 127 DMD car-
riers and n, = 67 noncarriers. There are ten outliers identified by
the x2 outliers test [9]. We sample 60 out of the 184 data points

excluding the 10 outliers as the test set, and train the classifica-
tion models on the rest data points. The fourth is the anorexia
dataset having 72 observations and two variables and the response
of three levels. The fifth is the Fish Catch dataset containing 159
observations with six variables and the response-Species of seven
levels. The anorexia and fish datasets were analyzed and used as
an example for Linda (Package rrcov in R) [29-31]. The sixth is the
heart failure clinical records data [3] with 299 observations and
seven numerical covariates and a binary response-death status. We
sampled 30 observations as the test set, and used the rest as the
training set. The seventh is the Yale Face Database B [24]. We used
the first four people (60 images with size 192 by 168 from each
person) as four categories and the fifth person as the outliers. We
inserted 10 images of the fifth person to each category, then trans-
formed the images with the Daubechies d4 wavelet [8,34], and
used the vectorized HL4 coefficients with length 12 x 10 = 120 as
the input data for each image. We sampled 28 images as the test
set and used the rest as the training set.

5. Discussion

The proposed method efficiently reduces the influence of out-
liers by classifying observation projected in the Q = K — 1 discrim-
inant directions with K categories. As the tuning parameter ¢ in
the W function is zero, ROSDA is equivalent to LDA. Therefore, the
classification performance of LDA is the lower bound of ROSDA.
Our experiments’ results (Table 1) show that only the proposed
ROSDA works and provides classification accuracy better than the
classical LDA for all the applications including high dimensional
(n < p) data, the number of categories greater than 2, and corre-
lated features. Unlike LDAPP, which applies one-directional projec-
tion pursuit so that it can only deal with binary classification. The
proposed ROSDA is an extension of LDAPP using multi-directional
projection pursuit method, and it is applicable to multiple classes.
In the low dimensional data, our method is comparable or even
better than RRLDA. In the high dimensional data with sparse sig-
nals, our method performs worse than RRLDA, which uses min-
imum covariance determinant estimator [5] and projection pur-
suit [7] with the L; penalty regularization as the case in Simula-
tion 3 with 2 dimensions of signals and 198 dimensions of noises.
However, RRLDA suffers from multiple overlapping classes with
low dimensions as the case in the Fish data with seven classes.
Linda and RMDA both fail in high dimensional data due to the
ill-conditioned inverting Hessian matrix. Nonetheless, we used the
regularized target function [4] as a ridge version for B and Pyy
[17] as B= (XTWX + Alp) " 'XTWY® and Ryx = WX ((WX)TWX +
AMp)~T(WX)T, where A € [0, oo) can be used. That may be the
reason that ROSDA outperforms other methods in the Yale Face ex-
ample. Additionally, it is the solution of the weighted penalized
optimal scoring problem [15] with the regularized loss function
L(Bk. O: W) + 1B, By for high dimensional cases. Additionally, the
properties in Section 3.3 do not rely on any specific distributions,
so that they can be applied to general applications.
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Appendix A

In this section, we will prove Proposition 1, Theorem 2, Theo-
rem 3, and Lemma 1.


https://doi.org/10.13039/100000001

656 H.-H. Huang and T. Zhang/Pattern Recognition Letters 138 (2020) 651-656

Al. Proof of Proposition 1

Without loss of generality, we consider the difference between
L(B®), ®@); W) and LBV, ©M); ¥),

n n
L(B?, 0@ w) LBV, 0M: W) =Y "W(zp) - Y W(zn)
i=1 i=1

n
<Y V@lz-zl (1)
i=1
where zj; =z(X;.Y;, BV, W), z, =z(X;,Y;,B®, ©®@), and the
last inequality holds due to the concavity of W, W(z) is
strictly increasing and differentiable with W’'(z) > 0 for all
z > 0, and the IRLS algorithm solve (B, ®) by minimiz-
ing Y1, Wi(l)z,Q, where W,.(]) = W/(z;;). Therefore, 3"}, W,-(])Ziz <
>y Wi“)zﬂ. Since W is strictly concave, the inequality in Eq. (7) is
strict if z(X;, Y, B®), ©@) = z(X;, Y;, BY, @) for at least one
i=1,....n If 2(X;, Y;, B, OQ@) £ z(X;, Y;, B, @) for all i, then
the stationary point of (B, ®) is achieved.

A2. Proof of Theorem 2

Taking the first derivative of Y !, W(z(X; Y. B, ®))
with respect to B and let it to zero, and we obtain
YL XV (2%, Y;, B, ©)(Y;© - X;B)] =0. In a  matrix
form, the above equation is X'W(Y® —XB) =0, and then
B=(XTWX)"IXTWY®. For ®, please see the argument after
Eq. (5).

A3. Proof of Lemma 1

Applying the second-order Taylor series of F; at x; (assuming
that its second directional derivative is bounded above by Cf,) and
the Lipschitz assumption of F, — F;, we have

Exi+2)=FR(x1+2) + (BXx +2) - (X1 +2))
<A (X1 +2) + (B(x1) =R (x1)) + Lg g |1z]|

1
=F(x1) +2"VF (x1) + ECFI zlI> + (B(x1) — Fi (%1)) + L, |1 2]l

1
=Lg_g |zl + ECFl llz]|2.

When (K -F)(x;) and Lg_p are in the order of O(e),
then it implies that F(x; +z) is in the order of O(€2). Since
VE X +2) = VE(X;) + 0(¢) = VF (1) + 0(¢), it implies that
VE (x1 +z) is nonzero and invertible when € is small. The lemma
is then proved by applying the Brouwer fixed-point theorem to
g(x) = —-[VE®X; +2)]7 'K (x) + x to the region B(x; +2z,C"€?), a
ball centered at x; + z with radius C”e2.
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