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a b s t r a c t 

While linear discriminant analysis (LDA) is a widely used classification method, it is highly affected by 

outliers which commonly occur in various real datasets. Therefore, several robust LDA methods have been 

proposed. However, they either rely on robust estimation of the sample means and covariance matrix 

which may have noninvertible Hessians or can only handle binary classes or low dimensional cases. The 

proposed robust discriminant analysis is a multi-directional projection-pursuit approach which can clas- 

sify multiple classes without estimating the covariance or Hessian matrix and work for high dimensional 

cases. The weight function effectively gives smaller weights to the points more deviant from the class 

center. The discriminant vectors and scoring vectors are solved by the proposed iterative algorithm. It 

inherits good properties of the weight function and multi-directional projection pursuit for reducing the 

influence of outliers on estimating the discriminant directions and producing robust classification which 

is less sensitive to outliers. We show that when a weight function is appropriately chosen, then the 

influence function is bounded and discriminant vectors and scoring vectors are both consistent as the 

percentage of outliers goes to zero. The experimental results show that the robust optimal scoring dis- 

criminant analysis is effective and efficient. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Linear discriminant analysis (LDA) [10] is a widely used classifi-

ation method, which searches a linear boundary with the optimal

iscrimination between two classes [13] . However, the classical

DA could be improved by solving the following issues. First, LDA

s sensitive to the outlying observations. There are two approaches

f robust discriminant analysis [26] . Approach I: To replace the un-

nown population parameters, group means ( μ1 , μ2 ) and covari-

nce matrix ( �) by estimators of multivariate location and scatter

6,11,23,25,29–32,35,36] such as Robust Regularized LDA (RRLDA)

5,11,12] , Robust Mixture Discriminant Analysis (RMDA) [2] , and

obust Linear Discriminant Analysis (Linda) [31] . Croux and Dehon

6] proposed robust linear discriminant analysis using s-estimators

f the means and covariance. Kim et al. [22] proposed a robust LDA

ethod which searches the worst-case performance of a discrimi-

ant over all possible means and covariances. Guo et al. [12] devel-

ped shrunken centroids regularized discriminant analysis. How-

ver, it does not work well for high dimensional data, since there

ay exist ill-conditioned covariance matrices in this setting [26] .
∗ Corresponding author. 
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pproach II: To replace the unknown univariate population pa-

ameters along the projections, a T μ1 , a 
T μ2 , and a 

T �a by univari-

te estimators of location and scatter. Approach II is a projection-

ursuit approach. Pires and Branco [26] proposed the robust LDA

ith Projection Pursuit (LDAPP), which is a one-directional projec-

ion pursuit of location and scatter, and hence only can handle bi-

ary classification. In this study, we proposed a novel robust dis-

riminant analysis by multi-directional projection-pursuit of opti-

al scores, and named it as the robust optimal scoring discriminant

nalysis (ROSDA), which can classify multiple classes. It provides a

upervised projection of the predictors by using the � loss func-

ion which is less sensitive to outliers in the fashion of the pre-

ious work of robust principal component analysis [19,20] . The �

oss function results in a weight function which effectively gives

maller weights to the points more deviant from the class center.

OSDA inherits good properties of the � loss function and multi-

irectional projection pursuit for reducing the influence of out-

iers on estimating the discriminant directions and producing ro-

ust classification which is less sensitive to outliers. We propose an

teration algorithm to solve the ROSDA problem effectively and ef-

ciently, since ROSDA is a multi-directional projection-pursuit ap-

roach which can classify multiple classes without estimating the

ovariance or Hessian matrix and work for high dimensional data.

e show that the proposed algorithm has the same computational

omplexity as LDA and RRLDA. Moreover, we derived the associ-

https://doi.org/10.1016/j.patrec.2020.09.013
http://www.ScienceDirect.com
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1  
ated influence function and its properties. All the technical proofs

are in Appendix. 

2. Methodology 

The linear discriminant analysis can be reformulated as an op-

timal scoring least square problem [14] . Let Y denote a n × K ma-

trix of dummy variables for the K classes. Y ik an indicator vari-

able defined by y ik = 1 , if the i th observation belongs to the k th

class; y ik = 0 otherwise. Assuming that data matrix X is an n × p

with each row X i corresponding to i th observation in R 
p sampled

from K classes, and the data has been centered. The optimal scor-

ing discriminant analysis (OSDA) [14] finds the discriminant scores

by finding at most K − 1 discriminant directions, where K is the

number of classes. The OSDA problem is expressed as 

min 
�,B 

1 

n 
‖ Y � − X B ‖ 

2 
F , s.t. �

� Y � Y � = nI Q×Q , (1)

where ‖ · ‖ F is the Frobenius norm, � = ( θ1 , . . . , θk ) ∈ R 
K×Q , B =

( β1 , . . . , βk ) ∈ R 
p×Q , k = 1 , . . . , Q ≤ K − 1 , θ k are the scoring vec-

tors, βk are the discriminant vectors. B is a matrix mapping X i , i =
1 , . . . , n from R 

p to R 
Q , and the rows of � represent the K classes

in R 
Q . Though Problem (1) is not convex, the OSDA problem could

be solved iteratively by a decomposition of the least squares prob-

lem in θ k and βk , since the estimates of βk and θ k have closed

forms individually [14,15] . 

2.1. The asymptotic expectation of OSDA 

In this section, we show the asymptotic expectation of Prob-

lem (1) when � is the identity function. Following Hastie et al.

[14] , � is the eigenvector matrix of Y � P X Y . We assume that

for all 1 ≤ k ≤ K , each sample is from the k th class with

probability 1/ K . In addition, the samples in the k th class fol-

low from a distribution with mean μk and covariance I . Then

 
� P X Y/n prob. −→ 

[ μ1 , . . . , μK ] 
� [ 

∑ K 
k =1 (I + μk μ

� 
k 
)] −1 [ μ1 , . . . , μK ] 

( prob. −→ 
: convergence in probability) with P X = X (X � X ) −1 X � [28] .

As a result, � ∈ R 
K×Q is the matrix given by the Q top right

eigenvectors of the matrix [ μ1 , . . . , μK ] ∈ R 
p×K , and B is given by

(X � X ) −1 X � Y prob. −→ 
[ 
∑ K 

k =1 (I + μk μ
� 
k 
)] −1 [ μ1 , . . . , μK ]�. Assuming

that the singular values of the matrix [ μ1 , . . . , μK ] is σ1 ≥ σ2 ≥ . . . ,

then B is the matrix given by diag ( 
σ1 

σ 2 
1 

+ K , 
σ2 

σ 2 
2 

+ K , . . . , 
σQ 

σ 2 
Q 

+ K ) V 
� ,

where V ∈ R 
p×Q is the top Q left eigenvectors of the matrix

[ μ1 , . . . , μK ] ∈ R 
p×K . 

3. Robust optimal scoring discriminant analysis 

3.1. ROSDA with � function 

Like other least squares problems, the OSDA is easily influenced

by outliers. Inspired by Huang et al. [19] and Huang and Yeh [20] ,

we propose a supervised dimension reduction method that can be

considered as a robust version of OSDA using � function. Higuchi

and Eguchi [18] discussed the � loss function and their param-

eter tuning procedures. Here are a few choices of �( z ) and the

corresponding weight function � ′ ( z ) (the first derivative with re-

spect to z ): 1) �0 (z) = z with � ′ 
0 
(z) = 1 , 2) �1 (z) = (1 − e −ζ z ) /ζ

with � ′ 
1 
(z) = e −ζ z , 3) �2 (z) = − 1 

ζ
log { 1+ e −ζ (z−ξ ) 

2 } with � ′ 
2 
(z) = 1 −

1 

1+ e −ζ (z−ξ ) . We used �1 in our data analysis since it requires only

one tuning parameter and provides weights which reduce the

influences of outliers effectively. Note that lim ζ→ 0 �1 = �0 , the

identify function, is the loss function of the OSDA problem. The

� function is applied to the loss function in Problem (1) in order

to reduce the influence of outliers. The proposed ROSDA solves the
ollowing problem 

in 
�,B 

1 

n 

n ∑ 

i =1 

�(z i ) , s.t. �
� Y � Y � = nI Q×Q , (2)

here �( z i ) is a monotonic increasing concave, and differentiable

unction of z i = ‖ Y i � − X i B ‖ 2 2 with the Euclidean norm ‖ · ‖ 2 , B is
he p × Q matrix with columns consisting of the Q coefficient vec-

ors β1 , . . . , βQ , and � is the K × Q matrix with columns consist-

ng of the Q scoring vectors θ1 , . . . , θQ with 1 ≤ Q ≤ K − 1 . We aim

o use � functions for reducing influence of outliers on the resid-

al sum of squares (RSS) [18–20] . The � function assigns higher

eights to the points with small RSS and gives smaller weights to

he points with large RSS. 

An iterative algorithm for solving � and B in the minimization

roblem (2) is introduced as follows. First, calculate the weight

atrix W 
( j−1) = diag (W 

( j−1) 
1 

, . . . , W 

( j−1) 
n ) ∈ R 

n ×n with the element

 

( j−1) 
i 

= � ′ (‖ Y i �( j−1) − X i B 
( j−1) ‖ 2 

2 
) , and � ′ (z) = 

d�(z) 
dz 

. In the j th

teration, the weights W 1 , W 2 , . . . , W n are given by the estimates of
( j−1) and B ( j−1) from the ( j − 1) th iteration. Second, in the j th

terative update, the target problem is 

in 
�,B 

1 

n 

n ∑ 

i =1 

‖ W 

( j−1) 
i 

(Y i � − X i B ) ‖ 
2 
2 , s.t. �

� D � = I Q×Q , 

here D = 
1 
n Y 

� Y . As a result, Problem (2) is reduced to 

in 
�,B 

1 

n 
‖ W 

( j−1) Y � −W 
( j−1) X B ‖ 

2 
F , s.t. �

� D � = I Q×Q . (3)

Here n × n matrix P W 
( j−1) X denotes a projection matrix of the

ubspace spanned by the p columns of W 
( j−1) X . Problem (3) is

quivalent to 

in 
�

1 

n 
‖ (I n ×n − P W 

( j−1) X ) W 
( j−1) Y �‖ 

2 
F , s.t. �

� D � = I Q×Q . (4)

Let P Y be a matrix of size R 
n ×K such that P � Y P Y = I K×K , and P Y

as the same column space as Y . Here we choose P Y as the matrix

f the left singular vectors of Y . Let �0 ∈ R 
K×Q be defined such

hat 1 √ 

n 
Y � = P Y �0 , then �

� 
0 
�0 = I Q×Q and the problem can be

ritten as 

in 
�0 

‖ (I n ×n − P W 
( j−1) X ) W 

( j−1) P Y �0 ‖ 
2 
F , s.t. �

� 
0 �0 = I Q×Q . (5)

Therefore, �0 can be obtained by the Q smallest right singular

ectors of (I n ×n − P W 
( j−1) X ) W 

( j−1) P Y , and then � = 
1 √ 

n 
D 

−1 Y � P Y �0 .

onsequently, we have Algorithm 1 and the following properties. 

lgorithm 1 Robust OSDA (ROSDA). 

1: Input: Y is a n × K matrix, X is a n × p matrix, and Q = K − 1 . 

2: Output: (B ( j) 
p×Q 

, �( j) 
K×Q 

) . 

3: Initialize B (0) and �(0) as matrices of 1’s. 
4: Standardize X . 
5: Compute D = 

1 
n Y 

� Y . 
6: Run a loop until the criterion, | old RSS − RSS | / RSS ≤ Tolerance and the

number of iterations reach a maximum number, is achieved. 

7: Compute z ( j−1) 
i 

= ‖ Y i �( j−1) − X i B 
( j−1) ‖ 2 2 . 

8: In jth iteration, compute the weight matrix W = diag (W 1 , . . . , W n ) ∈ R n ×n

with W i = � ′ (z ( j−1) 
i 

) . 

9: Assign RSS as the old RSS 
0: Compute B ( j) = (X � W X ) −1 X � W Y �( j−1) by backward substitution. 
1: Compute P Y as the matrix of the left singular vectors of Y . 
12: Compute �0 as the Q smallest right singular vectors of ( I n ×n − P WX ) W P Y .

3: Compute � = 
1 √ 
n 
D −1 Y � P Y �0 . 

4: Update RSS as 1 n 
∑ n 

i =1 �(z i ) , where z i = ‖ Y i �( j) − X i B 
( j) ‖ 2 2 . 

15: Repeat the above procedure 5–13 until the stopping criterion is satisfied.
6: For each data X i , predict classes by finding which �k is closest to X i B for

1 ≤ k ≤ K. 
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roposition 1. Assume that the �( z ) function is differentiable with

 < � ′ (0) < ∞ , and �( z ) is strictly increasing and strictly con-

ave in z ∈ R 
+ . Then the empirical loss functions generated by

lgorithm 1 are strictly decreasing: 

 (B (1) , �(1) ;�) > L (B (2) , �(2) ;�) > . . . , 

where L (B ( j) , �( j) ;�) = 
1 
n 

∑ n 
i =1 �(z i ) , and z i = ‖ Y i �( j) −

 i B 
( j) ‖ 2 2 . 
It is necessary to have strict concavity to get strict inequality.

he strict decrease of the loss function guarantees the convergence

f Algorithm 1 regardless of where the initial point starts. 

heorem 2. Given a dataset { (X i , Y i ) } n i =1 
or ( X, Y ) in a matrix form,

he optimal solution ( B , �) satisfies the following stationary equa-

ion: 

 = (X � W X ) −1 X � W Y �, � = 

1 √ 

n 
D 

−1 Y � P Y �0 , (6) 

where �0 can be obtained by the Q smallest right singular vec-

ors of (I − P W X ) W P Y , P Y is the matrix of the left singular vectors of

 , W i = � ′ (z i ) , z i = ‖ Y i � − X i B ‖ 2 F , and D = 
1 
n Y 

� Y, B is the K × Q co-

fficient matrix with columns β1 , . . . , βQ and � is the K × Q scoring

atrix with columns θ1 , . . . , θQ , and �
′ (z) = 

d�(z) 
dz 

. 

Notice that if ( B , �) is a solution for Eq. (2) , then ( BU , �U ) is

lso a solution for all Q × Q orthogonal matrix U . Therefore, in

his study, the solution ( B , �) expresses the collection of all the

 BU , �U ) in which the classification is invariant. 

.2. Computational cost 

In this section, we describe the computation cost per iter-

tion in Algorithm 1 . Step 7 requires a computational cost of

 (nKQ + npQ ) ; step 10 requires O (p 2 n + p 3 + pnK + pKQ ) ; step 11

equires O ( nK min ( n, K )); the calculation of P Y = Y (Y T Y ) −0 . 5 re-

uires O (nK 2 + K 3 ) ; the calculation in step 12 with given P Y is 

 P Y − (W X )(X T W 
T W X ) −0 . 5 (X T W 

T ) W P Y , 

hich has a complexity of O (nK + np 2 + p 3 + npK) (note that W

s a diagonal matrix); the calculation of step 13 with given P Y is

 (K 3 + K 2 n ) . Therefore, the computational cost per iteration is in

he order of O ( max (n, p)(K 2 + p 2 )) by adding them together with

he implicit assumption that n > K . In comparison, the computa-

ional cost of LDA or RRLDA per iteration is about the calculation of

ample covariance matrix or robust covariance matrix and its ma-

rix inversion, which is in the order of O (max ( n, p ) p 2 ). As a result,

OSDA, LDA, and RRLDA have the same computational complexity. 

.3. Influence function 

The influence function (IF) of an estimator is an asymptotic ver-

ion of its sensitivity curve. It is an approximation to the behav-

or of the estimator when the sample contains a small fraction ε
f identical outliers. Assuming that for any distribution H 0 in R 

p ,

he statistical functional T outputs an estimator in R 
q , then the

nfluence function is defined by IF (z 0 , T , H 0 ) = lim ε→ 0 
T (H 1 ) −T (H 0 ) 

ε ,

here H 1 = (1 − ε) H 0 + ε�z 0 and �z 0 is a Dirac measure putting

ll its weights on z 0 ∈ R 
p . We first consider the generic estima-

ion T (H) = argmin w ∈ L E z∈ H 0 f (z, w ) , where L is a subspace in R 
q 

nd f is a function from R 
p × R 

q to R . Then we have the following

eneric result. 

heorem 3. Let F (w ) = E z∈ H 0 f (z, w ) , P L be the pro-

ector to the subspace L, and + represents the Moore

enrose inverse (pseudo inverse), then IF (z 0 , T , H 0 ) =
 P L Hessian w F (w ) | w = T (H ) P L ] + [ P L ∇ w f (z 0 , w ) | w = T (H ) ] . 
0 0 
It can be applied to the following setting of our estimator: z

orresponds to the samples ( X i , Y i ) in our notation; w corresponds

o the estimation ( �, B ); f ( z, w ) is �(‖ Y � − XB ‖ 2 
2 
) as in the ob-

ective function; the constraint w ∈ L corresponds to the assump-

ion �T Y T Y � = I (when this constraint in not linear, for pertur-

ation result we may assume that L is the tangent plane of the

et �T Y T Y � = I). Theorem 3 shows that the influence function

trongly depends on f w (z 0 , w ) | w = T (H 0 ) . Assuming that ( ̂  �, ˆ B ) is es-

imated under distribution H 0 , f w (z 0 , w ) | w = T (H 0 ) is 
 �,B �(‖ Y 0 ̂  � − X 0 ̂  B ‖ 

2 
2 ) = � ′ (‖ Y 0 ̂  � − X 0 ̂  B ‖ 

2 
2 ) ∇ �,B ‖ Y 0 ̂  � − X 0 ̂  B ‖ 

2 
2 , 

nd only the part � ′ (‖ Y 0 ̂  � − X 0 ̂  B ‖ 2 
2 
) depends on the outlier ( X 0 ,

 0 ). The outlier ( X 0 , Y 0 ) have a large value of ‖ Y 0 � − X 0 B ‖ 2 2 . If we

hoose � such that � ′ ( z ) is small and bounded (and decreases

o zero) as z → ∞ (which holds for the choices �1 and �2 ),

f w (z 0 , w ) | w = T (H 0 ) is small. As a result, the influence defined by the

nfluence function would be small and bounded. The above anal-

sis gives useful insights about the robustness of our estimator.

hile it is possible to write down the Hessian explicitly (and the

nfluence function) for our estimator, the calculation is rather com-

licated and does not give too much additional information or in-

uition about the robustness, so we skip the calculation here. 

As a special case, we may assume that i th class contains an

quivalent number of samples from N(μ∗
i 
, I) . When the classes are

ell-separated, i.e., ‖ μi − μ j ‖ is much larger than 1. We reformu-

ate the problem as follows. Let y i ∈ [1 , . . . , K] be the index of the

lass for the i th sample. With the goal is to find the K centers

1 , . . . , μK for all K classes and a matrix B ∈ R 
p×K−1 , we solve 

argmin 
1 , ... ,μK , �

n ∑ 

i =1 

�(‖ X i B − θy i ‖ 
2 ) , such that �� D � = I Q×Q . 

The estimation satisfies ˆ θi ≈ Bμ∗
i 
(as shown in Section 2.1 with

i > > 1 for all 1 ≤ i ≤ Q ), and the solution B is a matrix

ith image in the span of { μ∗
i 
} K 
i =1 

. If we introduce an outlier ( X 0 ,

 0 ), then the component ∇ w f (z 0 , w ) | w = T (H 0 ) in Theorem 3 would

e � ′ (‖ X 0 ̂  B − ˆ θk 0 ‖ 2 ) ≈ � ′ (‖ (X 0 − μ∗
k 0 

) ̂  B ‖ 2 ) , where k 0 ∈ [1 , . . . , K]

s the index of class Y 0 . If ( X 0 , Y 0 ) is an outlier, X 0 is not close

o the center of the class μ∗
y 0 

, and � ′ (‖ (X 0 − μ∗
k 0 

) ̂  B ‖ 2 ) would be

mall since X 0 − μ∗
k 0 

is large. 

Theorem 3 is proved using Lemma 1 , with F 1 = E z∈ H 0 f (z, w )

nd F 2 = E z∈ H 1 f (z, w ) , with L being the tangent space of the con-

traint set. Here, Lemma 1 is a perturbation result stating that for

wo comparable functions, their roots are close to each other as

ell. 

emma 1. Assuming that F 1 : R 
n → R 

n is a twice differentiable func-

ions, x 1 is a root of F 1 ( x ), and ∇F 1 ( X 1 ) � = 0 . Let F 2 − F 1 be an-

ther twice differentiable function such that its absolute value and

ts Lipschitz constant L F 2 −F 1 
are bounded above by C ε and C ′ ε re-

pectively in a neighborhood of x 1 , and z ∈ R 
n be a value defined by

 = [ ∇F 1 (x )] 
−1 ((F 2 − F 1 )(x 1 )) . Then there exists a root of F 2 , denoted

y x 2 , such that ‖ x 2 − (x 1 + z) ‖ ≤ C ′′ ε, where C ′′ is a constant de-
ending on F 1 and x 1 . 

The proofs of Lemma 1 is rather technical and deferred to the

ppendix. 

.4. Illustrative examples 

Ionosphere data: The Johns Hopkins University Ionosphere

ataset [27] contains 351 observations on 32 quantitative elec-

romagnetic signal predictors and binary classes: good and bad

adars. The error rates of the whole dataset for LDA and the pro-

osed ROSDA with ζ = 0 . 6 are 0.1054 and 0.0969, respectively.

he proposed ROSDA improves classification while it projects the
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Fig. 1. The top panel is the scatter plot of the projected observations in which cir- 

cles and squares stand for groups Good and Bad, respectively, the solid circles and 

squares are the observations with the 5% smallest weights of groups Good and Bad 

individually, the dashed lines are the group means (0.0690, 2.4708) (groups: Bad, 

Good), and the solid line is the classification boundary. The bottom panel is the 

plot of weights corresponding to the scatter plot. The weights of the points on the 

wrong side of categories are apparently smaller. �: the points of Group Bad; ◦: the 
points of Group Good; �: the points of Group Bad with the bottom 5% weights; •: 
the points of Group Bad with the bottom 5% weights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The top panel is the projected training X on the first two discriminant vec- 

tors, and the down panel is the weights of the training observations. Square: Setoda, 

circle: Versicolor, triangle: Virginica, and the solid points are simulated 24 outliers 

corresponding to each class. The 24 simulated outliers have smaller weights than 

the original observations. 
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data on the discriminant vector. The bottom 5% smallest weights

correspond to the observations far from their group centroids or

closer to the opposite class, and the observations of Group Good

with weights smaller than the 5% quantile of the weights in each

group are located in the opposite side of the classification bound-

ary ( Fig. 1 ). 

Iris data with simulated outliers The iris data consists of 150

observations, four predictors and three classes: Setosa, Versicolor,

and Virginica [10] . We simulated 16 points from a multivariate

normal distribution with the mean and covariance as the sample

mean and sample covariance of the observations of Setoda, and la-

beled 8 of them as Versicolor and the rest 8 points as Virginica.

Moreover, we simulated 4 points from a multivariate normal dis-

tribution with the mean and covariance as the sample mean and

sample covariance of the observations of Versicolor, and simulated

4 points from a multivariate normal distribution with the mean

and covariance as the sample mean and sample covariance of the

observations of Virginica, and then labeled these 8 points as Se-
osa. Therefore, total 24 simulated points were plugged into the

riginal Iris dataset as outliers. 

We first divided the data into two equal portions (75,75) as

he training and test sets, and then fitted the models of LDA and

OSDA on the training set, and predict the classes on the test set.

he ROSDA with tuning parameter ζ = 0 . 06 . The test error of LDA

s 24 misclassified observations, while the ROSDA has only 12 mis-

lassified points by projecting data into the first two discriminant

ectors. Notice that the test set does not contain the 24 simu-

ated outliers. The weights of the simulated outliers are generally

maller than the original points ( Fig. 2 ). 

. Experiments for model comparisons 

We evaluated the proposed ROSDA with LDA [33] , RRLDA,

DAPP, RMDA [2] , and Linda [31] with their best tuning parame-

ers using four simulated datasets and seven real-world data ap-

lications. 
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Table 1 

The test accuracy rates of each data set using ROSDA, LDA, RRLDA, LDAPP, 

Linda, and RMDA. Notice that LDAPP can only classify binary classes ( K = 

2 ), where K is the number of classes. Simulation 1 is an example of Gaus- 

sian noises and Simulation 2 is an example of heavy tailed distribution 

( t d. f=1 ) in low dimensional spaces. Simulation 3 is an example of Gaussian 

noises in a high dimensional space. 

Data ROSDA LDA RRLDA LDAPP Linda RMDA 

Sim 1 1.0000 0.8750 1.0000 n.a. 1.0000 0.9875 

Sim 2 0.8500 0.7000 0.8625 n.a. 0.8625 0.5750 

Sim 3 0.5875 0.5500 0.9500 n.a. n.a. n.a. 

Iris 0.9714 0.9286 0.9286 n.a. 0.9571 0.7000 

Hemo. 0.8000 0.3500 0.7000 0.4000 0.5000 0.9500 

Biting 0.8571 0.7857 0.8571 0.8571 0.9286 0.5000 

DMD 0.8718 0.8461 0.8461 0.8461 n.a. 0.6154 

Anor. 0.5714 0.5000 0.6429 n.a. 0.5714 0.3571 

Fish 0.9063 0.9063 0.7185 n.a. n.a. n.a. 

Heart 0.8333 0.8000 0.8667 0.8333 0.8333 0.7000 

Faces 0.9286 0.8214 0.7500 n.a. n.a. 0.2857 
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.1. Simulated data 

Simulation 1 consists of classes 1, 2 and 3 in R 
2 . Each class i has

0 points sampled from identical and independent normal distri-

utions with mean μi and variance 1, where μ1 = (0 , 2 
√ 

3 ) , μ2 =
(3 , −√ 

3 ) , and μ3 = (−3 , −√ 

3 ) . We add 20 outlying points into

lass 1. Theses outliers are sampled from identical and indepen-

ent normal distributions with mean (−√ 

3 , −3) and variance 1. In

imulation 2, we simulate 80 points from the t distribution with

egree of freedom 1, t d. f . =1 for each of classes 1, 2, and 3 with cen-

ers μ1 = (0 , 3 
√ 

3 ) , μ2 = (6 , −2 
√ 

3 ) , and μ3 = (−6 , −2 
√ 

3 ) , and

hen insert 20 t d. f . =1 outliers labeled class 1 of center (−9 , −5 
√ 

3 ) .

e sampled 80 out of the original 240 data points as the test set,

nd trained the classification models on the rest data points in-

luding the outliers. Simulation 3 is multivariate Gaussian in R 
200 

ith the group means as in Simulation 1 in the first two dimen-

ions and zeros in the rest dimensions. 

The fourth simulation example is the Iris dataset with simu-

ated outliers. We generated 6 outliers by replacing the 132th data

oint in variable 1, the 16th measure in variable 2, the 119th mea-

ure in variable 3, and the 101th, 110th, and 145th measures in

ariables 4 with −10 . All of these measures were identified as out-

iers by the χ2 outliers test [9] , and the substitute values are more

urther from the average of each variable in order to enhance the

ffect of outliers. The accuracy rates of the test sets are reported in

able 1 . The results shows that the outliers strongly influences the

lassification of LDA and the proposed ROSDA reduced the effect of

he outliers. 

.2. Real data applications 

The first example is the Hemophilia data [16] , which consists of

 1 = 30 observations of normal women and n 2 = 45 of hemophilia

 carriers, with two variables (AHF activity and AHF antigen). We

ample 20 out of the original 75 data points as the test set, and

rain the classification models on the rest data points combined

ith the generated outliers. The second application is the Biting

lies data [21] . The data set consists of two groups (Leptoconops

orrens and Leptoconops carteri) of 70 flies with seven variables.

here are five outliers (the 15th, 36th, 51st, 59th, 60th) of variable

ing width in second group found by Van Aelst and Willems [32] .

e sample 30 out of the 65 data points excluding the five outliers

s the test set, and train the classification models on the rest data

oints. The third is the Duchenne Muscular Dystrophy (DMD) data

et [1] . This data set contains measurements of n 1 = 127 DMD car-

iers and n 2 = 67 noncarriers. There are ten outliers identified by

he χ2 outliers test [9] . We sample 60 out of the 184 data points
xcluding the 10 outliers as the test set, and train the classifica-

ion models on the rest data points. The fourth is the anorexia

ataset having 72 observations and two variables and the response

f three levels. The fifth is the Fish Catch dataset containing 159

bservations with six variables and the response-Species of seven

evels. The anorexia and fish datasets were analyzed and used as

n example for Linda (Package rrcov in R) [29–31] . The sixth is the

eart failure clinical records data [3] with 299 observations and

even numerical covariates and a binary response–death status. We

ampled 30 observations as the test set, and used the rest as the

raining set. The seventh is the Yale Face Database B [24] . We used

he first four people (60 images with size 192 by 168 from each

erson) as four categories and the fifth person as the outliers. We

nserted 10 images of the fifth person to each category, then trans-

ormed the images with the Daubechies d4 wavelet [8,34] , and

sed the vectorized HL4 coefficients with length 12 × 10 = 120 as

he input data for each image. We sampled 28 images as the test

et and used the rest as the training set. 

. Discussion 

The proposed method efficiently reduces the influence of out-

iers by classifying observation projected in the Q = K − 1 discrim-

nant directions with K categories. As the tuning parameter ζ in

he � function is zero, ROSDA is equivalent to LDA. Therefore, the

lassification performance of LDA is the lower bound of ROSDA.

ur experiments’ results ( Table 1 ) show that only the proposed

OSDA works and provides classification accuracy better than the

lassical LDA for all the applications including high dimensional

 n ≤ p ) data, the number of categories greater than 2, and corre-

ated features. Unlike LDAPP, which applies one-directional projec-

ion pursuit so that it can only deal with binary classification. The

roposed ROSDA is an extension of LDAPP using multi-directional

rojection pursuit method, and it is applicable to multiple classes.

n the low dimensional data, our method is comparable or even

etter than RRLDA. In the high dimensional data with sparse sig-

als, our method performs worse than RRLDA, which uses min-

mum covariance determinant estimator [5] and projection pur-

uit [7] with the L 1 penalty regularization as the case in Simula-

ion 3 with 2 dimensions of signals and 198 dimensions of noises.

owever, RRLDA suffers from multiple overlapping classes with

ow dimensions as the case in the Fish data with seven classes.

inda and RMDA both fail in high dimensional data due to the

ll-conditioned inverting Hessian matrix. Nonetheless, we used the

egularized target function [4] as a ridge version for B and P WX 

17] as B = (X � W X + λI p ) −1 X � W Y � and P W X = W X((W X ) � W X +
I p ) 

−1 (W X ) � , where λ ∈ [0, ∞ ) can be used. That may be the

eason that ROSDA outperforms other methods in the Yale Face ex-

mple. Additionally, it is the solution of the weighted penalized

ptimal scoring problem [15] with the regularized loss function

 (βk , θk ;�) + λβ� 
k 
βk for high dimensional cases. Additionally, the

roperties in Section 3.3 do not rely on any specific distributions,

o that they can be applied to general applications. 
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ppendix A 

In this section, we will prove Proposition 1, Theorem 2, Theo-

em 3 , and Lemma 1 . 
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A1. Proof of Proposition 1 

Without loss of generality, we consider the difference between

L ( B (2) , �(2) ; �) and L ( B (1) , �(1) ; �). 

L (B (2) , �(2) ;�) − L (B (1) , �(1) ;�) = 

n ∑ 

i =1 

�( z i 2 ) −
n ∑ 

i =1 

�( z i 1 ) 

≤
n ∑ 

i =1 

� ′ ( z i 1 ) [ z i 2 − z i 1 ] , (7)

where z i 1 = z(X i , Y i , B 
(1) , �(1) ) , z i 2 = z(X i , Y i , B 

(2) , �(2) ) , and the

last inequality holds due to the concavity of � , �( z ) is

strictly increasing and differentiable with � ′ ( z ) > 0 for all

z ≥ 0, and the IRLS algorithm solve ( B (2) , �(2) ) by minimiz-

ing 
∑ n 

i =1 W 
(1) 
i 

z i 2 , where W 
(1) 
i 

= � ′ ( z i 1 ) . Therefore, 
∑ n 

i =1 W 
(1) 
i 

z i 2 ≤∑ n 
i =1 W 

(1) 
i 

z i 1 . Since � is strictly concave, the inequality in Eq. (7) is

strict if z ( X i , Y i , B 
(2) , �(2) ) � = z ( X i , Y i , B 

(1) , �(1) ) for at least one

i = 1 , . . . , n. If z ( X i , Y i , B 
(2) , �(2) ) � = z ( X i , Y i , B 

(1) , �(1) ) for all i , then

the stationary point of ( B , �) is achieved. 

A2. Proof of Theorem 2 

Taking the first derivative of 
∑ n 

i =1 �(z(X i , Y i , B, �))

with respect to B and let it to zero, and we obtain∑ n 
i =1 

[
X � 
i 
� ′ ( z(X i , Y i , B, �) ) (Y i � − X i B ) 

]
= 0 . In a matrix

form, the above equation is X � W (Y � − XB ) = 0 , and then

B = (X � W X ) −1 X � W Y �. For �, please see the argument after

Eq. (5) . 

A3. Proof of Lemma 1 

Applying the second-order Taylor series of F 1 at x 1 (assuming

that its second directional derivative is bounded above by C F 1 ) and

the Lipschitz assumption of F 2 − F 1 , we have 

F 2 (x 1 + z) = F 1 (x 1 + z) + (F 2 (x 1 + z) − F 1 (x 1 + z)) 

≤F 1 (x 1 + z) + (F 2 (x 1 ) − F 1 (x 1 )) + L F 2 −F 1 ‖ z‖ 

= F 1 (x 1 ) + z � ∇F 1 (x 1 ) + 

1 

2 
C F 1 ‖ z‖ 

2 + (F 2 (x 1 ) − F 1 (x 1 )) + L F 2 −F 1 ‖ z‖ 

= L F 2 −F 1 ‖ z‖ + 

1 

2 
C F 1 ‖ z‖ 

2 . 

When (F 2 − F 1 )(x 1 ) and L F 2 −F 1 
are in the order of O ( ε),

then it implies that F 2 (x 1 + z) is in the order of O ( ε2 ). Since

∇F 2 (x 1 + z) = ∇F 2 (x 1 ) + O (ε) = ∇F 1 (x 1 ) + O (ε) , it implies that

∇F 2 (x 1 + z) is nonzero and invertible when ε is small. The lemma

is then proved by applying the Brouwer fixed-point theorem to

g(x ) = −[ ∇F 2 (x 1 + z)] −1 F 2 (x ) + x to the region B (x 1 + z, C ′′ ε2 ) , a

ball centered at x 1 + z with radius C ′′ ε2 . 
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