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Abstract—We consider entanglement-assisted communication
over the qubit depolarizing channel under the security require-
ment of covert communication, where not only the information
is kept secret, but the transmission itself must be concealed from
detection by an adversary. Previous work showed that O(y/n)
information bits can be reliably and covertly transmitted in n
channel uses without entanglement assistance. However, Gagatsos
et al. (2020) showed that entanglement assistance can increase this
scaling to O(y/nlogn) for continuous-variable bosonic channels.
Here, we present a finite-dimensional parallel, and show that
O(y/nlogn) covert bits can be transmitted reliably over n uses
of a qubit depolarizing channel.

I. INTRODUCTION

Privacy and confidentiality are critical in communication
systems [1]. The traditional security approaches (s.t., encryp-
tion [2], information-theoretic secrecy [3], and quantum key
distribution [4, 5]) ensure that an eavesdropper is unable
to recover any transmitted information. However, privacy
and safety concerns may further require covertness [6, 7].
Covertness is a stronger requirement than traditional security:
not only is the transmitted information kept secret, but also
the transmission itself is concealed from detection by an
adversary (a warden) [8, 9]. Despite the severity of limitations
imposed by covertness, it is possible to communicate O(+/n)
bits information both reliably and covertly over n classical
channel uses [10-12]. This property is referred to as the
“square root law” (SRL). The SRL has also been observed
in covert communication over finite-dimensional classical-
quantum channels [13-15], as well as continuous-variable
bosonic channels [16—-18]. Covert sensing is also governed by
an SRL [19].

Proving the achievability of the SRLs discovered so far
involves the following principles. In the finite-dimensional
case, both classical and quantum [11-15], a symbol (say,
0) in the input alphabet is designated as “innocent.” Ran-
dom coding is employed such that a non-innocent symbol
is transmitted with probability ~ 1/\/n to ensure covertness.
On the other hand, innocent symbol corresponding to zero
transmitted power occurs naturally in the continuous-variable
covert communication over classical additive white Gaussian
noise (AWGN) [10-12] and classical-quantum bosonic [16—
18] channels. Maintaining average transmitted power O(1/\/n)
correspondingly measured in Watts and in the emitted photon
number ensures covertness.

Pre-shared entanglement resources are known to increase
performance and throughput [20-22]. Gagatsos et al. [17]
showed that entanglement assistance allows transmission
of O(y/nlogn) reliable and covert bits over n uses of
continuous-variable bosonic channel, surpassing the SRL scal-
ing. As in the unassisted setting, the transmission is limited to
O(//n) mean photon number. However, in some communica-
tion settings, the coding scale is larger for continuous-variable
channels [23]. So far, it has remained open whether such a
performance boost can be achieved in covert communication
over finite-dimensional quantum channels.

Here, we show that entanglement assistance enables reliable
and covert transmission of O(y/nlogn) bits in n uses of a
finite-dimensional qubit depolarizing channel. The depolariz-
ing channel is a fundamental model that has gained atten-
tion in both experimental [24] and theoretical [25] research.
Depolarization may be regarded as the worst type of noise
in a quantum system, and the insights on the depolarizing
channel are often useful in the derivation of results for a
general quantum channel [26, Sec. 11.9.1] [20]. Our analysis is
fundamentally different from the previous works. In particular,
we do nor encode a random bit sequence with ~ 1//n
frequency (or probability) of non-innocent symbols. Instead,
we employ “weakly” entangled states of the form

|Z/)A1A> =V 1—Oé|00>+\/a|11>7 (1)

such that the squared amplitude of this quantum superposition
of states describing innocent and non-innocent symbols is
a =0 (1/ym). The labels A; and A correspond to a reference
system and to the channel input system, respectively. The
former can be interpreted as Bob’s share of the entanglement
resource. The idea is inspired by a recent work on non-covert
communication showing that controlling v € [0, 1] using states
in (1) can outperform time division [27]. To show covertness,
we observe that tracing out the resource system A; from
|tha, ) results in a state identical to the one in unassisted
scenario from [13, 14].

The paper is organized as follows. In Section II, the
definitions and channel model are provided. The results are
presented in Section III, which begins with a description of
the solution principle, followed by the achievability proof,
with technical details deferred to the appendices. Section IV
presents a summary and discussion.
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Fig. 1. Entanglement-assisted coding for covert communication over a quantum channel N'4_, gy .

II. DEFINITIONS AND CHANNEL MODEL

We use standard notation in quantum information process-
ing, as, e.g., in [28, Ch. 2.2.1]. The Hilbert space for system
A is denoted by H 4. The space of linear operators (resp.
density operators) H — H is denoted by L(H) (resp. . (H)).
A positive operator-valued measure (POVM) {D,,}M_, is
a set of positive semidefinite operators in L(#) such that
Zf\f:l D,, =1, where 1 is the identity operator on .

Given a pair of quantum states p, o € .(H), the quantum
relative entropy is defined as D(p||o) = Tr[p(log(p)—log(c)],
if supp(p) C supp(o); and D(p|lo) = 400, otherwise. In
addition, for a spectral decomposition o = ZZ NP, let [19]:

wlle) = 3 B~ TE
i#£] i j

+Z)%Tr[(p—0)P¢(P—U)R'}'

Tr[(p — o) Pi(p — o) Pj]

2)

A quantum channel is defined as a completely-positive
trace-preserving (CPTP) linear map Na_,p : L(Ha) —
L(Hp). Every quantum channel has a Stinespring represen-
tation, Na_,5(p) = Trg(VpVT), for p € L(H.), where the
operator V : H4 — Hp ® HEg is an isometry.

We use the standard asymptotic notation f(n) = O(g(n))
for an asymptotic upper bound, i.e., there exist constants
m,ng > 0 such that 0 < f(n) < mg(n), for all n > ng.

A. Channel Model

Consider a covert communication quantum channel
Na_,pw, which maps a quantum input state p4 to a joint
output state ppw. The systems A, B, and W are asso-
ciated with the transmitter, the legitimate receiver, and an
adversarial warden, referred to as Alice, Bob, and Willie.
The marginal channels Ny_,p and N,_.w, from Alice
to Bob, and from Alice to Willie, respectively, satisfy
Nase(pa) = Trw Nasw(pa)) and Naw(pa)
Trg (Na—sw(pa)) for pa € (Ha). Our channel is memo-
ryless: for p4n occupying input systems A™ = (A, ..., Ay),
the joint output state is N5 5y (pan).

The depolarizing channel is a natural model for noise in
quantum systems [20, 25]. The qubit depolarizing channel
transmits the input qubit perfectly with probability 1 — ¢, and
outputs a completely mixed state with probability g. Consider
a qubit depolarizing channel from Alice to Bob expressed as:

1
Nasp(pa) =1 —q)pa+aq5

2
_ (13 L XpAX +YpAY + ZpaZ 3
= -7 pA+Z( paX +YpaY +ZpaZ), (3)

where 0 < ¢ < 1, with dim(H4) = dim(Hp) = 2.

Here, we investigate covert communication over a depolar-
izing channel V4_,pg, g, given by the Stinespring dilation:
VAHBElEz(PA) = VpAVT, where V : Ha — Hp ®HE1 X
‘Hp, is the isometry [25]

,/1—?"’1®|00>+\/EX®01>
1 1

q q
+\/;Y®|11>+\/;Z®|10>.

We consider three cases:

|4

“4)

o Scenario 1: Willie receives (E7, E3)
e Scenario 2: Willie receives Fy
e Scenario 3: Willie receives E

Scenario 1 is the worst-case scenario where Willie is given
access to Bob’s entire environment, £ = (E;, F5). This is
the maximum amount of information that Willie can acquire.
We note that the no-cloning theorem prohibits Willie from
receiving a copy of Bob’s output state.

Remark 1. In the boundary case of ¢ = 0, Bob receives the
qubit state as is, while Willie obtains no information. If ¢ = 1,
it is the other way around. Covert communication is trivial in
the former case, and impossible in the latter.

B. Entanglement-assisted Code

The definition of a code for covert communication over
a quantum channel with entanglement assistance is given
below. An (M, n) entanglement-assisted code (¥, F, D) con-
sists of: a message set [1 : M], where M is an integer, a



pure entangled state ¥, 7., a collection of encoding maps
Fritoan + & (Hry) — S (HG™) for m € [L : M], and a
decoding POVM Dpgnr, = { D, }M_,.

The communication setting is depicted in Figure 1. Suppose
that Alice and Bob share the entangled state Wrp, 7., in
systems T4 and T’p, respectively. Alice wishes to send one
of M equally-likely messages. To encode a message m,
she applies the encoding map ]-"T _, on to her share T4 of
the entanglement resource. This results in a quantum state

(m) (m)
panty = (Frnsan © 1) (Yr,75)-

Alice decides whether to transmit to Bob (Case 1), or not
(Case 0). The innocent state is |0); any other state is non-
innocent. She does not transmit in Case 0: the channel input
. Xn . (m) .
is [0)°". In Case 1, she transmits part of p AnTp OCCUPYing
systems A" through n uses of the covert communication

channel N4_,gw. The joint output state is p%ﬂZ)WnTB

(NA—>BW ® ldTB) (pA")T

the reduced state pSB")TB by applying the POVM Dpgnrp,,.

) Bob decodes the message from

C. Reliability and Covertness

We characterize reliability by the average probability of
decoding error for entanglement-assisted code (¥, F, D),

P (¥, F, D) ZTr[Jl Do) |-
Willie does not have access to Alice and Bob’s entangle-

ment resource and receives the reduced output state pg,n? =
Trpnyy {pgﬁ)wnTB} occupying the system W". Willie has to
determine whether Alice transmitted to Bob. To this end, he
performs a binary measurement {Apg, Ap1}, where the out-
come H1 represents the hypothesis that Alice sent information,
while HO indicates the contrary hypothesis.

He fails by either accusing Alice of transmitting when she
is not (false alarm), or missing Alice’s transmission (missed
detection). Denoting the probabilities of these errors by Pra =
P(choose H1|HO is true) and Pyp = P(choose HOJH1 is
true), respectively, and assuming equally likely hypotheses,
Willie’s average probability of error is E(™ = Hathw A
random choice yields an ineffective detector with F(") = %
The goal of covert communication is to design a sequence of
codes such that Willie’s detector is forced to be arbitrarily
close to ineffective. Denote the average state that Willie
receives by py. = M Zm 1P E/V,z A sufficient condition
[13, 14] to render anmy detector ineffective for Willie is
D(Pyyn ||wS™) = 0, where wy = NMa_,w (|0X0|) is the output
corresponding to innocent input. Formally, an (M, n,e,0)-
code for entanglement—assisted covert communication satisfies

(U, F,D) <e,and D(pyn|lwd™) <4. (6)
D. Capacity

In traditional communication problems, the coding rate is
defined as R = %, i.e., the number of bits per channel
use. In covert communication, however, R = 0, since the
number of information bits is sublinear in n. Here we prove

that entanglement assistance allows reliable transmission of
log(M) = O(y/nlog(n)) covert bits. Hence, the covert coding
rate is characterized as in [17]:

I log (M)

)

log(n)\/nD By lws™)

Definition 1. A covert rate L > 0 is achievable with entangle-
ment assistance if for every €, > 0, and sufficiently large n,
there exists a (2L"/ﬁl°g("),n,5, 0) code. The entanglement-
assisted covert capacity is defined as the supremum of achiev-
able covert rates. We denote this capacity by Ceovpa(N),
where the subscript stands for covert communication with
entanglement assistance.

Consider the following state, with « € [0, 1]:
Pa = (1= ) [0X0] + o [1)1] . (8)

Let v, = o(1) Nw (1"5’;), that is, as n — 00,7y, — 0 and
1/6
{(L)gn Yn — +00. Choosing o = av,, where
_ Tn
Ap =
Vn
ensures covertness [13, 14]. That is, if the average state of
the input system A™ is given by pan = (@4, )", then the
covertness requirement (6) is satisfied for large n.

(©))

III. RESULTS

We address the three scenarios presented in Section II-A.
First, we consider the extreme cases of Scenario 1 and
Scenario 2, where covertness is either impossible or trivial to
achieve. We begin with Scenario 1, where Willie has access
to the entire environment.

Theorem 1. Covert
Scenario 1. Hence, if W =

communication is impossible in
(El, EQ), then Ccov—EA(N) = 0.

Proof. Let wy and w; denote Willie’s output states corre-
sponding to the inputs |0) and |1), respectively. That is
wy = Nas,w(|z)z]) for x € {0,1}. In this scenario, we
have supp(w;) € supp(wp). We show this in detail in [29].
Therefore, Willie can perform a measurement to detect a non-
zero transmission with certainty. O

Essentially, in Scenario 1, Willie’s entanglement with the
transmitted qubit is strong enough to detect any encoding
operation. Next, we consider another extreme setting.

Theorem 2. Covert communication is trivial in Scenario 2.
That is, if W = FE5, then Alice can communicate information
as without the covertness requirement, and send O(n) bits.

Proof. If W = Fs,, then Willie receives wy = w; =
(1 — 2)]0X0] + £ |1)1] (see [29]). In this scenario, even
without entanglement assistance, Alice can transmit classical
codewords as in the standard non-covert model, while Willie
cannot discern between zero and non-zero inputs. [

We proceed to our main result on the entanglement-assisted
covert capacity Ceov.pa(N) of a depolarizing channel. From
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Fig. 2. Lower bound in Scenario 3 (see Section II-A).

this point on, we focus on Scenario 3, where Willie receives
the first qubit of the environment (see Section II-A).

Theorem 3. Consider a qubit depolarizing channel Na_, gy
as specified in Section II-A above, where W = FEj. The
entanglement-assisted covert capacity is bounded as

A2 (1-gf
3 2= gVn(wilwo)
where wy = Na—,w (|0X0]) and wy = Naw (|1X1]).

Note that 7(w||wp) is defined as in (2). Our lower bound
is depicted in Figure 2. As can be seen in the figure, our
lower bound has the expected behavior for the covert capacity
in the boundary points (see Remark 1). For ¢ = 0, we
have Ceoypa(N) = 400 in the y/nlog(n) scale, because the
warden is degenerate and Alice can transmit a linear number
of information bits. Whereas, for ¢ = 1, the capacity is zero.

Following the definitions in Section II-D, a bound of the
form Coypa(N) > Lo implies that it is possible to transmit
Lov/dnlog(n) information bits reliably and covertly (see Def-
inition 1). Recall that without entanglement assistance, covert
communication requirements limit the message to O(y/n)
information bits [13, 14]. Thereby, we have established that
entanglement assistance increases the message scale, from
O(y/n) to O(y/nlog(n)) information bits. A similar result
has been shown for continuous-variable bosonic channels [17].
To the best of our knowledge, our result in Theorem 3, on
the depolarizing channel, is the first demonstration of such a
property for a finite-dimensional channel.

Ocov—EA (N) ( 10)

Remark 2. In some communication settings, the coding scale
is larger for continuous-variable channels. For example, in
deterministic identification, the code size is super-exponential
for Gaussian channels, whereas only exponential for finite-
dimensional channels [23]. Nevertheless, we show here that
in covert communication, the log(n) performance boost is not
reserved to continuous variable systems.

A. Proof Idea

We begin with the proof idea. Consider Scenario 3 as
presented in Section II-A. First, we identify an entangled state

that meets the above condition for covertness. As opposed to
previous work, we do not encode a random bit sequence with
~ 1/m frequency (or probability) of 1’s. Instead, we encode
“weakly” entangled states as in (1), such that the squared
amplitude of this quantum superposition of states describing
innocent and non-innocent symbols is & = O (1//n). In order
to gurantee covertness, the probability amplitude must be such
that the state of the transmission is very close to that of a
sequence of innocent states |0)*".

Furthermore, we modify the approach in [17] to analyze
the order of the number of covert information bits. The lemma
below provides an achievability result for the transmission over
a memoryless quantum channel, regardless of covertness. The
derivation is based on a position-based coding scheme, where
each message is associated with n entangled pairs and Bob
uses sequential decoding on the output and the entanglement
resources for each message consecutively [17, 30].

We introduce additional notation for the moments of the
quantum relative entropy. For every p,o € . (H), define

V(pllo) = Trlp|(log(p) — log(o) — D(pllo)|?],
Q(pllo) = Trlp|(log(p) — log(a) — D(pllo)[*].

Lemma 4 (see [17, Lemma 1]). Consider a memoryless quan-
tum channel A 4_, g. For every |14, 4), arbitrary € > 0, and
sufficiently large n, there exists a coding scheme that employs
pre-shared entanglement to transmit log(M) bits over n uses
of Na_,p with decoding error probability € such that:

10g(M> > nD(wA1BHwA1 ® wB)

Y
12)

+ 0V (allda, @)@ () = C  (13)
with
Ya,B = (ida, ® NaB)(1a, ) (14)
and
o _ Bo [Q(a,pllta, ® vp))}
" V2r V(Ya,sllva, © ¢B)
1 Va0 ©98) | 10 4y (15)

Vor

where (g is the Berry-Esseen constant and ®~1(x) is the
inverse-Gaussian distribution function.

B. Analysis

We present the main stages of the proof for Theorem 3,
while the technical details are deferred to [29].

Lemma 5. Let ~y,, = n”*%, where 0 < v < % is arbitrary and
does not depend on n. Then, there exists an entanglement-
assisted covert coding scheme for qubit depolarizing channel
with blocklength n, size M, and average error probability ¢
that satisfies

)2
log(M) > 2 (§ — V) %’yn\/ﬁlog(n) + O(\/E’Yn()l-@



Proof. To show achievability, we apply Lemma 4 with |14, 4)

as in (1), with a parameter & = a, as in (9). Note that setting
1 . .

Yn = nY7 6 as in the lemma statement yields

In _ n'"3.

vn
Intuitively, as the value of «,, is small, the input state that
Alice sends through the channel is close to the innocent
state, i.e., ¥4 = |0)0|. Given the joint state s, 4 =
[tha,4)X0a, 4], the channel input A is in the reduced state
Ya = Tra, [[Ya,afva,all = ¢a,. With @q, as in (8).
That is, the reduced input state fits the achievability proof
for the unassisted covert capacity in [13, 14], i.e., without
entanglement assistance. Based on the analysis therein, this
input state meets the covertness requirement. As the covertness
requirement does not involve the entanglement resources, it
follows that covertness holds here as well.

Having established both reliability and covertness, it re-
mains to estimate the code size. Consider the joint state 4, g
of the output system B and the reference system Aj, as in
(14). In order to estimate each term on the right-hand side of
(13), we first derive expressions for the operator logarithms,
log(ta,5) and log(1a, ® 1p), and then approximate the
relative entropy and its moments.

The full technical details are given [29] (see appendices
therein). We analyze the spectral decompositions and the
Taylor expansions near a« = 0 [29, App. A]. Throughout
the derivation, we maintain the exact value of the dominant
terms and reduce the approximation error to its order class.
We estimate the quantum relative entropy and its moments,
and show that

a7

Oy =

N2
D(aallia, © vm) = 252

V(a,5llva, @ ¥5) = O(an log?(an)),
Q(¥a,5l[Ya, ® ¥5) = Oan log*(an)) (18)
for « = «, as chosen above (see (17)) [29, App. B]. The

proof is concluded by placing the approximations above into
(13). The details are given in [29, App. C]. O

anlog(an) + O(an),

We are now ready for the proof outline of Theorem 3.

Proof Outline for Theorem 3. First, ~we  observe  that
supp(wi) C supp(wp) (see derivation in [29]), therefore,
covert communication is possible, and not trivial. Then,
even if Willie’s output state is wq, there is still ambiguity
whether the input is innocent or not. By Lemma 5, we have
established achievability for the following covert rate:

1—q)? n
2(3-v) 5 %+0<10g(n)>

o)

19)

n =

D(pyn

As seen in the proof of Lemma 5, covertness is guaranteed
by [13, 14]. Furthermore, the following property extends as
well: there exists ¢ > 0 such that,

3
2

1
DDy ||lwg™) = nD(wa, [|wo)| < e <™ (20)

where py,» is Willie’s actual output state, the state wy =
Na—w (]0X0|) corresponds to the innocent input, and w,,, =
Nasw(©a, ), with ¢, as in (8). Based on a result that was
recently developed for covert sensing [19, Lemma 5],

2

(0%
wp) = Sn(wilwo) + O(ar)

for sufficiently small «,,. Thus, by (20) and (21),

D XN 'YEL —¢ %ni 7?7,
D ™) < Pl + et 0 (2]

By applying this bound to the denominator in (19), we have:
(1-¢)? n
2 (% - V) 27qq Y+ o (log(n))

2 31 3
Eraltan) + okt 10 (3)

Hence, taking the limit of n — co completes the proof. [

D(w,,, 2n

L, >

(22)

IV. SUMMARY AND DISCUSSION

We study covert communication through the qubit depo-
larizing channel, where Alice and Bob share entanglement
resources and wish to communicate, while an adversarial
warden, Willie, is trying to detect their communication. We
addressed three scenarios. In the first scenario, Willie can
detect any non-innocent state, making covert communication
impossible. In the second, Willie cannot distinguish between
the |0) and |1) inputs, making covert communication effortless.
The outcomes of our study mainly pertain to the third scenario,
wherein covert communication is both feasible and non-trivial.
Our results show that it is possible to transmit O(y/n logn)
bits reliably and covertly. This result surpasses the maximum
scaling of O(y/n) without entanglement assistance.

The square root law was derived for the non-trivial scenario,
in which Bob cannot determine with certainty if the trans-
mission is non-innocent. If Bob has this capability, then the
scaling law becomes O(1/n log n), even for a classical channel
[13]. Therefore, it appears that entanglement assistance has a
similar effect as granting Bob the capability of identifying a
non-innocent transmission with certainty.

We provide the following interpretation, for both the Gaus-
sian bosonic channel and the qubit depolarizing channel. In
the bosonic case, the ratio between the entanglement-assisted
capacity and the unassisted capacity, follows a logarithmic
trend of log(1/FE), where E is the limit on the transmission
mean photon number [31]. Yet, to ensure covertness, the mean
photon number must be restricted to E,, = O(\/lﬁ) Conse-
quently, an O(log(n)) factor arises. Based on our derivation,
a similar phenomenon is observed for the qubit depolarizing
channel.
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