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Abstract—We consider entanglement-assisted communication
over the qubit depolarizing channel under the security require-
ment of covert communication, where not only the information
is kept secret, but the transmission itself must be concealed from
detection by an adversary. Previous work showed that O(

√

n)
information bits can be reliably and covertly transmitted in n

channel uses without entanglement assistance. However, Gagatsos
et al. (2020) showed that entanglement assistance can increase this
scaling to O(

√

n log n) for continuous-variable bosonic channels.
Here, we present a finite-dimensional parallel, and show that
O(

√

n log n) covert bits can be transmitted reliably over n uses
of a qubit depolarizing channel.

I. INTRODUCTION

Privacy and confidentiality are critical in communication

systems [1]. The traditional security approaches (s.t., encryp-

tion [2], information-theoretic secrecy [3], and quantum key

distribution [4, 5]) ensure that an eavesdropper is unable

to recover any transmitted information. However, privacy

and safety concerns may further require covertness [6, 7].

Covertness is a stronger requirement than traditional security:

not only is the transmitted information kept secret, but also

the transmission itself is concealed from detection by an

adversary (a warden) [8, 9]. Despite the severity of limitations

imposed by covertness, it is possible to communicate O(
√
n)

bits information both reliably and covertly over n classical

channel uses [10–12]. This property is referred to as the

“square root law” (SRL). The SRL has also been observed

in covert communication over finite-dimensional classical-

quantum channels [13–15], as well as continuous-variable

bosonic channels [16–18]. Covert sensing is also governed by

an SRL [19].

Proving the achievability of the SRLs discovered so far

involves the following principles. In the finite-dimensional

case, both classical and quantum [11–15], a symbol (say,

0) in the input alphabet is designated as “innocent.” Ran-

dom coding is employed such that a non-innocent symbol

is transmitted with probability ∼ 1/
√
n to ensure covertness.

On the other hand, innocent symbol corresponding to zero

transmitted power occurs naturally in the continuous-variable

covert communication over classical additive white Gaussian

noise (AWGN) [10–12] and classical-quantum bosonic [16–

18] channels. Maintaining average transmitted power O(1/
√
n)

correspondingly measured in Watts and in the emitted photon

number ensures covertness.

Pre-shared entanglement resources are known to increase

performance and throughput [20–22]. Gagatsos et al. [17]

showed that entanglement assistance allows transmission

of O(
√
n log n) reliable and covert bits over n uses of

continuous-variable bosonic channel, surpassing the SRL scal-

ing. As in the unassisted setting, the transmission is limited to

O(1/
√
n) mean photon number. However, in some communica-

tion settings, the coding scale is larger for continuous-variable

channels [23]. So far, it has remained open whether such a

performance boost can be achieved in covert communication

over finite-dimensional quantum channels.

Here, we show that entanglement assistance enables reliable

and covert transmission of O(
√
n log n) bits in n uses of a

finite-dimensional qubit depolarizing channel. The depolariz-

ing channel is a fundamental model that has gained atten-

tion in both experimental [24] and theoretical [25] research.

Depolarization may be regarded as the worst type of noise

in a quantum system, and the insights on the depolarizing

channel are often useful in the derivation of results for a

general quantum channel [26, Sec. 11.9.1] [20]. Our analysis is

fundamentally different from the previous works. In particular,

we do not encode a random bit sequence with ∼ 1/
√
n

frequency (or probability) of non-innocent symbols. Instead,

we employ “weakly” entangled states of the form

|ψA1Að =
√
1− α |00ð+√

α |11ð , (1)

such that the squared amplitude of this quantum superposition

of states describing innocent and non-innocent symbols is

α = O (1/
√
n). The labels A1 and A correspond to a reference

system and to the channel input system, respectively. The

former can be interpreted as Bob’s share of the entanglement

resource. The idea is inspired by a recent work on non-covert

communication showing that controlling α ∈ [0, 1] using states

in (1) can outperform time division [27]. To show covertness,

we observe that tracing out the resource system A1 from

|ψA1Að results in a state identical to the one in unassisted

scenario from [13, 14].

The paper is organized as follows. In Section II, the

definitions and channel model are provided. The results are

presented in Section III, which begins with a description of

the solution principle, followed by the achievability proof,

with technical details deferred to the appendices. Section IV

presents a summary and discussion.
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Fig. 1. Entanglement-assisted coding for covert communication over a quantum channel NA→BW .

II. DEFINITIONS AND CHANNEL MODEL

We use standard notation in quantum information process-

ing, as, e.g., in [28, Ch. 2.2.1]. The Hilbert space for system

A is denoted by HA. The space of linear operators (resp.

density operators) H → H is denoted by L(H) (resp. S (H)).
A positive operator-valued measure (POVM) {Dm}Mm=1 is

a set of positive semidefinite operators in L(H) such that
∑M

m=1Dm = 1, where 1 is the identity operator on H.

Given a pair of quantum states ρ, σ ∈ S (H), the quantum

relative entropy is defined as D(ρ||σ) = Tr[ρ(log(ρ)−log(σ)],
if supp(ρ) ¦ supp(σ); and D(ρ||σ) = +∞, otherwise. In

addition, for a spectral decomposition σ =
∑

i λiPi, let [19]:

η(ρ||σ) =
∑

i ̸=j

log(λi)− log(λj)

λi − λj
Tr[(ρ− σ)Pi(ρ− σ)Pj ]

+
∑

i

1

λi
Tr[(ρ− σ)Pi(ρ− σ)Pi] . (2)

A quantum channel is defined as a completely-positive

trace-preserving (CPTP) linear map NA→B : L(HA) →
L(HB). Every quantum channel has a Stinespring represen-

tation, NA→B(ρ) = TrE(V ρV
 ), for ρ ∈ L(HA), where the

operator V : HA → HB ¹HE is an isometry.

We use the standard asymptotic notation f(n) = O(g(n))
for an asymptotic upper bound, i.e., there exist constants

m,n0 > 0 such that 0 f f(n) f mg(n), for all n g n0.

A. Channel Model

Consider a covert communication quantum channel

NA→BW , which maps a quantum input state ρA to a joint

output state ρBW . The systems A, B, and W are asso-

ciated with the transmitter, the legitimate receiver, and an

adversarial warden, referred to as Alice, Bob, and Willie.

The marginal channels NA→B and NA→W , from Alice

to Bob, and from Alice to Willie, respectively, satisfy

NA→B(ρA) = TrW (NA→BW (ρA)) and NA→W (ρA) =
TrB (NA→BW (ρA)) for ρA ∈ S (HA). Our channel is memo-

ryless: for ρAn occupying input systems An = (A1, . . . , An),
the joint output state is N¹n

A→BW (ρAn).

The depolarizing channel is a natural model for noise in

quantum systems [20, 25]. The qubit depolarizing channel

transmits the input qubit perfectly with probability 1− q, and

outputs a completely mixed state with probability q. Consider

a qubit depolarizing channel from Alice to Bob expressed as:

NA→B(ρA) = (1− q)ρA + q
1

2

=

(

1− 3q

4

)

ρA +
q

4
(XρAX + Y ρAY + ZρAZ) , (3)

where 0 < q < 1, with dim(HA) = dim(HB) = 2.

Here, we investigate covert communication over a depolar-

izing channel VA→BE1E2
given by the Stinespring dilation:

VA→BE1E2
(ρA) = V ρAV

 , where V : HA → HB ¹HE1
¹

HE2
is the isometry [25]

V ≡
√

1− 3q

4
1 ¹ |00ð+

√

q

4
X ¹ |01ð

+

√

q

4
Y ¹ |11ð+

√

q

4
Z ¹ |10ð . (4)

We consider three cases:

• Scenario 1: Willie receives (E1, E2)
• Scenario 2: Willie receives E2

• Scenario 3: Willie receives E1

Scenario 1 is the worst-case scenario where Willie is given

access to Bob’s entire environment, E = (E1, E2). This is

the maximum amount of information that Willie can acquire.

We note that the no-cloning theorem prohibits Willie from

receiving a copy of Bob’s output state.

Remark 1. In the boundary case of q = 0, Bob receives the

qubit state as is, while Willie obtains no information. If q = 1,

it is the other way around. Covert communication is trivial in

the former case, and impossible in the latter.

B. Entanglement-assisted Code

The definition of a code for covert communication over

a quantum channel with entanglement assistance is given

below. An (M,n) entanglement-assisted code (Ψ,F ,D) con-

sists of: a message set [1 : M ], where M is an integer, a



pure entangled state ΨTATB
, a collection of encoding maps

F (m)
TA→An : S (HTA

) → S (H¹n
A ) for m ∈ [1 : M ], and a

decoding POVM DBnTB
= {Dm}Mm=1.

The communication setting is depicted in Figure 1. Suppose

that Alice and Bob share the entangled state ΨTATB
, in

systems TA and TB , respectively. Alice wishes to send one

of M equally-likely messages. To encode a message m,

she applies the encoding map F (m)
TA→An to her share TA of

the entanglement resource. This results in a quantum state

ρ
(m)
AnTB

= (F (m)
Tn
A→An ¹ 1TB

)(ΨTATB
).

Alice decides whether to transmit to Bob (Case 1), or not

(Case 0). The innocent state is |0ð; any other state is non-

innocent. She does not transmit in Case 0: the channel input

is |0ð¹n
. In Case 1, she transmits part of ρ

(m)
AnTB

occupying

systems An through n uses of the covert communication

channel NA→BW . The joint output state is ρ
(m)
BnWnTB

=
(

N¹n
A→BW ¹ idTB

)

(

ρ
(m)
AnTB

)

. Bob decodes the message from

the reduced state ρ
(m)
BnTB

by applying the POVM DBnTB
.

C. Reliability and Covertness

We characterize reliability by the average probability of

decoding error for entanglement-assisted code (Ψ,F ,D),

P (n)
e (Ψ,F ,D) =

1

M

M
∑

m=1

Tr
[

(1 −Dm)ρ
(m)
BnTB

]

. (5)

Willie does not have access to Alice and Bob’s entangle-

ment resource and receives the reduced output state ρ
(m)
Wn =

TrBnTB

[

ρ
(m)
BnWnTB

]

occupying the system Wn. Willie has to

determine whether Alice transmitted to Bob. To this end, he

performs a binary measurement {∆H0,∆H1}, where the out-

come H1 represents the hypothesis that Alice sent information,

while H0 indicates the contrary hypothesis.

He fails by either accusing Alice of transmitting when she

is not (false alarm), or missing Alice’s transmission (missed

detection). Denoting the probabilities of these errors by PFA =
P (choose H1|H0 is true) and PMD = P (choose H0|H1 is

true), respectively, and assuming equally likely hypotheses,

Willie’s average probability of error is E(n) = PFA+PMD

2 . A

random choice yields an ineffective detector with E(n) = 1
2 .

The goal of covert communication is to design a sequence of

codes such that Willie’s detector is forced to be arbitrarily

close to ineffective. Denote the average state that Willie

receives by ρWn = 1
M

∑M
m=1 ρ

(m)
Wn . A sufficient condition

[13, 14] to render any detector ineffective for Willie is

D(ρWn ||ω¹n
0 ) ≈ 0, where ω0 ≡ NA→W (|0ðï0|) is the output

corresponding to innocent input. Formally, an (M,n, ε, δ)-
code for entanglement-assisted covert communication satisfies

P (n)
e (Ψ,F ,D) f ε , and D(ρWn ||ω¹n

0 ) f δ . (6)

D. Capacity

In traditional communication problems, the coding rate is

defined as R = log(M)
n

, i.e., the number of bits per channel

use. In covert communication, however, R = 0, since the

number of information bits is sublinear in n. Here we prove

that entanglement assistance allows reliable transmission of

log(M) = O(
√
n log(n)) covert bits. Hence, the covert coding

rate is characterized as in [17]:

L =
log(M)

log(n)
√

nD(ρWn ||ω¹n
0 )

. (7)

Definition 1. A covert rate L > 0 is achievable with entangle-

ment assistance if for every ε, δ > 0, and sufficiently large n,

there exists a (2L·
√
δn log(n), n, ε, δ) code. The entanglement-

assisted covert capacity is defined as the supremum of achiev-

able covert rates. We denote this capacity by Ccov-EA(N ),
where the subscript stands for covert communication with

entanglement assistance.

Consider the following state, with α ∈ [0, 1]:

ϕα ≡ (1− α) |0ðï0|+ α |1ðï1| . (8)

Let γn = o(1) ∩ ω
(

logn

n1/6

)

, that is, as n → ∞,γn → 0 and

n1/6

logn
· γn → +∞. Choosing α = αn where

αn ≡ γn√
n

(9)

ensures covertness [13, 14]. That is, if the average state of

the input system An is given by ρAn = (ϕαn
)¹n, then the

covertness requirement (6) is satisfied for large n.

III. RESULTS

We address the three scenarios presented in Section II-A.

First, we consider the extreme cases of Scenario 1 and

Scenario 2, where covertness is either impossible or trivial to

achieve. We begin with Scenario 1, where Willie has access

to the entire environment.

Theorem 1. Covert communication is impossible in

Scenario 1. Hence, if W = (E1, E2), then Ccov-EA(N ) = 0.

Proof. Let ω0 and ω1 denote Willie’s output states corre-

sponding to the inputs |0ð and |1ð, respectively. That is

ωx ≡ NA→W (|xðïx|) for x ∈ {0, 1}. In this scenario, we

have supp(ω1) ̸¦ supp(ω0). We show this in detail in [29].

Therefore, Willie can perform a measurement to detect a non-

zero transmission with certainty.

Essentially, in Scenario 1, Willie’s entanglement with the

transmitted qubit is strong enough to detect any encoding

operation. Next, we consider another extreme setting.

Theorem 2. Covert communication is trivial in Scenario 2.

That is, if W = E2, then Alice can communicate information

as without the covertness requirement, and send O(n) bits.

Proof. If W = E2, then Willie receives ω0 = ω1 =
(1 − q

2 ) |0ðï0| +
q
2 |1ðï1| (see [29]). In this scenario, even

without entanglement assistance, Alice can transmit classical

codewords as in the standard non-covert model, while Willie

cannot discern between zero and non-zero inputs.

We proceed to our main result on the entanglement-assisted

covert capacity Ccov-EA(N ) of a depolarizing channel. From



Fig. 2. Lower bound in Scenario 3 (see Section II-A).

this point on, we focus on Scenario 3, where Willie receives

the first qubit of the environment (see Section II-A).

Theorem 3. Consider a qubit depolarizing channel NA→BW

as specified in Section II-A above, where W = E1. The

entanglement-assisted covert capacity is bounded as

Ccov-EA(N ) g 4
√
2

3

(1− q)2

(2− q)
√

η(ω1||ω0)
(10)

where ω0 ≡ NA→W (|0ðï0|) and ω1 ≡ NA→W (|1ðï1|).
Note that η(ω1||ω0) is defined as in (2). Our lower bound

is depicted in Figure 2. As can be seen in the figure, our

lower bound has the expected behavior for the covert capacity

in the boundary points (see Remark 1). For q = 0, we

have Ccov-EA(N ) = +∞ in the
√
n log(n) scale, because the

warden is degenerate and Alice can transmit a linear number

of information bits. Whereas, for q = 1, the capacity is zero.

Following the definitions in Section II-D, a bound of the

form Ccov-EA(N ) g L0 implies that it is possible to transmit

L0

√
δn log(n) information bits reliably and covertly (see Def-

inition 1). Recall that without entanglement assistance, covert

communication requirements limit the message to O(
√
n)

information bits [13, 14]. Thereby, we have established that

entanglement assistance increases the message scale, from

O(
√
n) to O(

√
n log(n)) information bits. A similar result

has been shown for continuous-variable bosonic channels [17].

To the best of our knowledge, our result in Theorem 3, on

the depolarizing channel, is the first demonstration of such a

property for a finite-dimensional channel.

Remark 2. In some communication settings, the coding scale

is larger for continuous-variable channels. For example, in

deterministic identification, the code size is super-exponential

for Gaussian channels, whereas only exponential for finite-

dimensional channels [23]. Nevertheless, we show here that

in covert communication, the log(n) performance boost is not

reserved to continuous variable systems.

A. Proof Idea

We begin with the proof idea. Consider Scenario 3 as

presented in Section II-A. First, we identify an entangled state

that meets the above condition for covertness. As opposed to

previous work, we do not encode a random bit sequence with

∼ 1/
√
n frequency (or probability) of 1’s. Instead, we encode

“weakly” entangled states as in (1), such that the squared

amplitude of this quantum superposition of states describing

innocent and non-innocent symbols is α = O (1/
√
n). In order

to gurantee covertness, the probability amplitude must be such

that the state of the transmission is very close to that of a

sequence of innocent states |0ð¹n
.

Furthermore, we modify the approach in [17] to analyze

the order of the number of covert information bits. The lemma

below provides an achievability result for the transmission over

a memoryless quantum channel, regardless of covertness. The

derivation is based on a position-based coding scheme, where

each message is associated with n entangled pairs and Bob

uses sequential decoding on the output and the entanglement

resources for each message consecutively [17, 30].

We introduce additional notation for the moments of the

quantum relative entropy. For every ρ, σ ∈ S (H), define

V (ρ||σ) = Tr[ρ|(log(ρ)− log(σ)−D(ρ||σ)|2] , (11)

Q(ρ||σ) = Tr[ρ|(log(ρ)− log(σ)−D(ρ||σ)|4] . (12)

Lemma 4 (see [17, Lemma 1]). Consider a memoryless quan-

tum channel NA→B . For every |ψA1Að, arbitrary ε > 0, and

sufficiently large n, there exists a coding scheme that employs

pre-shared entanglement to transmit log(M) bits over n uses

of NA→B with decoding error probability ε such that:

log(M) g nD(ψA1B ||ψA1
¹ ψB)

+
√

nV (ψA1B ||ψA1
¹ ψB)Φ

−1(ε)− Cn (13)

with

ψA1B = (idA1
¹NA→B)(ψA1A) (14)

and

Cn =
βB-E√
2π

[Q(ψA1B ||ψA1
¹ ψB)]

3

4

V (ψA1B ||ψA1
¹ ψB)

+
V (ψA1B ||ψA1

¹ ψB)√
2π

+ log(4εn) (15)

where βB-E is the Berry-Esseen constant and Φ−1(x) is the

inverse-Gaussian distribution function.

B. Analysis

We present the main stages of the proof for Theorem 3,

while the technical details are deferred to [29].

Lemma 5. Let γn = nν− 1

6 , where 0 < ν < 1
6 is arbitrary and

does not depend on n. Then, there exists an entanglement-

assisted covert coding scheme for qubit depolarizing channel

with blocklength n, size M , and average error probability ε
that satisfies

log(M) g 2

(

2

3
− ν

)

(1− q)2

2− q
γn

√
n log(n) +O(

√
nγn) .

(16)



Proof. To show achievability, we apply Lemma 4 with |ψA1Að
as in (1), with a parameter α = αn as in (9). Note that setting

γn = nν−
1

6 as in the lemma statement yields

αn =
γn√
n
= nν− 2

3 . (17)

Intuitively, as the value of αn is small, the input state that

Alice sends through the channel is close to the innocent

state, i.e., ψA ≈ |0ðï0|. Given the joint state ψA1A ≡
|ψA1AðïψA1A|, the channel input A is in the reduced state

ψA ≡ TrA1
[|ψA1AðïψA1A|] = ϕαn

, with ϕαn
as in (8).

That is, the reduced input state fits the achievability proof

for the unassisted covert capacity in [13, 14], i.e., without

entanglement assistance. Based on the analysis therein, this

input state meets the covertness requirement. As the covertness

requirement does not involve the entanglement resources, it

follows that covertness holds here as well.

Having established both reliability and covertness, it re-

mains to estimate the code size. Consider the joint state ψA1B

of the output system B and the reference system A1, as in

(14). In order to estimate each term on the right-hand side of

(13), we first derive expressions for the operator logarithms,

log(ψA1B) and log(ψA1
¹ ψB), and then approximate the

relative entropy and its moments.

The full technical details are given [29] (see appendices

therein). We analyze the spectral decompositions and the

Taylor expansions near α = 0 [29, App. A]. Throughout

the derivation, we maintain the exact value of the dominant

terms and reduce the approximation error to its order class.

We estimate the quantum relative entropy and its moments,

and show that

D(ψA1B ||ψA1
¹ ψB) = −2

(1− q)2

2− q
αn log(αn) +O(αn) ,

V (ψA1B ||ψA1
¹ ψB) = O(αn log

2(αn)) ,

Q(ψA1B ||ψA1
¹ ψB) = O(αn log

2(αn)) , (18)

for α = αn as chosen above (see (17)) [29, App. B]. The

proof is concluded by placing the approximations above into

(13). The details are given in [29, App. C].

We are now ready for the proof outline of Theorem 3.

Proof Outline for Theorem 3. First, we observe that

supp(ω1) ¦ supp(ω0) (see derivation in [29]), therefore,

covert communication is possible, and not trivial. Then,

even if Willie’s output state is ω1, there is still ambiguity

whether the input is innocent or not. By Lemma 5, we have

established achievability for the following covert rate:

Ln =
2
(

2
3 − ν

) (1−q)2

2−q
γn +O

(

γn

log(n)

)

√

D(ρWn ||ω¹n
0 )

. (19)

As seen in the proof of Lemma 5, covertness is guaranteed

by [13, 14]. Furthermore, the following property extends as

well: there exists ζ > 0 such that,

|D(ρWn ||ω¹n
0 )− nD(ωαn ||ω0)| f e−ζγ

3

2
n n

1

4 , (20)

where ρWn is Willie’s actual output state, the state ω0 =
NA→W (|0ðï0|) corresponds to the innocent input, and ωαn ≡
NA→W (ϕαn), with ϕαn as in (8). Based on a result that was

recently developed for covert sensing [19, Lemma 5],

D(ωαn
||ω0) =

α2
n

2
η(ω1||ω0) +O(α3

n) (21)

for sufficiently small αn. Thus, by (20) and (21),

D(ρWn ||ω¹n
0 ) f γ2n

2
η(ω1||ω0) + e−ζγ

3

2
n n

1

4 +O

(

γ3n√
n

)

.

By applying this bound to the denominator in (19), we have:

Ln g
2
(

2
3 − ν

) (1−q)2

2−q
γn +O

(

γn

log(n)

)

√

γ2
n

2 η(ω1||ω0) + e−ζγ
3

2
n n

1

4 +O
(

γ3
n√
n

)

. (22)

Hence, taking the limit of n→ ∞ completes the proof.

IV. SUMMARY AND DISCUSSION

We study covert communication through the qubit depo-

larizing channel, where Alice and Bob share entanglement

resources and wish to communicate, while an adversarial

warden, Willie, is trying to detect their communication. We

addressed three scenarios. In the first scenario, Willie can

detect any non-innocent state, making covert communication

impossible. In the second, Willie cannot distinguish between

the |0ð and |1ð inputs, making covert communication effortless.

The outcomes of our study mainly pertain to the third scenario,

wherein covert communication is both feasible and non-trivial.

Our results show that it is possible to transmit O(
√
n log n)

bits reliably and covertly. This result surpasses the maximum

scaling of O(
√
n) without entanglement assistance.

The square root law was derived for the non-trivial scenario,

in which Bob cannot determine with certainty if the trans-

mission is non-innocent. If Bob has this capability, then the

scaling law becomes O(
√
n log n), even for a classical channel

[13]. Therefore, it appears that entanglement assistance has a

similar effect as granting Bob the capability of identifying a

non-innocent transmission with certainty.

We provide the following interpretation, for both the Gaus-

sian bosonic channel and the qubit depolarizing channel. In

the bosonic case, the ratio between the entanglement-assisted

capacity and the unassisted capacity, follows a logarithmic

trend of log(1/E), where E is the limit on the transmission

mean photon number [31]. Yet, to ensure covertness, the mean

photon number must be restricted to En = O( 1√
n
). Conse-

quently, an O(log(n)) factor arises. Based on our derivation,

a similar phenomenon is observed for the qubit depolarizing

channel.
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