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Abstract—An upper bound to the identification capacity of
discrete memoryless wiretap channels is derived under the
requirement of semantic effective secrecy, combining semantic
secrecy and stealth constraints. A previously established lower
bound is improved by applying it to a prefix channel, formed by
concatenating an auxiliary channel and the actual channel. The
bounds are tight if the legitimate channel is more capable than the
eavesdropper’s channel. An illustrative example is provided for
a wiretap channel that is composed of a point-to-point channel,
and a parallel, reversely degraded wiretap channel. A comparison
with results for message transmission and for identification with
only secrecy constraint is provided.

I. INTRODUCTION

An increasing need for task-oriented and semantic com-

munication paradigms that cater for a variety of tasks

with different reliability, robustness, secrecy and privacy

requirements can be observed across modern cyber-physical

systemsGuenduez2023semantic, [1], [2]. Pioneering work by

Shannon [3] emphasized the problem of transmitting messages,

where a decoder is expected to decide which message has been

sent over a noisy channel among exponentially many possible

hypotheses.

Identification (ID) [4]–[6] is a communication task where the

receiver, Bob, selects one of many possible messages and tests

whether this particular message was sent by the transmitter,

Alice or not. It is assumed that Alice does not know Bob’s

chosen message; otherwise she could simply answer with “Yes”

or “No”, by sending a single bit. Given the nature of this very

specific task, ID is in stark contrast to the conventional and

general task of uniquely decoding messages, i.e. estimating

which message was sent. Decoding is general in the sense that

Bob can estimate any

function of Alice’s message, while in ID, he can only

compute whether it is the one of his interest or not, hence the

function that Bob interested in is a simple indicator function.

However, while the code sizes may only grow exponentially

in the blocklength for the message-transmission task [3]–[6], a

doubly exponential growth can be achieved in ID, if randomized

encoding is used [6]. Randomized encoding allows the number

of messages to be restricted not by number of possible distinct

codewords, but rather by the number of input distributions to

the channel that are pairwise distinguishable at the output [6],

[7]. ID can have applications in various domains that span

authentication tasks such as watermarking [8], [9], sensor

communication [10], vehicle-to-X communication [11]–[13],

among others.

From a more theoretical point of view, there are as well

several interesting connections between ID and common

randomness generation [14], as well as resolvability [7],

[15]–[17] and soft-covering [18, p. 656], [19]–[21].

These connections lead to remarkable behavior of ID

capacities in relation with security constraints. For example,

in the semantic

secrecy regime, one can achieve the same ID rate, as if there

were no security requirement, provided that the secrecy-capacity

of the channel is positive [22], [23]. Stealth [24]–[27] requires

that the adversary is prevented from determining whether Alice

and Bob are communicating. As such, it may seem to be an

even stronger requirement than secrecy. In general, however,

neither stealth nor secrecy implies the other [25]. In contrast

to covert communication[28]–[30], stealthy signals are not

necessarily limited in power, but need to simulate a default

distribution at the attacker’s output, so that the attacker is

unable to distinguish valuable information from noise. Thus,

covert communication belongs to the same family of security

problems as stealthy communication [25], [31].

The covert ID capacity for binary-input discrete memoryless

wire-tap channels was determined by Zhang and Tan [32], and

an achievable rate for ID under semantic effective secrecy has

been established [33].

Here, we derive new bounds on the ID capacity of discrete

memoryless wiretap channels [34], [35] under the semantic

effective secrecy constraint. We improve the achievable rate

from [33] by observing that the encoder can always prepend an

auxiliary channel to the actual channel given to him. This may

increase the achievable rate, e.g., if the channel is not more

capable, i.e. I(X;Y ) ≤ I(X;Z) for the input distribution

PX achieving the capacity without security constraints, the

legitimate channel output Y , and attacker’s output Z, but there

exists an auxiliary random variable U such that U −X − Y Z
is a Markov chain and I(U ;Y ) ≥ I(U ;Z). Furthermore, we

derive a converse bound, which is tight if the legitimate channel

is more capable than the eavesdropper’s one. We demonstrate
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Figure 1. A general identification scheme in the presence of an eavesdropper,
where Wn

Y Z|X
=

∏n
i=1

WY Z|X is a discrete memoryless wiretap channel.

In contrast to conventional message transmission, the receiver does not decode
the message m from the channel output Y n, but chooses an m′, and performs
a statistical hypothesis test to decide whether m′ equals m or not. In the
effective secrecy setting, the eavesdropper wants to find out whether unexpected
communication takes place or not, compared to some expected default behavior,
and to identify whether an own message m′′ equals m or not.

the results for a reversely degraded binary erasure broadcast

channel, where each symbol consists of two bits, and for the

first bit, the legitimate channel is stronger, and for the second

bit, the eavesdropper’s channel is better. Based on this example,

we discuss the relation of the derived bounds, and the relations

to capacities for other communication problems and constraints.

Finally, we discuss future steps needed to obtain a generally

tight converse bound.

The ID capacity of the discrete memoryless wiretap channel

exhibits a similar dichotomy for semantic effective secrecy

as for only semantic secrecy [22], but with a more stringent

positivity condition and constraint. This is because for secrecy,

only a small part of the ID codeword has to be secret [22],

while for effective secrecy, the whole codeword must be stealthy

[33].

This work is organized as follows. Section II sets the notation,

channel model and communication task. In Section III, we

review previous results and present our main theorems. We

present the example and discuss the bounds in Section IV. In

Section V, we develop an auxiliary ID converse, which permits

convex constraints on the encoding distributions. It is then used

in Section VI to prove the upper rate bound for effectively

secrete ID. Finally, Section VII summarizes the results and

discusses futher steps.

An extended version of this paper can be found on arXiv.

II. PRELIMINARIES

The indicator function 1(·) evaluates to 1 if its argument is

true, and to 0 if it is false.

The function log denotes the natural logarithm.

A. Channels

A channel with domain X and codomain Y is a conditional

PMF W : X → P(Y). A discrete memoryless channel

W (DMC) is a sequence (Wn)n∈N, where an input sequence

xn of block length n ∈ N is mapped to an an output sequence

yn with probability

Wn(yn|xn) =
∏n

i=1 W (yi|xi).
A wiretap channel is a channel WY Z|X : X → P(Y × Z),

where we assume that for an input x, a legitimate receiver

has access to the channel output Y ∼ WY |X=x and a passive

adversary has access to to the output Z ∼ WZ|X=x, where

the output distributions of the marginal channels WY |X and

WZ|X given input x are marginalizations of the joint output

distribution WY Z|X=x. A discrete memoryless wiretap channel

WY Z|X (DMWC) is a sequence (Wn
Y Z|X)n∈N. A wiretap

channel is (stochastically) degraded towards Y if there exists

a channel WZ|Y such that WZ|X = WY |XWZ|Y .

The Kullback-Leibler divergence (KL divergence) between

two PMFs P,Q ∈ P(X ), where Q(x) > 0 if P (x) > 0, is

defined by

D(P‖Q) =
∑

x : P (x)>0 P (x) log P (x)
Q(x) ,

and two conditional PMFs W,V : X → P(Y), the

conditional KL divergence is defined by D(W‖V |P ) =
EP [D(W (·|X)‖V (·|X))]. The Shannon entropies and the

mutual information are defined as usual. Note that for (X,Y ) ∼
P ×W and any Q ∈ P(Y) such that the following expression

is defined, it holds that

D(W‖Q|P ) = I(X;Y ) +D(PW‖Q). (1)

B. Identification codes and effective secrecy

The task of ID with effective secrecy is described as follows:

Consider a wiretap channel WY Z|X where Alice transmits a

signal X ∈ X , Bob, the legitimate receiver, receives Y ∈ Y
and Willie, the adversary, receives Z ∈ Z . Alice encodes

a message m ∈ [M ] = {1, . . . ,M} into X such that (a)

Bob can test reliably whether Alice sent m′ or not, for every

m′ ∈ [M ] (identification) and (b) Willie cannot distinguish

whether Alice sent something sensible or nonsense (stealth),

nor can he identify whether Alice sent any particular m̃ ∈ [M ]
(secrecy). The combination of stealth and secrecy is called

effective secrecy. To this end, it is assumed that Willie will

always classify the received signal as suspicious if it differs

significantly from a prescribed distribution QZ . Let us formally

define the involved codes and capacities:

An M -code for a discrete channel WY |X : X → P(Y) is a

family {(Em,Dm)}Mm=1 of encoding distributions Em ∈ P(X )
and decision sets Dm ⊆ Y . An (M,n)-code for a DMC W is

an M -code for the channel Wn = Wn, i.e. Em ∈ P(Xn) and

Dm ⊆ Yn.

A (M |λ1, λ2)-identification code (ID code) is an M -code

satisifying the conditions

min
m

EmWY |X(Dm) ≥ 1− λ1, (2)

max
m,m′ : m 6=m′

EmWY |X(Dm′) ≤ λ2. (3)

An (M |λ1, λ2, δ, QZ) (semantically) effectively secret ID

code (ESID code) for a discrete wiretap channel WY Z|X is

an (M |λ1, λ2)-ID-code where every encoding distribution Em

simulates QZ with precision δ > 0 over WZ|X , i.e.

max
m

D(EmWZ|X‖QZ) ≤ δ. (4)

Semantic secrecy means that the constraint must hold for

every message, not only for a particular random message

distribution. Similarly, an (M,n|λ1, λ2) ID code and an



(M,n|λ1, λ2, δ, QZn) ESID code are defined for DMCs with

block length n.

The rate of an (M,n) ID code is defined as R =
1
n log logM . A rate R is QZ -ESID achievable over a wiretap

channel WY Z|X if, for all λ1, λ2, δ > 0 and sufficiently large

n, there exists an (22
nR

, n|λ1, λ2, δ, QZ) ESID code. The QZn -

ESID capacity CESID(WY Z|X , QZn) is the supremal rate that

is QZn -ESID achievable over WY Z|X .

III. RESULTS

Consider the prior result from [33].

Proposition 1 ([33, Theorem 1]). For any QZ ∈ P(Z), the

Qn
Z-ESID capacity of a discrete memoryless wiretap channel

WY Z|X satisfies

CESID(WY Z|X , Qn
Z) ≥ max

PX∈P(X )
PXWZ|X=QZ

I(X;Y )≥I(X;Z)

I(X;Y ). (5)

In Proposition 1, the constraint I(X;Y ) ≥ I(X;Z) can

be relaxed to I(U ;Y ) ≥ I(U ;Z), for any auxiliary random

variable U having finite support and satisfying the Markov

condition U−X−Y Z, by applying Proposition 1 to the virtual

channel PY Z|U = PX|UWY Z|X :

Corollary 1. The Qn
Z-ESID capacity of a DMWC WY Z|X

satisfies

CESID(WY Z|X , Qn
Z) ≥ max

PUX∈P(U×X )
PXWZ|X=QZ

I(U ;Y )≥I(U ;Z)

I(U ;Y ), (6)

where U is any finite set.

On the other hand, we prove the following upper bound.

Theorem 1. The Qn
Z-ESID-capacity of a DMWC WY Z|X :

X → P(Y×Z) is 0 if I(U ;Y ) < I(U ;Z) or PXWZ|X 6= QZ ,

for all PUX such that U −X − Y Z forms a Markov chain.

Otherwise, it satisfies

CESID(WY Z|X , Qn
Z) ≤ max

PUX∈P(U×X )
PXWZ|X=QZ

I(U ;Y )≥I(U ;Z)

I(X;Y ), (7)

where |U| ≤ |X |+ 2. If WY |X is more capable than WZ|X ,

CESID(WY Z|X , Qn
Z) = max

PX∈P(X )
PXWZ|X=QZ

I(X;Y ). (8)

The proof follows in Section VI.

Remark 1. The lower bound in Corollary 1 and the upper

bound in Theorem 1 coincide only for channels where the

optimal capacity is achieved with U = X . In the following

section, we demonstrate the gap at the example of a reversely

degraded wiretap channel, where U 6= X is optimal.

Remark 2. If the Qn
Z-ESID capacity is zero, then effectively

secret communication with any positive rate impossible. Yet,

this does not necessarily imply that communication is impossi-

ble. It can simply mean that the code size grows slower than

PU

BECε

BSCq BECε

Bob

Willie
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Figure 2. Structure of the product of two reversely degraded broadcast example

doubly-exponentially in the block length, since we defined the

rate as R = 1
n log logM .

For example, for covert codes O(
√
n) bits can be sent in

n channel uses. However, Ahlswede [36, Lemmas 89, 90 and

Remark 92] proved that, if for sufficiently small λ1, λ2, δ and

sufficiently large n, the secrecy condition I(U ;Y ) ≥ I(U ;Z)
is violated for all U , then secret communication is impossible,

hence also effectively secret communication.

IV. EXAMPLE: REVERSELY DEGRADED BROADCAST

CHANNELS

To demonstrate the relation of the capacity bounds in

Proposition 1, Corollary 1, and Theorem 1 and contrast it

with message transmission, we consider two reversely degraded

binary broadcast channels used in parallel, as shown in Figure 2.

In this section, in a binary setting, we let log := log2. Every

input symbol consists of two bits, i.e. X = {0, 1}2. The bit

X1 is sent only to Bob, over a binary erasure channel, BECε,

described by the transition matrix

BECε =
(

1−ε ε 0
0 ε 1−ε

)

,
where 1

2 < ε ≤ 1 is the erasure probability, the output alpha-

bet is {0, e, 1}, and e denotes an erasure. The bit X2 is also sent

to Bob over a BEC(ε) with the same erasure probability, while

Willie observes it noiselessly. We have thereby the assignments

X = (X1, X2), Y = (Y1, Y2), Z = X2, Y1 ∼ BECε(·|X1),
and Y2 ∼ BECε(·|X2). The output alphabets of the described

channel are Y = {0, e, 1}2 and Z = X . This channel belongs

to the class of reversely degraded broadcast channels [37, Page

127], i.e. PY,Z|X = PY1,Y2,Z|X1,X2
= PY1|X1

· PZ|X2
· PY2|Z .

Let PX1
= (pX1

, 1−pX1
), i.e. PX1

(0) = pX1
, and similarly

PX2
= (pX2

, 1 − pX2
). Since X1 is perfectly secret, Alice

chooses pX1
= 1

2 , which maximizes the mutual information

I(X1;Y1) = (1 − ε)H2(pX1
) = 1 − ε, by [38, Eq. (7.15)].

Suppose the default distribution to simulate for effective secrecy

is QZ = ( 12 ,
1
2 ). Then, (6) and (7) require that pX2

= 1
2 . Thus,

the mutual informations of the marginal channels are

I(X;Y ) = I(X1;Y1) + I(X2;Y2) (9)

= (1− ε)(H2(pX1
) +H2(pX2

)) (10)

= 2(1− ε), (11)

I(X;Z) = H2(pX2
) = 1, (12)

where H2(p) = −p log p − (1 − p) log(1 − p). Since ε > 1
2 ,

PY |X is less capable than PZ|X , i.e.

I(X;Y ) < I(X;Z),
and Proposition 1 guarantees no achievable Qn

Z-ESID rate.

Yet, Alice can achieve Qn
Z-ESID, by letting pU2

= 1
2



PU2
= (pU2

, 1 − pU2
), X2 ∼ BSCq(·|U2), and U =

(X1, U2),
where BSCq =

( 1−q q
q 1−q

)

is a binary symmetric channel

with crossover probability q. Elementary calculations show that

pX2
= pU2

(1− q) + (1− pU2
)q =

1

2
, (13)

I(U ;Y ) = I(X1;Y1) + I(U2;Y2) (14)

= (1− ε)(2−H2(q)), (15)

I(U ;Z) = I(U2;Z) = 1−H2(q), (16)

and

I(U ;Y ) ≥ I(U ;Z), for all ε ≤ 1/(2−H2(q)).
Hence, by Corollary 1 and Theorem 1,

2(1− ε) ≥ I(X;Y ) ≥ CESID(WY Z|X , Qn
Z) (17)

≥ I(U ;Y ) (18)

= (1− ε)(2−H2(q)), (19)

where the gap is given by

I(X;Y )− I(U ;Y ) = (1− ε)H2(q).
For comparison, given PX2|U2

= BSCq , an upper rate bound

for effectively secret message transmission

is [25, Theorem 1.1]

REST ≤ I(U ;Y )− I(U ;Z) (20)

≤ 1− ε (21)

≤ I(X1;Y ). (22)

On the other hand, the ID capacity with only secrecy, without

stealth, is given by I(X;Y ), since there exists PU such that

I(U ;Y ) ≥ I(U ;Z) This suggests that for transmission with

effective secrecy, it is optimal for Alice to only encode into

the first bit, X1, while effectively secret ID codes can increase

the rate by exploiting both bits (X1, U2). Figure 3 displays the

mutual informations for varying 0 ≤ pU2
= pX2

≤ 1, q = 1
8 ,

and hence ε = 1/(2 − H2(q)) = 3
8 − 7

8 log2(
7
8 ) ≈ 0.6866.

Thus, for pU2
= 1

2 , we have I(U ;Y ) = I(U ;Z).

V. AUXILIARY IDENTIFICATION CONVERSE

Consider the hypothesis testing divergence

Dα(P‖Q) := sup

{

γ : P

(

log
P (Y )

Q(Y )
≤ γ

)

≤ α

}

, (23)

where Y ∼ P , and let (P ⊗Q)(x, y) := P (x)Q(y).

Lemma 1. Let λ1, λ2, η > 0 and α := λ1 + λ2 + 2η < 1.

For every (M |λ1, λ2) ID code {(Em,Dm)}Mm=1 for a channel

WY |X : X → P(Y), its size is bounded by

log logM ≤ max
PX∈E

min
Q∈P(Y)

Dα(PXY ‖PX ⊗Q) + ε (24)

≤ max
PX∈E

1

1− α
I(X;Y ) + ε, (25)

where PXY = PX ×WY |X , ε = log log |X |+ 3 log(1/η) + 2,

and E = {PV Em=V : PV ∈ P([M ])} is the convex hull of all

encoding distributions.
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I(U ;Y )− I(U ;Z)

Figure 3. Mutual informations for the reversely degraded wiretap channel in
Figure 2, and communication tasks where the mutual information is achievable,
where q = 1

8
, ε = 0.6866 ≈ 1/(2 − H2(q)), and PX1

= QZ = ( 1
2
, 1

2
).

For secret ID and effectively secret message transmission, the given bounds
are tight, if pU2

= BSC(q), for any q.

Proof. By [17, Corollary 2 and Lemma 1], we have that

log logM ≤ max
PX∈P(X )

min
Q∈P(Y)

Dα(PXY ‖PX ⊗Q) + ε. (26)

The maximization over P(X ) is introduced in the proof of [17,

Theorem 1] to establish the upper bound

1

2

[

(Em ×WY |X)(S) + (Em′ ×WY |X)(S)
]

≤ sup
PX∈P(X )

PX ×WY |X(S), (27)

for some set S ⊆ X × Y , which ultimately leads to the

maximization in (26). Clearly, a maximization over all Em,

m ∈ [M ] would suffice in (27).

To establish the minimax equality in [17, Corollary 2],

Watanabe used the fact that the supremum is taken over a

compact and convex set. Since no other properties of P(X )
are used in [17], it suffices to maximize over the convex hull

E of all encoding distributions,

as in (24). By Markov’s inequality,

Dα(P‖Q) = sup

{

γ : P

(

log
P (Y )

Q(Y )
> γ

)

≥ 1− α

}

(28)

≤ inf

{

γ : P

(

log
P (Y )

Q(Y )
≥ γ

)

≤ 1− α

}

(29)

≤ 1

1− α
E

[

log
P (Y )

Q(Y )

]

(30)

≤ 1

1− α
D(P‖Q), (31)

where the first inequality holds since p(γ) = P
(

log P (Y )
Q(Y ) ≥ γ

)

is a decreasing function. Thus, for every PX ∈ P(X ),

min
Q∈P(Y)

Dα(PX ×WY |X‖PX ⊗Q)

≤ 1

1− α
D(PX ×WY |X‖PX ⊗ PXWY |X) (32)

=
1

1− α
I(X;Y ), (33)



and Lemma 1 follows. ■

VI. PROOF OF THEOREM 1

Consider any (M,n|λ1, λ2, δ, QZ) ESID code

{(Em,Dm)}Mm=1 for a DMWC WY Z|X : X → P(Y × Z),
where λ1, λ2, η > 0 satisfy α := λ1 + λ2 + 2η < 1. By

Lemma 1, the rate is upper-bounded by

R =
1

n
log logM ≤ max

PXn∈E

1

n(1− α)
I(Xn;Y n) +

ε

n
, (34)

where ε = log log |Xn|+ 3 log(1/η) + 2, and E is the convex

hull of all encoding distributions. By the chain rule,

1

n
I(Xn;Y n) =

1

n

n
∑

i=1

I(Xn;Yi|Y i−1) (35)

= I(Xn;YT |T, Y T−1) (36)

≤ I(XT ;YT ), (37)

where T ∼ PT (i) = 1
n1(1 ≤ i ≤ n), and (37) follows from

the concavity of the mutual information in the input argument,

and the Markov condition Y i−1 −Xi−1Xn
i+1 −Xi − Yi

for every i ∈ [n].
In the following, we single-letterize the constraints on E .

Similarly to [25, Eq. (1.49)], for any PZn ∈ P(Zn),

δ = D(PZn‖Qn
Z) (38)

=
∑

zn

PZn(zn)

n
∑

i=1

log
1

QZ(zi)
−H(Zn) (39)

≥
n
∑

i=1

∑

z

PZi
(z) log

1

QZ(z)
−

n
∑

i=1

H(Zi) (40)

= n

n
∑

i=1

PT (i)D(PZi
‖QZ) (41)

≥ nD(PZT
‖QZ). (42)

By [36, Lemma 90], for sufficiently small λ1, λ2, δ > 0,

max
PA∈P([M ])

I(A;Y n) ≥ δ (43)

≥ max
m∈[M ]

D(EmWn
Z|X‖Qn

Z) (44)

≥ max
PA∈P([M ])

D(Em=AW
n
Z|X‖Qn

Z |PA) (45)

≥ max
PA∈P([M ])

I(A;Zn). (46)

Thus, there exists PA ∈ P([M ]) such that

0 ≤ 1

n
[I(A;Y n)− I(A;Zn)] (47)

= I(V A;YT |V )− I(V A;ZT |V ) (48)

≤ max
v

max
PBX|V =v

[I(B;YT |V = v)− I(B;ZT |V = v)] (49)

≤ max
PBX

[I(B;Y )− I(B;Z)], (50)

where B = (V,A), V = (T, Y1, . . . , YT−1, ZT+1, . . . , Zn),
the maximizations are with respect to

D(PBPXT |BWZ|X‖QZ) ≤ δ
n , and (48) follows from [39,

Lemma 17.12]. By [39, Lemmas 15.4 and 15.5], we

can replace PB by PU ∈ P(U), |U| ≤ |X | + 2,

such that I(U ;Y ) = I(B;Y ), I(U ;Z) = I(B;Z), and

PUPX|B = PBPX|B .

Since the mutual information is continuous and the set
{

PUX : D(PXWZ|X‖QZ) ≤ δ
}

is compact, for η = e−
√
n,

we have that

CESID(WY Z|X , Qn
Z) (51)

≤ inf
λ1,λ2,δ>0

lim
n→∞

[

o(1) +
1

1− λ1 − λ2 − o(1)

max
PUX∈P(U×X )

D(PXWZ|X‖QZ)≤δ/n

I(U ;Y )≥I(U ;Z)

I(X;Y )

]

(52)

= max
PUX∈P(U×X )
PXWZ|X=QZ

I(U ;Y )≥I(U ;Z)

I(X;Y ). (53)

For more capable channels, I(X;Y ) ≥ I(X;Z), for all

PX ∈ P(X ) and hence, the upper bound is achievable, by

Proposition 1. This completes the proof of Theorem 1. ■

VII. CONCLUSION

In Corollary 1, we improved the lower bound on the Qn
Z-

ESID capacity in the case I(X;Y ) < I(X;Z), where Qn
Z is

a product distribution and PX satisfies PXWZ|X = QZ . In

Theorem 1, we complement this result by an upper bound that

is tight if I(X;Y ) ≥ I(X;Z). The example in Section IV

illustrates that in case I(X;Y ) < I(X;Z), the achievability

gap between Corollary 1 and Theorem 1 can be substantial, as

is the rate advantage of ID compared to message transmission.

It seems likely that the lower bound in Corollary 1 is tight, by

results from resolvability theory [40], since the whole codeword

is subject to the stealth constraint. The difficult part in finding

a more stringent converse bound seems to be the introduction

of an auxiliary channel, as demonstrated in Section IV, where

the number of possible input sequences is suitably bounded

(see Lemma 1 and the discussion of the gap in Ahlswede’s

broadcast converse in [41, Section 2.4]). This is a non-trivial

task for ID, and the authors are not aware of any ID capacity

result involving auxiliary variables in the rate bound. Usually,

in converse proofs [37], the message is obtained as an auxiliary

variable from Fano’s inequality, and then is single-letterized.

However, the mutual information between the message and the

channel output cannot be an upper bound to the ID capacity,

since ID codes transmit mainly randomness, and the capacity of

memoryless channels is achieved with codes, where only few

(
√
n) codeword symbols depend on the message at all [42]. To

close the achievability gap, new methods need to be developed

to introduce auxiliary variables in ID converse bounds. This

would also be a crucial step in the development of further

multi-user converses for ID and many other communication

tasks[36], [43], e.g. for the broadcast channel [41], [43]. To

this end, observe that any suitably bounded auxiliary channel

forms a polytope with extremal points PX|U=u, u ∈ U , where

U is the auxiliary alphabet. This polytope must include the set



of stealthy encoding distributions. If such a pre-channel exists,

the usual ID converse can be applied to it, to obtain an upper

bound that matches the bound in Corollary 1.
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