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Abstract—An upper bound to the identification capacity of
discrete memoryless wiretap channels is derived under the
requirement of semantic effective secrecy, combining semantic
secrecy and stealth constraints. A previously established lower
bound is improved by applying it to a prefix channel, formed by
concatenating an auxiliary channel and the actual channel. The
bounds are tight if the legitimate channel is more capable than the
eavesdropper’s channel. An illustrative example is provided for
a wiretap channel that is composed of a point-to-point channel,
and a parallel, reversely degraded wiretap channel. A comparison
with results for message transmission and for identification with
only secrecy constraint is provided.

I. INTRODUCTION

An increasing need for task-oriented and semantic com-
munication paradigms that cater for a variety of tasks
with different reliability, robustness, secrecy and privacy
requirements can be observed across modern cyber-physical
systemsGuenduez2023semantic, [1], [2]. Pioneering work by
Shannon [3] emphasized the problem of transmitting messages,
where a decoder is expected to decide which message has been
sent over a noisy channel among exponentially many possible
hypotheses.

Identification (ID) [4]-[6] is a communication task where the
receiver, Bob, selects one of many possible messages and tests
whether this particular message was sent by the transmitter,
Alice or not. It is assumed that Alice does not know Bob’s
chosen message; otherwise she could simply answer with “Yes”
or “No”, by sending a single bit. Given the nature of this very
specific task, ID is in stark contrast to the conventional and
general task of uniquely decoding messages, i.e. estimating
which message was sent. Decoding is general in the sense that
Bob can estimate any

function of Alice’s message, while in ID, he can only
compute whether it is the one of his interest or not, hence the
function that Bob interested in is a simple indicator function.
However, while the code sizes may only grow exponentially
in the blocklength for the message-transmission task [3]-[6], a
doubly exponential growth can be achieved in ID, if randomized
encoding is used [6]. Randomized encoding allows the number
of messages to be restricted not by number of possible distinct
codewords, but rather by the number of input distributions to
the channel that are pairwise distinguishable at the output [6],

[7]. ID can have applications in various domains that span
authentication tasks such as watermarking [8], [9], sensor
communication [10], vehicle-to-X communication [11]-[13],
among others.

From a more theoretical point of view, there are as well
several interesting connections between ID and common
randomness generation [14], as well as resolvability [7],
[15]-[17] and soft-covering [18, p. 656], [19]-[21].

These connections lead to remarkable behavior of ID
capacities in relation with security constraints. For example,
in the semantic

secrecy regime, one can achieve the same ID rate, as if there
were no security requirement, provided that the secrecy-capacity
of the channel is positive [22], [23]. Stealth [24]-[27] requires
that the adversary is prevented from determining whether Alice
and Bob are communicating. As such, it may seem to be an
even stronger requirement than secrecy. In general, however,
neither stealth nor secrecy implies the other [25]. In contrast
to covert communication[28]-[30], stealthy signals are not
necessarily limited in power, but need to simulate a default
distribution at the attacker’s output, so that the attacker is
unable to distinguish valuable information from noise. Thus,
covert communication belongs to the same family of security
problems as stealthy communication [25], [31].

The covert ID capacity for binary-input discrete memoryless
wire-tap channels was determined by Zhang and Tan [32], and
an achievable rate for ID under semantic effective secrecy has
been established [33].

Here, we derive new bounds on the ID capacity of discrete
memoryless wiretap channels [34], [35] under the semantic
effective secrecy constraint. We improve the achievable rate
from [33] by observing that the encoder can always prepend an
auxiliary channel to the actual channel given to him. This may
increase the achievable rate, e.g., if the channel is not more
capable, i.e. I(X;Y) < I(X;Z) for the input distribution
Px achieving the capacity without security constraints, the
legitimate channel output Y, and attacker’s output Z, but there
exists an auxiliary random variable U such that U — X —Y Z
is a Markov chain and [(U;Y’) > I(U; Z). Furthermore, we
derive a converse bound, which is tight if the legitimate channel
is more capable than the eavesdropper’s one. We demonstrate
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Figure 1. A general identification scheme in the presence of an eavesdropper,
where W ZIx = [T, Wy z|x is a discrete memoryless wiretap channel.
In contrast to conventional message transmission, the receiver does not decode
the message m from the channel output Y™, but chooses an m’, and performs
a statistical hypothesis test to decide whether m’ equals m or not. In the
effective secrecy setting, the eavesdropper wants to find out whether unexpected
communication takes place or not, compared to some expected default behavior,
and to identify whether an own message m/’ equals m or not.

the results for a reversely degraded binary erasure broadcast
channel, where each symbol consists of two bits, and for the
first bit, the legitimate channel is stronger, and for the second
bit, the eavesdropper’s channel is better. Based on this example,
we discuss the relation of the derived bounds, and the relations

to capacities for other communication problems and constraints.

Finally, we discuss future steps needed to obtain a generally
tight converse bound.

The ID capacity of the discrete memoryless wiretap channel
exhibits a similar dichotomy for semantic effective secrecy
as for only semantic secrecy [22], but with a more stringent
positivity condition and constraint. This is because for secrecy,
only a small part of the ID codeword has to be secret [22],
while for effective secrecy, the whole codeword must be stealthy
[33].

This work is organized as follows. Section II sets the notation,
channel model and communication task. In Section III, we
review previous results and present our main theorems. We
present the example and discuss the bounds in Section IV. In
Section V, we develop an auxiliary ID converse, which permits
convex constraints on the encoding distributions. It is then used
in Section VI to prove the upper rate bound for effectively
secrete ID. Finally, Section VII summarizes the results and
discusses futher steps.

An extended version of this paper can be found on arXiv.

II. PRELIMINARIES

The indicator function 1(+) evaluates to 1 if its argument is
true, and to O if it is false.
The function log denotes the natural logarithm.

A. Channels

A channel with domain X and codomain ) is a conditional
PMF W : X — P(Y). A discrete memoryless channel
W (DMC) is a sequence (W™),cn, where an input sequence
™ of block length n € N is mapped to an an output sequence
y™ with probability

W (y"a") = [Ty W (yil:).

A wiretap channel is a channel Wy zx : X — P(Y x Z),
where we assume that for an input z, a legitimate receiver
has access to the channel output ¥ ~ Wy x—, and a passive

adversary has access to to the output Z ~ Wz x—_,, where
the output distributions of the marginal channels Wy x and
Wz x given input x are marginalizations of the joint output
distribution Wy 7| x .. A discrete memoryless wiretap channel
Wy zx (DMWC) is a sequence (WQZ‘X)nGN. A wiretap
channel is (stochastically) degraded towards Y if there exists
a channel Wz )y such that Wz x = Wy | xWzy.

The Kullback-Leibler divergence (KL divergence) between
two PMFs P,@Q € P(X), where Q(x) > 0 if P(x) > 0, is
defined by

D(P[Q) = ¥, pay»0 P()log 53,

and two conditional PMFs W,V X — P(Y), the
conditional KL divergence is defined by D(W|V|P) =
Ep[D(W(-|X)|[V(-|X))]. The Shannon entropies and the
mutual information are defined as usual. Note that for (X,Y") ~
P x W and any ) € P()) such that the following expression
is defined, it holds that

DW[QIP) = I(X;Y) + D(PW|Q). €0

B. Identification codes and effective secrecy

The task of ID with effective secrecy is described as follows:
Consider a wiretap channel Wy 7| x where Alice transmits a
signal X € X, Bob, the legitimate receiver, receives ¥ € )
and Willie, the adversary, receives Z € Z. Alice encodes
a message m € [M] = {1,...,M} into X such that (a)
Bob can test reliably whether Alice sent m’ or not, for every
m' € [M] (identification) and (b) Willie cannot distinguish
whether Alice sent something sensible or nonsense (stealth),
nor can he identify whether Alice sent any particular m € [M]
(secrecy). The combination of stealth and secrecy is called
effective secrecy. To this end, it is assumed that Willie will
always classify the received signal as suspicious if it differs
significantly from a prescribed distribution ) z. Let us formally
define the involved codes and capacities:

An M-code for a discrete channel Wy x : X — P()Y) is a
family {(E,,, D,,l)}ﬂ]\i[:1 of encoding distributions E,,, € P(X)
and decision sets D,, C Y. An (M, n)-code for a DMC W is
an M-code for the channel W,, = W", ie. E,, € P(X™) and
Dy, C Y™

A (M|)\y, \o)-identification code (ID code) is an M-code
satisifying the conditions

min £, Wy x (D) > 1 — Ay, 2
, EmWy | x (D) < Az 3

max

m,m’ : m#m

An (M|A1,A2,0,Qz) (semantically) effectively secret ID

code (ESID code) for a discrete wiretap channel Wy zx is

an (M |1, A2)-ID-code where every encoding distribution E,,
simulates ()7 with precision J > 0 over Wy x, i.e.

H}gXD(EmWZ\XHQz) <. 4)

Semantic secrecy means that the constraint must hold for
every message, not only for a particular random message
distribution. Similarly, an (M,n|A;,A2) ID code and an



(M, n]A1, A2, 0,Qzn) ESID code are defined for DMCs with
block length n.

The rate of an (M,n) ID code is defined as R =
Lloglog M. A rate R is Qz-ESID achievable over a wiretap
channel Wy 7| x if, for all A1, A2, > 0 and sufficiently large
n, there exists an (QQW'R, n|A1, A2, 0, Qz) ESID code. The Q zn-
ESID capacity Cesip(Wy z|x, @z ) is the supremal rate that
is (Qz»-ESID achievable over Wy 7| x.

III. RESULTS

Consider the prior result from [33].

Proposition 1 ([33, Theorem 1]). For any Qz € P(Z), the
Q%-ESID capacity of a discrete memoryless wiretap channel

Wy z\x satisfies
Ceso(Wyz1x,Q%) > max
Px€eP(X)
PxWz i x=Qz
[(X3Y)>1(X;2)

I(X:Y). (5

In Proposition 1, the constraint I(X;Y) > I(X;Z) can
be relaxed to I(U;Y) > I(U; Z), for any auxiliary random
variable U having finite support and satisfying the Markov
condition U — X —Y Z, by applying Proposition 1 to the virtual
channel PYZ\U = PX\UWYZ|X:

Corollary 1. The Q%-ESID capacity of a DMWC Wy 7| x

satisfies

Cesp(Wyz1x, Q%) > max
Pyx€ePUXX)
PxWz x=Qz
1(UsY)>1(U;2)

I(U;y), (6

where U is any finite set.
On the other hand, we prove the following upper bound.

Theorem 1. The Q7-ESID-capacity of a DMWC Wy z|x :
X = PYx2Z2)is0if I(U;Y) < I(U; Z) or PxWyzx # Qz,
for all Pyx such that U — X — Y Z forms a Markov chain.

Otherwise, it satisfies
Cesp(Wy z)x,Q7%) < max
Pyx€€PUXX)
PxWz x=Qz
I(U;Y)>1(U32)

Ix:y), (D

where |[U| < |X |+ 2. If Wy |x is more capable than Wz x,
Cesp(Wyz1x, Q%) = I(X;Y). )

max
PxeP(X)
PxWgz i x=Qz

The proof follows in Section VI

Remark 1. The lower bound in Corollary 1 and the upper
bound in Theorem 1 coincide only for channels where the
optimal capacity is achieved with U = X. In the following
section, we demonstrate the gap at the example of a reversely
degraded wiretap channel, where U # X is optimal.

Remark 2. If the Q%-ESID capacity is zero, then effectively
secret communication with any positive rate impossible. Yet,
this does not necessarily imply that communication is impossi-
ble. It can simply mean that the code size grows slower than

X %
! BEC. !

XQ YQ
Z
> Willie

Figure 2. Structure of the product of two reversely degraded broadcast example

Py Bob

Uz
72 ,[Bsc,

doubly-exponentially in the block length, since we defined the
rate as R = L loglog M.

For example, for covert codes O(+/n) bits can be sent in
n channel uses. However, Ahlswede [36, Lemmas 89, 90 and
Remark 92] proved that, if for sufficiently small A1, Ao, and
sufficiently large n, the secrecy condition I(U;Y) > I(U; Z)
is violated for all U, then secret communication is impossible,
hence also effectively secret communication.

IV. EXAMPLE: REVERSELY DEGRADED BROADCAST
CHANNELS

To demonstrate the relation of the capacity bounds in
Proposition 1, Corollary 1, and Theorem 1 and contrast it
with message transmission, we consider two reversely degraded
binary broadcast channels used in parallel, as shown in Figure 2.
In this section, in a binary setting, we let log := log,. Every
input symbol consists of two bits, i.e. X = {0,1}>. The bit
X is sent only to Bob, over a binary erasure channel, BEC,,
described by the transition matrix

BEC. = (5°5,,),

where % < € < 1 is the erasure probability, the output alpha-
betis {0, e, 1}, and e denotes an erasure. The bit X5 is also sent
to Bob over a BEC(¢) with the same erasure probability, while
Willie observes it noiselessly. We have thereby the assignments
X =(X1,X9),Y = (Y1,Y2), Z = Xo, Y1 ~ BEC.(|X1),
and Y5 ~ BEC,(:|X3). The output alphabets of the described
channel are ) = {0,¢,1}* and Z = X. This channel belongs
to the class of reversely degraded broadcast channels [37, Page
127], i.e. Py zix = Py, v5,21x1,x. = Pvi1x, - Pzix, - Pyy)z-

Let Px, = (px,,1—px, ), i.e. Px,(0) = px,, and similarly
Px, = (px,,1 — px,). Since X; is perfectly secret, Alice
chooses px, = %, which maximizes the mutual information
I(X1;Y1) = (1 — €)Ha(px,) = 1 — ¢, by [38, Eq. (7.15)].
Suppose the default distribution to simulate for effective secrecy
isQz = (%, %) Then, (6) and (7) require that px, = % Thus,
the mutual informations of the marginal channels are

I(X;Y) = I1(X1; Y1) + [(X2;Y2) )
= (1 —€)(Ha2(px,) + Ha(px)) (10)
=2(1—e), (an

I(X;Z) = Ha(px,) = 1, (12)

where Ha(p) = —plogp — (1 — p)log(1 — p). Since € > 3,
Py x is less capable than Py, i.e.

I(X;Y)<I(X;2),

and Proposition 1 guarantees no achievable Q% -ESID rate.
Yet, Alice can achieve Q'-ESID, by letting py, = 3



PU2 = (pU271
(X1,U2),
where BSC, = (1;(1 13[1) is a binary symmetric channel

with crossover probability ¢. Elementary calculations show that
1

— puy)s Xo ~ BSC,(-|Uz), and U =

px: = pus(1 =) + (1= prz)a = 5, (13)
I(U;Y) = 1(X1; Y1) + [(Uz; Ya) (14)
= (1 —¢€)(2 - Hz2(q)), (15)
I(U; Z) = 1(Uz; Z) = 1 — Ha(q), (16)
and
I(U;Y) > I(U; Z), for all e <1/(2 — Ha(q)).
Hence, by Corollary 1 and Theorem 1,
2(1—¢) > I(X;Y) > Cesp(Wy z/x, Q%) (17)
> I(U;Y) (18)
= (1 —¢)(2 — Hz(q)), (19)

where the gap is given by

[(X;Y) - I(U;Y) = (1 — ) Hy(q).

For comparison, given Px, |7, = BSC,, an upper rate bound
for effectively secret message transmission

is [25, Theorem 1.1]

Rest < I(U;Y) - 1(U; 2) (20)
<l-e¢ @1
< I(Xy;Y). (22)

On the other hand, the ID capacity with only secrecy, without
stealth, is given by I(X;Y), since there exists Py such that
I(U;Y) > I(U; Z) This suggests that for transmission with
effective secrecy, it is optimal for Alice to only encode into
the first bit, X, while effectively secret ID codes can increase
the rate by exploiting both bits (X7, Us). Figure 3 displays the
mutual informations for varying 0 < pU2 =p X2 <1l q= %,
and hence € = 1/(2 — Hx(q)) = 2 — Zlogy(3)
Thus, for py, = 5, we have I(U; Y) = I(U; Z)

V. AUXILIARY IDENTIFICATION CONVERSE
Consider the hypothesis testing divergence

< v) < a}7 (23)

P(z)Q(y).

Lemma 1. Let A\, o, > 0 and o := A\ + Ao + 2 < L.
For every (M|A1, A2) ID code {(Em,Dm)}%:l for a channel
Wy x : X = P(Y), its size is bounded by

Du(PIQ) = sup {5 P 1oe 5

where Y ~ P, and let (P ® Q)(z,y) :=

loglog M < D, (Pxy||P 24
og log g)l(%gg@g;;? (Pxy||Px ®Q)+¢€¢ (24)
< I(X:Y 25
< pax T I +e @5

where Pxy = Px x Wy x, € = loglog |X| 4 3log(1/n) + 2,
and & = {Py E,,=y : Py € P([M])} is the convex hull of all
encoding distributions.

~ (0.6866.

—~— I(X;Y) [secret ID]

e I(X;2)

Lt 7T e I(UY) [ESID]

~~~~~ - I(U; Z)

—~_— I(X3;Y) [ES transmission]
— I(U;Y) — I(U; 2)

bits/channel use

Figure 3. Mutual informations for the reversely degraded wiretap channel in
Figure 2, and communication tasks where the mutual information is achlevable
where g = é, € = 0.6866 ~ 1/(2 — H2(q)), and Px, = Qz = (27 5)-
For secret ID and effectively secret message transmission, the given bounds
are tight, if pyr, = BSC(q), for any g.

Proof. By [17, Corollary 2 and Lemma 1], we have that

D, (P P 26
)Qgg?y) (Pxy||Px ® Q) + €. (26)

The maximization over P(X’) is introduced in the proof of [17,
Theorem 1] to establish the upper bound

loglog M < a;
Bl08 M =, ey

5 (B X Wyx)(8) + (B x Wi px)(S)
< sup  Px x Wy x(S),

PxeP(X)

27)

for some set S C X x ), which ultimately leads to the
maximization in (26). Clearly, a maximization over all E,,,
m € [M] would suffice in (27).

To establish the minimax equality in [17, Corollary 2],
Watanabe used the fact that the supremum is taken over a
compact and convex set. Since no other properties of P(X)
are used in [17], it suffices to maximize over the convex hull

Du(PIQ) = sup {: P 10g 513

& of all encoding distributions,
> >1—ap (28)
Q) ”) }

as in (24). By Markov’s inequality,
P(Y
Sinf{’y:P(log ( ; Z’y) Sla} (29)

QY
1 P(Y)
< oEflos g (30)
< ——D(PQ), @y

where the first inequality holds since p(y) =

PY)
P(log o)
is a decreasing function. Thus, for every Px € P(X),

D, (Px x W- Px ®
Qgg?y (Px vix|[Px ® Q)

> )

1
< 7 D@Px x Wy x|[Px ® PxWyx)
1
= I(X:Y
T (XGY),

(32)

(33)



and Lemma 1 follows. |

VI. PROOF OF THEOREM 1

L any (M,n|A1,22,0,Qz) ESID  code
{(Em,D )} fOI‘ a DMWC Wyz|X X = P(y X Z)
where )\1,)\2,77 > 0 satisfy a := A; + Ao + 2n < 1. By
Lemma 1, the rate is upper-bounded by

Consider

R = floglogM < max

— (X" Yy"
PX,Lesn(l—a)( YT+

e
n

where € = loglog |X™| + 3log(1/n) + 2, and & is the convex
hull of all encoding distributions. By the chain rule,

I(X" Y™ ZI (X" Y[y h (35)
n
i=1
= I(X™Yp|T, YT (36)
< I(Xp;Yr), (37)

where T~ Pr(i) = +1(1 <i < n), and (37) follows from
the concavity of the mutual information in the input argument,
and the Markov condition Y*~! — X*~1X | — X, -V,

for every i € [n].

In the following, we single-letterize the constraints on £.

Similarly to [25, Eq. (1.49)], for any Pz~ € P(Z"),

6 = D(Pz:[|Q%) (38)
n . 1 n
> Z Z Py, (z log (z) - Z H(Z;) (40)
i=1
= nZPT D(Pz]|Qz) (41)
> nD(PZTHQZ). 42)

By [36, Lemma 90], for sufficiently small A1, Ao, > 0,

max [(4;Y") >4 (43)
PaeP([M])
> D(E,W. 44
> max ( 71x11Q%) (44)
> D(E,=aW} 7| Pa) (45
= PAgja(?[(M]) ( A Z\X||QZ| ) (45)
> I(A; Z7). 46
T Pa »Isl;Da(}[(M]) ( ) (“46)
Thus, there exists P4 € P([M]) such that
0< [ (A;Y™) = I(4;27)) (47)
= I(VA; Yr|V)—I(VA; Zr|V) (48)
<max max [I[(B;Yr|V =v)—I(B;Zr|V =v)] (49)
v Ppx|v=v
<max[I(B;Y) — I(B; Z)), (50)
Ppx
where B = (V,A), V. = (T')Y1,....Yr_1,Zr41,.. ., Zn),
the maximizations are with respect to

D(PgPx Wz x[|Qz) < £, and (48) follows from [39,
Lemma 17.12]. By [39, Lemmas 15.4 and 15.5], we

X + 2,

can replace Pg by Py € PU), U] <
I(B;Z), and

such that I(U;Y) = I(B;Y), I(U;Z) =
Py Px\p = PpPx|p.

Since the mutual information is continuous and the set
{PUX :D(PxWyx||Qz) < (5} is compact, for n = e~ V7",
we have that

Ceso(Wyzx,Q%) (51)
1
< inf i 1
SV v S O R gy v Gy
max I(X;Y) (52)
Pyx€ePUXX)
D(PxWzx||Qz)<é/n
H(U;Y)>1(U;2)
= max I(X;Y). (53)
Pux E'P(UXX)

PxWgz 1 x=Qz

I(U;Y)21(U; Z)
For more capable channels, I[(X;Y) > I(X;Z), for all
Px € P(X) and hence, the upper bound is achievable, by
Proposition 1. This completes the proof of Theorem 1. ]

VII. CONCLUSION

In Corollary 1, we improved the lower bound on the Q-
ESID capacity in the case I(X;Y) < I(X; Z), where Q% is
a product distribution and Px satisfies PXWZ‘ x =Qz. In
Theorem 1, we complement this result by an upper bound that
is tight if I(X;Y) > I(X; Z). The example in Section IV
illustrates that in case I(X;Y) < I(X; Z), the achievability
gap between Corollary 1 and Theorem 1 can be substantial, as
is the rate advantage of ID compared to message transmission.
It seems likely that the lower bound in Corollary 1 is tight, by
results from resolvability theory [40], since the whole codeword
is subject to the stealth constraint. The difficult part in finding
a more stringent converse bound seems to be the introduction
of an auxiliary channel, as demonstrated in Section IV, where
the number of possible input sequences is suitably bounded
(see Lemma 1 and the discussion of the gap in Ahlswede’s
broadcast converse in [41, Section 2.4]). This is a non-trivial
task for ID, and the authors are not aware of any ID capacity
result involving auxiliary variables in the rate bound. Usually,
in converse proofs [37], the message is obtained as an auxiliary
variable from Fano’s inequality, and then is single-letterized.
However, the mutual information between the message and the
channel output cannot be an upper bound to the ID capacity,
since ID codes transmit mainly randomness, and the capacity of
memoryless channels is achieved with codes, where only few
(y/n) codeword symbols depend on the message at all [42]. To
close the achievability gap, new methods need to be developed
to introduce auxiliary variables in ID converse bounds. This
would also be a crucial step in the development of further
multi-user converses for ID and many other communication
tasks[36], [43], e.g. for the broadcast channel [41], [43]. To
this end, observe that any suitably bounded auxiliary channel
forms a polytope with extremal points Px|y—,, u € U, where
U is the auxiliary alphabet. This polytope must include the set



of stealthy encoding distributions. If such a pre-channel exists,
the usual ID converse can be applied to it, to obtain an upper
bound that matches the bound in Corollary 1.
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