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Abstract 

Electrically conductive, porous MOFs show great promise to help advance electronics and clean energy 
technologies. However, large porosity usually hinders long-range charge transport, an essential criterion of 
electrical conductivity, underscoring the need for new strategies to combine these two opposing features 
and to realize their diverse potentials. All previous strategies to boost the conductivity of porous MOFs by 
introducing redox-complementary guest molecules, conducting polymers (CP), and metal nanoparticles 
have led to significant loss of frameworks’ porosity and surface areas, which could be otherwise exploited 
to capture additional guests in electrocatalysis and chemiresistive sensing applications. Herein, we 
demonstrate for the first time that in-situ oxidative polymerization of preloaded 3,4-ethylenedioxythiophene 
(EDOT) monomers into polyethylenedioxythiophene (PEDOT) polymer inside the hexagonal cavities of 
an intrinsically insulating Ni2(NDISA) MOF-74 analog (NDISA = naphthalenediimide N,N-disalicylate), 
which easily collapses and becomes amorphous upon drying, simultaneously enhanced the crystallinity, 
porosity, and electrical conductivity of the resulting PEDOT@Ni2(NDISA) composites. At lower PEDOT 
loading (~22 wt%), not only did the Brunauer-Emmett-Teller surface area of PEDOT@Ni2(NDISA) 
composite (926 m2/g) more than double from that of evacuated pristine Ni2(NDISA) (387 m2/g), but also 
its electrical conductivity (1.1 ´ 10–5 S/cm) soared 105 times from that of the pristine MOF, demonstrating 
unprecedented dual benefits of our strategy. At higher PEDOT loading (≥33 wt%), the electrical 
conductivity of Ni2(NDISA)ÉPEDOT composites further increased modestly (10–4 S/cm), but their porosity 
dropped precipitously, as large amounts of PEDOT filled up the hexagonal MOF channels. Thus, our work 
presents a simple new strategy to simultaneously boost the structural stability, porosity, and electrical 
conductivity of intrinsically insulating and collapse-prone MOFs by introducing small amounts of 
conducting polymers that can not only reinforce the MOF scaffolds and prevent them from collapsing, but 
also help create a much coveted non-native property by providing charge carriers and charge transport 
pathways.  

Introduction 

Semiconducting metal–organic frameworks (MOFs)1–7 with permanent porosity, ultralow density, and 
tunable electrical conductivity are in high demand due to their diverse potentials to serve as active 
components of myriad electronics and clean energy production, transport, and storage devices, such as 
rechargeable batteries,8–16 supercapacitors,17–25 transistors,26,27 chemiresistive sensors,28–35 and 
electrocatalysts.36–42 Despite remarkable recent advances, generating high intrinsic electrical conductivity 
in 3D porous MOFs and covalent-organic frameworks (COFs) remains a challenging task chiefly because 
they often lack efficient well-defined through-bond and/or through-space charge transport pathways.1,3,43–
48 One way to boost the electrical conductivity of highly porous MOFs is to introduce appropriate guest 
molecules, such as node-coordinating conjugated π-systems, which can bridge coordinatively unsaturated 
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nodes and thereby promote through-bond charge transport,49 or redox-complementary π-intercalators that 
can form extended π-donor/acceptor stacks with the preorganized ligands and thus facilitate through-space 
charge transport.50–59 Another strategy to facilitate charge transport across porous MOFs entails in-situ 
polymerization of preloaded monomers into conducting polymers (CPs), such as polyaniline, polypyrrole, 
polythiophene, and polyethylenedioxythiophene (PEDOT), inside MOF pores,60–68 or in-situ reduction of 
entrapped metal ions into metal nanoparticles.69 All existing guest-induced conductivity enhancement 
strategies, however, boost the frameworks’ conductivity at the expense of their porosity and surface areas 
because the encapsulated guests fill up their cavities.60–64,69 Even the biporous MOFs having two distinct 
sets of cavities, such as MIL-101(Cr and Fe) and UiO-66, where the in-situ generated CPs selectively 
occupied the larger pores, suffered 30–70% loss of the original surface areas.62,63 Therefore, needed is a 
nifty new strategy that can efficiently boost the frameworks’ conductivity while also preserving or even 
boosting their porosity and surface areas that can be utilized for additional guest binding in potential 
chemiresistive sensing and electrocatalysis applications.  

 Recently, Uemura70 and Queen71,72 have demonstrated that in-situ polymerization of preloaded 
styrene and dopamine monomers into polystyrene and polydopamine inside collapse-prone Co-pillared 
paddlewheel MOF and MOF-74 architectures enhanced the structural stability as well as specific surface 
areas of resulting polymer@MOF composites, as small numbers of polymer chains confined to MOF pores 
prevented framework collapse upon solvent loss. However, to our knowledge, in-situ generated conducting 
polymers have not yet simultaneously enhanced the structural stability, porosity, and electrical conductivity 
of resulting CP@MOF composites, which prompted us to realize these unique possibilities. 

 

Figure 1. A graphical representation of structural reinforcement and conductivity enhancement of collapse-
prone insulating MOFs by in-situ polymerization of conducting polymers. 

Herein, we demonstrate that oxidative polymerization of electron-rich ethylenedioxythiophene 
(EDOT) monomers into PEDOT polymer inside uniform hexagonal channels of an intrinsically insulating, 
collapse-prone MOF-74 analog, Ni2(NDISA) (NDIDSA = N,N-disalicylate (NDISA)),73 yielded 
structurally robust, permanently porous, and semiconducting Ni2(NDISA)ÉPEDOT nanocomposites 
(Figure 1). In contrast to intrinsically insulating Ni2(NDISA), which became amorphous and possessed a 
modest Brunauer-Emmett-Teller surface area (SBET = 387 m2/g) after thorough evacuation at 150 °C, the 
Ni2(NDISA)ÉPEDOT composites containing different amounts of trapped PEDOT (~22–37 wt%) 
remained crystalline upon similar activation. More importantly, the Ni2(NDISA)ÉPEDOT-10 composite 
containing a smaller amount of trapped PEDOT (~22 wt%) displayed 2.4 times larger surface area (SBET = 
926 m2/g) and 105 times higher electrical conductivity (1.1 ´ 10–5 S/cm) than the pristine MOF. The 
conductivity of Ni2(NDISA)ÉPEDOT composites containing larger amounts of PEDOT increased further 
(~10–4 S/cm) but the porosity decreased gradually, as more PEDOT chains filled up the MOF pores. Our 
studies present a rare, if not the first, example of simultaneous enhancement of structural stability, porosity, 
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and electrical conductivity of an inherently collapse-prone and insulating MOF by loading it with a small 
amount of conducting polymer far below the framework’s maximum loading capacity.  

Results and Discussion 

To demonstrate the concept of simultaneous enhancement of structural stability, porosity, and electrical 
conductivity of inherently collapse-prone and insulating MOFs via in-situ polymerization of a conducting 
polymer, we have employed a MOF-74 analog Ni2(NDISA), which has large uniform hexagonal channels 
(pore diameter >3 nm) and a theoretical surface area of 2872 m2/g,71 but in practice displays a much smaller 
SBET (1722 m2/g) after activation even under supercritical CO2 condition.73 Ni2(NDISA) MOF was 
synthesized according to a literature protocol71,73 by heating a solution mixture (DMF/EtOH/H2O) of 
NDISA ligand and Ni(NO3)2∙6H2O (5 equiv.) at 120 °C for 24 h, and subsequently washed with DMF, 
MeOH, Et2O, and hexanes (see Supporting Information (SI) for details).  

The powder X-ray diffraction (PXRD) pattern of pristine Ni2(NDISA) MOF containing solvent 
molecules was fully consistent with its simulated PXRD profile, confirming its periodic structure and phase 
purity. However, after exchanging DMF with more volatile solvents, such as MeOH, Et2O, and hexanes, 
and drying it under vacuum at 150 °C, the resulting material lost crystallinity (Figure 2a) due to partial 
framework collapse. This observation was consistent with literature reports71,73 showing other M2(NDISA) 
MOF structures also collapsed upon traditional activation. After soaking activated Ni2(NDISA) MOF in 
different solvents (DMF, MeOH, hexane, etc.), it failed to regain crystallinity (no PXRD peak), indicating 
that the framework collapse upon solvent loss was irreversible. However, when stored soaked in different 
solvents (DMF, MeOH, Et2O, and hexane) without completely drying, pristine Ni2(NDISA) MOF remained 
crystalline and displayed the characteristic PXRD pattern. The N2-sorption isotherm (Figure 2b) of pristine 
Ni2(NDISA) activated under vacuum at 150 °C had a modest SBET of only 387 m2/g, which is similar to the 
reported value (433 m2/g),71 but far below the theoretical prediction, demonstrating that framework collapse 
also led to a significant loss of porosity.  

 Ni2(NDISA)ÉPEDOT composites containing different amounts (wt%) of encapsulated PEDOT 
were synthesized as follows: First, Ni2(NDISA) MOF was loaded with EDOT by soaking it (45 mg) in 
different concentrations of EDOT/hexane solutions (10, 15, 20, or 30 μL of EDOT in 3 mL hexane) at room 
temperature for 48 h. The concentrations of EDOT solutions in which a fixed amount of Ni2(NDISA) was 
suspended controlled the monomer population inside the MOF, which subsequently dictated the amount 
(wt%) of PEDOT chains present in the resulting composites. After decanting the solutions of free EDOT, 
saturated anhydrous FeCl3/Et2O solution (5 mL) was added to EDOT-loaded Ni2(NDISA), and the resulting 
mixtures were stirred at room temperature for 24 h to allow oxidative polymerization of preloaded EDOT 
monomers into PEDOT chains. Finally, the materials were washed thoroughly with MeOH and Et2O until 
the washing solutions became completely colorless, indicating that the unreacted monomers and oxidizing 
agent were mostly removed. The resulting dark brownish-black powders were dried under vacuum to obtain 
Ni2(NDISA)ÉPEDOT-X (X = 10, 15, 20, and 30) composites containing increasing amounts of trapped 
PEDOT, which were obtained from 10, 15, 20, and 30 µL of EDOT in hexane (3 mL) solutions, 
respectively.  

 Unlike pristine Ni2(NDISA) MOF, which lost the crystallinity after activation under vacuum at 150 
°C, the Ni2(NDISA)ÉPEDOT-X (X = 10, 15, 20, and 30) composites activated under the same conditions 
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displayed the characteristic PXRD signals (Figure 2a) of as-synthesized Ni2(NDISA), indicating that in-
situ generated PEDOT chains located inside the pores helped reinforce the crystalline MOF structure and 
prevented it from collapsing upon solvent loss. While all four N2(NDISA)ÉPEDOT-X (X = 10, 15, 20, and 
30) composites displayed the characteristic PXRD peaks of the MOF, the peak intensities decreased with 
the increasing amounts of amorphous PEDOT polymers present in the composites.  

 

Figure 2. (a) The PXRD profiles of pristine Ni2(NDISA) and Ni2(NDISA)ÉPEDOT-X (X = 10, 15, 20, and 
30) composites containing different amounts of PEDOT. (b) The N2 sorption isotherms (77 K) of 
Ni2(NDISA) and Ni2(NDISA)ÉPEDOT-X composites (solid circles: adsorption, open circles: desorption). 

 The amounts of in-situ generated PEDOT trapped inside Ni2(NDISA) were determined by two 
separate methods— elemental and analyses gravimetric (Table S1)—which were in good agreement. The 
precise amount of PEDOT present in each composite was determined from the N to S ratios, the signature 
elements of NDISA ligand of the MOF and embedded PEDOT, respectively, measured by elemental 
analysis. The observed S:N ratios in Ni2(NDISA)ÉPEDOT-X composites (X = 10, 15, 20, and 30) were 4.5 
to 2.8 (1.6), 5.5 to 2.8 (2.0), 6.9 to 2.5 (2.8), and 8.3 to 2.5 (3.4), respectively, which corresponded to ca. 
22, 26, 33, and 37 wt% of PEDOT, respectively (see SI for detailed calculations). Furthermore, based on 
the weight of in-situ generated PEDOT extracted from a known quantity of each composite (by digesting 
the MOF scaffold with aqueous NH4OH solution, see SI for details), Ni2(NDISA)ÉPEDOT-X (X = 10, 15, 
20, and 30) composites contained ca. 22, 29, 36, and 39 wt% of PEDOT, respectively. These results 
confirmed that the PEDOT contents in Ni2(NDISA)ÉPEDOT-X composites increased systematically with 
increasing EDOT concentrations used for monomer loading prior to in-situ oxidative polymerization.  

 Nitrogen sorption analysis performed at 77 K (Figure 2b) revealed that whereas Ni2(NDISA) MOF 
evacuated at 150 °C has a modest SBET of 387 m2/g, similarly activated Ni2(NDISA)ÉPEDOT-10 has 2.4 
times larger SBET (926 m2/g), suggesting that a relatively small amount of PEDOT (22 wt%) trapped inside 
the MOF pores helped stabilize its crystalline structure and prevented it from collapsing upon solvent loss. 
As the PEDOT content (wt%) increased, SBET of the composites decreased gradually establishing a clear 
trend—i.e., 534 m2/g for Ni2(NDISA)ÉPEDOT-15 and 43 m2/g for Ni2(NDISA)ÉPEDOT-20—as the 
higher PEDOT contents filled up the MOF pores. 

The presence of PEDOT in Ni2(NDISA)ÉPEDOT-X composites was further verified by FT-IR and 
scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) analyses. The FT-IR 
spectra (Figure S1) of the composites, as well as the extracted PEDOT, revealed characteristic C–S 
stretching signals at 670, 830, 906, and 976 cm–1.62,74 The SEM images of pristine Ni2(NDISA) MOF and 
representative Ni2(NDISA)ÉPEDOT-10 composite (Figure 3) showed rectangular rod-shaped crystals, 
indicating that MOF crystallites remained largely intact upon in-situ oxidative polymerization of PEDOT. 
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Furthermore, SEM-EDX analysis of Ni2(NDISA)ÉPEDOT-10 revealed the coexistence of the signature 
elements of Ni2(NDISA) (Ni and N) and PEDOT (S).  

 

Figure 3. SEM and SEM-EDX images of (a) pristine Ni2(NDISA) and (b) a representative 
Ni2(NDISA)ÉPEDOT-10 composite show the rod-shaped MOF crystals and the coexistence of signature 
elements (Ni, N, and S) of both components in the latter.  

 Thermogravimetric analysis (TGA, Figure S2) showed that pristine Ni2(NDISA) MOF underwent 
significant weight loss (ca. 17%) until 150 °C due to solvent loss, whereas the Ni2(NDISA)ÉPEDOT-X 
composites containing ca. 22–37 wt% PEDOT underwent much smaller weight loss (ca. 10%) up to this 
point. The pristine MOF as well as Ni2(NDISA)ÉPEDOT-X composites decomposed at ca. 300 °C. In 
contrast, bulk PEDOT generated in the absence of the MOF showed negligible weight loss (≤ 2%) before 
decomposing at ~250 °C. The residual weights of thermally decomposed Ni2(NDISA)ÉPEDOT-X 
composites, which primarily stemmed from the Ni-nodes of the MOF, decreased with increasing PEDOT 
content, as the organic components, i.e., NDISA ligand and PEDOT, mostly disappeared as volatile gasses 
upon pyrolysis.  

The UV-Vis-NIR diffuse-reflectance spectrum (DRS) (Figure 4a) of orange-colored pristine 
Ni2(NDISA) MOF showed a peak at ca. 410 nm, but no notable peak at longer wavelengths, whereas bulk 
PEDOT prepared under the same oxidative polymerization conditions (see SI) without the MOF displayed 
a broad signal (500–1200 nm) centered on ca. 700 nm. The DRS plots of Ni2(NDISA)ÉPEDOT-X 
composites featured the characteristic signals of both MOF and PEDOT, confirming their coexistence. The 
shifting of the MOF and PEDOT peaks in the composites could be attributed to intermolecular interactions. 
The corresponding Tauc plots (Figure 4b) revealed the optical band gaps (Eop) of pristine MOF (3.10 eV), 
bulk PEDOT (1.48 eV), Ni2(NDISA)ÉPEDOT-10 (1.84 eV), Ni2(NDISA)ÉPEDOT-20 (1.79 eV), and 
Ni2(NDISA)ÉPEDOT-30 (1.76 eV), indicating that Eop of the composites narrowed slightly with increasing 
PEDOT content.  
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Figure 4. (a) UV-Vis-NIR DRS and (b) Tauc plots of pristine Ni2(NDISA), PEDOT, and 
Ni2(NDISA)ÉPEDOT-X composites. 

 

Finally, the electrical conductivities of pristine Ni2(NDISA), Ni2(NDISA)ÉPEDOT-X composites 
containing different amounts of PEDOT, in-situ generated PEDOT extracted from the composites, and bulk 
PEDOT formed in the absence of the MOF were determined from their respective current–voltage (I-V) 
plots (Figure 5a) measured by two-probe method using pressed pellets of each material placed between two 
stainless steel electrodes encased inside a snugly fit Teflon tube. Whereas pristine Ni2(NDISA) MOF 
displayed negligible electrical conductivity (3.4 ´ 10–10 S/cm), the Ni2(NDISA)ÉPEDOT-X composites (X 
= 10, 15, 20, and 30) displayed up to 106 times higher conductivity, which increased with the increasing 
PEDOT content as follows: 1.1 ´ 10–5, 4.3 ´ 10–5, 1.2 ´ 10–4, and 2.3 ´ 10–4 S/cm, respectively. Thus, 
Ni2(NDISA)ÉPEDOT-10 composite containing the lowest amount of trapped PEDOT (22 wt%) attained 
105 times higher electrical conductivity as well as 2.4 times higher SBET than the pristine MOF, as small 
number of PEDOT chains not only facilitated charge transport but also reinforced the MOF scaffold without 
blocking the pores. As the amount of PEDOT chains (≥33 wt%) trapped inside the MOF increased, the 
electrical conductivity of the composites increased by another order of magnitude (to 10–4 S/cm), but the 
surface area decreased significantly, as the large number of PEDOT chains blocked the MOF pores (Table 
1). In contrast, in all previous cases,60–68 the in-situ generated CPs trapped inside the MOF pores enhanced 
the frameworks’ electrical conductivity only at the expense of their porosity. Even biporous MIL-101(Cr 
and Fe) and UiO-66 having two different sized and shaped pores, which hosted CPs inside the larger 
hexagonal pores while the smaller trigonal ones remained mostly vacant, lost substantial (30–70%) surface 
area after in-situ polymerization. 

 

Figure 5. (a) The I–V plots and (b) Arrhenius plots of pristine Ni2(NDISA) and Ni2(NDISA)ÉPEDOT-X 
(X = 10, 15, 20, and 30) composites reveal the electrical conductivities and activation energies, respectively. 

In a control experiment, a blend of Ni2(NDISA) and separately prepared PEDOT (78:22 w/w ratio, 
comparable to PEDOT content in Ni2(NDISA)ÉPEDOT-10) displayed much lower conductivity (2.1 ´ 10–
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8 S/cm) than the composites containing in-situ generated PEDOT, suggesting that PEDOT chains located 
inside the MOF pores facilitated long-range charge transport and helped improve the conductivity of the 
composites. Furthermore, the in-situ generated PEDOT extracted from each of these composites by 
digesting the MOF also displayed (Figure S3) displayed slightly higher electrical conductivity (1.1–1.5 ´ 
10–4 S/cm) than bulk PEDOT (6.4 ´ 10–5 S/cm) prepared under the same conditions but without the MOF, 
showing another benefit of Ni2(NDISA)ÉPEDOT composites.  

Table 1. The relationships between PEDOT content (wt%), SBET, and electrical conductivity (σ) of 
Ni2(NDISA)ÉPEDOT composites. 

 

 

Temperature-dependent conductivity measurements (Figure S4) revealed thermally activated 
charge transport in Ni2(NDISA)ÉPEDOT-X composites, which is a typical semiconductor behavior. From 
the Arrhenius plots of temperature-dependent conductivity data (Figure 5b), the thermal activation energies 
of Ni2(NDISA)ÉPEDOT-X composites (X = 10, 15, 20, and 30) were estimated to be 130, 126, 120, and 
100 meV, respectively, which decreased gradually with increasing PEDOT population.  

Conclusions 

In summary, herein, we have demonstrated for the first time that in-situ oxidative polymerization of PEDOT 
inside the hexagonal pores of an easily collapsible and electrically insulating MOF-74 analog 
simultaneously enhanced the structural robustness, crystallinity, internal surface area, and electrical 
conductivity of resulting Ni2(NDISA)ÉPEDOT composites (Table 1). Evacuated Ni2(NDISA)ÉPEDOT-
10 composite containing a smaller amount of PEDOT (22 wt%) displayed 2.4 times larger surface area and 
105 times higher electrical conductivity than evacuated pristine Ni2(NDISA), as the small number of trapped 
PEDOT chains simultaneously reinforced the MOF scaffold, preventing it from collapsing upon solvent 
loss and provided long-range conduction pathways. At higher PEDOT content, the electrical conductivity 
of Ni2(NDISA)ÉPEDOT composites further increased slightly, but their surface areas dropped 
significantly, as greater number of PEDOT chains filled up the hexagonal MOF-74 pores. In principle, this 
strategy could be implemented to convert other collapse-prone insulating frameworks into robust, 
permanently porous, end electrically conductive MOF–polymer composites via in-situ formation of 
conducting polymers at much below the framework’s maximum loading capacity.  

 

 

< ASSOCIATED CONTENT 

Materials PEDOT wt%a SBET (m2/g)b σ (S/cm)c 
Evacuated Ni2(NDISA)  0 387 3.4 ´ 10–10 
Ni2(NDISA)ÉPEDOT-10 22 926 1.1 ´ 10–5 
Ni2(NDISA)ÉPEDOT-15 26 534 4.3 ´ 10–5 
Ni2(NDISA)ÉPEDOT-20 33 43 1.2 ´ 10–4 
Ni2(NDISA)ÉPEDOT-30 37 – 2.3 ´ 10–4 
abased on elemental analysis (Table S1), bexperimental values, cat 298 K. 



	

	 8	

Supporting Information 

Supporting Information is available free of charge at https://.... Experimental details and additional data 
(PDF).  
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In situ polymerization of PEDOT inside hexagonal pores of an intrinsically collapse-prone, amorphous, and 
electrically insulating Ni-MOF74 analog yielded robust, crystalline, more porous, and electrically 
conducting PEDOT@MOF74 composites, as the embedded PEDOT chains at lower concentrations 
simultaneously reinforced the MOF structure making it more crystalline and porous as well as facilitated 
charge transport generating electrical conductivity.  
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