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Abstract

Electrically conductive, porous MOFs show great promise to help advance electronics and clean energy
technologies. However, large porosity usually hinders long-range charge transport, an essential criterion of
electrical conductivity, underscoring the need for new strategies to combine these two opposing features
and to realize their diverse potentials. All previous strategies to boost the conductivity of porous MOFs by
introducing redox-complementary guest molecules, conducting polymers (CP), and metal nanoparticles
have led to significant loss of frameworks’ porosity and surface areas, which could be otherwise exploited
to capture additional guests in electrocatalysis and chemiresistive sensing applications. Herein, we
demonstrate for the first time that in-sifu oxidative polymerization of preloaded 3,4-ethylenedioxythiophene
(EDOT) monomers into polyethylenedioxythiophene (PEDOT) polymer inside the hexagonal cavities of
an intrinsically insulating Ni(NDISA) MOF-74 analog (NDISA = naphthalenediimide N, N-disalicylate),
which easily collapses and becomes amorphous upon drying, simultaneously enhanced the crystallinity,
porosity, and electrical conductivity of the resulting PEDOT@Ni>(NDISA) composites. At lower PEDOT
loading (~22 wt%), not only did the Brunauer-Emmett-Teller surface area of PEDOT@Nix(NDISA)
composite (926 m*/g) more than double from that of evacuated pristine Nio(NDISA) (387 m%/g), but also
its electrical conductivity (1.1 x 10~ S/cm) soared 10° times from that of the pristine MOF, demonstrating
unprecedented dual benefits of our strategy. At higher PEDOT loading (>33 wt%), the electrical
conductivity of Niz(NDISA)SPEDOT composites further increased modestly (10~* S/cm), but their porosity
dropped precipitously, as large amounts of PEDOT filled up the hexagonal MOF channels. Thus, our work
presents a simple new strategy to simultaneously boost the structural stability, porosity, and electrical
conductivity of intrinsically insulating and collapse-prone MOFs by introducing small amounts of
conducting polymers that can not only reinforce the MOF scaffolds and prevent them from collapsing, but
also help create a much coveted non-native property by providing charge carriers and charge transport
pathways.

Introduction

Semiconducting metal-organic frameworks (MOFs)'”” with permanent porosity, ultralow density, and
tunable electrical conductivity are in high demand due to their diverse potentials to serve as active
components of myriad electronics and clean energy production, transport, and storage devices, such as
rechargeable batteries,* ' supercapacitors,'”** transistors,”®?’ chemiresistive sensors,”**° and
electrocatalysts.*** Despite remarkable recent advances, generating high intrinsic electrical conductivity
in 3D porous MOFs and covalent-organic frameworks (COFs) remains a challenging task chiefly because
they often lack efficient well-defined through-bond and/or through-space charge transport pathways.'***
* One way to boost the electrical conductivity of highly porous MOFs is to introduce appropriate guest

molecules, such as node-coordinating conjugated n-systems, which can bridge coordinatively unsaturated


mailto:souravs@clemson.edu

nodes and thereby promote through-bond charge transport,” or redox-complementary m-intercalators that
can form extended m-donor/acceptor stacks with the preorganized ligands and thus facilitate through-space
charge transport.®>’ Another strategy to facilitate charge transport across porous MOFs entails in-situ
polymerization of preloaded monomers into conducting polymers (CPs), such as polyaniline, polypyrrole,
polythiophene, and polyethylenedioxythiophene (PEDOT), inside MOF pores,**®® or in-situ reduction of
entrapped metal ions into metal nanoparticles.” All existing guest-induced conductivity enhancement
strategies, however, boost the frameworks’ conductivity at the expense of their porosity and surface areas
because the encapsulated guests fill up their cavities.®****’ Even the biporous MOFs having two distinct
sets of cavities, such as MIL-101(Cr and Fe) and UiO-66, where the in-situ generated CPs selectively
occupied the larger pores, suffered 30-70% loss of the original surface areas.®** Therefore, needed is a
nifty new strategy that can efficiently boost the frameworks’ conductivity while also preserving or even
boosting their porosity and surface areas that can be utilized for additional guest binding in potential
chemiresistive sensing and electrocatalysis applications.

Recently, Uemura” and Queen’"* have demonstrated that in-situ polymerization of preloaded
styrene and dopamine monomers into polystyrene and polydopamine inside collapse-prone Co-pillared
paddlewheel MOF and MOF-74 architectures enhanced the structural stability as well as specific surface
areas of resulting polymer@MOF composites, as small numbers of polymer chains confined to MOF pores
prevented framework collapse upon solvent loss. However, to our knowledge, in-situ generated conducting
polymers have not yet simultaneously enhanced the structural stability, porosity, and electrical conductivity
of resulting CP@MOF composites, which prompted us to realize these unique possibilities.
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Figure 1. A graphical representation of structural reinforcement and conductivity enhancement of collapse-
prone insulating MOFs by in-situ polymerization of conducting polymers.

Herein, we demonstrate that oxidative polymerization of electron-rich ethylenedioxythiophene
(EDOT) monomers into PEDOT polymer inside uniform hexagonal channels of an intrinsically insulating,
collapse-prone  MOF-74 analog, Niy(NDISA) (NDIDSA = N,N-disalicylate (NDISA)),” yielded
structurally robust, permanently porous, and semiconducting Ni(NDISA)DPEDOT nanocomposites
(Figure 1). In contrast to intrinsically insulating Nio(NDISA), which became amorphous and possessed a
modest Brunauer-Emmett-Teller surface area (Sger = 387 m?/g) after thorough evacuation at 150 °C, the
Niz(NDISA)DPEDOT composites containing different amounts of trapped PEDOT (~22-37 wt%)
remained crystalline upon similar activation. More importantly, the Ni(NDISA)>PEDOT-10 composite
containing a smaller amount of trapped PEDOT (~22 wt%) displayed 2.4 times larger surface area (Sger =
926 m*g) and 10° times higher electrical conductivity (1.1 x 10~ S/cm) than the pristine MOF. The
conductivity of Nio(NDISA)DPEDOT composites containing larger amounts of PEDOT increased further
(~107* S/cm) but the porosity decreased gradually, as more PEDOT chains filled up the MOF pores. Our
studies present a rare, if not the first, example of simultaneous enhancement of structural stability, porosity,



and electrical conductivity of an inherently collapse-prone and insulating MOF by loading it with a small
amount of conducting polymer far below the framework’s maximum loading capacity.

Results and Discussion

To demonstrate the concept of simultaneous enhancement of structural stability, porosity, and electrical
conductivity of inherently collapse-prone and insulating MOFs via in-situ polymerization of a conducting
polymer, we have employed a MOF-74 analog Nix(NDISA), which has large uniform hexagonal channels
(pore diameter >3 nm) and a theoretical surface area of 2872 m*/g,”" but in practice displays a much smaller
Seer (1722 m?/g) after activation even under supercritical CO, condition.” Ni,(NDISA) MOF was
synthesized according to a literature protocol’” by heating a solution mixture (DMF/EtOH/H,0) of
NDISA ligand and Ni(NO3),:6H,O (5 equiv.) at 120 °C for 24 h, and subsequently washed with DMF,
MeOH, Et;O, and hexanes (see Supporting Information (SI) for details).

The powder X-ray diffraction (PXRD) pattern of pristine Nio(NDISA) MOF containing solvent
molecules was fully consistent with its simulated PXRD profile, confirming its periodic structure and phase
purity. However, after exchanging DMF with more volatile solvents, such as MeOH, Et,O, and hexanes,
and drying it under vacuum at 150 °C, the resulting material lost crystallinity (Figure 2a) due to partial
framework collapse. This observation was consistent with literature reports’"”®> showing other Mo(NDISA)
MOF structures also collapsed upon traditional activation. After soaking activated Nio(NDISA) MOF in
different solvents (DMF, MeOH, hexane, etc.), it failed to regain crystallinity (no PXRD peak), indicating
that the framework collapse upon solvent loss was irreversible. However, when stored soaked in different
solvents (DMF, MeOH, Et,0, and hexane) without completely drying, pristine Nio(NDISA) MOF remained
crystalline and displayed the characteristic PXRD pattern. The N»-sorption isotherm (Figure 2b) of pristine
Niy(NDISA) activated under vacuum at 150 °C had a modest Sger of only 387 m*/g, which is similar to the
reported value (433 m?%/g),”" but far below the theoretical prediction, demonstrating that framework collapse
also led to a significant loss of porosity.

Niz(NDISA)DPEDOT composites containing different amounts (wt%) of encapsulated PEDOT
were synthesized as follows: First, Ni2(NDISA) MOF was loaded with EDOT by soaking it (45 mg) in
different concentrations of EDOT/hexane solutions (10, 15, 20, or 30 uL. of EDOT in 3 mL hexane) at room
temperature for 48 h. The concentrations of EDOT solutions in which a fixed amount of Ni,(NDISA) was
suspended controlled the monomer population inside the MOF, which subsequently dictated the amount
(wt%) of PEDOT chains present in the resulting composites. After decanting the solutions of free EDOT,
saturated anhydrous FeCls/Et,O solution (5 mL) was added to EDOT-loaded Ni»(NDISA), and the resulting
mixtures were stirred at room temperature for 24 h to allow oxidative polymerization of preloaded EDOT
monomers into PEDOT chains. Finally, the materials were washed thoroughly with MeOH and Et,O until
the washing solutions became completely colorless, indicating that the unreacted monomers and oxidizing
agent were mostly removed. The resulting dark brownish-black powders were dried under vacuum to obtain
Nix(NDISA)>PEDOT-X (X = 10, 15, 20, and 30) composites containing increasing amounts of trapped
PEDOT, which were obtained from 10, 15, 20, and 30 pL. of EDOT in hexane (3 mL) solutions,
respectively.

Unlike pristine Ni2(NDISA) MOF, which lost the crystallinity after activation under vacuum at 150
°C, the Niy(NDISA)SPEDOT-X (X = 10, 15, 20, and 30) composites activated under the same conditions



displayed the characteristic PXRD signals (Figure 2a) of as-synthesized Ni;(NDISA), indicating that in-
situ generated PEDOT chains located inside the pores helped reinforce the crystalline MOF structure and
prevented it from collapsing upon solvent loss. While all four No(NDISA)>PEDOT-X (X =10, 15, 20, and
30) composites displayed the characteristic PXRD peaks of the MOF, the peak intensities decreased with
the increasing amounts of amorphous PEDOT polymers present in the composites.
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Figure 2. (a) The PXRD profiles of pristine Nio(NDISA) and Ni»(NDISA)DPEDOT-X (X = 10, 15, 20, and
30) composites containing different amounts of PEDOT. (b) The N, sorption isotherms (77 K) of
Niz(NDISA) and Nix(NDISA)>PEDOT-X composites (solid circles: adsorption, open circles: desorption).

The amounts of in-situ generated PEDOT trapped inside Ni»(NDISA) were determined by two
separate methods— elemental and analyses gravimetric (Table S1)—which were in good agreement. The
precise amount of PEDOT present in each composite was determined from the N to S ratios, the signature
elements of NDISA ligand of the MOF and embedded PEDOT, respectively, measured by elemental
analysis. The observed S:N ratios in Nio(NDISA)>PEDOT-X composites (X = 10, 15, 20, and 30) were 4.5
to 2.8 (1.6), 5.5 to 2.8 (2.0), 6.9 to 2.5 (2.8), and 8.3 to 2.5 (3.4), respectively, which corresponded to ca.
22, 26, 33, and 37 wt% of PEDOT, respectively (see SI for detailed calculations). Furthermore, based on
the weight of in-situ generated PEDOT extracted from a known quantity of each composite (by digesting
the MOF scaffold with aqueous NH4OH solution, see SI for details), Nio(NDISA)DPEDOT-X (X =10, 15,
20, and 30) composites contained ca. 22, 29, 36, and 39 wt% of PEDOT, respectively. These results
confirmed that the PEDOT contents in Ni2(NDISA)DPEDOT-X composites increased systematically with
increasing EDOT concentrations used for monomer loading prior to in-sifu oxidative polymerization.

Nitrogen sorption analysis performed at 77 K (Figure 2b) revealed that whereas Nio(NDISA) MOF
evacuated at 150 °C has a modest Sger of 387 m*/g, similarly activated Nio(NDISA)>PEDOT-10 has 2.4
times larger Sger (926 m%/g), suggesting that a relatively small amount of PEDOT (22 wt%) trapped inside
the MOF pores helped stabilize its crystalline structure and prevented it from collapsing upon solvent loss.
As the PEDOT content (wt%) increased, Sger of the composites decreased gradually establishing a clear
trend—i.e., 534 m*g for Nio(NDISA)SPEDOT-15 and 43 m%*/g for Ni(NDISA)SPEDOT-20—as the
higher PEDOT contents filled up the MOF pores.

The presence of PEDOT in Nio(NDISA)DPEDOT-X composites was further verified by FT-IR and
scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX) analyses. The FT-IR
spectra (Figure S1) of the composites, as well as the extracted PEDOT, revealed characteristic C—S
stretching signals at 670, 830, 906, and 976 cm™.%*7* The SEM images of pristine Nio(NDISA) MOF and
representative Nio(NDISA)DPEDOT-10 composite (Figure 3) showed rectangular rod-shaped crystals,
indicating that MOF crystallites remained largely intact upon in-situ oxidative polymerization of PEDOT.



Furthermore, SEM-EDX analysis of Nio(NDISA)>PEDOT-10 revealed the coexistence of the signature
elements of Nio(NDISA) (Ni and N) and PEDOT (S).
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Figure 3. SEM and SEM-EDX images of (a) pristine Nix(NDISA) and (b) a representative
Niz(NDISA)DPEDOT-10 composite show the rod-shaped MOF crystals and the coexistence of signature
elements (Ni, N, and S) of both components in the latter.

Thermogravimetric analysis (TGA, Figure S2) showed that pristine Nio(NDISA) MOF underwent
significant weight loss (ca. 17%) until 150 °C due to solvent loss, whereas the Nio(NDISA)DPEDOT-X
composites containing ca. 22-37 wt% PEDOT underwent much smaller weight loss (ca. 10%) up to this
point. The pristine MOF as well as Nio(NDISA)SPEDOT-X composites decomposed at ca. 300 °C. In
contrast, bulk PEDOT generated in the absence of the MOF showed negligible weight loss (< 2%) before
decomposing at ~250 °C. The residual weights of thermally decomposed Nix(NDISA)DPEDOT-X
composites, which primarily stemmed from the Ni-nodes of the MOF, decreased with increasing PEDOT
content, as the organic components, i.e., NDISA ligand and PEDOT, mostly disappeared as volatile gasses
upon pyrolysis.

The UV-Vis-NIR diffuse-reflectance spectrum (DRS) (Figure 4a) of orange-colored pristine
Ni(NDISA) MOF showed a peak at ca. 410 nm, but no notable peak at longer wavelengths, whereas bulk
PEDOT prepared under the same oxidative polymerization conditions (see SI) without the MOF displayed
a broad signal (500-1200 nm) centered on ca. 700 nm. The DRS plots of Niz(NDISA)DPEDOT-X
composites featured the characteristic signals of both MOF and PEDOT, confirming their coexistence. The
shifting of the MOF and PEDOT peaks in the composites could be attributed to intermolecular interactions.
The corresponding Tauc plots (Figure 4b) revealed the optical band gaps (Eop) of pristine MOF (3.10 eV),
bulk PEDOT (1.48 eV), Nio(NDISA)oPEDOT-10 (1.84 eV), Nio(NDISA)DPEDOT-20 (1.79 eV), and
Niz(NDISA)DPEDOT-30 (1.76 V), indicating that E,, of the composites narrowed slightly with increasing
PEDOT content.
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Figure 4. (a) UV-Vis-NIR DRS and (b) Tauc plots of pristine Nix(NDISA), PEDOT, and
Niz(NDISA)DPEDOT-X composites.

Finally, the electrical conductivities of pristine Ni2(NDISA), Ni2(NDISA)>PEDOT-X composites
containing different amounts of PEDOT, in-situ generated PEDOT extracted from the composites, and bulk
PEDOT formed in the absence of the MOF were determined from their respective current—voltage (/-V)
plots (Figure 5a) measured by two-probe method using pressed pellets of each material placed between two
stainless steel electrodes encased inside a snugly fit Teflon tube. Whereas pristine Nio(NDISA) MOF
displayed negligible electrical conductivity (3.4 x 107'° S/cm), the Ni2(NDISA)>PEDOT-X composites (X
=10, 15, 20, and 30) displayed up to 10° times higher conductivity, which increased with the increasing
PEDOT content as follows: 1.1 x 107, 4.3 x 107, 1.2 x 10 and 2.3 x 10 S/cm, respectively. Thus,
Niz(NDISA)SPEDOT-10 composite containing the lowest amount of trapped PEDOT (22 wt%) attained
10° times higher electrical conductivity as well as 2.4 times higher Sger than the pristine MOF, as small
number of PEDOT chains not only facilitated charge transport but also reinforced the MOF scaffold without
blocking the pores. As the amount of PEDOT chains (=33 wt%) trapped inside the MOF increased, the
electrical conductivity of the composites increased by another order of magnitude (to 10™* S/cm), but the
surface area decreased significantly, as the large number of PEDOT chains blocked the MOF pores (Table
1). In contrast, in all previous cases,**® the in-situ generated CPs trapped inside the MOF pores enhanced
the frameworks’ electrical conductivity only at the expense of their porosity. Even biporous MIL-101(Cr
and Fe) and UiO-66 having two different sized and shaped pores, which hosted CPs inside the larger
hexagonal pores while the smaller trigonal ones remained mostly vacant, lost substantial (30-70%) surface
area after in-situ polymerization.
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Figure 5. (a) The I-V plots and (b) Arrhenius plots of pristine Niz(NDISA) and Ni2(NDISA)>PEDOT-X
(X=10, 15, 20, and 30) composites reveal the electrical conductivities and activation energies, respectively.

In a control experiment, a blend of Nio(NDISA) and separately prepared PEDOT (78:22 w/w ratio,
comparable to PEDOT content in Nio(NDISA)>PEDOT-10) displayed much lower conductivity (2.1 x 10~



¥ S/cm) than the composites containing in-situ generated PEDOT, suggesting that PEDOT chains located
inside the MOF pores facilitated long-range charge transport and helped improve the conductivity of the
composites. Furthermore, the in-sifu generated PEDOT extracted from each of these composites by
digesting the MOF also displayed (Figure S3) displayed slightly higher electrical conductivity (1.1-1.5 x
10~ S/cm) than bulk PEDOT (6.4 x 10~ S/cm) prepared under the same conditions but without the MOF,
showing another benefit of Nio(NDISA)>PEDOT composites.

Table 1. The relationships between PEDOT content (wt%), Sger, and electrical conductivity (o) of
Ni2(NDISA)>PEDOT composites.

Materials PEDOT wt%"  Sger (m*/g)* o (S/cm)°
Evacuated Nio(NDISA) 0 387 3.4%x 107"
Ni2(NDISA)>PEDOT-10 22 926 1.1x 107
Ni(NDISA)>PEDOT-15 26 534 43 %107
Niy(NDISA)>PEDOT-20 33 43 1.2x10*
Ni>(NDISA)>PEDOT-30 37 — 23x10*

“based on elemental analysis (Table S1), "experimental values, “at 298 K.

Temperature-dependent conductivity measurements (Figure S4) revealed thermally activated
charge transport in Nio(NDISA)SPEDOT-X composites, which is a typical semiconductor behavior. From
the Arrhenius plots of temperature-dependent conductivity data (Figure 5b), the thermal activation energies
of Nio(NDISA)oPEDOT-X composites (X = 10, 15, 20, and 30) were estimated to be 130, 126, 120, and
100 meV, respectively, which decreased gradually with increasing PEDOT population.

Conclusions

In summary, herein, we have demonstrated for the first time that in-situ oxidative polymerization of PEDOT
inside the hexagonal pores of an easily collapsible and electrically insulating MOF-74 analog
simultaneously enhanced the structural robustness, crystallinity, internal surface area, and electrical
conductivity of resulting Nio(NDISA)>PEDOT composites (Table 1). Evacuated Ni2(NDISA)>PEDOT-
10 composite containing a smaller amount of PEDOT (22 wt%) displayed 2.4 times larger surface area and
10° times higher electrical conductivity than evacuated pristine Ni2(NDISA), as the small number of trapped
PEDOT chains simultaneously reinforced the MOF scaffold, preventing it from collapsing upon solvent
loss and provided long-range conduction pathways. At higher PEDOT content, the electrical conductivity
of Nio(NDISA)DPEDOT composites further increased slightly, but their surface areas dropped
significantly, as greater number of PEDOT chains filled up the hexagonal MOF-74 pores. In principle, this
strategy could be implemented to convert other collapse-prone insulating frameworks into robust,
permanently porous, end electrically conductive MOF—polymer composites via in-situ formation of
conducting polymers at much below the framework’s maximum loading capacity.
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In situ polymerization of PEDOT inside hexagonal pores of an intrinsically collapse-prone, amorphous, and
electrically insulating Ni-MOF74 analog yielded robust, crystalline, more porous, and electrically
conducting PEDOT@MOF74 composites, as the embedded PEDOT chains at lower concentrations
simultaneously reinforced the MOF structure making it more crystalline and porous as well as facilitated
charge transport generating electrical conductivity.
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