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Real-Time Fast Channel Clustering
for LiDAR Point Cloud
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Abstract—LiDAR sensors can produce point clouds with
precise 3D depth information that is essential for autonomous
vehicles and robotic systems. As a perception task, point cloud
clustering algorithms can be applied to segment the points into
object instances. In this brief, we propose a novel, hardware-
friendly fast channel clustering (FCC) algorithm that achieves
state-of-the-art performance when evaluated wsing KITTI panop-
tic segmentation benchmark. Furthermore, an efficient, pipeline
hardware architecture is proposed to implement the FCC algo-
rithm on an FPGA. Experiments show that the hardware design
can process each LiDAR frame with 64 channels, 2048 horizon-
tal resolution at various point sparsity in 1.93 ms, which is more
than 471.5 times faster than running on the CPU. The code will
be released to the public via GitHub.

Index Terms—Point cloud, LiDAR, clustering, real-time pro-
cessing, FPGA.

1. INTRODUCTION

OINT cloud generated by light detection and ranging

(LiDAR) sensor and its related processing technology
have attracted extensive research interests in recent years.
LiDAR sensor is deployed in either outdoor or indoor sce-
narios (o obtain precise depth information. A typical LiDAR
system can sense the objects with an estimated ranpe of 80 to
100 meters at 10 Hz, and it delivers abundant 3D information
of the surroundings. For example, in KITTI dataset [I] a
LiDAR frame includes various objects such as pedestrians,
cyclists, cars, buildings, trees, ground, etc. Segmenting and
classifying these objects efficiently and accurately is a crucial
task.

First of all, point cloud clustering can be applied for instance
segmentation [2], [3], [4]. Moreover, clustering algorithms
can be included as part of a high-level perception system.
For example, an adaptive euclidean clustering [3] is uvsed
to penerate the candidates for an SVM-based human clas-
sifier. Clustering alporithms have also been incorporated to
the deep learning based perception models. For point cloud
semantic segmentation [6], it employed a clustering [4] step
to capture the objects before feeding to the neural network
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for classification. In a fusion network [7], clustering alpo-
rithm was implemented to detect the object in the point cloud
first. Projecting the cluster bonding box onto the image, a 2D
region proposal peneration layer is built to fuse the information
from both LiDAR point cloud and camera image data into the
convolutional neural network (CNN). Besides pre-processing,
clustering can also used for post-processing, such as object
instancing after semantic sepmentation [8].

The size of a LIDAR point cloud frame is determined by its
vertical and horizontal angular resolutions. A typical 64 lines
LiDAR produces a frame every 100 ms, each containing about
100k points, which urges for a larpe storage and high computa-
tion capacity for processing. As the LiDAR resolution grows,
it poses a significant challenge for an on-board embedded
platform to meet the real-time constrain. The existing LiDAR
clustering algorithms take about tens of milliseconds [2], [4]
to process each frame on a CPU or GPU. Since clustering is
only a small part of the overall perception system, it needs to
be accelerated to leave more time for the main detection or
classification tasks. Moreover, the popular LiDAR clustering
algorithms are not hardware friendly since they often perform
unbalance data query as well as random data access when
searching for the nearest neighboring points.

In this brief, we propose a range image based, hardware-
friendly clustering algorithms and its pipeline architecture. Our
contributions are listed as follows.

(1) We propose a novel, range image based, three-pass
grouping algorithm called fast channel clustering (FCC). To
address the problem of over-sepmentation caused by missing
points, we design a scalable connection filter to search the
local neighborhood for inter-channel connections. A merge
table is used to store the connected labels efficiently.

(2) We first implement and verify the range imape based
LiDAR point cloud clustering method by targeting on a Zyng-
7000 FPGA. Combining a line buffer with a unique sort
network that enables fully parallel calculations of Euclidean
distances and unique sorting among the neighboring points, the
FPGA implementation achieves 2 to 3 orders of magnitude of
speed-up over CPU at run-time.

II. RELATED WORK

Clustering Methods: Clustering is a classic topic in data
mining for grouping the data elements by similarity. However,
traditional clustering methods primarily focus on the points
in a 2D plane or other multi-dimensional data. In contrast,
point cloud data can be considered as 3D (X, Y, Z) points,
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sometimes with extra attributes, i.e., norm, RGB, etc. In this
case, not all existing clustering methods can efficiently adapt to
the task of LiDAR point clouds. In general, the existing point
cloud clustering methods can be classified info two categories,
including point query in 3D space and point query in a range
image.

For 3D space query clustering, typically, the 3D points are
fitted into storage structures like kd-tree or oct-tree to optimize
the nearest neighbor search procedure. For instance, using the
Euclidean distance is a popular approach. In [9], the authors
developed a radially bounded nearest neighbor (RBNN) algo-
rithm. A novel ground segmentation algorithm was proposed
in [10], where non-ground points were clustered with vox-
elized Euclidean neighbors. In [11], researchers provided a
probabilistic framework to incorporate not only the Euclidean
spatial information but also the temporal information from
consecutive frames. In [5], an adaptive threshold selecting
method is presented to deal with the chanpes of LiDAR
sparsity along with the distance, resulting an improved
performance for the application of human detection.

Range image based clustering is applicable to LiDAR point
clouds since points from a LiDAR frame can be mapped as
range image pixels by spherical projection according to the
sensor mechanism. For those organized point clouds emitted
from a sole LiDAR sensor, uvtilizing the natural range image
representation allows the algorithm to work in linear complex-
ity of the point cloud size. In [12], the angle formed by two
adjacent laser beams is considered to justify if they belong
to the same object. Other conditions, like multiple distance
thresholds, are investigated in [4]. Those range image meth-
ods usually borrow ideas from connected-component labeling
{CCL) algorithms [4], [13]. CCL is a graph algorithm used in
computer vision to detect connected regions in a binary digi-
tal image [14]. Due to the inherent difference between binary
images and LiDAR range images, authors of [4], [13] mod-
ified existing CCL methods, such as two-pass CCL [15] or
run-based CCL [16], to deal with the LiDAR data. For more
details, the survey on LiDAR point cloud clustering [17] is
worth reaching.

Clustering on FPGA: The existing hardware architecture
for clustering were mainly targeted for data mining. In [18],
the authors developed an FPGA architecture for processing
micro-array data. A tree-based structure was implemented on
FPGA to accelerate the processing in [19]. In addition, k-
means cluster was popular in image processing and several
works were aimed for hardware acceleration. For color images,
a design by [20] met the real-time requirement. A multi-core
structure on FPGA was proposed in [21]. However, k-means
clustering method is not competitive when applied to LiDAR
point clouds compared to the methods we reviewed above.

IT1. FAST CHANNEL CLUSTERING

Fast channel cluslering is a range image based method fol-
lowing the principle of CCL. The main objective of FCC is
to provide a method with hardware efficiency and low latency
while maintaining high accuracy for LIDAR point cloud tasks.
An example of segmentation result is shown in Fig. 1.
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The segmentation result of Fast Channel Clostering (FCC).

We assume that a ground removal procedure is applied
before the point cloud is fed to the clustering alporithm as
a range image. Then, a three-pass FCC algorithm is applied
to group points based on object instances. The first pass is the
intra-channel grouping based on a horizontal distance thresh-
old thy. The second pass is inter-channel grouping using
a connection filter, which merges the channel-wise clusters
within the vertical distance threshold thy. The third pass is to
update the labelling table for output. The following subsections
describe our three-pass algorithm in detail.

A. Pass One: Intra-Channel Grouping

As shown in Fig. 2, the firsl pass aims to group the points
from the same object in every LiDAR scanning channel. We
check the Euclidean distance between every two adjacent valid
points, and create a new channel-wise cluster if the distance
is larger than thy or extend the current one if not.

According to the LiDAR scanning mechanism, each chan-
nel is a ring in 3D space. Hence, a ringCheck strategy is
desipned to guaraniee the continuity by checking the dis-
tance between the last point and the first point of a channel.
If the ringCheck(i) is true, these two channel-wise cluster
will be merged. Furthermore, the updateGloballabel func-
tion adds the maxlabel of the above channel to give every
cluster a unigue label in the global view. More details about
intra-channel grouping can refer to Algorithm 1.

B. Pass Two: Inter-Channel Grouping

Pass two lakes charge of inter-channel grouping. In this part,
a filter-like connection check is designed to merge the channel-
wise clusters. The connection filter determines the connectivity
among the current cluster and the clusters in adjacent chan-
nels. Due to the missing point issues, points belonging to the
same object may be separated in several nonadjacent channels,
causing the over-segment problem. In this case, the filter size
can determine the searching space in the local range image
area to address the issue.

To save the memory and avoid iterative passes of updating
labels, we do not directly update point labels in the range
image during the filtering. Instead, we use a merge table to
record the merging resulis. In Fig. 2, the address of the merge
table indicates the initial channel-wise label (from pass-one),
and the value inside marks the merged result
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Fig. 2. The steps of fast channel clustering with a 3-by-3 connection filter.
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Fig. 3. Hardware Architecture The modules in green represent different baffers. The modules in blue indicate the key sub-functional modules. The moduoles

in white denote the principle functional modoles controlled by FSM.

Algorithm 1 Pass One: Inira-Channel Grouping
Input : Range image Iy (h, w.3)
Valid mask of range image m(h, w, 1)
Input : Intra-channel threshold
Output: Range image with x, y, z, valid, global label I,

maxLabel +— zeros(h, w)
ringCheck < zerosih, w)
fm;fh, w, 5} = concatenate([ln;. m . zeros(h, w)l, “axis = 37)
fori=1:hdo
firstPoint = Ix}'z!-'flii 1,2}
neighbarPoint = Lypu(i, 1, 1)
for j=1:wdo
currentPoint = Izl j, 1)
valid = currentPoini ()
if met valid then
| Comtinue
end
d =dist{currentPoint, neighborPoint)
if d = thy then
|  maxlabelii) + +
end
Tyzili, j, 5) = maxLabel(i)
neighborPoint = currentPoint
lastPoint = currentPoint

end
d =distifirstPoint, lastPoint)
if d = thy then
| ringCheck(f) = true
end
end

updateGlobalLabel(lryy;. maxLabel, ringCheck)

The filter center steps through every valid point on the range
image. During the checking procedure, the filter checks the
distances between the center point and each valid point above
the current channel. If the distance is smaller than thy., these
two clusters are connected, and the clusters with a large label
number are merged into the one with the smallest label. The

labelsToMerpe cached the connected labels, when the filter
passes the points in a single channel-wise cluster. Finally, a
merging process is triggered and the cache is cleared before
the connection filter slides to the next cluster. Nore that the
connectivity is transferable. Consequently, the label merging
will ongoing until the filter passes through all points in the
same object and merges them into the uniform label. More
details are available in Algorithm 2.

. Pass Three: Label Update

As shown in Fig. 2, the final pass is just to consolidate the
merge table through lookup and each channel-wise cluster is
updated with the final label.

IV. HARDWARE ARCHITECTURE

As shown in Fig. 3. The point cloud is collected in the
input buffer. Our hardware design has three main components
corresponding to the three-pass alporithm.

A. Intra-Channel Processor

Intra-channel processors perform the channel-wise group-
ing. We implement a two-step point-wise pipeline. In the first
step, the distance processor computes the distance between the
adjacent valid points in the same channel. In the second step,
the label maker assigns a channel-wise label for each point.
The ringCheck and maxLabel are stored along with the point
cloud frame with the channel-wise label in the middle-value
buffer. All channels are processed in parallel and channel-wise
labels are unigue.

B. Inter-Channel Processor

A line buffer is placed to provide the pixel values as
the connection filter slides through the entire range image
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Algorithm 2 Pass Two: Inter-Channel Grouping

Input : Range image with global label I, (h, w, 5)
Input : Inter-channel threshold thy
Connection filter size ffiz.
Output: Merge table map the after and before merging label Tperge

Tmerge = InitTablelmax(l iz, @, 5)1)
Jwidth = (fsize — 1)/2
padding Loyt fuidih)
label_past = 1
labelsToMerge =[]
fori=1:hdo
forj=1:wdo
f = zeros(frize. frize, 3)
form=1: fGiz do
for n =1 : fyize do
offset¥ =i+m—1; offsetX =j+n— 1
fim, n, 1) = I (offsetl, offselX, )
end )
end
corePoint = f(fyign + 1. foign + 1.2
valid = corePoint{4), label = corePoini(5)
if not valid then
|  continue
end
findMergeLabels(labelsToMerge, f, thy)
if label £ label past or j = w then
npdateMng'Ihhle(JTmnB._ labelsToMerge)
labelsToMerge =[]
label_past = label

end
end
Procedure findM Labels {IabelsTaMfrge, I thy)
lines = (1 fuigh, )
corePoint = f(fwiam + 1. f“jdul, + 1.1

for line in lines do
for point in line do
d =dist (point, corePoint)
if d = thy then
labelsToMerge pushback(Tperge(corePoini(5))
labelsToMerge. pushback(T e e (point{3))

end
end

end

end

Procedure updateMergeTable (T ree, labelsToMerge)
labelsToMerge = ur:iq.ue{.iabﬂ's?wMergeJ
Ltarget = labelsToMerge(1)

for L in labelsToMerge do
|  TmergelL) = Tinergel Liarget)
end

end

in a raster scan pattern. The distance processor tree calcu-
lates the distances from the center point to all valid points
within the filter but above the current channel. Then, the
unique sort networks, which also include a duplicate detec-
tor, collect the unique to-merge labels and passes them to the
merge label maker. Afier the filter window slides through the
points in the same channel-wise cluster, the labelsToMerge
cached in the FIFO can update the Tierne in the merge table
buffer.
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TABLE 1
FPGA Resourck Usace For DIFFERENT FILTER SIZES
Architectare Image=hased Cluster
Component LUTs Registers DEP BRAM
33 FCC | 4B10(Z20%) | S4T7(0.25%) | IS(1.67%) | 359.5(66.15%)
5x5 FCC | 659103.02%) | T4B2(0.71%) | 3664000 | 361.5(66.33%)
a7 FCC | D304(4.26%) | 1022202.34%) | 60(7.67%) | 362.5(66.51%)

A larger filter size tequires more DSP slices in the distance processor tree in
order to calculate the distances to more points in parallel, A larger filter also
calls for larger sort networks, which result more LUT and register usage
end slower clock speed. We recommend a filter size up to Tx7 as the better
trade=off between performance, clock constraint and resource usage.

TABLE N1
CrLusTERING PERFORMANCE CoMPARISON UsING
SEMANTICKITTI PANOPTIC SEGMENTATION

Methods [ Settings [ Pq
Depth Chuster &= 10 55.2
Scanmline Hun [4] thrun, threr ge= 0.5m, Likm 4.1
*Bean=line Run [17] thyyn, thperge= 0.5m, 1.0m 572
FCC thy, thy=05m, 1.0m, fr.=3x3 517

FOC thyr, thy=085m, 10m, fue=5=5 | 561

FCC thyr, thys 05m, 10m, faice = 7% 7 | 568

FCC thyp, thy=05m, 10m, fu,.=9x% [ 571

FOC thy, thy= 0.5m, 10m, fiee = 11x 11 [ 573

The result of the Scan=line Run is from the orginal method [4], and the
*Scan-line Run outcome is based on the improvement method with malke-
up search optimization [17]. P [22] is a metric (0 evaluate the panoptic
segmentation result in terms of the object instance ability.

C. Label Updater

Label updater maps the channel-wise labels to the post-
merging labels by reading the values at the comesponding
address in the merge table buffer.

D. Quantization and Data Storage

A fixed-poinl quantization stralegy is applied for efficient
use of the on-chip block RAM. Distance value is quantized
to a 16-bit signed value with an 8-bit fraction and 7-bit inte-
ger since the LIDAR sensing range is within 100 meters. The
cluster labels are stored as 15-bit unsigned integers.

E. Simulation and Implementation

The hardware design is implemented using MATLAB
Simulink HDL Coder and Vision HDL Toolbox. The input size
is 64-by-2048 LiDAR frames. At last, the entire HDL model is
targeted on the Xilink ZC706 board with the XC7Z045 FPGA
device for synthesis and implementation in Vivado. The syn-
thesis result is provided as in Table 1. All three designs have
passed the 203.6 MHz clock constraint.

V. EXPERIMENT
A. Performance Evaluation

In our previous work [17], we proposed to evaluate the
performance of LiDAR point cloud clostering accurately and
fairly in a guantitative matier using a panoptic segmentation
task from SemanticKITT] that includes two parts - semantic
segmentation and object instance. Using the same semantic
checkpoint, the object instance accuracy of different clustering
methods can be compared according to the panoptic resulis.
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TABLE IIT
AvrcoriTEM INFERENCE TIME 0N CPU axn FPGA
Miethods Inference Time
*FCC 3x3 09 s
*FCC 3x5 163 s
SFCC 727 277 s
=R 9x9 417
*FCC 1111 629 s
FOC a7 an FPGA 1.9% ms

Average Inference time of one LiDAR frame in sequence 8 *Implemen-
tations mun on a single thread of 54590 CPU & 4.00GH:z with the
environment set of windows subsystem for Linux (WSL) vz, the ZCT06
FPGA @ 203.6MHz (implemented with filter size of TxT)

Hereby, we follow the same method and benchmark to evalu-
ate the performance of the proposed FCC algorithm with the
result listed in Table 1L

As explained in Section IIL, the filter size is related to the
local search area during the inter-channel grouping. Therefore,
a larger filter size provides a better connection detection of
channel-wise components in the same objecl. In some cases,
larger filter size is necessary. The missing points in the LiDAR
point cloud can cause over-segmentation, especially when the
object is close to the LiDAR sensor and the object is stretched
on the range image. From Table I, the filter size increase
results in better performance. Eventually, P() converges to
around 57. The method provides state-of-the-art performance
with an 11-by-11 filter size, surpassing depth clustering and
SLR.

B. Processing Time on Hardware

We provide the run time of our FCC algorithm on CPU and
the latency on FPGA in Table III above. Our FPGA design is
about 471.5 (3x3 case) to 1435.2 (7x7 case) times faster than
the algorithm running on the CPU, varying on different filter
sizes. The CPU run time is relatively slow since we realized
the algorithm in Python withoul multi-thread optimization. If
compared with the mun-lime of other existing systems [2], [4],
our FPGA implementation is still 8.2x faster on average.

V1. CONCLUSION

We present a novel, hardware-friendly, range image-based
LiDAR point cloud clustering alporithm, namely fast channel
clustering. By intra-channel grouping and inter-channel group-
ing, the method segments and merges the cloud in horizontal
and vertical spaces. A scalable connection filter structure is
proposed for inter-channel grouping to solve the missing point
issues. Additionally, the merge table avoids the multi-pass
update for merging the connected labels. As a result, the object
instance performance can outperform the state-of-the-art meth-
ods. Finally, an efficient hardware design is implemented and
verified on an FPGA for real-time point cloud processing. The
FPGA design provides a 471.5 to 1435.2 times speedup to the
CPU run-time of the FCC.
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