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Abstract: As the climate changes, a growing demand exists to identify and manage spatial variation in
crop yield to ensure global food security. This study assesses spatial soil variability and its impact on
maize yield under a future climate in eastern Kansas’ top ten maize-producing counties. A cropping
system model, CERES-Maize of Decision Support System for Agrotechnology Transfer (DSSAT) was
calibrated using observed maize yield. To account for the spatial variability of soils, the gSSURGO
soil database was used. The model was run for a baseline and future climate change scenarios under
two Representative Concentration Pathways (RCP4.5 and RCP8.5) to assess the impact of future
climate change on rainfed maize yield. The simulation results showed that maize yield was impacted
by spatial soil variability, and that using spatially distributed soils produces a better simulation of
yield as compared to using the most dominant soil in a county. The projected increased temperature
and lower precipitation patterns during the maize growing season resulted in a higher yield loss.
Climate change scenarios projected 28% and 45% higher yield loss under RCP4.5 and RCP8.5 at the
end of the century, respectively. The results indicate the uncertainties of growing maize in our study
region under the changing climate, emphasizing the need for developing strategies to sustain maize
production in the region.

Keywords: crop simulation; DSSAT; emission scenarios; global climate models; yield change

1. Introduction

Climate change impacts agriculture both positively and negatively. Increased levels of
carbon dioxide (CO2) concentration caused by the changing climate are beneficial for plant
growth [1–3]; however, according to some studies, the projected rise in temperature and
precipitation uncertainty may potentially wipe out the beneficial effects of higher CO2 on
agricultural productivity [4–7]. Since increasing CO2 induces high temperatures [8], and
maize plants are sensitive to heat stress (temperatures > 30 ◦C), pollen viability and silk re-
ceptivity during different maize growth stages can be restricted, significantly reducing seed
setting and grain yield [9]. The Intergovernmental Panel on Climate Change (IPCC) fifth
assessment report (AR5) provides evidence that global temperatures are predicted to rise
by 1.5−4 ◦C over the next century [10]. Therefore, heat stress and temperature fluctuation
have the potential to be sources of variability and decline in maize production [11–13].

Maize (Zea mays L.) is the most abundant crop grown in the United States [14] and is a
major contributor to the economy of the country due to its wide range of uses [14]. Kansas
is a part of the U.S. Corn Belt, and contributes approximately 5% of the total U.S. maize
production [15]. The east-to-west precipitation gradient in Kansas makes eastern Kansas
ideal for growing crops under rainfed conditions, and maize is one of the major cereal crops
grown in northeast Kansas. Since, under changing climate, the severity of extreme events
(heat waves and changing precipitation patterns) has increased in Kansas [16]; rainfed
crop-growing areas have become more susceptible to yield disruptions [17], making these
areas growing rainfed maize vulnerable.
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Several climate change studies have focused on a large spatial scale (country or conti-
nent) impact analysis and did not consider soil variability a significant factor in agricultural
yield analyses [18–20]. Since crop growth is sensitive to both spatial and temporal factors
such as soil properties, precipitation, and temperature [21,22], crop performance can be
significantly influenced by soil variability, particularly in dry situations when spatial vari-
ability in soil texture can drive the influence of moisture scarcity, affecting plant growth [23].
Several studies have analyzed soil-dependent responses of U.S. crop yields under changing
climate [24] and concluded that apart from precipitation and temperature, crop yields are
also highly dependent on soil properties such as soil texture [25], nutrient availability [26],
and soil water storage [27]. Since soil variability can be very high even at a fine spatial scale
(0.1 to 10 km) [28], it is crucial to develop adaptation strategies and sustainable production
systems to understand how future climate change may interact with spatial soil variability
to impact crop yield at a regional scale.

Crop simulation models are valuable tools for analyzing the impact of climate change
and other environmental factors on crop yield and growth [20]. The Cropping System
Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) can
simulate crop growth, development, and yield in response to variations in weather, soil
properties, and management practices [29,30]. The DSSAT CSM is a point scale model that
can account for factors such as cultivar genetics, soil water, soil carbon and nitrogen, and
crop management practices for single-season or multiple seasons/crop rotation simulations
at any location. Researchers worldwide have used the DSSAT CSM extensively for various
applications [31,32], and several studies in the past have used the DSSAT model to simu-
late crop water use and production and evaluate management strategies under different
environmental conditions [33]. DSSAT has also been employed at various temporal and
spatial scales to model climate change impacts on crop production [34] and to forecast
yield [35,36].

The Crop Estimation through Resources and Environmental Synthesis (CERES)
Maize [37] model in DSSAT can simulate crop growth and water and nitrogen balance at
a daily time step by simulating processes of soil water, nutrient, and plant growth, along
with options to simulate and analyze management strategies for yield components and end
of season crop yield. The DSSAT CERES-Maize model has been used to study the impact of
spatial soil variability and climate variability signals on maize yield in the southeastern
United States [38], and it was found that the maize yield was significantly affected by
the spatial distribution of soils. The DSSAT CERES-Maize model under future climate
reported yield loss in Midwest USA [39] and indicated the need for adaptations to climate
change to increase the maize yield. Araya et al. (2017) used the DSSAT CERES-Maize
model to evaluate the impact of future climate change on irrigated maize production in
western Kansas and found that a decrease in yield may be primarily due to a shortening of
the growth season (9–18% less time till maturity), caused by high temperatures [40], and
consequently the authors developed irrigation strategies for the region for future climate
scenarios [41].

It is becoming increasingly important to understand the impact of climate change on
regional future crop yield, and investigate the effects of spatial soil variability on yield
to adapt to feeding a growing world population. Most past studies have focused on the
climate change impact on irrigated maize yield and its adaptation strategies. However, no
past studies have evaluated the use of the DSSAT-CERES-Maize model for rainfed maize
yield projection in the eastern Kansas region while considering the impact of spatial soil
variability. This study investigated the impacts of soil’s spatial distribution on rainfed
maize yield under future climate change scenarios. The specific objectives addressed in this
study were (i) to determine the impact of the spatial distribution of soils on rainfed maize
yield at a regional scale, and (ii) to determine spatial maize yield change under future
climate change scenarios.
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2. Materials and Methods
2.1. Study Area

Our study domain consisted of ten rainfed maize-producing counties in Kansas:
Brown, Nemaha, Jackson, Jefferson, Atchison, Pottawatomie, Marshall, Shawnee, Riley,
and Geary (Figure 1). The study region is situated in northeastern Kansas between latitudes
39◦0′ and 40◦0′ and longitudes 95◦0′ to 97◦0′. The elevation of the study area is between
340−376 m above sea level, with the climate categorized as humid [42]. The long-term
average growing season precipitation, maximum and minimum daily temperatures (May
to October) are nearly 676 mm, 21.2◦, and 12.3 ◦C, respectively.
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Figure 1. Study area map consisting of ten rainfed maize-producing counties in northeastern Kansas.

2.2. DSSAT CERES-Maize Cropping System Model
2.2.1. Model Description

The DSSAT CERES-Maize Model v4.8 [43] was used to simulate maize growth in
response to the soil, genotype, management, and baseline (1990−2019) and future climate
change conditions across the study area. The model requires a variety of soil parameters,
including bulk density, organic carbon content, hydraulic conductivity, slope, albedo, color,
drainage, the drained upper limit (DUL), lower limit (LL), saturated water content (SAT),
and soil texture. Additionally, the model needs inputs for information on cultivars, the
environment, and crop management [43]. The planting date and method, seedling depth,
plant population, row spacing, cultivar characteristics, tillage type, tillage depth, irrigation
method, irrigation amounts and dates, fertilizer application method, fertilizer amount and
dates, and harvesting date and method are all necessary crop management parameters.
Environmental variables such as daily maximum and minimum temperature, incoming
solar radiation, and precipitation are also required as inputs, while dew point temperature
and wind speed are optional. A flowchart of steps to simulate baseline (historical) and
future maize yields is shown in Figure 2.
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Figure 2. A flowchart illustrating the process of simulating baseline (historic) and projected yields
using the DSSAT CERES-Maize model.

2.2.2. Climate Data

For this study, the baseline (historic) climate data, such as daily maximum and mini-
mum temperatures, precipitation, solar radiation, wind speed, and relative humidity, were
obtained from the Gridded Surface Meteorological (gridMET) dataset [44] for 30 years
(1990−2019). Future climate data was the output from 18 GCMs (Table 1) from CMIP5
and extracted and statistically downscaled using the Multivariate Adaptative Constructed
Analogs (MACAv2) methodology [44]. Each model and experiment aggregated daily maxi-
mum and minimum temperature, wind speed, precipitation, relative humidity, and solar
radiation from the 4 km downscaled resolution to the county level between 2006 and 2099.
The data were formatted in an annual time scale, and three 30-year periods were calculated
to represent near (2010−2039), mid (2040−2069), and end (2070−2099) century climate
projections. Data were generated for two representative concentration pathways (RCPs),
RCP4.5 and RCP8.5, for each GCM. RCPs are widely used in climate change studies to
project future greenhouse gas concentrations with the specified radiative forcing pathways
under different scenarios of social, economic, and technological development [45]. In
RCP4.5, radiative forcing is estimated to increase to approximately 4.5 Wm−2 by 2100 and
decline afterward, whereas the RCP8.5 is predicted to have radiative forcing of 8.5 Wm−2

by 2100.
Finally, these GCMs data were used as weather inputs in the DSSAT model, creating a

multi-model ensemble of 18 models per experiment for each DSSAT treatment. Additionally,
mean temperature and precipitation accumulation were calculated under each RCP scenario
(near, mid, and end century), and ArcGIS 10.8 [46] was used to map the severity to indicate
the changes in temperature and precipitation patterns in the study region.
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Table 1. List of global climate models and their source.

Models Source

BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration, China
BCC_CSM1.1-m Beijing Climate Center, China Meteorological Administration, China

BNU-ESM Beijing Normal University, China
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada

CNRM-CM5 National Centre for Meteorological Research, France
CSIRO-Mk3.6.0 The Commonwealth Scientific and Industrial Research Organization, Australia
GFDL-ESM2G Geophysical Fluid Dynamic Laboratory, USA
GFDL-ESM2M Geophysical Fluid Dynamic Laboratory, USA

HadGEM2-CC365 Met Office Hadley Center, UK
HadGEM2-ES365 Met Office Hadley Center, UK

inmcm4 Institute of Numerical Mathematics, Russian Academy of Sciences
IPSL-CM5A-LR Institute Pierre-Simon Laplace, France
IPSL-CM5A-MR Institute Pierre-Simon Laplace, France
IPSL-CM5B-LR Institute Pierre-Simon Laplace, France

MIROC5 Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)

MIROC-ESM Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)

MIROC-ESM-CHEM Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)

MRI-CGCM3 Meteorological Research Institute of Japan

2.2.3. Soils Data

The Natural resource Conservation Service (NRCS) Gridded Soil Survey Geographic
(gSSURGO) database was created for national, regional, and statewide resource planning
and analysis of soil data, and provides a 30 m resolution soil data for all counties of the
conterminous U.S. [47]. This database contains all the soil properties required for DSSAT,
such as sand, silt, and clay percentages, organic carbon content, pH, color, cation exchange
capacity, and drainage rate. The soil data development toolbox in ArcMap 10.8 was used
to extract the soil information and create the attribute table containing all the required
information from various soil depths. The desired soil properties were then exported from
the database to Microsoft Excel, which was used as the input for Python [48] to convert
these profiles into DSSAT-compatible soil (soil. sol) files.

To obtain the rainfed maize mask for ten selected counties in our study area, a 30 m
resolution of the National Agricultural Statistics Service (NASS) Cropland Data Layer
(CDL) for the year 2019 was used [49]. We ran the DSSAT model for each soil present in the
maize-growing area of each county and created yield maps in ArcMap 10.8 by assigning
yield values for each soil.

2.2.4. Crop Management Data

The crop management practices for the DSSAT model simulations were based on
recommendations from the Kansas State University’s Research and Extension corn man-
agement guide [50]. Rainfed practices were simulated for planting dates ranging from
1 April to 20 May, depending on the location of the county. The plant population was set to
7.6 plants m−2, row spacing was 0.51 m, and 170 kg ha−1 of nitrogen fertilizer was applied
as Urea equally divided over two in-season applications (before planting time and during
side-dressing and fertigation). To isolate the crop model’s reaction to weather and soil
type, only soil and weather variables were allowed to vary from simulation to simulation
(Figure 2).

2.2.5. Cultivar Calibration

In the DSSAT CERES-Maize model, yield and phenology are determined by six genetic
coefficients (Table 2), and the calibration process attempts to get accurate estimates of
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these coefficients by comparing simulated and observed data. The model calibration was
performed using rainfed crop yield data that was obtained using USDA’s Quickstat 2.0
database [51]. The first step to calibrate the DSSAT model was to adjust the soil fertility
factor (SLPF). The soil fertility factor (SLPF), a parameter input linked to variations in soil
fertility and soil-based pests, affects the overall growth rate of simulated total biomass
by altering daily canopy photosynthesis, and ranges from 0.7 to 1. The default value of
SLPF for this study was set to 1, and the value was adjusted manually by checking for the
Root Mean Squared Error (RMSE) that gave the least difference between the simulated
and observed maize yields. Genotype Coefficient Calculator (GENCALC) was used to
calibrate the cultivar parameters with corresponding observations and manually adjusted
the remainder of the coefficients [52]. As only maize yield was available for this regional
scale study, GENCALC was used to automatically calibrate the cultivar genetic coefficients
G2 and G3, and the cultivar phenological coefficients P1, P2, P5, and PHINT were adjusted
manually using trial and error, adjusting the values of these coefficients by ±5% to reduce
the difference between observed and simulated yields.

Table 2. Estimated cultivar coefficients for the CERES-Maize model.

Coefficient Definition Units Min. Max. Calibrated Value

P1 Thermal time from seedling emergence to end of
juvenile phase.

◦C days 5.0 450.0 270.0

P2

Extent to which development is delayed for each
hour increase in photoperiod above the longest

photoperiod at which development proceeds at a
maximum rate.

day h−1 0.0 2.0 0.660

P5 Thermal time from silking to physiological
maturity.

◦C days 580.0 999.0 895.0

G2 Maximum possible number of kernels per plant. kernel plant−1 248.0 990.0 875.0

G3 Kernel filling rate during the linear grain filling
state and under optimum conditions. mg d−1 5.0 16.50 8.80

PHINT Interval in thermal time between successive leaf
tip appearances.

◦C days 38.0 75.0 48.0

Calibrated values of the CERES-Maize model are presented in Table 2. Finally, using
the calibrated cultivar, the performance of one dominant soil of each county, three dominant
soils per county, and spatially distributed gSSURGO soils were checked.

2.2.6. Model Evaluation and Statistical Analysis

Widely used statistical parameters to assess crop model performance [53–56] were
used for model evaluation and statistical analyses. The following criteria were used to
compare simulated and observed data for both calibration and evaluation: RMSE and index
of agreement (d) or d-stat [57], given by Equations (1) and (2), respectively:

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(1)

d = 1−
[

∑n
i=1(Pi −Oi)

2

∑n
i=1
(∣∣P′i∣∣+ ∣∣O′i∣∣)2

]
(2)

The lower the RMSE value is, and the closer the value of d-stat is to 1, the better
the simulation. In addition, the coefficient of determination (R2) was calculated to eval-
uate the goodness of fit for the model calibration (i.e., the observed and simulated yield
for gSSURGO soils). The coefficient of determination (R2) is considered the most com-
monly used method for describing the variance between simulated and observed values
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(Equation (3)). It ranges from 0 to 1, where higher values represent a good model perfor-
mance, and an R2 > 0.5 is generally considered satisfactory [58].

R2 =

 ∑n
i=1
(
Oi −O

)(
Pi − P

)√
∑n

i=1
(
Oi −O

)2(Pi − P
)2

2

(3)

The Pearson correlation coefficient (r) was used to determine the strength and di-
rection of the linear relationship between the DSSAT projected average maize yield and
climatic parameters (growing season average maximum temperature, precipitation and
CO2 concentration) under climate change scenarios. Pearson’s correlation coefficient ranges
between −1 to 1 [59]. The formula adopted for calculating Pearson’s correlation coefficient
is given by Equation (4),

r =
∑n

i=1(xi − x)(yi − y)√[
∑n

i=1

[
(xi − x)2

][
∑n

i=1(yi − y)2
]] (4)

where xi and yi are the values of x and y for the ith individual.

3. Results and Discussion
3.1. DSSAT Performance

The calibration results of the DSSAT–CERES-Maize model for seven years (2000−2006)
and for ten counties in the study region showed high accuracy with an RMSE of 1309 kg ha−1

and d-statistics of 0.88 (Figure 3a). The differences between simulated and observed grain
yield were no more than 10% of the observations for the calibration period. The model
performance during calibration based on end-of-yield followed other studies [60,61] and
showed high d-stat values with low RMSE errors between the observed and simulated
yield, confirming the fitness of the model for the intended use.
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Figure 3. DSSAT CERES-Maize model (a) calibrated and (b) validated for the ten maize-producing
counties of northeastern Kansas.

During the model validation period (five years: 2016−2019), conducted over all ten
counties, observed and simulated end-of-season yields matched closely (Figure 3b), with
an RMSE of 1472 kg ha−1 and d-statistics of 0.86. The difference between the simulated and
observed yield was less than 12% during the validation period. The DSSAT CERES-Maize
model overestimated maize yield for almost all simulations, which was expected because
the observed yield from the field was limited by weeds and insects, among other factors,
that were not considered during the model simulation.
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3.2. Impact of Soil Variability on Maize Yield

The number of soils underlying the USDA NASS maize crop mask in each county
ranged from 12 to 51, with the largest spatial soil variability in Riley and Pottawatomie
County, and the lowest in Jackson County. Pawnee clay loam, Wymore silty clay loam, and
Kennebec silt loam were the region’s three most commonly found soils (Figure 4).

Agronomy 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

3.2. Impact of Soil Variability on Maize Yield 
The number of soils underlying the USDA NASS maize crop mask in each county 

ranged from 12 to 51, with the largest spatial soil variability in Riley and Pottawatomie 
County, and the lowest in Jackson County. Pawnee clay loam, Wymore silty clay loam, 
and Kennebec silt loam were the region’s three most commonly found soils (Figure 4). 

 

Figure 4. Spatially distributed gSSURGO soils in the study area. gSSURGO soils were classified 
based on the soil textural class. 

Table 3 shows simulated maize yields that were compared with observed yields for 
the study region to assess the impact difference in model performance when using the one 
most common soil of each county, three dominant soils per county, and spatially distrib-
uted soils. Under the baseline study period, Brown County was the highest rainfed maize-
producing county (9392 kg ha−1), whereas Geary County had the lowest simulated yield 
(5777 kg ha−1). The average annual yield varied significantly (p < 0.05), and the result re-
flected that the average simulated yields when using spatially distributed gSSURGO soils 
were the closest to observed yields in the region compared to simulated yields when using 
one or three dominant soils for each county. The d-stat for gSSURGO simulations ranged 
from 0.83 to 0.92, demonstrating the model’s strong capacity to simulate yield under the 
given conditions with the lowest range of RMSE between 781 to 1326 kg ha−1. Results of 
correlation analysis showed that the R2 value ranged from 0.63−0.71 for 1 soil, 0.71−0.79 
for three soils, and 0.79−0.85 for gSSURGO soils, indicating that the model performed well 
for the spatially distributed gSSURGO soils and closely mimicked the observed yield (Fig-
ure 5). 

  

Figure 4. Spatially distributed gSSURGO soils in the study area. gSSURGO soils were classified
based on the soil textural class.

Table 3 shows simulated maize yields that were compared with observed yields for
the study region to assess the impact difference in model performance when using the
one most common soil of each county, three dominant soils per county, and spatially
distributed soils. Under the baseline study period, Brown County was the highest rainfed
maize-producing county (9392 kg ha−1), whereas Geary County had the lowest simulated
yield (5777 kg ha−1). The average annual yield varied significantly (p < 0.05), and the result
reflected that the average simulated yields when using spatially distributed gSSURGO soils
were the closest to observed yields in the region compared to simulated yields when using
one or three dominant soils for each county. The d-stat for gSSURGO simulations ranged
from 0.83 to 0.92, demonstrating the model’s strong capacity to simulate yield under the
given conditions with the lowest range of RMSE between 781 to 1326 kg ha−1. Results of
correlation analysis showed that the R2 value ranged from 0.63−0.71 for 1 soil, 0.71−0.79
for three soils, and 0.79−0.85 for gSSURGO soils, indicating that the model performed
well for the spatially distributed gSSURGO soils and closely mimicked the observed yield
(Figure 5).
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Table 3. Average observed and simulated maize yield with d-stat and RMSE for ten counties and
various soil types.

County
Observed

Yield
(kg ha−1)

Simulated Yield (kg ha−1) d-stat RMSE

1 Soil 3 Soils gSSU-RGO
Soils 1 Soil 3 Soils gSSURGO

Soils 1 Soil 3 Soils gSSURGO
Soils

Brown 9392 11,234 10,852 9884 0.79 0.82 0.92 2199 1689 781
Nemaha 7717 8936 8483 8168 0.86 0.86 0.89 1939 1384 976
Jackson 7609 8624 8201 7993 0.82 0.85 0.87 1734 1534 1326

Jefferson 7946 9243 8751 8447 0.78 0.82 0.84 1859 1418 1116
Atchison 8890 10,567 9545 9326 0.76 0.87 0.91 2012 1513 876

Pottawatomie 7368 8868 8310 8173 0.79 0.85 0.88 1801 1341 982
Marshall 7234 8279 7917 7686 0.80 0.85 0.87 1446 1087 898
Shawnee 7645 8767 8336 7966 0.78 0.85 0.90 1659 1339 1079

Riley 7206 9681 8467 7977 0.75 0.82 0.88 1309 1296 909
Geary 5777 7825 6884 6530 0.71 0.81 0.83 1898 1585 1212
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Maize yields ranged from 4222 kg ha−1 to 12261 kg ha−1, with a regional average of
8745 kg ha−1 between soils, and the high-yielding and low-yielding areas were identified in
the northeast and southwest part of the study area, respectively (Figure 6). However, there
was a large yield variability within the study region due to the spatial distribution of soils.
Since soil type, texture, structure, and soil physical, chemical, and engineering properties
such as pH, moisture content, and drainage capacity can highly influence crop yields across
a field [62,63], there was a significant yield variation observed around the study area even
when all other crop management practices remained the same. Since clay loam soil was the
dominant soil in this region, and simulated higher yields than other soils, most counties
(Atchison, Brown, Nemaha, Marshall, Jackson, Jefferson) showed high-yielding under the
baseline study period production (8243−12,261 kg ha−1). On the other hand, sandy loam
and sandy silt soils simulated relatively lower yields in this study region, which were
dominant in Pottawatomie, Geary, Jackson, and Shawnee counties, yielding maize in the
range of 4222−8242 kg ha−1.

Agronomy 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

Maize yields ranged from 4222 kg ha−1 to 12261 kg ha−1, with a regional average of 
8745 kg ha−1 between soils, and the high-yielding and low-yielding areas were identified 
in the northeast and southwest part of the study area, respectively (Figure 6). However, 
there was a large yield variability within the study region due to the spatial distribution 
of soils. Since soil type, texture, structure, and soil physical, chemical, and engineering 
properties such as pH, moisture content, and drainage capacity can highly influence crop 
yields across a field [62,63], there was a significant yield variation observed around the 
study area even when all other crop management practices remained the same. Since clay 
loam soil was the dominant soil in this region, and simulated higher yields than other 
soils, most counties (Atchison, Brown, Nemaha, Marshall, Jackson, Jefferson) showed 
high-yielding under the baseline study period production (8243−12,261 kg ha−1). On the 
other hand, sandy loam and sandy silt soils simulated relatively lower yields in this study 
region, which were dominant in Pottawatomie, Geary, Jackson, and Shawnee counties, 
yielding maize in the range of 4222−8242 kg ha−1. 

 
Figure 6. Variation of maize yield due to the spatial distribution of soils in the ten rainfed maize-
producing counties of northeastern Kansas (dark green areas on the map indicate higher simulated 
maize yields, whereas red color shows areas with extremely low yields). 

3.3. Projected Changes in Temperature and Precipitation 
Based on the analysis of temperature and precipitation data generated by the 18 

GCMs for two RCP scenarios, it was observed that there was an increasing trend in mean 
temperature with increasing CO2 concentration (Figure 7), whereas the future precipita-
tion values did not follow any specific pattern over the study area. The highest mean tem-
perature recorded at the end of the century under RCP8.5 was 5 °C higher than the 30 
years baseline study period (1990−2019). Future precipitation analysis also showed that 
compared to the baseline period, the study area received less precipitation compared to 
historic values, and became drier at the end of the century under both RCP scenarios. 
These results are consistent with some of the other studies that have focused on changes 
in the climate of the future [64–66]. This trend of lower precipitation in the region is prob-
ably attributable to extreme heat occurrence as reported in some past studies conducted 
in the United States [67,68]. 

Figure 6. Variation of maize yield due to the spatial distribution of soils in the ten rainfed maize-
producing counties of northeastern Kansas (dark green areas on the map indicate higher simulated
maize yields, whereas red color shows areas with extremely low yields).

3.3. Projected Changes in Temperature and Precipitation

Based on the analysis of temperature and precipitation data generated by the 18 GCMs
for two RCP scenarios, it was observed that there was an increasing trend in mean temper-
ature with increasing CO2 concentration (Figure 7), whereas the future precipitation values
did not follow any specific pattern over the study area. The highest mean temperature
recorded at the end of the century under RCP8.5 was 5 ◦C higher than the 30 years baseline
study period (1990−2019). Future precipitation analysis also showed that compared to
the baseline period, the study area received less precipitation compared to historic values,
and became drier at the end of the century under both RCP scenarios. These results are
consistent with some of the other studies that have focused on changes in the climate of
the future [64–66]. This trend of lower precipitation in the region is probably attributable
to extreme heat occurrence as reported in some past studies conducted in the United
States [67,68].
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Figure 7. Spatial distribution of (a) annual mean temperature (◦C) and (b) precipitation (mm) obtained
from the ensemble mean of 18 GCMs for near-century (2010−2039), mid-century (2040−2069), and
end-century (2070−2099) under RCP 4.5 and RCP 8.5 emission scenarios in comparison to the baseline
(1990−2019) study period for ten rainfed maize producing counties in northeast Kansas.
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3.4. Climate Change Impact on Maize Yield

The impact of changes (with respect to baseline period) in average maximum tempera-
ture and total precipitation during the maize growing season in the near, mid, and end of
the century under both RCP scenarios affected yield simulations for all future conditions
with the highest yield simulated during the near century (2010−2039) under RCP 4.5 sce-
nario and the lowest yield simulated under RCP8.5 at the end of the century (2070−2099)
(Table 4).

Table 4. Summarized average climatic parameters along with average yield under different climate
change scenarios during the maize growing season (May–September).

Scenarios Study
Period

Maximum
Temperature

◦C

Total Precipitation
mm

CO2 Concentration
ppm

Yield
kg ha−1

Base Period 1991−2019 21.92 676 412 8546

RCP4.5
2010−2039 23.32 640 458 7741
2040−2069 24.52 632 523 6514
2070−2099 25.02 623 538 6225

RCP8.5
2010−2039 23.62 589 485 7658
2040−2069 25.32 612 750 6164
2070−2099 27.42 636 927 3304

Correlation analysis showed a strong negative correlation between maize yield and
temperature (0.96), followed by the CO2 concentration (0.93) (Figure 8), which implies
that higher temperature and CO2 concentration tend to adversely impact yields. However,
there was a positive correlation between precipitation and maize yield, and the Pearson
coefficient was 0.46. So, contrary to the effect of an increase in temperature and CO2
concentration, an increase in precipitation was related to an increase in maize yield. These
findings confirm a study by [13] that suggested that high-temperature days with low
precipitation conditions during the critical growth stages of maize significantly reduced
yield in the United States.
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Figure 9 shows the changes in yield for ten counties of northeastern Kansas by compar-
ing future projected maize yields to baseline yields in terms of a percent difference. A yield
loss was observed for the future climate under both the RCP4.5 and RCP8.5 scenarios. All
ten counties observed simulated yield loss with the losses ranging from 4−12%, 12−18%,
and 22−34%, for RCP 4.5 and 12−19%, 23−27%, and 39−57% under RCP8.5 in the near,
mid, and end-century, respectively.
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Figure 9. Percentage yield change in ten maize-producing counties in northeastern Kansas. The
number depicted the ten counties of our study area in sequence. 1, Atchison. 2, Brown. 3, Nemaha. 4,
Geary. 5, Jackson. 6, Jefferson. 7, Marshall. 8, Pottawatomie. 9, Riley. 10, Shawnee.

It must be noted that higher yield loss was observed under RCP8.5 compared to
RCP4.5, which can most likely be explained by high-temperature days, high CO2 con-
centration levels, and relatively smaller change in precipitation values under the RCP 8.5
emission scenario. High-yield producing counties during the baseline period, such as
Atchison, Brown, and Nemaha, exhibited lower yield loss than other counties in the study
region under all climate change scenarios. On the other hand, Geary, Jackson, Jefferson,
Pottawatomie, and Shawnee counties showed higher yield loss under all climate change
scenarios, identifying these as the most vulnerable areas for producing maize in northeast-
ern Kansas. This county-level yield analysis explored the magnitude of yield loss over time
and highlighted counties that were relatively less affected by climate change. According
to Srivastava et al. (2018), the effects of climate change on maize yield depend on how
changes in temperature and precipitation amounts combine to bring about shifts in the
onset and length of future growing seasons [69]. Therefore, the decline in precipitation
and high-temperature days under future climate tends to lower yields under all climate
change scenarios (Figure 9). A finding of a comprehensive study conducted in Africa by
Dale et al. (2017) also mentioned that the leading causes of maize yield loss were the high
temperatures and changes in precipitation patterns [70].

3.5. Mapping Future Rainfed Maize Yield Variability

Under RCP4.5, in the near, mid, and end centuries, the regional average yields were
7865, 6776, and 6198 kg ha−1, respectively. Under RCP8.5, they were 6985, 5678 and
4744 kg ha−1, respectively. The average yield losses for the entire region under RCP4.5 and
RCP8.5 in the near, mid, and end centuries were 7, 16, 28%, and 14, 23, 45%, respectively.
The climate change impact was less in the northeastern part of the study region under
RCP4.5 for all the study periods (Figure 10). However, under RCP8.5, no specific pattern
of yield loss was identified, but the entire region had higher yield loss compared to the
RCP4.5 scenarios.
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Figure 10. Yield variation under changing climate in ten maize-producing counties in northeastern
Kansas under three study periods (near, mid, and end-century) for RCP4.5 and RCP8.5. The red color
stands for low-yielding and the green for the high-yielding region.

4. Conclusions

This study emphasizes that the DSSAT CERES-Maize model can be used to quantify
the impacts of climate change along with the spatial soil variability on maize yields. The
key findings of this study are that spatial soil variability can impact maize yield and that
using spatially distributed soils produces a better simulation of yield as compared to using
the most dominant soil in a county. This study concluded under future climate change
conditions, northeastern Kansas’ ten top rainfed maize-producing counties would lose
substantial maize productivity. Excessively high temperatures, high CO2 concentration
levels, and low precipitation associated with future climate would cause a reduction in
maize yield in northeastern Kansas. More importantly, this study identifies the vulnerable
part of this region under changing climate, which could be a valuable input to develop
region-specific adaptation strategies based on quantifying the impact of climate and spatial
soil variability on maize yield. The results of this study will be used as a basis for a future
study that will include crop suitability analysis. This methodology could be adopted to
assess climate change’s impact on other crops across the world.
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