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Abstract: As the climate changes, a growing demand exists to identify and manage spatial variation in
crop yield to ensure global food security. This study assesses spatial soil variability and its impact on
maize yield under a future climate in eastern Kansas’ top ten maize-producing counties. A cropping
system model, CERES-Maize of Decision Support System for Agrotechnology Transfer (DSSAT) was
calibrated using observed maize yield. To account for the spatial variability of soils, the gSSURGO
soil database was used. The model was run for a baseline and future climate change scenarios under
two Representative Concentration Pathways (RCP4.5 and RCP8.5) to assess the impact of future
climate change on rainfed maize yield. The simulation results showed that maize yield was impacted
by spatial soil variability, and that using spatially distributed soils produces a better simulation of
yield as compared to using the most dominant soil in a county. The projected increased temperature
and lower precipitation patterns during the maize growing season resulted in a higher yield loss.
Climate change scenarios projected 28% and 45% higher yield loss under RCP4.5 and RCP8.5 at the
end of the century, respectively. The results indicate the uncertainties of growing maize in our study
region under the changing climate, emphasizing the need for developing strategies to sustain maize
production in the region.

Keywords: crop simulation; DSSAT; emission scenarios; global climate models; yield change

1. Introduction

Climate change impacts agriculture both positively and negatively. Increased levels of
carbon dioxide (CO,) concentration caused by the changing climate are beneficial for plant
growth [1-3]; however, according to some studies, the projected rise in temperature and
precipitation uncertainty may potentially wipe out the beneficial effects of higher CO, on
agricultural productivity [4-7]. Since increasing CO; induces high temperatures [8], and
maize plants are sensitive to heat stress (temperatures > 30 °C), pollen viability and silk re-
ceptivity during different maize growth stages can be restricted, significantly reducing seed
setting and grain yield [9]. The Intergovernmental Panel on Climate Change (IPCC) fifth
assessment report (AR5) provides evidence that global temperatures are predicted to rise
by 1.5—4 °C over the next century [10]. Therefore, heat stress and temperature fluctuation
have the potential to be sources of variability and decline in maize production [11-13].

Maize (Zea mays L.) is the most abundant crop grown in the United States [14] and is a
major contributor to the economy of the country due to its wide range of uses [14]. Kansas
is a part of the U.S. Corn Belt, and contributes approximately 5% of the total U.S. maize
production [15]. The east-to-west precipitation gradient in Kansas makes eastern Kansas
ideal for growing crops under rainfed conditions, and maize is one of the major cereal crops
grown in northeast Kansas. Since, under changing climate, the severity of extreme events
(heat waves and changing precipitation patterns) has increased in Kansas [16]; rainfed
crop-growing areas have become more susceptible to yield disruptions [17], making these
areas growing rainfed maize vulnerable.
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Several climate change studies have focused on a large spatial scale (country or conti-
nent) impact analysis and did not consider soil variability a significant factor in agricultural
yield analyses [18-20]. Since crop growth is sensitive to both spatial and temporal factors
such as soil properties, precipitation, and temperature [21,22], crop performance can be
significantly influenced by soil variability, particularly in dry situations when spatial vari-
ability in soil texture can drive the influence of moisture scarcity, affecting plant growth [23].
Several studies have analyzed soil-dependent responses of U.S. crop yields under changing
climate [24] and concluded that apart from precipitation and temperature, crop yields are
also highly dependent on soil properties such as soil texture [25], nutrient availability [26],
and soil water storage [27]. Since soil variability can be very high even at a fine spatial scale
(0.1 to 10 km) [28], it is crucial to develop adaptation strategies and sustainable production
systems to understand how future climate change may interact with spatial soil variability
to impact crop yield at a regional scale.

Crop simulation models are valuable tools for analyzing the impact of climate change
and other environmental factors on crop yield and growth [20]. The Cropping System
Model (CSM) of the Decision Support System for Agrotechnology Transfer (DSSAT) can
simulate crop growth, development, and yield in response to variations in weather, soil
properties, and management practices [29,30]. The DSSAT CSM is a point scale model that
can account for factors such as cultivar genetics, soil water, soil carbon and nitrogen, and
crop management practices for single-season or multiple seasons/crop rotation simulations
at any location. Researchers worldwide have used the DSSAT CSM extensively for various
applications [31,32], and several studies in the past have used the DSSAT model to simu-
late crop water use and production and evaluate management strategies under different
environmental conditions [33]. DSSAT has also been employed at various temporal and
spatial scales to model climate change impacts on crop production [34] and to forecast
yield [35,36].

The Crop Estimation through Resources and Environmental Synthesis (CERES)
Maize [37] model in DSSAT can simulate crop growth and water and nitrogen balance at
a daily time step by simulating processes of soil water, nutrient, and plant growth, along
with options to simulate and analyze management strategies for yield components and end
of season crop yield. The DSSAT CERES-Maize model has been used to study the impact of
spatial soil variability and climate variability signals on maize yield in the southeastern
United States [38], and it was found that the maize yield was significantly affected by
the spatial distribution of soils. The DSSAT CERES-Maize model under future climate
reported yield loss in Midwest USA [39] and indicated the need for adaptations to climate
change to increase the maize yield. Araya et al. (2017) used the DSSAT CERES-Maize
model to evaluate the impact of future climate change on irrigated maize production in
western Kansas and found that a decrease in yield may be primarily due to a shortening of
the growth season (9-18% less time till maturity), caused by high temperatures [40], and
consequently the authors developed irrigation strategies for the region for future climate
scenarios [41].

It is becoming increasingly important to understand the impact of climate change on
regional future crop yield, and investigate the effects of spatial soil variability on yield
to adapt to feeding a growing world population. Most past studies have focused on the
climate change impact on irrigated maize yield and its adaptation strategies. However, no
past studies have evaluated the use of the DSSAT-CERES-Maize model for rainfed maize
yield projection in the eastern Kansas region while considering the impact of spatial soil
variability. This study investigated the impacts of soil’s spatial distribution on rainfed
maize yield under future climate change scenarios. The specific objectives addressed in this
study were (i) to determine the impact of the spatial distribution of soils on rainfed maize
yield at a regional scale, and (ii) to determine spatial maize yield change under future
climate change scenarios.
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Figure 1. Study area map consisting of ten rainfed maize-producing counties in northeastern Kansas.
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Figure 2. A flowchart illustrating the process of simulating baseline (historic) and projected yields
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Models the changes in temperature and precipifafion patterns in the study region.
BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration, China
BCC_CSM1.1-m Beijing Climate Center, China Meteorological Administration, China
BNU-ESM Beijing Normal University, China
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada
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Table 1. List of global climate models and their source.

Models Source
BCC_CsM1.1 Beijing Climate Center, China Meteorological Administration, China
BCC_CSM1.1-m Beijing Climate Center, China Meteorological Administration, China
BNU-ESM Beijing Normal University, China
CanESM2 Canadian Centre for Climate Modelling and Analysis, Canada
CNRM-CM5 National Centre for Meteorological Research, France
CSIRO-MKk3.6.0 The Commonwealth Scientific and Industrial Research Organization, Australia
GFDL-ESM2G Geophysical Fluid Dynamic Laboratory, USA
GFDL-ESM2M Geophysical Fluid Dynamic Laboratory, USA

HadGEM2-CC365
HadGEM2-ES365
inmecm4
IPSL-CM5A-LR
IPSL-CM5A-MR
IPSL-CM5B-LR

MIROC5

MIROC-ESM

MIROC-ESM-CHEM

MRI-CGCM3

Met Office Hadley Center, UK
Met Office Hadley Center, UK
Institute of Numerical Mathematics, Russian Academy of Sciences
Institute Pierre-Simon Laplace, France
Institute Pierre-Simon Laplace, France
Institute Pierre-Simon Laplace, France
Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)
Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)
Japan Agency for Marin-Earth Science and Technology, Atmosphere and Ocean Research Institute
(University of Tokyo Japan)
Meteorological Research Institute of Japan

2.2.3. Soils Data

The Natural resource Conservation Service (NRCS) Gridded Soil Survey Geographic
(gSSURGO) database was created for national, regional, and statewide resource planning
and analysis of soil data, and provides a 30 m resolution soil data for all counties of the
conterminous U.S. [47]. This database contains all the soil properties required for DSSAT,
such as sand, silt, and clay percentages, organic carbon content, pH, color, cation exchange
capacity, and drainage rate. The soil data development toolbox in ArcMap 10.8 was used
to extract the soil information and create the attribute table containing all the required
information from various soil depths. The desired soil properties were then exported from
the database to Microsoft Excel, which was used as the input for Python [48] to convert
these profiles into DSSAT-compatible soil (soil. sol) files.

To obtain the rainfed maize mask for ten selected counties in our study area, a 30 m
resolution of the National Agricultural Statistics Service (NASS) Cropland Data Layer
(CDL) for the year 2019 was used [49]. We ran the DSSAT model for each soil present in the
maize-growing area of each county and created yield maps in ArcMap 10.8 by assigning
yield values for each soil.

2.2.4. Crop Management Data

The crop management practices for the DSSAT model simulations were based on
recommendations from the Kansas State University’s Research and Extension corn man-
agement guide [50]. Rainfed practices were simulated for planting dates ranging from
1 April to 20 May, depending on the location of the county. The plant population was set to
7.6 plants m~2, row spacing was 0.51 m, and 170 kg ha~! of nitrogen fertilizer was applied
as Urea equally divided over two in-season applications (before planting time and during
side-dressing and fertigation). To isolate the crop model’s reaction to weather and soil
type, only soil and weather variables were allowed to vary from simulation to simulation
(Figure 2).

2.2.5. Cultivar Calibration

In the DSSAT CERES-Maize model, yield and phenology are determined by six genetic
coefficients (Table 2), and the calibration process attempts to get accurate estimates of
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these coefficients by comparing simulated and observed data. The model calibration was
performed using rainfed crop yield data that was obtained using USDA’s Quickstat 2.0
database [51]. The first step to calibrate the DSSAT model was to adjust the soil fertility
factor (SLPF). The soil fertility factor (SLPF), a parameter input linked to variations in soil
fertility and soil-based pests, affects the overall growth rate of simulated total biomass
by altering daily canopy photosynthesis, and ranges from 0.7 to 1. The default value of
SLPF for this study was set to 1, and the value was adjusted manually by checking for the
Root Mean Squared Error (RMSE) that gave the least difference between the simulated
and observed maize yields. Genotype Coefficient Calculator (GENCALC) was used to
calibrate the cultivar parameters with corresponding observations and manually adjusted
the remainder of the coefficients [52]. As only maize yield was available for this regional
scale study, GENCALC was used to automatically calibrate the cultivar genetic coefficients
G2 and G3, and the cultivar phenological coefficients P1, P2, P5, and PHINT were adjusted
manually using trial and error, adjusting the values of these coefficients by +5% to reduce
the difference between observed and simulated yields.

Table 2. Estimated cultivar coefficients for the CERES-Maize model.

Coefficient Definition Units Min. Max.  Calibrated Value
P1 Thermal time from seefillng emergence to end of °C days 50 450.0 270.0
juvenile phase.
Extent to which development is delayed for each
hour increase in photoperiod above the longest 1
P2 photoperiod at which development proceeds at a day h 00 20 0-660
maximum rate.
5 Thermal time from sﬂk.mg to physiological °C days 580.0 999.0 895.0
maturity.
G2 Maximum possible number of kernels per plant. kernel plant—! 248.0  990.0 875.0
G3 Kernel filling rate durmg the linear grain filling mg d-! 50 16.50 8.80
state and under optimum conditions.
PHINT Interval in thermal time between successive leaf °C days 38.0 75.0 48.0

tip appearances.

Calibrated values of the CERES-Maize model are presented in Table 2. Finally, using
the calibrated cultivar, the performance of one dominant soil of each county, three dominant
soils per county, and spatially distributed gSSURGO soils were checked.

2.2.6. Model Evaluation and Statistical Analysis

Widely used statistical parameters to assess crop model performance [53-56] were
used for model evaluation and statistical analyses. The following criteria were used to
compare simulated and observed data for both calibration and evaluation: RMSE and index
of agreement (d) or d-stat [57], given by Equations (1) and (2), respectively:

L (Pi—0)°
n

RMSE = 1)

d=1— [ Z?:l (Pi - 01)2 (2)

2
i1 ([Pi] =+ [Of])
The lower the RMSE value is, and the closer the value of d-stat is to 1, the better
the simulation. In addition, the coefficient of determination (R?) was calculated to eval-
uate the goodness of fit for the model calibration (i.e., the observed and simulated yield

for gSSURGO soils). The coefficient of determination (R?) is considered the most com-
monly used method for describing the variance between simulated and observed values
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w2 W) )
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where xi and yi are the values of x and y for the ith individual.
where x; and y; are the values of x and'y for the ith individual.
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3.2. Impact of Soil Variability on Maize Yield

%%eliﬁg%f)g[; Soofllsgﬁguﬂggggr?{}irz\l/l a%ffeyﬁf%A NASS maize crop mask in each county
ranged frORe THBLRL %@Hl!ﬁél{giggéfl%a@aﬂ SGIPA AR AG I8 RidPhtiRveadnseunty
Couht s ipmlaietin Yithsthe daygrsl spatialeotl yprichilitwinRileysand digftygatomie
and KeHRtpandithedarsttindackegibhainted msnecsimparJiremessisify slag lgam, and

Kennebec silt loam were the region’s three most commonly found soils (Fieure 4),

Soils

B sity clay

- Loam

I:l Sandy-clay

- Sandy-loam
Sandy-silt

0 10 20 40 60 80 I sancy loam

Kilometers Silty-clay-loam

I clay

- Clay-loam

- Silty-loam

Figure 4. Spatially distributed gSSURGO soils in the study area. gSSURGO soils were classified

Figuxg, 4. Ppatindy distibtsd BRSURGO soils in the study area. gSSURGO soils were classified
based on the soil textural class.

Table 3 shows simulated maize yields that were compared with observed yields for
thebleidishesyrorira led shizenijsdds dgbvate campadetl peite ehaered figldssias the
the stmdyrregiorcimaseessthe dhpadh didleneycehremddel peiiegoilpgeer kennsingrilespatially
mostésmimandedil! &hbaotetathiee demdin potisel] BpeweoGouhgnd spehiatipHistribinfed
utedsoitse Produthehasating @89l pehiod! Broherd@oGuaryva@sthehighdstraiofeestsamedated
prodyieldg 5%ty 12399 Kphbarpradeseas @lepiatCGeoanidst Sigdiftvanoly ¢pt<sihib)ated yiedesult
(577 2dfpdted hHEh éhavevregegasimal gtiel d feddied hignikinag Hyatial P Btrimdeth g SSERGO-soils
flectecethdhthel asestaigeatisentett ¢ ipldslavihe negiomgespatiatbyl des sithutetb g SRIRG@hsmilaising
werethe cidestetd obserartspitd deire tlab regiotyc dihp arethtof sing SEIIRIG R kilswladionsirgnged
one érotinr8e33 dmkRd tdentofoteihg tn tpodhE disttah freagSHTitR GOs iimud¢ipie damgddr the
fromgives teod.ORti desnwitht thigrlgwiestmaiigd o 6 RMESEChpavitent F81rbanlaR6ykel hairld Bethdts of
givenarseldtimnsnaljisithehiowed that gocoRRivibEbengeeh st 1 6326 K forl Redudtgof 0.79
corréRitidrremadilsis ahd WeQ tHh8aHeRgSAURGEh gedsfrindi0abrg. thafoht svildel7peofpomed
for thvel detlsherspatinlly dbfobpsSUBLSOBEHS satlscanichglosel Yo inude Pehroehatvedlyield
for thEigpagally distributed gSSURGO soils and closely mimicked the observed yield (Fig-
ure 5).
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Table 3. Average observed and simulated maize yield with d-stat and RMSE for ten counties and
various soil types

County Yield gSSU- gSSURGO gSSURGO
Obser (}Sg ha™  gimulated Yield (kg ha— 1)RGO Soils d-stat Soils RMSE Soils
Cobrgwn Yield 9392 11,234 Ig@ RG69884 0.79 0.82 Ssiaeg 2199 1689 g@EGO
1 Soil 1 Soil Soi & 1
Nemaha (egha-tyyyy 180l g@Soils  gios ™ 6168 59 0 88 SMge © sops9  19% 138
son 9392 7609 11,234 86DUS52 8209884 79930.79 O 82 0.820.85 0.2.87 934 1584
7717 8936 83 168 0.86 0.8 1
] %?o%n SON 769 7940 gy 92%01 8753993 8447, 0.78 ED 82 3284 1@@%9 ]Tgig 1@2%
Jetfstediison 7946 8890 9243 10,581 9548447 93260.78 0.76 o 80.87 04491 2832 118 371p
P’éfka%tomle 8890 7368 10567 8gaR45 8319826 8173076 (.79 08985  0%h88  24B1 1844 9K
Pottawato 7368 8868 8310 8173 0.79 0.85 0.88 1801 1341 982
Maylasgha 7234 7234 79 827817 7917686 7686080 0.80 08.85 4487 1446  HR7
ShE}{{QWnee ;gég 7645 gzgz 87@?’22 833%9% 79668;2 0.78 8250.85 8-@90 16%9 1339 10979
1 A . B
Gea%ley 5777 7206 7825 96%@84 846 530 79770 71 0.75 0.8?0‘82 O.§88 1@3@9 1@% §§§2
Geary 5777 7825 6384 6530 071081 083 1898—1585 1212
. _Atchison . Brown = Nemaha
} 15900 { 1 soil: R= 64 i 19000 1 soil; Ki= 0,69 g 100 | 1 soil; K= 0.63
= | 3solls: R=0.72 3 solls: R= 075 o 3 solls: H=0T
; I!j.m :B"i‘\L RO snils: RA= 079 1;1[!3 R“iﬂl, RO sl Ro%= 0187 :m ?,H‘il.'ﬁ("l] wiilic Bi= (L8]
F w00 w0 | L]
':: L] L] L]
:Ei 0D 4 el ¢ B0+ i
& A
e M0 e00 WA 13000 13000 % W00 00 W00 1300 15000 % M6 6p00 SN0 1300 15000
Observed yield, kg ha™? Observed yield, kg ha™? Observed yleld, kg ha™
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f,l 1800 { 1 seil: Ris 065 15000 | ¥ soll: Kis 065 *1 15000 | 1 sodl: K 0.64
J::t | Zsolle: R=0n73 Juakls: RE= 071 - 3 sodla: f'= 0TS "
:. 12000 | ESSURGED saila: Ri= 051 e ESSURG sndls: Ri= 074 upoy RSSURGD soils: Bie 051 F
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'_f 000 | B0 | 000
R > oo : o
W & &
% 3000 000 000 12000 15000 % 2000 000 w000 12000 1500 % 3000 O 000 10 1500
Observed yield, kg ha™? Observed yield, kg ha™? Observed yield, kg ha™*
Marshall Pottawatomie Riley
N 15000 { 1 seil: R= 067 15000 1 seil: R 0.7 V5000 | 1 sodl; KA= 0,71
f‘ % unilu R= 079 2 Wanils; K= 0 & F soils: =050
:- 'miu':.t-tm.u solls: s 0,48 * 00| SOURGA sodls: Ri= 039 P 4SSURGO soitse e 051
= om0 0 - * 0 " ;
T w00l ) i)
-
£ om0 T w0, &
& : x B
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Observed yield, kg ha * Observed yield, kg ha * Observed yield, kg ha *
Shawnee
T, 18500 | 1 snil: Rie 071
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! 100 | SSURGO sails: R=0.52
%_ o0 4 15ail
'.'IE oot 3 Soils
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£
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Fighire 5: Ssmpasisanbatvssn bSSAT-CERES simtlated and observed yields for the baseline study
period in the R tEhMRMLePEPddciIB B HER O Taskerark JnsAs W hilgiks ingriBeRaQ MOph SraBiait
nailt Huilthheethrestidontidentisails, suild, spadisbyitiHiyibisteibgbedUESSURGB foileadr eavhigounty.
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Figure 7. Spatial distribution of (a) annual mean temperature (°C) and (b) precipitation (mm) obtained
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(1990—2019) study period for ten rainfed maize producing counties in northeast Kansas.
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Table 4. Summarized average climatic ]i)arameters along with average yield under different climate
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Base Porsd | T 1991 _4ata 2019 19y 2192 676 AT H2 s 2246
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Figure 9. Percentage yield change in ten maize-jproducing counties im monthesstienn Kemnsas. The
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