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A B S T R A C T   

Precision Agriculture (PA) technologies are well known to be useful in addressing field heterogeneities and 
enabling informed site-specific management decisions. While profitability is the foremost factor considered by 
farmers when making PA adoption decisions, information in this regard is lacking from the farmers’ perspective. 
This paper analyzed 1119 farmer responses from a 2021 survey conducted in four states along the western 
margins of the U.S. Midwest. Our findings show that while most (around 60%) non-adopters indicate that they 
are unaware of PA profit change, adopters are likely to rate a major profit increase. About two thirds of adopters 
rated at least a 5% increase in profitability towards variable rate (VR) fertilizer application (72%), VR seed 
application (68%), and automatic section control (66%). We modeled farmers’ profit change subsequent to PA 
adoptions. Our regression results demonstrate that the profits from PA usage increase over time and that use of 
conservation practices likely influences PA profitability in a positive way. As soil quality and weather factors also 
affect profit ratings, it would be beneficial to compare and demonstrate profitability potential of various PA 
technologies on a regional basis and tailor the promotion efforts to farmers most likely to benefit from them.   

1. Introduction 

The introduction of PA technologies led to a paradigm shift in the 
farming sector as they address the heterogeneities of the field and enable 
informed site-specific management decisions (Aubert et al., 2012). By 
accounting for the spatial and temporal variability, PA has the potential 
to contribute to the agriculture sector in terms of improving farming 
efficiency, increasing crop production, enhancing economic viability, 
and reducing environmental problems (Finger et al., 2019; Khanna, 
2021). 

PA technologies can be divided into several categories. Georefer
encing technologies, using global positioning system (GPS) or global 
navigation satellite system (GNSS), allow the use of guidance systems 
and controlled traffic. They are also referred to as embodied-knowledge 
technologies, or automated technologies, as no additional skills are 
required to use them. By locating positions of interest accurately and 
avoiding overlaps and skips, georeferencing technologies generate 

immediate benefits to farmers in saving input cost and reducing work 
time (Tey and Brindal, 2012). 

In contrast to the embodied-knowledge technologies, information 
intensive technologies, or data technologies, require additional skills or 
training to be utilized effectively. Information intensive technologies 
comprise diagnosis technologies and application tools (Nowak, 2021). 
Diagnostic technologies, including sensors, satellite images, unmanned 
aerial vehicles (UAVs), and yield monitors, gather farm information 
using different technologies at various scales during the growing and 
harvesting period. Application tools, also referred to as variable rate 
technologies (VRT), enable site-specific management responses based 
on information gathered from diagnostic technologies. Through 
tailoring input usage to crop needs, VRTs also provide environmental 
benefits. For example, variable rate (VR) fertilizer application helps 
lower nitrate in groundwater and downstream water sources, thereby 
reducing agricultural non-point source pollution (Biermacher et al., 
2009). 
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Adoption rates vary across PA technologies. While technologies 
under the embodied-knowledge technologies are adopted rapidly, 
adoption rates of information intensive technologies remain relatively 
low (Lowenberg-DeBoer and Erickson, 2019; McFadden et al., 2022a). 
The low adoption rates could be due to a sequential adoption pattern 
(Griffin et al., 2017). While some farmers use diagnostic tools to collect 
data, not all use their collected data to facilitate management decisions 
(Thompson et al., 2021). Furthermore, PA tools require time to learn and 
complexities associated with information intensive technologies may 
pose a constraint for adoption (Miller et al., 2019). 

Most importantly, farmers’ PA adoption and investment decisions 
hinge on profitability (Batte and Arnholt, 2003; Adrian et al., 2005; Tey 
and Brindal, 2012). Uncertainty in profitability, compounded by high 
costs and feasibility concerns could dampen farmers’ desire to adopt 
(Tey and Brindal, 2012). Therefore, knowledge about the economic 
implications of PA adoption is of paramount importance, especially 
under the circumstances of narrowing crop margins. To enhance PA 
adoption rate and ensure long-term farm sustainability, it is important 
for producers to gain a better understanding of PA induced profit 
changes. 

Profitability is one of the most studied dimensions of PA for row 
crops, and PA usage can boost profit through reduced cost, increased 
productivity or both (McFadden et al., 2022a, 2022b; McFadden et al., 
2023). However, there is a lack of consensus among existing literature 
on how PA affects farm profitability. On the positive side, most research 
indicated profit increases associated with PA usage in corn and soybean 
production (Griffin et al., 2004). Of the 210 reviewed early studies on PA 
profitability, 68% reported benefits from certain PA technologies 
(Griffin and Lowenberg-DeBoer, 2005). GPS mapping, guidance systems 
and VRTs were found to generate small to moderate positive effects 
towards profit in some studies (Schimmelpfennig, 2016, 2018). Yet PA 
technologies do not necessarily generate an increase in profitability 
(Biermacher et al., 2009). For example, Dhoubhadel (2021) found that 
when controlling for the known farm characteristics that influence the 
adoption decisions, there is no significant differences in net returns 
between adopters and non-adopters of PA. 

Economic returns from PA adoption could vary across locations, 
fields, farmers, and crops (Khanna and Miao, 2022). While previous 
literature has evaluated the economic profitability associated with PA 
technology, most studies are case specific, which only focus on one or 
two specific technologies and one region. No study has examined factors 
that potentially affect the effect of PA adoption on profit change across 
farms and regions (Khanna, 2021). Furthermore, differing impacts of 
various PA technologies on profitability have received little attention. 
This paper intends to fill in these gaps. Our objectives are two-fold: 1) we 
will compare adopters’ rated profit changes for a range of PA technol
ogies; 2) we will study a variety of factors that potentially affect profit 
change to understand the source of variance in PA profitability. 

The rest of the paper proceeds as follows. In the next section, we 
provide a literature review on how different PA technologies contribute 
to profit increase. In the three subsequent sections, we describe our 
survey procedure as well as selected regions and farms, explanations of 
the empirical models, and variables involved in the model estimation. 
Then we present our results and discussion section followed by the 
conclusions. 

2. Profit increase potential for different precision agriculture 
technologies 

Convenience is the most likely perceived benefit for georeferencing 
technologies (Thompson et al., 2019). The auto-steering and guidance 
systems help farmers navigate the field more efficiently and accurately 
on the desirable paths (Edge et al., 2018). Such systems can help boost 
profitability by increasing the accuracy in placement of the inputs 
through eliminating overlaps and skips, as well as reducing machinery 
costs due to enhancement in machinery field capacity (Shockley et al., 

2011). Complementary to auto-steering and guidance system, automatic 
section control (ASC) improves input use efficiency and saves input cost 
by automatically turning off sections, nozzles, and rows on the agri
cultural sprayers and planters in areas that inputs have been previously 
applied or in areas designated as non-suitable for crop production 
(Shockley et al., 2012; Edge et al., 2018). The input cost savings from 
ASC adoption were evaluated and a higher profit increase potential 
associated with ASC was achieved in smaller and more irregularly sha
ped fields (Shockley et al., 2012; Velandia et al., 2013). Greatest in
crease in net returns were found when the ASC is used in combination 
with the guidance systems (Smith et al., 2013). Such profit increase is 
due to the more efficient use of inputs, thus farmers can see greater 
benefit if the input costs increase (Smith et al., 2013; Velandia et al., 
2013). 

VRTs facilitate input applications at heterogenous rates across 
different locations of the field. The input rates from nozzles or feeders 
can be adjusted by controllers using a computer program (Schimmelp
fennig, 2016). Findings of Thompson et al. (2019) indicate that yield 
improvement and cost savings were the most perceived benefits for VR 
fertilizer application. Field characteristics, such as heterogeneity of soil 
conditions and spatial clustering of soil types, could affect the economic 
benefits of VRT (Späti et al., 2021). Input costs will also affect the eco
nomic benefits from PA technologies. As the seed and fertilizer costs 
continue to rise, the PA technologies that are associated with input cost 
savings, such as ASC and VRTs, will become more attractive to farmers 
(Velandia et al., 2013). In addition, the profitability increases associated 
with PA usage are not limited to input savings. For example, VRTs could 
also generate price premiums due to improved crop quality, such as 
increased protein content in wheat (Karatay and Meyer-Aurich, 2020). 

Data collection and interpretation are the prerequisites for VRT 
implementation. Therefore, the resolution or accuracy of the data will 
affect the efficiency of VRTs. Remote sensing information is useful in 
detecting nutrient deficiencies, insect and weed issues, soil water de
ficiencies or excesses in various locations of the field (Tenkorang and 
Lowenberg-DeBoer, 2008). Recent improvements in remote sensing, 
such as satellite and unmanned aerial vehicle (UAV) remote sensing, are 
expected to increase VRT efficiency as well as the farm profitability 
(Späti et al., 2021). 

Satellite imagery provides reliable high-resolution data obtained at 
relatively low or even no cost but may incur further costs in processing 
and creating prescription maps (Späti et al., 2021). Furthermore, its 
availability is contingent on weather conditions and only has periodic 
coverage (Zhang and Kovacs, 2012). The use of UAVs or drone-based 
remote sensing in PA sector has exponentially increased in the last 
decade (Maes and Steppe, 2019). Compared to satellite imagery, UAV 
remote sensing offers higher temporal and spatial resolution and is less 
affected by weather conditions (Zhang and Kovacs, 2012; Maes and 
Steppe, 2019). Other benefits of UAV remote sensing include fast set-up 
time, and low acquisition and maintenance costs (Maddikunta et al., 
2021). 

Different PA technologies adopted by farmers over time may com
plement each other and the cumulative benefit could be well beyond the 
cost savings and efficiency gains of an individual technology. Farmers 
can also reap additional profit due to increased value from differentiated 
production and enhanced farm value (Boehlje and Langemeier, 2021). 
Furthermore, the value of PA could potentially stem from reduced down 
time, better capacity utilization, and reduced risk of yield loss from 
weather events. 

3. Survey description 

We conducted a farmer survey during July–September 2021 to better 
understand the adoption status of PA technologies and conservation 
practices, as well as the benefits and challenges farmers may have 
encountered when using PA technologies. Our survey contains five 
sections and 34 questions, which requires about 15–20 min to complete. 
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The answers of respondents are kept confidential and are not linked with 
their names. The survey covered four states along the western margins of 
the U.S. Midwest, namely North Dakota, South Dakota, Minnesota, and 
Nebraska. Agricultural production is the major contributor to the re
gion’s economy. 

In North Dakota and South Dakota, we selected counties east of the 
Missouri River to focus on the major corn planting regions. Seven 
counties in the northwestern North Dakota were excluded as they are 
more intensive in wheat production, but less intensive in corn-soybean 
rotation. We also excluded the northeast and southeast regions in Min
nesota, which are primarily covered by forest and dairy silage/hay 
respectively. In Nebraska, we excluded the Northwest, North Central 
and Southwest regions, which contain the Sand Hills area with limited 
land suitable for crop cultivation purpose. 

Large investment required by PA technologies in capital and learning 
time discourages PA adoption on small farms (Adrian et al., 2005; 
Pierpaoli et al., 2013; Lambert et al., 2015; Tamirat et al., 2017). 
Therefore, we use the screening criterion that each farm chosen grew at 
least 100 acres of corn. We purchased farmer mailing addresses from 
Dynata (dynata.com) and our mailing sample consists of contact infor
mation for 1500 randomly selected farmers in each state (so 6000 
farmers in total). The farmer number selected in each county is pro
portional to the number of total eligible corn farmers in the county. The 
number of farms for each selected county is displayed in Fig. 1. 

Based on the modified Tailored Design Method (Dillman et al., 
2014), the 6000 operations were contacted up to four times. In the first 
wave, an advance letter was sent with a link to answer the questionnaire 
online. In the second wave, those who did not respond were then mailed 
the paper questionnaires with prepaid return envelopes. We sent a 
reminder postcard in the third wave, and then a second copy of the paper 
survey and pre-paid envelopes in the fourth wave. To enhance response 
rates, a $2 bill was sent with the advance letter to all 6000 farmers 
regardless of their response status. Furthermore, survey respondents 
were also offered the chance to win one of the ten $100 gift cards. Out of 
6000 addresses, 101 were non-deliverable and 426 addressees indicated 

they were no longer farming. We received 1119 responses out of 5473 
eligible addresses, indicating a response rate of 20.4%. Out of all survey 
respondents, 25.9%, 19.8%, 31.2% and 23.1% are from South Dakota, 
North Dakota, Minnesota, and Nebraska, respectively. 

To capture the potential effects of weather and soil characteristics on 
PA profits, we merged the farmer survey responses with the county-level 
weather data from Parameter-elevation Regressions on Independent 
Slopes Model (PRISM) and soil information from gridded Soil Survey 
Geographic (gSSURGO) and the Soil Survey Geographic (SSURGO) da
tabases supplied by NRCS. We purchased the latitude and longitude 
coordinates for the largest crop land unit (CLU) associated with each 
farm and created 1-km buffer for each CLU with average soil variable 
information calculated. 

4. Empirical model 

The empirical model was developed to understand factors that affect 
adopters’ views towards PA profitability. Unlike some studies, we did 
not compare the net revenues of adopters against those of non-adopters 
and evaluate the effect of adoption on profitability. Instead, we asked 
how adopters rate their profit change after adopting the listed PA 
technologies with six categories provided (‘Reduced by >10%’, 
‘Reduced by 5-10%’, ‘Little change (within 5%)’, ‘Increased by 5-10%’, 
‘Increased by >10%’ and ‘No idea’). In this way, adopters’ answers 
directly reflect their views about the factual profit changes after 
adopting each of the listed PA technologies. Non-adopters were 
excluded from the modeling sample as their views of profit changes were 
perceived as counterfactual. We also excluded the ‘no idea’ category 
from the analysis due to its non-ordinal nature. It is worth noting that 
our dependent variables are essentially the treatment effects on the 
treated (ATT) in standard discrete choice models. Unlike some studies 
who used profits reported by non-adopters and adopters to represent 
profits before and after adoption, our dependent variables capture per
centage of profit changes rated directly by adopters when comparing 
their own profits before and after adoption, thereby incurring no 

Fig. 1. Number of farmers surveyed in each selected county for 2021 Midwest farmer survey (Total sample size: 6000).  
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selection bias to be treated. 
The dependent variables of our regression models are the adopter 

rated profit changes following adoption of different PA technologies in 
five ordinal categories (‘Reduced by >10%’, ‘Reduced by 5-10%’, ‘Little 
change (within 5%)’, ‘Increased by 5-10%’ and ‘Increased by >10%’). 
These dependent variables follow the structure of censoring data as we 
only know the certain intervals they fall in but not their exact values. 
Censoring data modeling, also referred to as survival analysis, was first 
used in the medical research to process death or failure data. Later, it 
was expanded to analyze time intervals such as unemployment duration 
in labor economics (Ganjali and Baghfalaki, 2012). Recently it was also 
used to analyze willingness to pay (WTP) intervals and profit change 
intervals from survey data (e.g., Jeffcoat et al., 2012; Wang et al., 2020; 
Wang et al., 2021). 

Interval censored data regression model, also referred to as interval 
regression model, can be treated as an extension of the Tobin model 
(Amemiya, 1973; Peto, 1973). The econometric specification of our in
terval regression model was: 

Y*
k = Xkβk + Uk (k = 1, ⋯8) (1)  

where the subscript k stands for the regression equation number. In 
total, we have eight regression equations with adopter rated profit 
changes from adopting eight different PA technologies as dependent 
variables. 

Y*
k is the variable on the rated profit changes from adopting the kth 

PA technology, which fall within one of the five intervals: (i) less than 
negative 10%, (ii) between negative 10% and negative 5%, (iii) between 
negative 5% and 5%, (iv) between 5% and 10%, and (v) above 10%. Xk 

is the set of independent variables, with their meanings explained in 
Table 1, βk is the corresponding coefficient vector, and Uk is the error 
term with mean 0 and variance σ2

k . 

5. Data description 

We asked farmers to rate their profit change after adopting each of 
the listed PA technologies, which include two geo-referencing technol
ogies (auto-steering and ASC), two intra-field diagnosis technologies 
(satellite imagery and UAV remote sensing), and four application tech
nologies (VR fertilizer, VR seed, VR pesticide and VR irrigation). Six 
options on profit change were provided, which included five options of 
rated profit change (‘Reduced by >10%’, ‘Reduced by 5-10%’, ‘Little 
change (within 5%)’, ‘Increased by 5-10%’ and ‘Increased by >10%’). 
The sixth option (‘no idea’) was provided to accommodate respondents 
not aware of the degree of profit change yet. The dependent variables 
included in the models are adopters rated profit changes after adopting 
eight PA technologies. 

The description of explanatory variables used in the interval 
regression models is provided in Table 1. We divided those explanatory 
variables into five categories, farm characteristics and management, 
farmer characteristics, information sources, farm soil characteristics, 
and weather and regional factors. For farm characteristics and man
agement, we included cropland area, ownership, and conservation 
practice. Most studies found larger farms are more likely to adopt PA 
technologies (Tamirat et al., 2017; Schimmelpfennig and Lowenberg- 
DeBoer, 2020; Shang et al., 2021). Farm size was also found to influ
ence the effects of various PA technologies on farm profit (Shockley 

Table 1 
Description of explanatory variables used in the interval regression models.  

Category Variable Description N Mean 
(Std. 
Dev.) 

Min Max 

Farm Characteristics 
and Management 

Cropland acre Total area of cropland (in 1000 acres) 1056 1.419 
(1.608) 

0.002 16 

Ownership Proportion of owned cropland acres 1056 0.528 
(0.329) 

0 1 

Conservation 
Practice 

Whether producers use conservation tillage and/or cover crops (0 = use none of 
the practice; 1 = use one of the practices; 2 = use both practices) 

1080 1.208 
(0.742) 

0 2 

Farmer Characteristics Silent generation Farmers born on or before 1945 1078 0.082 
(0.274) 

0 1 

Baby boomer Farmers born between 1946 and 1964 1078 0.564 
(0.496) 

0 1 

Gen X Farmers born between 1965 and 1980 1078 0.240 
(0.427) 

0 1 

Millennial and Gen 
Z 

Farmers born on or after 1981 1078 0.114 
(0.318) 

0 1 

Education Highest education level completed (1 = ‘High school or less’; 2 = ‘Some college, 
technical school’; 3 = ‘4-year college degree’; 4 = ‘Advanced degree’) 

1095 2.089 
(0.827) 

1 4 

Information sources Agricultural 
consultants 

Importance of agricultural consultants when making PA decisions (1 = ‘Not 
important’; 2 = ‘Slightly important’; 3 = ‘Somewhat important’; 4 = ‘Very 
important’; 5 = ‘Extremely Important’) 

1074 3.061 
(1.239) 

1 5 

Machinery dealers Importance of machinery dealers when making PA decisions (1 = ‘Not important’; 
2 = ‘Slightly important’; 3 = ‘Somewhat important’; 4 = ‘Very important’; 
5 = ‘Extremely Important’) 

1074 3.130 
(1.246) 

1 5 

Farm soil characteristics Highly erodible 
land (HEL) 

Percentage of cropland that is highly erodible land (1 = ‘0%’; 2 = ‘1–5%’; 3 =
‘6–10%’; 4 = ‘11–20%’; 5 = ‘21–30%’; 6 = ‘>30%’) 

1077 2.316 
(1.554) 

1 6 

Saline/sodic 
conditions 

Percentage of cropland that has saline or sodic conditions (1 = ‘0%’; 2 = ‘1–5%’; 
3 = ‘6–10%’; 4 = ‘11–20%’; 5 = ‘21–30%’; 6 = ‘>30%’) 

1034 2.001 
(1.159) 

1 6 

Perceived farm soil 
conditions 

View on ‘Not sure whether soil conditions on my farm will benefit from PA’ (1 =
‘Strongly disagree’; 2 = ‘Disagree’; 3 = ‘Neutral’; 4 = ‘Agree’; 5 = ‘Strongly 
agree’) 

1073 2.809 
(0.915) 

1 5 

Slope Slope of the field (degree) 1118 2.743 
(1.785) 

0 15.301 

LCC12 Land Capability Class 1 and 2 1118 0.725 
(0.258) 

0 1 

Weather factors Precipitation 30-year average precipitation in millimeter (mm) (May–September) 1119 452.339 
(60.777) 

329.314 589.121 

Temperature 30-year average temperature in Celsius (May–September) 1119 18.793 
(1.273) 

15.589 21.616  
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et al., 2012; Velandia et al., 2013; Schimmelpfennig, 2016; Späti et al., 
2021; McFadden et al., 2023). Thus, we included the cropland area 
variable to find the potential relationship between farm size and PA 
induced profit change. Ownership variable captures the percentage of 
owned cropland acres to total cropland acres. As land ownership ensures 
multi-year utilization of spatial data collected through PA technologies 
(Daberkow and McBride, 1998), it could enhance data interpretation 
and therefore positively affect profitability. Furthermore, positive cor
relation was also found between farmers’ adoption status of PA and 
conservation practices (Schimmelpfennig, 2018; Kolady and Van Der 
Sluis, 2021). Therefore, we included conservation practice, which in
dicates producers’ adoption status of no-till and cover crops, as an 
explanatory variable in the model to investigate their potential com
plementary effects towards PA profitability. In addition, it could take 
multiple years before PA technologies start to generate positive agro
nomic and economic benefits (Griffin, 2016). To capture profit change 
caused by different durations of PA usage, we included three dummy 
variables, namely 3–5 years, 6–10 years, and 10+ years, with <3 years 
as the baseline. Note that usage duration distributions are demonstrated 
in Fig. 2, as they vary across different PA technologies. 

Among farmer characteristic variables, age plays an ambiguous role 
in PA usage decisions. Most literature findings show younger farmers are 
more likely to adopt PA technologies (Daberkow and McBride, 2003; 
Nair et al., 2011; D’Antoni et al., 2012; Tey and Brindal, 2012). This is 
likely because younger farmers are more technology-oriented and have 
longer planning horizons (Larson et al., 2008). However, older farmers 
generally have more farming experience and skills, thus are more 
capable at information interpretation (Vecchio et al., 2022). Following 
the examples of Griffin et al. (2020) and Ofori et al. (2020), we cate
gorized farmers into four categories based on their birth years. Specif
ically, those who were born on or before 1945 is referred to as the Silent 
Generation, those born between 1946 and 1964 as Baby Boomers, those 
born between 1965 and 1980 as Generation X, and those born on or after 
1981 as Millennial. There are also seven respondents born after 1996 
that belong to Generation Z, whom we merged with the Millennial due 

to the small number of respondents. Possibly due to the complex nature 
of information intensive PA technologies, education has been found to 
be positively related to PA adoption decisions (Khanna, 2001; Roberts 
et al., 2002; Schimmelpfennig and Ebel, 2016). Therefore, investment in 
human capital through education could equip farmers with more ca
pacity to learn and efficiently use these technologies, which may in re
turn enhance PA profitability. 

Regarding the importance of information sources, we examined the 
role of agricultural consultants and machinery dealers in adopters’ 
perceived benefits. We hypothesize that adopters who consider those 
information sources as more important in making PA use decisions are 
more likely to experience profit increase. Due to the complexities of PA 
technologies, farmers generally need advice from external sources to 
best utilize them. The use of consultant service was found to be posi
tively associated with yield map and VR fertilizer adoption (Robertson 
et al., 2012). While farmers have minimal reliance on expert guidance 
towards embodied knowledge PA technologies, they heavily rely on 
agricultural consultant in information intensive PA technologies for data 
interpretation, zone delineation and VR map generation. Local ma
chinery dealers also provide farmers with a source of information on 
issues such as cost, service, as well as compatibility between components 
and brands (Andrade-Sanchez and Heun, 2010). 

Soil quality and variability could affect the effectiveness of the 
technologies, and therefore the economic outcomes from adoption (Isik 
and Khanna, 2002; Isgin et al., 2008; Shang et al., 2021). Variation in 
topsoil depth, soil pH values, and pest infestation results in profitability 
change from VRT adoption (Wang et al., 2003). Compared to farms with 
higher soil quality, farms with lower soil quality are likely to be asso
ciated with higher gains in productivity due to adoption of soil testing 
and VRT (Khanna, 2021). As VRT allows varying the timing and rate of 
application in a targeted manner, it will particularly benefit the low- 
quality soil and soil with sufficient spatial variability (Khanna, 2021). 
To capture the soil quality and variation factors, we included five vari
ables. Of those, three variables are survey data provided by farmers 
while two are from the public data source. Specifically, we asked farmers 

Fig. 2. Producer usage status of various PA technologies, based on 2021 Midwest farmer survey (Unit: percentage). 
Note: The total number of responses for adoption status are 1099, 1088, 1087, 1091, 1087, 1084, 1085 and 1076 for auto-steering and guidance, automatic section 
control, satellite/aerial imagery, unmanned aerial vehicle (UAV)/drone imagery, variable rate (VR) fertilizer, seed, pesticide and irrigation application respectively. 
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about the percentages of their cropland under highly erodible condi
tions, percentages under saline/sodic conditions, as well as their 
agreement towards the statement ‘not sure whether soil conditions on 
my farm will benefit from PA’ (Table 1). The publicly available data that 
were used to represent soil quality were average land slope and per
centage of soil belonging to land capability class (LCC) I and II. The 
former captures the degree of variability in the terrain and the latter 
characterizes the land suitability to produce cultivated crops. To capture 
the weather and regional factors, we collected average annual precipi
tation and temperature for the growing season (May to September) at 
the county level over the last 30 years (from 1991 to 2020). 

6. Results and discussion 

6.1. Adoption rates and usage years 

Among all PA technologies, auto-steering and guidance has the 
highest adoption rate (76%) and the highest percentage (47%) of 
adopters (among all adopters) who have used the technology for >10 
years. Most adopters of georeferencing technologies have used them for 
>6 years, with only 8% and 13% of farmers respectively who have used 
auto-steering and auto section control for <3 years (Fig. 2). These 
findings indicate that while the georeferencing technologies currently 
have the highest adoption rates among all PA technologies, their 
adoption rates stagnated in recent years. 

Of the diagnostic technologies, nearly 60% farmers have adopted 
satellite imagery, with adopters evenly distributed across the usage 
duration provided. As a new technology, the adoption rate of UAV/ 
drone imagery is relatively low at 26% with only 5% percent of adopters 
having >10 years of usage experience and 57% of adopters with <3 

years of experience. A 2018 survey carried out in Missouri about 3 years 
prior to our survey also found only 8% of the respondents were UAV 
adopters (Skevas and Kalaitzandonakes, 2020). This indicates a sub
stantial increase in UAV/drone imagery adoption rate in recent years. 

Among the VRTs, the top two most adopted VR technologies are VR 
fertilizer (54%) and VR seed (42%) applications. In comparison, the 
adoption rates of VR pesticide and VR irrigation application are 
considerably lower at 14% and 7% respectively. One possible reason 
underlying the low adoption rate of VR pesticide is that pesticide only 
constitutes a small percentage of total input costs, therefore cost savings 
from VR pesticide adoption is not likely comparable to those of VR 
fertilizer and seeding. In our study region, most agricultural land is non- 
irrigated, which explains the lowest adoption rate of VR irrigation. For 
all VR technologies, the percentages of adopters who have used it for <6 
years and those who used it for >6 years are similar, which indicates 
that the adoption rates of the VRTs have been steadily increasing over 
the years. 

6.2. Profit change following PA adoption 

Fig. 3 displays the profit changes following PA adoption. For each of 
the eight listed PA technologies, we documented the rated profit change 
by adopters and the perceived profit change by non-adopters. 

For each of the listed PA technologies, approximately 60% of non- 
adopters indicated they had ‘no idea’, ranging from 56% for VR seed 
application to 63% for VR irrigation application (Fig. 3). This is not 
surprising since non-adopters have no direct hands-on knowledge on PA 
profitability, most of them likely have not received such information 
from indirect sources such as university extension and other farmers, or 
that they could not link such information with their own farms and 

Fig. 3. Producer rated/perceived profit change after adopting various PA technologies, by adoption status. 
Note: The total number of responses for profit change are 1068, 1056, 1044, 1035, 1054, 1037, 1044, and 1027 for auto-steering and guidance, automatic section 
control, satellite/aerial imagery, unmanned aerial vehicle (UAV)/drone imagery, variable rate (VR) fertilizer, seed, pesticide and irrigation application respectively. 
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regions due to the scarcity and case-specific research in this regard. This 
highlighted the need for a better understanding of PA generated profit 
change from adopters’ experience over regions with different farm, soil, 
and weather characteristics. 

Among adopters, only about 10% indicated an unawareness of the 
profitability towards auto-steering and guidance, automatic section 
control, VR fertilizer and seeding applications. Adopters are more likely 
to have no idea towards profitability of diagnostic PA technologies (28% 
for satellite imagery and 24% for UAV/drone remote sensing), as well as 
VR irrigation (26%) and pesticide (20%) technologies. Diagnostic 
technologies increase farm profit through increased VRT efficiency, it is 
therefore hard for farmers to separate their effects on profit. A break
down by their years of adoption reveals that for all technologies, 
adopters who used it for <3 years were more likely to have no idea about 
the technology generated profit change (Table 2). As adopters accu
mulate more experience and data support over the years, they gain more 
understanding about the effect of PA adoption on their profit. 

The top three PA technologies rated by most adopters that achieved 
at least a 5% increase in profitability are VR fertilizer application (72%), 
VR seed application (68%), and automatic section control (66%). 
Interestingly, the top three technologies perceived by most non-adopters 
as achieving at least a 5% increase in profitability coincide with the 
ratings of adopters, except that percentages of non-adopters are much 
lower: VR seed application (19%), VR fertilizer application (13%), and 
automatic section control (13%). The correspondence between non- 
adopters and adopters’ answers towards the top three most profitable 
technologies indicate the potential influence of adopters’ opinions to
wards the perceptions of some non-adopters. 

6.3. Summary statistics of explanatory variables 

Table 1 also presents the summary statistics for all the modeled 
variables based on responses from all farmers. The cropland area aver
aged 1419 acres across all four states. To check the representativeness of 

our survey sample, we compared the survey data with agricultural 
census data regarding farm size under different tenure status, using t-test 
(Table 3). Overall, the average farm sizes for NE and SD, at 1106 and 
1566 respectively, are not statistically different from the land acre 
values of 1000 and 1469 acres reported by the 2022 State Agriculture 
Overview for these two states. Yet farm sizes for MN and ND are 
considerably larger than the census data at a statistically difference level 
of 1%. A breakdown of farms by tenure status further reveals that for the 
full owner category, the survey average sizes are statistically higher than 
the census averages for MN and ND. For part owners, which represent 
the majority of survey sample, our survey average farm sizes are sta
tistically smaller than the census averages for NE and SD, yet farm size 
for MN is statistically smaller than the census average. No statistical 
difference in farm acres is observed for the tenant category for all 
studied states. The average number of conservation practices is 1.208, 
which means that on average farmers have adopted at least one practice 
out of conservation tillage and cover crops. 

Regarding generation categories, Table 1 shows that the majority 
(56.4%) of our respondents are baby boomers, followed by Generation X 
(24.0%). The rest categories, Millennial and Generation Z (11.4%) and 
Silent Generation (8.2%), together account for <20% of the re
spondents. Compared to the Kansas farm operators as of 2018 (Griffin 
et al., 2020), the percentage of the Silent Generation operators, as 
indicated in our 2021 survey, has declined by about 10%, indicating that 
many of the Silent Generation have exited farm management. Mean
while, the percentage of Generation X has slightly increased. Compared 
to Griffin et al. (2020), we also found more Baby Boomers responding to 
our survey, which probably reflects a regional difference. Similar to 
Ofori et al. (2020), we also set Baby Boomer as a reference group in the 
regression models as most farmers belong to this generation. The 
average value for education is 2.089, implying that on average farmers 
have completed some college or technical school. The average values for 
agricultural consultants and machinery dealers are 3.061 and 3.130 
respectively, indicating that both sources are considered by farmers as 

Table 2 
Adopter rated profit change due to PA adoption, by usage years (Unit: percentage).    

Reduced by >10% Reduced by 5–10% Within 5% Increased by 5–10% Increased by >10% No idea 

Auto-steering and guidance 

< 3 years 2.9 8.8 36.8 25.0 5.9 20.6 
3–5 years 0.0 1.6 43.3 39.4 7.1 8.7 
6–10 years 0.8 1.6 30.9 41.1 16.7 8.9 
10+ years 0.5 1.6 30.2 38.1 22.3 7.4 

Automatic section control 

< 3 years 0.0 2.4 32.9 39.0 4.9 20.7 
3–5 years 0.8 4.8 29.6 40.8 15.2 8.8 
6–10 years 0.8 2.5 15.7 52.9 21.5 6.6 
10+ years 1.6 2.1 18.9 39.8 33.0 4.7 

Satellite/aerial imagery 

< 3 years 0.8 0.8 43.9 15.9 3.0 35.6 
3–5 years 1.7 1.1 51.4 13.8 3.3 28.7 
6–10 years 1.9 1.2 47.2 19.3 3.7 26.7 
10+ years 1.4 0.0 37.9 24.3 14.3 22.1 

UAV/drone imagery 

< 3 years 1.3 1.3 58.1 10.3 0.7 28.4 
3–5 years 2.7 4.1 70.3 8.1 0.0 14.9 
6–10 years 0.0 2.9 47.1 23.5 2.9 23.5 
10+ years 0.0 0.0 57.1 21.4 0.0 21.4 

VR fertilizer application 

< 3 years 1.7 2.5 21.9 44.5 11.8 17.7 
3–5 years 0.0 3.4 19.2 48.6 21.2 7.5 
6–10 years 1.2 0.6 12.1 45.5 28.5 12.1 
10+ years 0.7 1.4 9.6 47.3 35.6 5.5 

VR seed application 

< 3 years 0.0 1.2 25.6 45.4 7.0 20.9 
3–5 years 0.0 1.5 27.7 49.2 13.1 8.5 
6–10 years 0.8 0.8 13.9 49.2 23.1 12.3 
10+ years 1.0 1.0 13.0 50.0 31.0 4.0 

VR pesticide application 

< 3 years 0.0 7.3 24.4 24.4 14.6 29.3 
3–5 years 0.0 0.0 26.5 50.0 8.8 14.7 
6–10 years 0.0 0.0 16.7 36.1 22.2 25.0 
10+ years 2.4 2.4 17.1 39.0 26.8 12.2 

VR irrigation application 

< 3 years 0.0 5.6 11.1 27.8 11.1 44.4 
3–5 years 0.0 6.3 43.8 43.8 0.0 6.3 
6–10 years 0.0 0.0 28.0 40.0 4.0 28.0 
10+ years 0.0 0.0 11.1 11.1 50.0 27.8  

T. Wang et al.                                                                                                                                                                                                                                   



Ecological Economics 213 (2023) 107950

8

somewhat important in making PA decisions. 
The average values of highly erodible land and saline/sodic condi

tions are 2.316 and 2.001 respectively, which imply that on average 
farmers have between 1 and 5% of their croplands with such land 
conditions. Perceived farm soil conditions averaged 2.809, which in
dicates that on average farmers shows disagreement towards the state
ment that “not sure whether soil conditions on my farm will benefit from 
PA”, or that farmers in general believe their farm soil conditions will 
benefit from PA. On average, fields with soil types of LCC I and II take 
72.5%, indicating that most of the fields have no or few limitations for 
crop cultivation. The land slope in our study ranges from 0 to 15.301% 

with a mean value of 2.743%. 
The 30-year county average growing-season precipitation spanned 

from 329.314 to 589.121 mm, and the average temperature fell between 
15.589 and 21.616C degrees in our study region. Precipitation follows 
an east-west declining pattern while the temperature exhibits a south- 
north declining gradient. This indicates a great variation in precipita
tion and temperature, which potentially affects farm productivity and 
farmer decision-making. 

Table 3 
Comparison of survey responses with census data regarding farm acres.  

State Full owner Part owner Tenant Overall 

Census Survey Census Survey Census Survey Census Survey 

MN 144 432*** 788 1043*** 395 616 377 902*** 
NE 452 512 1760 1295*** 819 681 1000 1106 
ND 464 846*** 2733 2590 1124 1902 1512 2416*** 
SD 664 730 2542 1782*** 1110 1440 1469 1566 

Note: Census values for land acres for full owner, part owner and tenant are from 2017 Census of Agriculture. The census value for overall land acres are from 2022 
State Agriculture Overview. *, **, and *** indicates that survey data is significantly different from census data at p < 0.10, p < 0.05, and p < 0.01 based on t-test. 

Table 4 
Interval regression estimation results for rated profit change after adoption of various PA practices.  

Category Technologies Georeferencing Intra-field diagnosis Application 

Variable Auto- 
steering 

ASC Satellite 
Imagery 

UAV/ 
Drone 

VR Fertilizer VR 
Seed 

VR Irrigation 

Farm Characteristics and 
Management 

3–5 years 2.542** 0.562 −0.634 −0.764 0.754 −0.101 −1.87 
(0.987) (0.971) (0.785) (0.787) (0.764) (0.754) (2.625) 

6–10 years 3.217*** 1.939** −0.389 2.803*** 2.036*** 1.284 −1.794  
(0.924) (0.892) (0.814) (1.021) (0.766) (0.783) (2.104) 

10 + years 3.579*** 2.352** 2.588*** 2.17 2.547*** 1.536* 8.148***  
(0.917) (0.929) (0.844) (1.569) (0.822) (0.832) (2.445) 

Cropland acre 0.064 −0.029 −0.172 −0.195 −0.027 −0.125 −0.454* 
(0.135) (0.142) (0.142) (0.149) (0.161) (0.142) (0.235) 

Ownership −0.245 −1.477 −1.102 0.424 1.984** 0.051 1.946  
(0.768) (0.898) (0.996) (1.241) (0.920) (0.905) (2.906) 

Conservation Practices 0.303 0.163 −0.057 −0.238 0.774** 0.735* −1.279 
(0.325) (0.385) (0.420) (0.505) (0.392) (0.391) (1.581) 

Farmer Characteristics Silent Generation −0.059 −0.908 1.404 −1.164 −0.333 1.811 3.151 
(1.159) (1.359) (1.305) (1.911) (1.236) (1.236) (2.787) 

Gen X −0.625 −0.217 −1.282* −1.298 −0.156 −0.299 1.022  
(0.520) (0.596) (0.668) (0.863) (0.642) (0.640) (2.314) 

Millennial and Gen Z −0.144 1.381* −1.908** −1.745* −0.004 0.186 −4.711** 
(0.663) (0.770) (0.827) (0.997) (0.788) (0.763) (2.382) 

Education 0.12 0.114 0.235 −0.175 0.455 0.541 0.574 
(0.286) (0.327) (0.345) (0.458) (0.331) (0.333) (0.886) 

Information Resources Agricultural 
consultants 

0.413* 0.517** 0.837*** 0.34 0.436* 0.545** −0.81 
(0.214) (0.246) (0.275) (0.355) (0.262) (0.256) (0.606) 

Machinery dealers 0.724*** 0.594** 0.148 −0.028 0.16 0.585** −0.378 
(0.219) (0.253) (0.273) (0.350) (0.241) (0.264) (0.678) 

Soil Characteristics HEL 0.226 0.107 0.068 0.154 0.014 0.072 −1.945*** 
(0.173) (0.200) (0.212) (0.293) (0.204) (0.209) (0.531) 

Saline/sodic conditions 0.307 0.127 0.231 0.178 0.904*** 0.344 0.858* 
(0.215) (0.244) (0.258) (0.331) (0.273) (0.255) (0.457) 

Soil conditions −0.251 −1.057*** −0.187 −0.277 −0.778*** −0.753*** −1.528* 
(0.242) (0.275) (0.283) (0.366) (0.281) (0.280) (0.876) 

Slope 0.108 0.437** −0.053 0.515** 0.429** −0.008 0.491 
(0.165) (0.189) (0.207) (0.236) (0.201) (0.187) (0.493) 

LCC12 1.418 −0.641 −0.96 1.712 0.831 −1.37 −9.841*** 
(0.991) (1.090) (1.218) (1.463) (1.150) (1.122) (2.659) 

Weather Factors Precip −0.004 0.002 −0.005 0.008 0.009* −0.003 0 
(0.004) (0.005) (0.005) (0.006) (0.005) (0.005) (0.027) 

Temp −0.323 −0.455* 0.069 −0.989*** −0.175 0.099 −0.93 
(0.208) (0.237) (0.252) (0.324) (0.244) (0.245) (0.688)  

Constant 
4.443 10.507** 1.737 13.658** −1.191 1.56 41.092**  
(4.191) (4.834) (5.206) (6.781) (5.189) (5.085) (15.981) 

Model Fit Statistics 

Obs. 626 499 386 185 436 341 46 
LR Chi2 74.49 75.00 49.81 41.79 52.34 48.81 56.87 
Prob > Chi2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Note: *, **, and *** represent p < 0.10, p < 0.05, and p < 0.01, respectively. Standard errors are presented in the bracket under each of the estimated values. 
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6.4. Interval regression model findings 

Table 4 displays the estimation results of eight interval regression 
models with adopter rated profit changes for eight PA technologies as 
dependent variables. As our dependent variables are the percentage of 
change in PA profitability, the estimated coefficient values also stand for 
the change in percentage point(s) with the positive value indicating an 
increase in percentage points and negative value indicating a decrease, 
when the independent variables increase by one unit. Except for VR 
pesticide model, all models all have chi-square calculated value greater 
than the chi-square critical value at 1% significance level, which means 
that the selected variables explain the variation of the rated profit 
changes after adoption of PA practices. However, we did not successfully 
locate any variable that could explain the variation of profit change for 
VR pesticide usage, thus did not display its model estimates in Table 4. 

For all seven significant models, we can see that adopters with longer 
usage years reap higher profits from the PA technologies. For example, 
compared with auto-steering adopters of <3 years (baseline), the profit 
change experienced by adopters of 3–5 years, 6–10 years, and 10+ years 
increased by 2.542, 3.217 and 3.579 percentage points respectively. For 
the rest of PA technologies, we find the profit change rated by adopters 
of 3–5 years were not significantly different from those who used for <3 
years. Compared to the VR fertilizer adopters of <3 years, the rated 
profit change by adopters of 6–10 years and 10+ years increased by 
2.036 and 2.547 percentage points respectively. Table 4 findings suggest 
a long-period (over 10 years) of profit accruement for VR technologies, 
which could be due to a learning effect over time. Factors that enhance 
profitability also include improved information and interpretation from 
data collection over multiple years, as well as more experience in 
managing within-field variability (Castle, 2016). Similarly, we found 
that land ownership promotes a positive profit change from VR fertilizer 
adoption. Compared to tenant operated farm, full owner reported a 
profit increase by 1.984 percentage points, which is likely attributable to 
enhanced data interpretation on owned land (Daberkow and McBride, 
1998). 

Farmers who use conservation practices along with PA practices are 
more likely to find VR fertilizer and VR seed applications profitable. 
When farmers adopt one of the conservation practices (conservation 
tillage or cover crops), the rated change in profitability for VR fertilizer 
and seeding will increase by 0.774 and 0.735 percentage points, 
respectively. Likewise, the rated profitability change for VR fertilizer 
and seeding will increase by 1.548 (0.774 × 2) and 1.470 percentage 
points respectively if farmers adopt both conservation practices. This 
finding suggests a potential complementary effect between soil conser
vation practices and VRTs, which helps boost farmers’ profit in VR 
fertilizer and seeding applications. PA technologies facilitate the adop
tion of conservation practices. Schimmelpfennig (2018) pointed out that 
PA usage could promote usage of conservation practices such as no till. 
As the targeted goals for both PA technologies and conservation prac
tices are to promote economic sustainability and reduce negative envi
ronmental impact, farmers aiming to achieve such goals are likely to 
adopt them simultaneously. 

Regarding the role of generation, we found that the Silent Generation 
and Generation X generally share similar views with Baby Boomers on 
the profitability of PA technologies. The only exception is the satellite 
imagery, which Generation X found less profitable compared to Baby 
Boomers. Compared to Baby Boomers, Millennials are less likely to find 
remote sensing technologies (satellite and drone) and VR irrigation 
profitable, yet more likely to find ASC profitable. Previous literature has 
found a negative correlation between age and adoption of high tech
nologies as younger operators are more willing to embrace innovations 
and adopt information technology for farm management (Daberkow and 
McBride, 2003; Isgin et al., 2008; D’Antoni et al., 2012; Ofori et al., 
2020). However, younger farmers generally have not accumulated as 
much wealth as older farmers (D’Antoni et al., 2012). Therefore, among 
the adopters, older farmers may find PA technologies more profitable. In 

our case, profit change ratings by Millennials in general are not as 
positive as Baby Boomers, probably due to their financing burden for PA 
investment or service costs. 

Farmers who use agricultural consultants and machinery dealers are 
more likely to find increase in profitability following adoption of 
georeferencing technologies, as well as VR seed technologies. For 
example, when the importance level of machinery dealers increases by 1 
unit, then the rated profitability change of VR seed technologies will 
increase by 0.585 percentage point. In addition, agricultural consultant 
plays an important role in boosting farmers’ ratings on profit change 
regarding diagnostic technologies (satellite imagery) and VR fertilizer. 

Farm soil conditions also play a key role in PA profitability. For 
example, profit change in VR irrigation was significantly affected by the 
percentage of highly erodible land on the farm. Specifically, when the 
percentage of highly erodible land increases by 1 unit (e.g., from 0% to 
1–5%), the profit change on VR irrigation will be reduced by 1.945 
percentage point. One possible reason for this finding is that irrigation 
induced erosion could reduce crop yield potential, especially for highly 
erodible land, which will compromise crop productivity and farm profit 
(Koluvek et al., 1993). 

Similar to Schimmelpfennig and Lowenberg-DeBoer (2020), who 
showed VRT are more likely adopted on farms with higher soil vari
ability, we found variability in saline and sodic conditions positively 
influence farmer perceived profit change. Specifically, when the per
centage of saline and sodic land increases by 1 unit (e.g., from 0% to 
1–5%), the profit changes after adoption of VR fertilizer and VR irriga
tion increased by 0.904 and 0.858 percentage points, respectively. 
Evaluation of spatial variability in soil salinity and sodicity is the pre- 
requisite for VR technology. Through such information, VRT will help 
save input costs (fertilizer and water) through site-specific input appli
cation and therefore improve farm profitability (Günal, 2021). With 
increased portion of land affected by saline and sodic conditions, 
farmers are likely to find site-specific management that optimize input 
use more valuable. In contrast, if adopters are more uncertain about 
whether their farm conditions will benefit from PA, their ratings on 
profit change from the usage of ASC and all VR technologies will be 
negatively affected. 

As discussed in McFadden et al. (2023), farm operators tend to adjust 
inputs accordingly in fields with greater slopes, in alignment with the 
zone management concept. We found farmers with steeper sloped fields 
more likely to observe profit increases from usage of ASC, drone, VR 
fertilizer, and VR irrigation. ASC contributes to more efficient input 
usage and helps reduce input cost, thus would be more beneficial for 
farms characterized by uneven topology. Similarly, one of the primary 
benefits for using drone in agriculture is to access areas that are difficult 
to reach, such as steep slopes. Soils on the sloped field are prone to 
runoff, especially at the bottom of hill where subsurface flow converges, 
which will further result in high nutrient losses (Easton and Petrovic, 
2005). Therefore, site-specific usage of fertilizer becomes more neces
sary on higher sloped land. Uneven field elevation can also result in 
varying distribution of soil water content, forming dry zones in high- 
elevation portions of the field and ponding in low-elevation portions 
(Yari et al., 2017). Therefore, the steeper sloped fields will benefit more 
from VR irrigation application. 

Table 4 results also indicate that farmers who farm in land with a 
higher percentage of LCC I & II are less likely to benefit from the VR 
irrigation technology. This finding is consistent with that of Khanna 
(2021), which also shows that farms with higher soil quality are less 
likely to see productivity gains due to adoption of VRT. This is probably 
because higher quality soil provides better growing conditions without 
utilizing VR irrigation and therefore lacks room for further productivity 
improvement. 

Our survey spans crop production areas across four states (Fig. 1) and 
provides sufficient differentiations on precipitation (east-west gradient) 
and temperature (north-south gradient), which ranges from 329 to 589 
mm for growing season precipitation and from 16 to 22C degrees for 
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growing season temperature. As precipitation increases, VR fertilizer 
usage are rated as more profitable. When saturated with excess precip
itation, soil will become more prone to runoff (Easton and Petrovic, 
2005). Excessive chemical fertilizer that cannot be absorbed by plant 
will be left in the soil (Singh et al., 2020). Therefore, the chances for 
nutrient losses will increase with higher amount of precipitation and the 
washed away fertilizer will end up in water bodies, which result in water 
pollution. Therefore, the optimal application of fertilizer using VRT will 
be more beneficial in regions with greater precipitation level. We also 
found temperature increase negatively affects adopter rated profitability 
for ASC and UAV remote sensing, indicating that farmers in regions with 
lower temperature are more likely to rate these two technologies as 
profitable. 

7. Conclusion 

While profit is a most important consideration prior to new tech
nology adoption, most of the non-adopters of different PA technologies 
had no idea how their profit would change following adoption, ac
cording to our survey responses from U.S. farmers in four states along 
the western margins of the U.S. Midwest. This highlights the necessity of 
investigating adopter rated profit change towards different PA tech
nologies. Our paper compared adopters’ rated profit changes for a range 
of PA technologies across different types of farmers and farms, as well as 
regions with heterogeneous soil and weather characteristics, to help 
non-adopters gain a better understanding of the potential PA benefit on 
their farm, thereby making more educated adoption decisions. 

We found adopter rated profit changes due to PA adoption vary 
considerably across different PA technologies. The top three most 
profitable PA technologies rated by farmers are VR seed application, VR 
fertilizer application and automatic section control. About two thirds of 
adopters rated that these three technologies achieved at least a 5% in
crease in profitability. Our results also demonstrate a learning effect for 
PA technologies, which means that the profit from PA usage will in
crease over the years. In comparison to new adopters, more experienced 
PA adopters are more likely to see a noticeable change on profit. While 
the learning curves for embodied-knowledge technologies such as auto- 
steering and guidance systems are generally short, most information 
intensive technologies like VRTs have long learning curves and it could 
take >10 years to fully reap the benefit. To facilitate PA adoption, it 
would be helpful to 1) provide financial support for the first a few years 
of adoption and 2) to promote connection opportunities among farmers 
so that the long-term adopters of PA technologies could share their 
experiences. 

We also investigated factors that could potentially affect the ratings 
on PA profit change. Usage of conservation practices, such as conser
vation tillage and cover crops, was found to positively affect adopters’ 
rated profit change for VR fertilizer and VR seed. This suggests a po
tential complementary effect between soil conservation practices and 
VRTs. Therefore, promoting simultaneous adoption of conservation 
practices and PA technologies could help agricultural enterprises better 
achieve environmental and economic goals. External information sour
ces, such as consultants and machinery dealers, also helped adopters 
achieve greater profit increase. 

Soil conditions and variability were found to play an important role 
in PA induced profit change. Specifically, we found that fields with a 
higher percentage of erosion and sodic/saline conditions were more 
likely to benefit from VR adoption. While farmers with higher soil 
quality are more likely to adopt PA due to their higher sales value, the 
farmers with lower soil quality are more likely to see a profit increase. 
Beyond soil factors, precipitation and temperature conditions also 
affected PA profitability. Therefore, profitability of PA technologies may 
differ across regions. It would be helpful to evaluate the effectiveness of 
different PA technologies based on soil and weather characteristics, and 
tailor the promotion efforts accordingly. 

Overall, we found the benefit of PA from the profitability perspective 

promising. When compared with the very modest profit increase po
tential estimated by other research, the more optimistic ratings of PA 
profit change by adopters suggested that there could be multiple chan
nels to reap PA profit. Rising input costs in recent years, further high
light the importance of using PA technology since its site-specific 
management help improve input use efficiency and, in many cases, 
reduce input cost. 
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Späti, K., Huber, R., Finger, R., 2021. Benefits of increasing information accuracy in 
variable rate technologies. Ecol. Econ. 185, 107047. 

Tamirat, T.W., Pedersen, S.M., Lind, K.M., 2017. Farm and operator characteristics 
affecting adoption of precision agriculture in Denmark and Germany. Acta 
Agriculturae Scandinavica, Section B—Soil & Plant. Science 68 (4), 349–357. 

Tenkorang, F., Lowenberg-DeBoer, J., 2008. On-farm profitability of remote sensing in 
agriculture. J. Terr. Obs. 1 (1), 50–59. 

Tey, Y.S., Brindal, M., 2012. Factors influencing the adoption of precision agricultural 
technologies: a review for policy implications. Precis. Agric. 13 (6), 713–730. 

Thompson, N.M., Bir, C., Widmar, D.A., Mintert, J.R., 2019. Farmer perceptions of 
precision agriculture technology benefits. J. Agric. Appl. Econ. 51 (1), 142–163. 

Thompson, N.M., DeLay, N.D., Mintert, J.R., 2021. Understanding the farm data 
lifecycle: collection, use, and impact of farm data on US commercial corn and 
soybean farms. Precis. Agric. 1–26. 

Vecchio, Y., De Rosa, M., Pauselli, G., Masi, M., Adinolfi, F., 2022. The leading role of 
perception: the FACOPA model to comprehend innovation adoption. Agric. Food 
Econ. 10 (1), 1–19. 

Velandia, M., Buschermohle, M., Larson, J.A., Thompson, N.M., Jernigan, B.M., 2013. 
The economics of automatic section control technology for planters: a case study of 
middle and West Tennessee farms. Comput. Electron. Agric. 95, 1–10. 

Wang, D., Prato, T., Qiu, Z., Kitchen, N.R., Sudduth, K.A., 2003. Economic and 
environmental evaluation of variable rate nitrogen and lime application for claypan 
soil fields. Precis. Agric. 4 (1), 35–52. 

Wang, E., An, N., Gao, Z., Kiprop, E., Geng, X., 2020. Consumer food stockpiling behavior 
and willingness to pay for food reserves in COVID-19. Food Secur. 12 (4), 739–747. 

Wang, T., Jin, H., Fan, Y., Obembe, O., Li, D., 2021. Farmers’ adoption and perceived 
benefits of diversified crop rotations in the margins of US Corn Belt. J. Environ. 
Manag. 293, 112903. 

Yari, A., Madramootoo, C.A., Woods, S.A., Adamchuk, V.I., Huang, H.H., 2017. 
Assessment of field spatial and temporal variabilities to delineate site-specific 
management zones for variable-rate irrigation. J. Irrig. Drain. Eng. 143 (9), 
04017037.  

Zhang, C., Kovacs, J.M., 2012. The application of small unmanned aerial systems for 
precision agriculture: a review. Precis. Agric. 13 (6), 693–712. 

T. Wang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0110
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0110
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0110
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0115
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0115
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0115
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0115
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0120
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0120
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0130
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0130
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0130
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0135
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0135
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0140
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0140
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0145
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0145
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0145
http://refhub.elsevier.com/S0921-8009(23)00213-6/optwBYYIo2iLS
http://refhub.elsevier.com/S0921-8009(23)00213-6/optwBYYIo2iLS
http://refhub.elsevier.com/S0921-8009(23)00213-6/optwBYYIo2iLS
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0150
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0150
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0155
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0155
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0155
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0160
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0160
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0160
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0165
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0165
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0170
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0170
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0170
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0175
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0175
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0175
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0175
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0180
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0180
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0185
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0185
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0185
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0190
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0190
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0195
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0195
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0195
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0200
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0200
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0200
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0205
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0205
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0205
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0210
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0210
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0210
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0215
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0215
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0215
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0220
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0220
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0220
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0225
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0225
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0225
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0235
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0235
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0240
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0240
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0250
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0250
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0250
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0255
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0255
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0255
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0255
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0260
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0260
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0265
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0265
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0270
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0270
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0275
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0275
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0275
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0280
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0280
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0280
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0285
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0285
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0285
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0290
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0290
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0295
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0295
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0295
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0300
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0300
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0300
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0305
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0305
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0305
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0310
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0310
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0315
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0315
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0315
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0320
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0320
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0325
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0325
http://refhub.elsevier.com/S0921-8009(23)00213-6/optKHHspCwZU7
http://refhub.elsevier.com/S0921-8009(23)00213-6/optKHHspCwZU7
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0330
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0330
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0330
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0335
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0335
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0335
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0340
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0340
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0340
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0345
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0345
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0345
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0350
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0350
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0355
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0355
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0355
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0360
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0360
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0360
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0360
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0365
http://refhub.elsevier.com/S0921-8009(23)00213-6/rf0365

	Understanding farmer views of precision agriculture profitability in the U.S. Midwest
	1 Introduction
	2 Profit increase potential for different precision agriculture technologies
	3 Survey description
	4 Empirical model
	5 Data description
	6 Results and discussion
	6.1 Adoption rates and usage years
	6.2 Profit change following PA adoption
	6.3 Summary statistics of explanatory variables
	6.4 Interval regression model findings

	7 Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


