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Precision Agriculture (PA) technologies are well known to be useful in addressing field heterogeneities and
enabling informed site-specific management decisions. While profitability is the foremost factor considered by
farmers when making PA adoption decisions, information in this regard is lacking from the farmers’ perspective.
This paper analyzed 1119 farmer responses from a 2021 survey conducted in four states along the western
margins of the U.S. Midwest. Our findings show that while most (around 60%) non-adopters indicate that they
are unaware of PA profit change, adopters are likely to rate a major profit increase. About two thirds of adopters
rated at least a 5% increase in profitability towards variable rate (VR) fertilizer application (72%), VR seed
application (68%), and automatic section control (66%). We modeled farmers’ profit change subsequent to PA
adoptions. Our regression results demonstrate that the profits from PA usage increase over time and that use of
conservation practices likely influences PA profitability in a positive way. As soil quality and weather factors also
affect profit ratings, it would be beneficial to compare and demonstrate profitability potential of various PA

technologies on a regional basis and tailor the promotion efforts to farmers most likely to benefit from them.

1. Introduction

The introduction of PA technologies led to a paradigm shift in the
farming sector as they address the heterogeneities of the field and enable
informed site-specific management decisions (Aubert et al., 2012). By
accounting for the spatial and temporal variability, PA has the potential
to contribute to the agriculture sector in terms of improving farming
efficiency, increasing crop production, enhancing economic viability,
and reducing environmental problems (Finger et al., 2019; Khanna,
2021).

PA technologies can be divided into several categories. Georefer-
encing technologies, using global positioning system (GPS) or global
navigation satellite system (GNSS), allow the use of guidance systems
and controlled traffic. They are also referred to as embodied-knowledge
technologies, or automated technologies, as no additional skills are
required to use them. By locating positions of interest accurately and
avoiding overlaps and skips, georeferencing technologies generate

* Corresponding author.
E-mail address: tong.wang@sdstate.edu (T. Wang).

https://doi.org/10.1016/j.ecolecon.2023.107950

immediate benefits to farmers in saving input cost and reducing work
time (Tey and Brindal, 2012).

In contrast to the embodied-knowledge technologies, information
intensive technologies, or data technologies, require additional skills or
training to be utilized effectively. Information intensive technologies
comprise diagnosis technologies and application tools (Nowak, 2021).
Diagnostic technologies, including sensors, satellite images, unmanned
aerial vehicles (UAVs), and yield monitors, gather farm information
using different technologies at various scales during the growing and
harvesting period. Application tools, also referred to as variable rate
technologies (VRT), enable site-specific management responses based
on information gathered from diagnostic technologies. Through
tailoring input usage to crop needs, VRTs also provide environmental
benefits. For example, variable rate (VR) fertilizer application helps
lower nitrate in groundwater and downstream water sources, thereby
reducing agricultural non-point source pollution (Biermacher et al.,
2009).
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Adoption rates vary across PA technologies. While technologies
under the embodied-knowledge technologies are adopted rapidly,
adoption rates of information intensive technologies remain relatively
low (Lowenberg-DeBoer and Erickson, 2019; McFadden et al., 2022a).
The low adoption rates could be due to a sequential adoption pattern
(Griffin et al., 2017). While some farmers use diagnostic tools to collect
data, not all use their collected data to facilitate management decisions
(Thompson et al., 2021). Furthermore, PA tools require time to learn and
complexities associated with information intensive technologies may
pose a constraint for adoption (Miller et al., 2019).

Most importantly, farmers’ PA adoption and investment decisions
hinge on profitability (Batte and Arnholt, 2003; Adrian et al., 2005; Tey
and Brindal, 2012). Uncertainty in profitability, compounded by high
costs and feasibility concerns could dampen farmers’ desire to adopt
(Tey and Brindal, 2012). Therefore, knowledge about the economic
implications of PA adoption is of paramount importance, especially
under the circumstances of narrowing crop margins. To enhance PA
adoption rate and ensure long-term farm sustainability, it is important
for producers to gain a better understanding of PA induced profit
changes.

Profitability is one of the most studied dimensions of PA for row
crops, and PA usage can boost profit through reduced cost, increased
productivity or both (McFadden et al., 2022a, 2022b; McFadden et al.,
2023). However, there is a lack of consensus among existing literature
on how PA affects farm profitability. On the positive side, most research
indicated profit increases associated with PA usage in corn and soybean
production (Griffin et al., 2004). Of the 210 reviewed early studies on PA
profitability, 68% reported benefits from certain PA technologies
(Griffin and Lowenberg-DeBoer, 2005). GPS mapping, guidance systems
and VRTs were found to generate small to moderate positive effects
towards profit in some studies (Schimmelpfennig, 2016, 2018). Yet PA
technologies do not necessarily generate an increase in profitability
(Biermacher et al., 2009). For example, Dhoubhadel (2021) found that
when controlling for the known farm characteristics that influence the
adoption decisions, there is no significant differences in net returns
between adopters and non-adopters of PA.

Economic returns from PA adoption could vary across locations,
fields, farmers, and crops (Khanna and Miao, 2022). While previous
literature has evaluated the economic profitability associated with PA
technology, most studies are case specific, which only focus on one or
two specific technologies and one region. No study has examined factors
that potentially affect the effect of PA adoption on profit change across
farms and regions (Khanna, 2021). Furthermore, differing impacts of
various PA technologies on profitability have received little attention.
This paper intends to fill in these gaps. Our objectives are two-fold: 1) we
will compare adopters’ rated profit changes for a range of PA technol-
ogies; 2) we will study a variety of factors that potentially affect profit
change to understand the source of variance in PA profitability.

The rest of the paper proceeds as follows. In the next section, we
provide a literature review on how different PA technologies contribute
to profit increase. In the three subsequent sections, we describe our
survey procedure as well as selected regions and farms, explanations of
the empirical models, and variables involved in the model estimation.
Then we present our results and discussion section followed by the
conclusions.

2. Profit increase potential for different precision agriculture
technologies

Convenience is the most likely perceived benefit for georeferencing
technologies (Thompson et al., 2019). The auto-steering and guidance
systems help farmers navigate the field more efficiently and accurately
on the desirable paths (Edge et al., 2018). Such systems can help boost
profitability by increasing the accuracy in placement of the inputs
through eliminating overlaps and skips, as well as reducing machinery
costs due to enhancement in machinery field capacity (Shockley et al.,
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2011). Complementary to auto-steering and guidance system, automatic
section control (ASC) improves input use efficiency and saves input cost
by automatically turning off sections, nozzles, and rows on the agri-
cultural sprayers and planters in areas that inputs have been previously
applied or in areas designated as non-suitable for crop production
(Shockley et al., 2012; Edge et al., 2018). The input cost savings from
ASC adoption were evaluated and a higher profit increase potential
associated with ASC was achieved in smaller and more irregularly sha-
ped fields (Shockley et al., 2012; Velandia et al., 2013). Greatest in-
crease in net returns were found when the ASC is used in combination
with the guidance systems (Smith et al., 2013). Such profit increase is
due to the more efficient use of inputs, thus farmers can see greater
benefit if the input costs increase (Smith et al., 2013; Velandia et al.,
2013).

VRTs facilitate input applications at heterogenous rates across
different locations of the field. The input rates from nozzles or feeders
can be adjusted by controllers using a computer program (Schimmelp-
fennig, 2016). Findings of Thompson et al. (2019) indicate that yield
improvement and cost savings were the most perceived benefits for VR
fertilizer application. Field characteristics, such as heterogeneity of soil
conditions and spatial clustering of soil types, could affect the economic
benefits of VRT (Spati et al., 2021). Input costs will also affect the eco-
nomic benefits from PA technologies. As the seed and fertilizer costs
continue to rise, the PA technologies that are associated with input cost
savings, such as ASC and VRTs, will become more attractive to farmers
(Velandia et al., 2013). In addition, the profitability increases associated
with PA usage are not limited to input savings. For example, VRTs could
also generate price premiums due to improved crop quality, such as
increased protein content in wheat (Karatay and Meyer-Aurich, 2020).

Data collection and interpretation are the prerequisites for VRT
implementation. Therefore, the resolution or accuracy of the data will
affect the efficiency of VRTs. Remote sensing information is useful in
detecting nutrient deficiencies, insect and weed issues, soil water de-
ficiencies or excesses in various locations of the field (Tenkorang and
Lowenberg-DeBoer, 2008). Recent improvements in remote sensing,
such as satellite and unmanned aerial vehicle (UAV) remote sensing, are
expected to increase VRT efficiency as well as the farm profitability
(Spati et al., 2021).

Satellite imagery provides reliable high-resolution data obtained at
relatively low or even no cost but may incur further costs in processing
and creating prescription maps (Spati et al., 2021). Furthermore, its
availability is contingent on weather conditions and only has periodic
coverage (Zhang and Kovacs, 2012). The use of UAVs or drone-based
remote sensing in PA sector has exponentially increased in the last
decade (Maes and Steppe, 2019). Compared to satellite imagery, UAV
remote sensing offers higher temporal and spatial resolution and is less
affected by weather conditions (Zhang and Kovacs, 2012; Maes and
Steppe, 2019). Other benefits of UAV remote sensing include fast set-up
time, and low acquisition and maintenance costs (Maddikunta et al.,
2021).

Different PA technologies adopted by farmers over time may com-
plement each other and the cumulative benefit could be well beyond the
cost savings and efficiency gains of an individual technology. Farmers
can also reap additional profit due to increased value from differentiated
production and enhanced farm value (Boehlje and Langemeier, 2021).
Furthermore, the value of PA could potentially stem from reduced down
time, better capacity utilization, and reduced risk of yield loss from
weather events.

3. Survey description

We conducted a farmer survey during July-September 2021 to better
understand the adoption status of PA technologies and conservation
practices, as well as the benefits and challenges farmers may have
encountered when using PA technologies. Our survey contains five
sections and 34 questions, which requires about 15-20 min to complete.
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The answers of respondents are kept confidential and are not linked with
their names. The survey covered four states along the western margins of
the U.S. Midwest, namely North Dakota, South Dakota, Minnesota, and
Nebraska. Agricultural production is the major contributor to the re-
gion’s economy.

In North Dakota and South Dakota, we selected counties east of the
Missouri River to focus on the major corn planting regions. Seven
counties in the northwestern North Dakota were excluded as they are
more intensive in wheat production, but less intensive in corn-soybean
rotation. We also excluded the northeast and southeast regions in Min-
nesota, which are primarily covered by forest and dairy silage/hay
respectively. In Nebraska, we excluded the Northwest, North Central
and Southwest regions, which contain the Sand Hills area with limited
land suitable for crop cultivation purpose.

Large investment required by PA technologies in capital and learning
time discourages PA adoption on small farms (Adrian et al., 2005;
Pierpaoli et al.,, 2013; Lambert et al., 2015; Tamirat et al., 2017).
Therefore, we use the screening criterion that each farm chosen grew at
least 100 acres of corn. We purchased farmer mailing addresses from
Dynata (dynata.com) and our mailing sample consists of contact infor-
mation for 1500 randomly selected farmers in each state (so 6000
farmers in total). The farmer number selected in each county is pro-
portional to the number of total eligible corn farmers in the county. The
number of farms for each selected county is displayed in Fig. 1.

Based on the modified Tailored Design Method (Dillman et al.,
2014), the 6000 operations were contacted up to four times. In the first
wave, an advance letter was sent with a link to answer the questionnaire
online. In the second wave, those who did not respond were then mailed
the paper questionnaires with prepaid return envelopes. We sent a
reminder postcard in the third wave, and then a second copy of the paper
survey and pre-paid envelopes in the fourth wave. To enhance response
rates, a $2 bill was sent with the advance letter to all 6000 farmers
regardless of their response status. Furthermore, survey respondents
were also offered the chance to win one of the ten $100 gift cards. Out of
6000 addresses, 101 were non-deliverable and 426 addressees indicated

Number of farmers selected
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they were no longer farming. We received 1119 responses out of 5473
eligible addresses, indicating a response rate of 20.4%. Out of all survey
respondents, 25.9%, 19.8%, 31.2% and 23.1% are from South Dakota,
North Dakota, Minnesota, and Nebraska, respectively.

To capture the potential effects of weather and soil characteristics on
PA profits, we merged the farmer survey responses with the county-level
weather data from Parameter-elevation Regressions on Independent
Slopes Model (PRISM) and soil information from gridded Soil Survey
Geographic (g§SSURGO) and the Soil Survey Geographic (SSURGO) da-
tabases supplied by NRCS. We purchased the latitude and longitude
coordinates for the largest crop land unit (CLU) associated with each
farm and created 1-km buffer for each CLU with average soil variable
information calculated.

4. Empirical model

The empirical model was developed to understand factors that affect
adopters’ views towards PA profitability. Unlike some studies, we did
not compare the net revenues of adopters against those of non-adopters
and evaluate the effect of adoption on profitability. Instead, we asked
how adopters rate their profit change after adopting the listed PA
technologies with six categories provided (‘Reduced by >10%’,
‘Reduced by 5-10%’, ‘Little change (within 5%)’, ‘Increased by 5-10%’,
‘Increased by >10% and ‘No idea’). In this way, adopters’ answers
directly reflect their views about the factual profit changes after
adopting each of the listed PA technologies. Non-adopters were
excluded from the modeling sample as their views of profit changes were
perceived as counterfactual. We also excluded the ‘no idea’ category
from the analysis due to its non-ordinal nature. It is worth noting that
our dependent variables are essentially the treatment effects on the
treated (ATT) in standard discrete choice models. Unlike some studies
who used profits reported by non-adopters and adopters to represent
profits before and after adoption, our dependent variables capture per-
centage of profit changes rated directly by adopters when comparing
their own profits before and after adoption, thereby incurring no

Fig. 1. Number of farmers surveyed in each selected county for 2021 Midwest farmer survey (Total sample size: 6000).
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selection bias to be treated.

The dependent variables of our regression models are the adopter
rated profit changes following adoption of different PA technologies in
five ordinal categories (‘Reduced by >10%’, ‘Reduced by 5-10%’, ‘Little
change (within 5%)’, ‘Increased by 5-10%’ and ‘Increased by >10%’).
These dependent variables follow the structure of censoring data as we
only know the certain intervals they fall in but not their exact values.
Censoring data modeling, also referred to as survival analysis, was first
used in the medical research to process death or failure data. Later, it
was expanded to analyze time intervals such as unemployment duration
in labor economics (Ganjali and Baghfalaki, 2012). Recently it was also
used to analyze willingness to pay (WTP) intervals and profit change
intervals from survey data (e.g., Jeffcoat et al., 2012; Wang et al., 2020;
Wang et al., 2021).

Interval censored data regression model, also referred to as interval
regression model, can be treated as an extension of the Tobin model
(Amemiya, 1973; Peto, 1973). The econometric specification of our in-
terval regression model was:

Y, = Xf+ Ui (k=1,-8) (@)

where the subscript k stands for the regression equation number. In
total, we have eight regression equations with adopter rated profit
changes from adopting eight different PA technologies as dependent
variables.

Y, is the variable on the rated profit changes from adopting the Kkt
PA technology, which fall within one of the five intervals: (i) less than
negative 10%, (ii) between negative 10% and negative 5%, (iii) between
negative 5% and 5%, (iv) between 5% and 10%, and (v) above 10%. X}
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is the set of independent variables, with their meanings explained in
Table 1, g, is the corresponding coefficient vector, and Uy is the error
term with mean 0 and variance o2.

5. Data description

We asked farmers to rate their profit change after adopting each of
the listed PA technologies, which include two geo-referencing technol-
ogies (auto-steering and ASC), two intra-field diagnosis technologies
(satellite imagery and UAV remote sensing), and four application tech-
nologies (VR fertilizer, VR seed, VR pesticide and VR irrigation). Six
options on profit change were provided, which included five options of
rated profit change (‘Reduced by >10%’, ‘Reduced by 5-10%’, ‘Little
change (within 5%)’, ‘Increased by 5-10%’ and ‘Increased by >10%).
The sixth option (‘no idea’) was provided to accommodate respondents
not aware of the degree of profit change yet. The dependent variables
included in the models are adopters rated profit changes after adopting
eight PA technologies.

The description of explanatory variables used in the interval
regression models is provided in Table 1. We divided those explanatory
variables into five categories, farm characteristics and management,
farmer characteristics, information sources, farm soil characteristics,
and weather and regional factors. For farm characteristics and man-
agement, we included cropland area, ownership, and conservation
practice. Most studies found larger farms are more likely to adopt PA
technologies (Tamirat et al., 2017; Schimmelpfennig and Lowenberg-
DeBoer, 2020; Shang et al., 2021). Farm size was also found to influ-
ence the effects of various PA technologies on farm profit (Shockley

Table 1
Description of explanatory variables used in the interval regression models.
Category Variable Description N Mean Min Max
(Std.
Dev.)
Farm Characteristics Cropland acre Total area of cropland (in 1000 acres) 1056  1.419 0.002 16
and Management (1.608)
Ownership Proportion of owned cropland acres 1056  0.528 0 1
(0.329)
Conservation Whether producers use conservation tillage and/or cover crops (0 = use none of 1080  1.208 0 2
Practice the practice; 1 = use one of the practices; 2 = use both practices) (0.742)
Farmer Characteristics Silent generation Farmers born on or before 1945 1078  0.082 0 1
(0.274)
Baby boomer Farmers born between 1946 and 1964 1078  0.564 0 1
(0.496)
Gen X Farmers born between 1965 and 1980 1078  0.240 0 1
(0.427)
Millennial and Gen Farmers born on or after 1981 1078 0.114 0 1
Z (0.318)
Education Highest education level completed (1 = ‘High school or less’; 2 = ‘Some college, 1095  2.089 1 4
technical school’; 3 = ‘4-year college degree’; 4 = ‘Advanced degree’) (0.827)
Information sources Agricultural Importance of agricultural consultants when making PA decisions (1 = ‘Not 1074  3.061 1 5
consultants important’; 2 = ‘Slightly important’; 3 = ‘Somewhat important’; 4 = ‘Very (1.239)
important’; 5 = ‘Extremely Important’)
Machinery dealers Importance of machinery dealers when making PA decisions (1 = ‘Notimportant’; 1074  3.130 1 5
2 = ‘Slightly important’; 3 = ‘Somewhat important’; 4 = ‘Very important’; (1.246)
5 = ‘Extremely Important’)
Farm soil characteristics ~ Highly erodible Percentage of cropland that is highly erodible land (1 = ‘0%’; 2 = ‘1-5%’; 3 = 1077  2.316 1 6
land (HEL) ‘6-10%’; 4 = ‘11-20%’; 5 = ‘21-30%’; 6 = ‘>30%") (1.554)
Saline/sodic Percentage of cropland that has saline or sodic conditions (1 = ‘0%’; 2 = ‘1-5%’; 1034 2.001 1 6
conditions 3=6-10%"; 4 = ‘11-20%’; 5 = ‘21-30%’; 6 = >30%") (1.159)
Perceived farm soil View on ‘Not sure whether soil conditions on my farm will benefit from PA’ (1 = 1073  2.809 1 5
conditions ‘Strongly disagree’; 2 = ‘Disagree’; 3 = ‘Neutral’; 4 = ‘Agree’; 5 = ‘Strongly (0.915)
agree’)
Slope Slope of the field (degree) 1118  2.743 0 15.301
(1.785)
LCC12 Land Capability Class 1 and 2 1118 0.725 0 1
(0.258)
Weather factors Precipitation 30-year average precipitation in millimeter (mm) (May-September) 1119  452.339 329.314  589.121
(60.777)
Temperature 30-year average temperature in Celsius (May-September) 1119 18.793 15.589 21.616
(1.273)
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et al., 2012; Velandia et al., 2013; Schimmelpfennig, 2016; Spati et al.,
2021; McFadden et al., 2023). Thus, we included the cropland area
variable to find the potential relationship between farm size and PA
induced profit change. Ownership variable captures the percentage of
owned cropland acres to total cropland acres. As land ownership ensures
multi-year utilization of spatial data collected through PA technologies
(Daberkow and McBride, 1998), it could enhance data interpretation
and therefore positively affect profitability. Furthermore, positive cor-
relation was also found between farmers’ adoption status of PA and
conservation practices (Schimmelpfennig, 2018; Kolady and Van Der
Sluis, 2021). Therefore, we included conservation practice, which in-
dicates producers’ adoption status of no-till and cover crops, as an
explanatory variable in the model to investigate their potential com-
plementary effects towards PA profitability. In addition, it could take
multiple years before PA technologies start to generate positive agro-
nomic and economic benefits (Griffin, 2016). To capture profit change
caused by different durations of PA usage, we included three dummy
variables, namely 3-5 years, 6-10 years, and 10+ years, with <3 years
as the baseline. Note that usage duration distributions are demonstrated
in Fig. 2, as they vary across different PA technologies.

Among farmer characteristic variables, age plays an ambiguous role
in PA usage decisions. Most literature findings show younger farmers are
more likely to adopt PA technologies (Daberkow and McBride, 2003;
Nair et al., 2011; D’Antoni et al., 2012; Tey and Brindal, 2012). This is
likely because younger farmers are more technology-oriented and have
longer planning horizons (Larson et al., 2008). However, older farmers
generally have more farming experience and skills, thus are more
capable at information interpretation (Vecchio et al., 2022). Following
the examples of Griffin et al. (2020) and Ofori et al. (2020), we cate-
gorized farmers into four categories based on their birth years. Specif-
ically, those who were born on or before 1945 is referred to as the Silent
Generation, those born between 1946 and 1964 as Baby Boomers, those
born between 1965 and 1980 as Generation X, and those born on or after
1981 as Millennial. There are also seven respondents born after 1996
that belong to Generation Z, whom we merged with the Millennial due

Auto-steering and guidance 24.4 0.0 6.2

Automatic section control 40.1

Satellite/aerial imagery 42.1

UAV/drone imagery
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to the small number of respondents. Possibly due to the complex nature
of information intensive PA technologies, education has been found to
be positively related to PA adoption decisions (Khanna, 2001; Roberts
etal., 2002; Schimmelpfennig and Ebel, 2016). Therefore, investment in
human capital through education could equip farmers with more ca-
pacity to learn and efficiently use these technologies, which may in re-
turn enhance PA profitability.

Regarding the importance of information sources, we examined the
role of agricultural consultants and machinery dealers in adopters’
perceived benefits. We hypothesize that adopters who consider those
information sources as more important in making PA use decisions are
more likely to experience profit increase. Due to the complexities of PA
technologies, farmers generally need advice from external sources to
best utilize them. The use of consultant service was found to be posi-
tively associated with yield map and VR fertilizer adoption (Robertson
et al., 2012). While farmers have minimal reliance on expert guidance
towards embodied knowledge PA technologies, they heavily rely on
agricultural consultant in information intensive PA technologies for data
interpretation, zone delineation and VR map generation. Local ma-
chinery dealers also provide farmers with a source of information on
issues such as cost, service, as well as compatibility between components
and brands (Andrade-Sanchez and Heun, 2010).

Soil quality and variability could affect the effectiveness of the
technologies, and therefore the economic outcomes from adoption (Isik
and Khanna, 2002; Isgin et al., 2008; Shang et al., 2021). Variation in
topsoil depth, soil pH values, and pest infestation results in profitability
change from VRT adoption (Wang et al., 2003). Compared to farms with
higher soil quality, farms with lower soil quality are likely to be asso-
ciated with higher gains in productivity due to adoption of soil testing
and VRT (Khanna, 2021). As VRT allows varying the timing and rate of
application in a targeted manner, it will particularly benefit the low-
quality soil and soil with sufficient spatial variability (Khanna, 2021).
To capture the soil quality and variation factors, we included five vari-
ables. Of those, three variables are survey data provided by farmers
while two are from the public data source. Specifically, we asked farmers
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Fig. 2. Producer usage status of various PA technologies, based on 2021 Midwest farmer survey (Unit: percentage).
Note: The total number of responses for adoption status are 1099, 1088, 1087, 1091, 1087, 1084, 1085 and 1076 for auto-steering and guidance, automatic section
control, satellite/aerial imagery, unmanned aerial vehicle (UAV)/drone imagery, variable rate (VR) fertilizer, seed, pesticide and irrigation application respectively.
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about the percentages of their cropland under highly erodible condi-
tions, percentages under saline/sodic conditions, as well as their
agreement towards the statement ‘not sure whether soil conditions on
my farm will benefit from PA’ (Table 1). The publicly available data that
were used to represent soil quality were average land slope and per-
centage of soil belonging to land capability class (LCC) I and II. The
former captures the degree of variability in the terrain and the latter
characterizes the land suitability to produce cultivated crops. To capture
the weather and regional factors, we collected average annual precipi-
tation and temperature for the growing season (May to September) at
the county level over the last 30 years (from 1991 to 2020).

6. Results and discussion
6.1. Adoption rates and usage years

Among all PA technologies, auto-steering and guidance has the
highest adoption rate (76%) and the highest percentage (47%) of
adopters (among all adopters) who have used the technology for >10
years. Most adopters of georeferencing technologies have used them for
>6 years, with only 8% and 13% of farmers respectively who have used
auto-steering and auto section control for <3 years (Fig. 2). These
findings indicate that while the georeferencing technologies currently
have the highest adoption rates among all PA technologies, their
adoption rates stagnated in recent years.

Of the diagnostic technologies, nearly 60% farmers have adopted
satellite imagery, with adopters evenly distributed across the usage
duration provided. As a new technology, the adoption rate of UAV/
drone imagery is relatively low at 26% with only 5% percent of adopters
having >10 years of usage experience and 57% of adopters with <3
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years of experience. A 2018 survey carried out in Missouri about 3 years
prior to our survey also found only 8% of the respondents were UAV
adopters (Skevas and Kalaitzandonakes, 2020). This indicates a sub-
stantial increase in UAV/drone imagery adoption rate in recent years.

Among the VRTs, the top two most adopted VR technologies are VR
fertilizer (54%) and VR seed (42%) applications. In comparison, the
adoption rates of VR pesticide and VR irrigation application are
considerably lower at 14% and 7% respectively. One possible reason
underlying the low adoption rate of VR pesticide is that pesticide only
constitutes a small percentage of total input costs, therefore cost savings
from VR pesticide adoption is not likely comparable to those of VR
fertilizer and seeding. In our study region, most agricultural land is non-
irrigated, which explains the lowest adoption rate of VR irrigation. For
all VR technologies, the percentages of adopters who have used it for <6
years and those who used it for >6 years are similar, which indicates
that the adoption rates of the VRTs have been steadily increasing over
the years.

6.2. Profit change following PA adoption

Fig. 3 displays the profit changes following PA adoption. For each of
the eight listed PA technologies, we documented the rated profit change
by adopters and the perceived profit change by non-adopters.

For each of the listed PA technologies, approximately 60% of non-
adopters indicated they had ‘no idea’, ranging from 56% for VR seed
application to 63% for VR irrigation application (Fig. 3). This is not
surprising since non-adopters have no direct hands-on knowledge on PA
profitability, most of them likely have not received such information
from indirect sources such as university extension and other farmers, or
that they could not link such information with their own farms and
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Fig. 3. Producer rated/perceived profit change after adopting various PA technologies, by adoption status.
Note: The total number of responses for profit change are 1068, 1056, 1044, 1035, 1054, 1037, 1044, and 1027 for auto-steering and guidance, automatic section
control, satellite/aerial imagery, unmanned aerial vehicle (UAV)/drone imagery, variable rate (VR) fertilizer, seed, pesticide and irrigation application respectively.
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regions due to the scarcity and case-specific research in this regard. This
highlighted the need for a better understanding of PA generated profit
change from adopters’ experience over regions with different farm, soil,
and weather characteristics.

Among adopters, only about 10% indicated an unawareness of the
profitability towards auto-steering and guidance, automatic section
control, VR fertilizer and seeding applications. Adopters are more likely
to have no idea towards profitability of diagnostic PA technologies (28%
for satellite imagery and 24% for UAV/drone remote sensing), as well as
VR irrigation (26%) and pesticide (20%) technologies. Diagnostic
technologies increase farm profit through increased VRT efficiency, it is
therefore hard for farmers to separate their effects on profit. A break-
down by their years of adoption reveals that for all technologies,
adopters who used it for <3 years were more likely to have no idea about
the technology generated profit change (Table 2). As adopters accu-
mulate more experience and data support over the years, they gain more
understanding about the effect of PA adoption on their profit.

The top three PA technologies rated by most adopters that achieved
at least a 5% increase in profitability are VR fertilizer application (72%),
VR seed application (68%), and automatic section control (66%).
Interestingly, the top three technologies perceived by most non-adopters
as achieving at least a 5% increase in profitability coincide with the
ratings of adopters, except that percentages of non-adopters are much
lower: VR seed application (19%), VR fertilizer application (13%), and
automatic section control (13%). The correspondence between non-
adopters and adopters’ answers towards the top three most profitable
technologies indicate the potential influence of adopters’ opinions to-
wards the perceptions of some non-adopters.

6.3. Summary statistics of explanatory variables

Table 1 also presents the summary statistics for all the modeled
variables based on responses from all farmers. The cropland area aver-
aged 1419 acres across all four states. To check the representativeness of

Ecological Economics 213 (2023) 107950

our survey sample, we compared the survey data with agricultural
census data regarding farm size under different tenure status, using t-test
(Table 3). Overall, the average farm sizes for NE and SD, at 1106 and
1566 respectively, are not statistically different from the land acre
values of 1000 and 1469 acres reported by the 2022 State Agriculture
Overview for these two states. Yet farm sizes for MN and ND are
considerably larger than the census data at a statistically difference level
of 1%. A breakdown of farms by tenure status further reveals that for the
full owner category, the survey average sizes are statistically higher than
the census averages for MN and ND. For part owners, which represent
the majority of survey sample, our survey average farm sizes are sta-
tistically smaller than the census averages for NE and SD, yet farm size
for MN is statistically smaller than the census average. No statistical
difference in farm acres is observed for the tenant category for all
studied states. The average number of conservation practices is 1.208,
which means that on average farmers have adopted at least one practice
out of conservation tillage and cover crops.

Regarding generation categories, Table 1 shows that the majority
(56.4%) of our respondents are baby boomers, followed by Generation X
(24.0%). The rest categories, Millennial and Generation Z (11.4%) and
Silent Generation (8.2%), together account for <20% of the re-
spondents. Compared to the Kansas farm operators as of 2018 (Griffin
et al., 2020), the percentage of the Silent Generation operators, as
indicated in our 2021 survey, has declined by about 10%, indicating that
many of the Silent Generation have exited farm management. Mean-
while, the percentage of Generation X has slightly increased. Compared
to Griffin et al. (2020), we also found more Baby Boomers responding to
our survey, which probably reflects a regional difference. Similar to
Ofori et al. (2020), we also set Baby Boomer as a reference group in the
regression models as most farmers belong to this generation. The
average value for education is 2.089, implying that on average farmers
have completed some college or technical school. The average values for
agricultural consultants and machinery dealers are 3.061 and 3.130
respectively, indicating that both sources are considered by farmers as

Table 2
Adopter rated profit change due to PA adoption, by usage years (Unit: percentage).
Reduced by >10% Reduced by 5-10% Within 5% Increased by 5-10% Increased by >10% No idea
< 3 years 2.9 8.8 36.8 25.0 5.9 20.6
Auto-steering and guidance 3-5 years 0.0 1.6 43.3 39.4 7.1 8.7
6-10 years 0.8 1.6 30.9 41.1 16.7 8.9
10+ years 0.5 1.6 30.2 38.1 22.3 7.4
< 3 years 0.0 2.4 32.9 39.0 4.9 20.7
Automatic section control 3-5 years 0.8 4.8 29.6 40.8 15.2 8.8
6-10 years 0.8 2.5 15.7 52.9 21.5 6.6
10+ years 1.6 2.1 18.9 39.8 33.0 4.7
< 3 years 0.8 0.8 43.9 15.9 3.0 35.6
Satellite/aerial imagery 3-5 years 1.7 1.1 51.4 13.8 3.3 28.7
6-10 years 1.9 1.2 47.2 19.3 3.7 26.7
10+ years 1.4 0.0 37.9 24.3 14.3 22.1
< 3 years 1.3 1.3 58.1 10.3 0.7 28.4
. 3-5 years 2.7 4.1 70.3 8.1 0.0 14.9
UAV/drone imagery 6-10 years 0.0 2.9 471 235 2.9 23.5
10+ years 0.0 0.0 57.1 21.4 0.0 21.4
< 3 years 1.7 2.5 21.9 44.5 11.8 17.7
- s 3-5 years 0.0 3.4 19.2 48.6 21.2 7.5
VR fertilizer application 6-10 years 1.2 0.6 12.1 455 285 12.1
10+ years 0.7 1.4 9.6 47.3 35.6 5.5
< 3 years 0.0 1.2 25.6 45.4 7.0 20.9
L 3-5 years 0.0 1.5 27.7 49.2 13.1 8.5
VR seed application 6-10 years 0.8 0.8 13.9 49.2 23.1 123
10+ years 1.0 1.0 13.0 50.0 31.0 4.0
< 3 years 0.0 7.3 24.4 24.4 14.6 29.3
VR pesticide application 3-5 years 0.0 0.0 26.5 50.0 8.8 14.7
6-10 years 0.0 0.0 16.7 36.1 22.2 25.0
10+ years 2.4 2.4 17.1 39.0 26.8 12.2
< 3 years 0.0 5.6 11.1 27.8 11.1 44.4
VR irrigation application 3-5 years 0.0 6.3 438 438 0.0 6.3
6-10 years 0.0 0.0 28.0 40.0 4.0 28.0
10+ years 0.0 0.0 11.1 11.1 50.0 27.8
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Table 3
Comparison of survey responses with census data regarding farm acres.
State Full owner Part owner Tenant Overall
Census Survey Census Survey Census Survey Census Survey
MN 144 432%%* 788 1043*** 395 616 377 902%**
NE 452 512 1760 1295%** 819 681 1000 1106
ND 464 846%** 2733 2590 1124 1902 1512 2416%**
SD 664 730 2542 1782%** 1110 1440 1469 1566

Note: Census values for land acres for full owner, part owner and tenant are from 2017 Census of Agriculture. The census value for overall land acres are from 2022
State Agriculture Overview. *, **, and *** indicates that survey data is significantly different from census data at p < 0.10, p < 0.05, and p < 0.01 based on t-test.

somewhat important in making PA decisions.

The average values of highly erodible land and saline/sodic condi-
tions are 2.316 and 2.001 respectively, which imply that on average
farmers have between 1 and 5% of their croplands with such land
conditions. Perceived farm soil conditions averaged 2.809, which in-
dicates that on average farmers shows disagreement towards the state-
ment that “not sure whether soil conditions on my farm will benefit from
PA”, or that farmers in general believe their farm soil conditions will
benefit from PA. On average, fields with soil types of LCC I and II take
72.5%, indicating that most of the fields have no or few limitations for
crop cultivation. The land slope in our study ranges from O to 15.301%

with a mean value of 2.743%.

The 30-year county average growing-season precipitation spanned
from 329.314 to 589.121 mm, and the average temperature fell between
15.589 and 21.616C degrees in our study region. Precipitation follows
an east-west declining pattern while the temperature exhibits a south-
north declining gradient. This indicates a great variation in precipita-
tion and temperature, which potentially affects farm productivity and
farmer decision-making.

Table 4
Interval regression estimation results for rated profit change after adoption of various PA practices.
Category Technologies Georeferencing Intra-field diagnosis Application
Variable Auto- ASC Satellite UAV/ VR Fertilizer =~ VR VR Irrigation
steering Imagery Drone Seed
Farm Characteristics and 3-5 years 2.542%* 0.562 —0.634 —0.764 0.754 —0.101 -1.87
Management (0.987) (0.971) (0.785) (0.787) (0.764) (0.754) (2.625)
6-10 years 3.217%%* 1.939%* —0.389 2.803*** 2.036%** 1.284 —1.794
(0.924) (0.892) (0.814) (1.021) (0.766) (0.783) (2.104)
10 + years 3.579%** 2.352%* 2.588%** 2.17 2.547%%* 1.536* 8.148%***
(0.917) (0.929) (0.844) (1.569) (0.822) (0.832) (2.445)
Cropland acre 0.064 —0.029 -0.172 —0.195 —0.027 —-0.125 —0.454*
(0.135) (0.142) (0.142) (0.149) (0.161) (0.142) (0.235)
Ownership —0.245 —1.477 -1.102 0.424 1.984%* 0.051 1.946
(0.768) (0.898) (0.996) (1.241) (0.920) (0.905) (2.906)
Conservation Practices 0.303 0.163 —0.057 —0.238 0.774%* 0.735* -1.279
(0.325) (0.385) (0.420) (0.505) (0.392) (0.391) (1.581)
Farmer Characteristics Silent Generation —0.059 —0.908 1.404 -1.164 —0.333 1.811 3.151
(1.159) (1.359) (1.305) (1.911) (1.236) (1.236) (2.787)
Gen X —0.625 -0.217 —1.282% —1.298 —-0.156 —0.299 1.022
(0.520) (0.596) (0.668) (0.863) (0.642) (0.640) (2.314)
Millennial and Gen Z —0.144 1.381* —1.908** —1.745* —0.004 0.186 —4.711%*
(0.663) (0.770) (0.827) (0.997) (0.788) (0.763) (2.382)
Education 0.12 0.114 0.235 —-0.175 0.455 0.541 0.574
(0.286) (0.327) (0.345) (0.458) (0.331) (0.333) (0.886)
Information Resources Agricultural 0.413* 0.517** 0.837%** 0.34 0.436* 0.545%* —0.81
consultants (0.214) (0.246) (0.275) (0.355) (0.262) (0.256) (0.606)
Machinery dealers 0.724%** 0.594** 0.148 —0.028 0.16 0.585** —-0.378
(0.219) (0.253) (0.273) (0.350) (0.241) (0.264) (0.678)
Soil Characteristics HEL 0.226 0.107 0.068 0.154 0.014 0.072 —1.945%**
(0.173) (0.200) (0.212) (0.293) (0.204) (0.209) (0.531)
Saline/sodic conditions ~ 0.307 0.127 0.231 0.178 0.904%*** 0.344 0.858*
(0.215) (0.244) (0.258) (0.331) (0.273) (0.255) (0.457)
Soil conditions —-0.251 —1.057***  —0.187 -0.277 —0.778%** —1.528*
(0.242) (0.275) (0.283) (0.366) (0.281) (0.280) (0.876)
Slope 0.108 0.437%* —0.053 0.515%* 0.429** —0.008 0.491
(0.165) (0.189) (0.207) (0.236) (0.201) (0.187) (0.493)
LCC12 1.418 —0.641 —0.96 1.712 0.831 -1.37 —9.841%**
(0.991) (1.090) (1.218) (1.463) (1.150) (1.122) (2.659)
Weather Factors Precip —0.004 0.002 —0.005 0.008 0.009* —0.003 0
(0.004) (0.005) (0.005) (0.006) (0.005) (0.005) (0.027)
Temp —0.323 —0.455* 0.069 —0.989***  —0.175 0.099 —-0.93
(0.208) (0.237) (0.252) (0.324) (0.244) (0.245) (0.688)
4.443 10.507** 1.737 13.658** -1.191 1.56 41.092%*
Constant (4.191) (4.834) (5.206) (6.781) (5.189) (5.085) (15.981)
Obs. 626 499 386 185 436 341 46
LR Chi2 74.49 75.00 49.81 41.79 52.34 48.81 56.87
Model Fit Statistics Prob > Chi2 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Note: *, **, and *** represent p < 0.10, p < 0.05, and p < 0.01, respectively. Standard errors are presented in the bracket under each of the estimated values.
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6.4. Interval regression model findings

Table 4 displays the estimation results of eight interval regression
models with adopter rated profit changes for eight PA technologies as
dependent variables. As our dependent variables are the percentage of
change in PA profitability, the estimated coefficient values also stand for
the change in percentage point(s) with the positive value indicating an
increase in percentage points and negative value indicating a decrease,
when the independent variables increase by one unit. Except for VR
pesticide model, all models all have chi-square calculated value greater
than the chi-square critical value at 1% significance level, which means
that the selected variables explain the variation of the rated profit
changes after adoption of PA practices. However, we did not successfully
locate any variable that could explain the variation of profit change for
VR pesticide usage, thus did not display its model estimates in Table 4.

For all seven significant models, we can see that adopters with longer
usage years reap higher profits from the PA technologies. For example,
compared with auto-steering adopters of <3 years (baseline), the profit
change experienced by adopters of 3-5 years, 6-10 years, and 10+ years
increased by 2.542, 3.217 and 3.579 percentage points respectively. For
the rest of PA technologies, we find the profit change rated by adopters
of 3-5 years were not significantly different from those who used for <3
years. Compared to the VR fertilizer adopters of <3 years, the rated
profit change by adopters of 6-10 years and 10+ years increased by
2.036 and 2.547 percentage points respectively. Table 4 findings suggest
a long-period (over 10 years) of profit accruement for VR technologies,
which could be due to a learning effect over time. Factors that enhance
profitability also include improved information and interpretation from
data collection over multiple years, as well as more experience in
managing within-field variability (Castle, 2016). Similarly, we found
that land ownership promotes a positive profit change from VR fertilizer
adoption. Compared to tenant operated farm, full owner reported a
profit increase by 1.984 percentage points, which is likely attributable to
enhanced data interpretation on owned land (Daberkow and McBride,
1998).

Farmers who use conservation practices along with PA practices are
more likely to find VR fertilizer and VR seed applications profitable.
When farmers adopt one of the conservation practices (conservation
tillage or cover crops), the rated change in profitability for VR fertilizer
and seeding will increase by 0.774 and 0.735 percentage points,
respectively. Likewise, the rated profitability change for VR fertilizer
and seeding will increase by 1.548 (0.774 x 2) and 1.470 percentage
points respectively if farmers adopt both conservation practices. This
finding suggests a potential complementary effect between soil conser-
vation practices and VRTs, which helps boost farmers’ profit in VR
fertilizer and seeding applications. PA technologies facilitate the adop-
tion of conservation practices. Schimmelpfennig (2018) pointed out that
PA usage could promote usage of conservation practices such as no till.
As the targeted goals for both PA technologies and conservation prac-
tices are to promote economic sustainability and reduce negative envi-
ronmental impact, farmers aiming to achieve such goals are likely to
adopt them simultaneously.

Regarding the role of generation, we found that the Silent Generation
and Generation X generally share similar views with Baby Boomers on
the profitability of PA technologies. The only exception is the satellite
imagery, which Generation X found less profitable compared to Baby
Boomers. Compared to Baby Boomers, Millennials are less likely to find
remote sensing technologies (satellite and drone) and VR irrigation
profitable, yet more likely to find ASC profitable. Previous literature has
found a negative correlation between age and adoption of high tech-
nologies as younger operators are more willing to embrace innovations
and adopt information technology for farm management (Daberkow and
McBride, 2003; Isgin et al., 2008; D’Antoni et al., 2012; Ofori et al.,
2020). However, younger farmers generally have not accumulated as
much wealth as older farmers (D’ Antoni et al., 2012). Therefore, among
the adopters, older farmers may find PA technologies more profitable. In
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our case, profit change ratings by Millennials in general are not as
positive as Baby Boomers, probably due to their financing burden for PA
investment or service costs.

Farmers who use agricultural consultants and machinery dealers are
more likely to find increase in profitability following adoption of
georeferencing technologies, as well as VR seed technologies. For
example, when the importance level of machinery dealers increases by 1
unit, then the rated profitability change of VR seed technologies will
increase by 0.585 percentage point. In addition, agricultural consultant
plays an important role in boosting farmers’ ratings on profit change
regarding diagnostic technologies (satellite imagery) and VR fertilizer.

Farm soil conditions also play a key role in PA profitability. For
example, profit change in VR irrigation was significantly affected by the
percentage of highly erodible land on the farm. Specifically, when the
percentage of highly erodible land increases by 1 unit (e.g., from 0% to
1-5%), the profit change on VR irrigation will be reduced by 1.945
percentage point. One possible reason for this finding is that irrigation
induced erosion could reduce crop yield potential, especially for highly
erodible land, which will compromise crop productivity and farm profit
(Koluvek et al., 1993).

Similar to Schimmelpfennig and Lowenberg-DeBoer (2020), who
showed VRT are more likely adopted on farms with higher soil vari-
ability, we found variability in saline and sodic conditions positively
influence farmer perceived profit change. Specifically, when the per-
centage of saline and sodic land increases by 1 unit (e.g., from 0% to
1-5%), the profit changes after adoption of VR fertilizer and VR irriga-
tion increased by 0.904 and 0.858 percentage points, respectively.
Evaluation of spatial variability in soil salinity and sodicity is the pre-
requisite for VR technology. Through such information, VRT will help
save input costs (fertilizer and water) through site-specific input appli-
cation and therefore improve farm profitability (Giinal, 2021). With
increased portion of land affected by saline and sodic conditions,
farmers are likely to find site-specific management that optimize input
use more valuable. In contrast, if adopters are more uncertain about
whether their farm conditions will benefit from PA, their ratings on
profit change from the usage of ASC and all VR technologies will be
negatively affected.

As discussed in McFadden et al. (2023), farm operators tend to adjust
inputs accordingly in fields with greater slopes, in alignment with the
zone management concept. We found farmers with steeper sloped fields
more likely to observe profit increases from usage of ASC, drone, VR
fertilizer, and VR irrigation. ASC contributes to more efficient input
usage and helps reduce input cost, thus would be more beneficial for
farms characterized by uneven topology. Similarly, one of the primary
benefits for using drone in agriculture is to access areas that are difficult
to reach, such as steep slopes. Soils on the sloped field are prone to
runoff, especially at the bottom of hill where subsurface flow converges,
which will further result in high nutrient losses (Easton and Petrovic,
2005). Therefore, site-specific usage of fertilizer becomes more neces-
sary on higher sloped land. Uneven field elevation can also result in
varying distribution of soil water content, forming dry zones in high-
elevation portions of the field and ponding in low-elevation portions
(Yari et al., 2017). Therefore, the steeper sloped fields will benefit more
from VR irrigation application.

Table 4 results also indicate that farmers who farm in land with a
higher percentage of LCC I & II are less likely to benefit from the VR
irrigation technology. This finding is consistent with that of Khanna
(2021), which also shows that farms with higher soil quality are less
likely to see productivity gains due to adoption of VRT. This is probably
because higher quality soil provides better growing conditions without
utilizing VR irrigation and therefore lacks room for further productivity
improvement.

Our survey spans crop production areas across four states (Fig. 1) and
provides sufficient differentiations on precipitation (east-west gradient)
and temperature (north-south gradient), which ranges from 329 to 589
mm for growing season precipitation and from 16 to 22C degrees for
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growing season temperature. As precipitation increases, VR fertilizer
usage are rated as more profitable. When saturated with excess precip-
itation, soil will become more prone to runoff (Easton and Petrovic,
2005). Excessive chemical fertilizer that cannot be absorbed by plant
will be left in the soil (Singh et al., 2020). Therefore, the chances for
nutrient losses will increase with higher amount of precipitation and the
washed away fertilizer will end up in water bodies, which result in water
pollution. Therefore, the optimal application of fertilizer using VRT will
be more beneficial in regions with greater precipitation level. We also
found temperature increase negatively affects adopter rated profitability
for ASC and UAV remote sensing, indicating that farmers in regions with
lower temperature are more likely to rate these two technologies as
profitable.

7. Conclusion

While profit is a most important consideration prior to new tech-
nology adoption, most of the non-adopters of different PA technologies
had no idea how their profit would change following adoption, ac-
cording to our survey responses from U.S. farmers in four states along
the western margins of the U.S. Midwest. This highlights the necessity of
investigating adopter rated profit change towards different PA tech-
nologies. Our paper compared adopters’ rated profit changes for a range
of PA technologies across different types of farmers and farms, as well as
regions with heterogeneous soil and weather characteristics, to help
non-adopters gain a better understanding of the potential PA benefit on
their farm, thereby making more educated adoption decisions.

We found adopter rated profit changes due to PA adoption vary
considerably across different PA technologies. The top three most
profitable PA technologies rated by farmers are VR seed application, VR
fertilizer application and automatic section control. About two thirds of
adopters rated that these three technologies achieved at least a 5% in-
crease in profitability. Our results also demonstrate a learning effect for
PA technologies, which means that the profit from PA usage will in-
crease over the years. In comparison to new adopters, more experienced
PA adopters are more likely to see a noticeable change on profit. While
the learning curves for embodied-knowledge technologies such as auto-
steering and guidance systems are generally short, most information
intensive technologies like VRTs have long learning curves and it could
take >10 years to fully reap the benefit. To facilitate PA adoption, it
would be helpful to 1) provide financial support for the first a few years
of adoption and 2) to promote connection opportunities among farmers
so that the long-term adopters of PA technologies could share their
experiences.

We also investigated factors that could potentially affect the ratings
on PA profit change. Usage of conservation practices, such as conser-
vation tillage and cover crops, was found to positively affect adopters’
rated profit change for VR fertilizer and VR seed. This suggests a po-
tential complementary effect between soil conservation practices and
VRTs. Therefore, promoting simultaneous adoption of conservation
practices and PA technologies could help agricultural enterprises better
achieve environmental and economic goals. External information sour-
ces, such as consultants and machinery dealers, also helped adopters
achieve greater profit increase.

Soil conditions and variability were found to play an important role
in PA induced profit change. Specifically, we found that fields with a
higher percentage of erosion and sodic/saline conditions were more
likely to benefit from VR adoption. While farmers with higher soil
quality are more likely to adopt PA due to their higher sales value, the
farmers with lower soil quality are more likely to see a profit increase.
Beyond soil factors, precipitation and temperature conditions also
affected PA profitability. Therefore, profitability of PA technologies may
differ across regions. It would be helpful to evaluate the effectiveness of
different PA technologies based on soil and weather characteristics, and
tailor the promotion efforts accordingly.

Overall, we found the benefit of PA from the profitability perspective
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promising. When compared with the very modest profit increase po-
tential estimated by other research, the more optimistic ratings of PA
profit change by adopters suggested that there could be multiple chan-
nels to reap PA profit. Rising input costs in recent years, further high-
light the importance of using PA technology since its site-specific
management help improve input use efficiency and, in many cases,
reduce input cost.
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