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Abstract
Precision Agriculture (PA) manages field heterogeneities and enables informed site-spe-

cific management. While PA helps improve farming efficiency and profitability, challenges 

prior to and following PA adoption can prevent many farmers from widely using it. This 

paper aims to understand producers’ challenge perceptions using 1119 survey responses 

from U.S. Midwest farmers. The majority (59%) of respondents have adopted at least 

one PA technology, while the minority (14%) had not adopted any PA technologies. Cost 

(equipment and service fee), brand compatibility, and data privacy concerns topped other 

concerns from the average producer’s point of view. Among all producers, 60% regarded 

PA equipment and service fee as too high, followed by 50% who viewed brand compatibil-

ity and data privacy as their major concerns. Producers at more advanced adoption stage 

indicated reduced concerns in most categories. Yet, there were similar concerns towards 

data privacy issue regardless of the adoption status. Furthermore, brand compatibility issue 

is more of a concern for adopters than for non-adopters. Estimation results from partial pro-

portional odds (PPO) models show that factors that frequently affect producers’ perceived 

challenges include adoption status, cropland acres, age, education, information sources, 

farming goals, soil characteristics, and region variables. Findings from this study can aid 

PA stakeholders in identifying target groups, tailoring future development, research, and 

outreach efforts, and ultimately promoting efficient PA usage on a broader scale.
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Introduction

Mechanization of agriculture sector promotes economies of scale but sacrifices farmers’ 

capability to address within-field variability temporally and spatially (Finger et al., 2019; 

Zhang et  al., 2002). The introduction of PA technologies is shifting paradigms within 

farming. First developed in 1980s and commercially available during the 1990s, precision 

agriculture (PA) allows for field management at a much finer scale by addressing hetero-

geneities and enabling informed site-specific management decisions (Aubert et al., 2012; 

Lowenberg-DeBoer, 2015; Mulla, 2013). By accounting for the spatial and temporal vari-

ability, PA contributes towards improving farming efficiency, increasing crop production, 

enhancing economic viability, and reducing environmental problems (Bongiovanni & 

Lowenberg-DeBoer, 2004; Finger et al., 2019; Fountas et al., 2005).

Precision agriculture encompasses a wide array of technologies. Based on the level of 

skills and time required, PA technologies can be divided into two broad categories, embod-

ied-knowledge and information-intensive technologies (Griffin et  al., 2004; Miller et  al., 

2019). While the former (such as auto-steer or yield monitors) requires little additional 

skills, the latter (such as site-specific management) requires technological skills or train-

ing. Information intensive technologies are further divided into diagnostic and application 

technologies (Nowak, 2021). Diagnostic technologies gather farm information at various 

scales, and application technologies, comprising variable rate (VR) fertilizer use, irriga-

tion, pesticide use and seeding, enable site-specific management responses using the gath-

ered information. Precision technologies have both private and public benefits, including 

improved equipment use efficiency, increased yield quantity and quality, decreased fuel 

consumption, reduced greenhouse gas emissions, and improved water quality due to more 

efficient fertilizer and pesticide use (Griffin et al., 2018). Nevertheless, the adoption rates 

of some PA technologies, especially those of application technologies, remained low based 

on reviews of publicly available data (Lowenberg-DeBoer & Erickson, 2019).

Challenges faced by producers, if not addressed, could constrain farmers’ ability to 

adopt and efficiently use PA technologies. Shortly after PA technologies became commer-

cially available to the farmers, Wiebold et al. (1998) identified the main concerns raised by 

adopters and non-adopters in North Central U.S., which included high cost, lack of tech-

nical infrastructure, lack of information for format compatibility and soil suitability, data 

interpretation difficulty, and lack of evidence on PA benefits. Based on a farmer survey in 

western Canada, Steele (2017) found the top four barriers towards PA adoption were price, 

internet speeds, lack of knowledgeable people, and continuously evolving technology. 

Through examining public thoughts via machinery-learning based social media analytics 

tool, a more recent study by Ofori and EI-Gayar (2021) found the most common challenges 

for PA were cost, complexity, data security, and privacy.

Besides farmers’ perspectives, a few papers have also documented the perspectives of 

researchers and dealers about their understanding of PA related challenges faced by pro-

ducers. Among these, Mintert et al. (2016) brought up challenges on lack of knowledge and 

expertise with field input recommendations and appropriate size of management zones and 

soil sampling zones. Through a PA dealer survey, Mitchell et al. (2017) found that deal-

ers perceive farm income constraints and high technology costs as two major barriers that 

prevent their consumers from using or expanding their precision services. Furthermore, 

Mitchell et al. (2020) identified three most important barriers rated by agricultural retailors 

as financial pressure, high PA costs (equipment and service fee), and lack of confidence 

towards agronomic recommendations based on PA data.
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Different farmers could also interpret challenges in distinct ways. For example, when 

compared with the younger generation, older farmers tend to perceive PA usage as more 

challenging as they typically have steeper learning curves, less likely to make large ini-

tial investment, and less likely to use internet for farming purposes (Wiebold et al., 1998). 

Highly educated farmers generally have greater ability to decipher new information, and 

therefore are more likely to adopt information intensive technologies (Larson et al., 2008; 

Paxton et  al., 2011; Weersink et  al., 2018). In addition, farm size likely plays a role on 

farmer perceived cost challenge as larger farms exhibit greater capacity and are in better 

positions to absorb the fixed costs (Daberkow & McBride, 2000; Lambert et  al., 2015; 

Robertson et al., 2012; Tey & Brindal, 2012; Watcharaanantapong et al., 2014). Further-

more, larger farms often have employee(s) responsible for PA technologies to ensure suc-

cessful application, yet smaller farms typically do not have such specialization in human 

resources and view their farm size as an important barrier to precision farming (Balogh 

et al., 2021; Reichardt et al., 2009). Farm resource availability also likely affects the per-

ception of cost challenges, and therefore, may have a significant impact on PA adoption 

decisions (Aubert et al., 2012).

While previous research has ranked potential barriers that affected PA adoption deci-

sions, no study has investigated how these challenges may vary for adopters at different 

adoption stages, and how non-adopters’ views on PA challenges may differ from those of 

adopters. Furthermore, none of the existing studies has analyzed factors that could poten-

tially affect producer views towards PA challenges. This paper intends to fill in these gaps 

using farmer survey information from Midwestern U.S in 2021. The main objectives of 

this paper are: (1) gaining insights towards PA related challenges by comparing views of 

producers under different PA adoption status; and (2) identifying potential factors that sig-

nificantly affect producers’ perceived challenges. Survey sample for this study spans four 

U.S. Midwest states and covers farms under different PA adoption stages and regions with 

diversified soil, climate, and infrastructure conditions, which enables a better understand-

ing of PA challenges faced by a diverse profile of producers and factors that lessen or 

aggravate those challenges.

Challenges faced by farmers towards PA technologies

The adoption of PA technologies involves additional costs, such as initial investment cost, 

annual subscription costs, maintenance, and operating costs (Griffin et  al., 2018). In a 

meta-analysis of PA adoption, perceived profitability was found to be a significant predic-

tor of adoption across studies (Tey & Brindal, 2022). Yet many farmers considered ini-

tial PA costs as too high when compared with returns (Pedersen & Lind, 2017; Weersink 

et al., 2018). The high upfront cost could inhibit adoption, especially for financially con-

strained farmers. Financial factors also pose major constraints to most of the innovative 

firms (Balogh et al., 2021).

Data ownership and privacy concerns pose challenges for farmers. When PA practices 

were first introduced, data generated belonged to farmers. With the launching of the big 

data era, data are aggregated across many farms and can be used in analyses, services, and 

products created without farmer knowledge (Sykuta, 2016). This implies farmers could be 

in a disadvantageous position if they disclose too much information to technology pro-

viders (Linsner et al., 2021). Shang et al. (2021) also highlighted farmer concerns about 

potential misuse of digitally gathered data by commercial service providers. While around 
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40% farmers trusted sharing data with university researchers, cooperatives, and relatives, 

almost a quarter (23%) of farmers indicated that they trusted their data with no one (Castle 

et al., 2015). As use of PA equipment or services often requires producers to agree with 

sharing data, data privacy is a valid concern.

The compatibility of PA technology with existing resources affects ease of use, which 

in turn affects PA adoption. Compatibility, either among different manufacturer brands, or 

between hardware and software, could also be a concern to producers (Pedersen & Lind, 

2017; Reichardt et  al., 2009). Technology not compatible with current practices, equip-

ment or existing software will pose additional challenges for farmers to adopt, especially 

for operations that require expensive equipment and specialized procedures (Aubert et al., 

2012).

A time commitment is also required to learn PA technologies, especially for informa-

tion-intensive technologies that require hidden costs in terms of education and data collec-

tion (Aubert et al., 2012; Griffin et al., 2018; Reichardt et al., 2009; Vecchio et al., 2020). 

Farm operators, with other more prioritized tasks, generally do not have sufficient time to 

learn all the necessary skills (Mitchell et al., 2020). Thus, adoption is typically slow for 

complex technologies, as complexity alone can pose a real barrier, especially if there is 

limited ‘know-how’ support (Pedersen & Lind, 2017; Vecchio et al., 2020). The perceived 

ease of use, therefore, plays a role and ‘prohibitively steep’ learning curves will inhibit PA 

adoption (Sassenrath et al., 2008).

Knowledge affects farmers’ adoption decisions. Successful handling of PA machinery 

and software hinges on good information service and training (Reichardt et  al., 2009). 

Many farmers face difficulties in analyzing and interpreting data, which hinders use of 

data and management decisions based on them (Sørensen et al., 2002; Fountas et al., 2005; 

Reichardt et al., 2009; Castle et al., 2015; Weersink et al., 2018). Additionally, adoption 

can be constrained by poor user experience, limited access to information and technical 

assistance (Zhang et  al., 2021). Moreover, demonstration and exhibition events signifi-

cantly affect farmers’ adoption decisions (Tamirat et al., 2018). Farmers need to see suc-

cessful PA applications on lands like theirs to understand benefits (Balogh et  al., 2021). 

Limited broadband connectivity in some rural areas also poses a barrier to PA adoption 

and restrict the benefits of PA technologies (Whitacre et  al., 2014; Steele, 2017; Griffin 

et al., 2018; Weersink et al., 2018).

Survey description

From July to September in 2021, a mail survey was conducted by researchers in four U.S. 

Midwestern states, namely North Dakota (ND), South Dakota (SD), Minnesota (MN) and 

Nebraska (NE). For each state, counties intensive in corn and soybean production were 

selected. The number of farms selected for each county was proportional to the number of 

total eligible corn farmers in that county. Together, 1500 farmers were randomly selected 

for each state, with 6000 producers in total.

Based on the modified Tailored Design Method, the selected producers were contacted 

up to four times (Dillman et  al., 2014). Specifically, farmers were mailed an advanced 

letter, a paper questionnaire, a reminder postcard and a second copy of the paper ques-

tionnaire for waves 1 to 4 respectively. To enhance survey response rates, a $2 bill was 

enclosed with the advance letter to enhance response rates. Out of 6000 addresses, 101 

were non-deliverable and 426 were no longer farming. Out of 5473 eligible addresses, 
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1119 responses were received with the response rate of 20.4%. Survey responses were gen-

erally well distributed across the targeted region, with only a handful of selected counties 

not represented, predominantly in the northern portion of the surveyed area (Fig. 1).

Data description

In the survey, producers were asked about their views towards potential challenges posed 

by PA technologies. Together, 11 potential challenges were presented, which could be 

divided into four categories: (1) cost concerns; (2) technology concerns; (3) complexity 

concerns; and (4) infrastructure and support concerns (Fig. 2). Under cost concerns, two 

statements included were ‘cost of PA equipment too high’ (abbreviated as ‘Equipment’. 
Variable abbreviations are also provided for other challenges in bracket following each 

statement) and ‘cost of PA service fee too high’ (Service). For technology concerns, farm-

ers’ potential concerns about technology limitations were included, which are ‘lack of 

compatibility among different brands’ (Compatibility) and ‘concerned over data privacy’ 

(Privacy). Two statements included in the complexity concern category are ‘not sure how 

to use PA data effectively’ (Data) and ‘PA technology too time-consuming to learn’ (Time). 

The rest five challenges are infrastructure/support concerns, namely ‘Not sure whether soil 

conditions on my farm will benefit from PA’ (Soil), ‘Limited information about the best 

PA technologies for my farm/region’ (Information), ‘Limited on-farm research and demon-

stration’ (Research), ‘Not confident in prescription maps and agronomic recommendations’ 

(Map) and ‘Lack of strong, reliable internet connectivity’ (Internet). For each statement, 

producers could indicate their views by choosing one of the five options (1 = ‘strongly disa-

gree’, 2 = ‘disagree’, 3 = ‘neutral’, 4 = ‘agree’ and 5 = ‘strongly agree’). Together, 11 per-

ceived challenges as dependent variables developed, as described in Fig. 2.

The explanatory variables that might affect producer perceived challenges are divided 

into six categories, namely farm characteristics and management, farmer character-

istics, management goal, information sources, soil characteristics, and state variables 

Fig. 1  Counties in North Dakota 
(ND), South Dakota (SD), 
Nebraska (NE), and Minnesota 
(MN) with survey responses
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(Table 1). Among the farm characteristics and management category, adoption status, 

cropland area, ownership, and liability were included. To capture the effect of PA adop-

tion status on perceived challenges, producers were grouped based on their usage status 

of PA technologies. Due to the variety of PA technologies, producers cannot be simply 

grouped into adopters and non-adopters of PA technologies. Instead, producers were 

categorized into four different groups, as demonstrated in Table 2. These are (1) non-

adopters, which refers to producers who have not adopted any of the PA technologies; 

(2) entry-level adopters, who adopted at least one of the georeferencing technologies, 

i.e., global positioning system (GPS) and GNSS systems; (3) intermediate-level adop-

ters, which refers to those on top of geo-referencing technologies, have adopted at least 

one of the diagnostic technologies, such as sensors, satellite images, unmanned aerial 

vehicles (UAVs), and yield monitors; and 4) advanced adopters, which adopted tech-

nologies from all three categories of technologies, i.e., geo-referencing, diagnostic, and 

application technologies. It is hypothesized that as producers get more advanced in the 

adoption stage, they will be more established and knowledgeable about the technology 

and therefore will likely encounter less challenges for most of the categories such as 

cost and complexity concerns.

Farm size and land tenure are also included as explanatory variables. Specially, crop-

land area was included to understand whether larger farm size may result in lesser degrees 

of perceived challenge, especially when it comes to the cost concerns. Previous literature 

has demonstrated a positive relationship between farm size and PA adoption status (Shang 

et al., 2021; Tamirat et al., 2018), yet the effect of farm size on perceived PA challenges 

has not been studied. Land tenure was included to see whether farmers perceive greater 

challenges towards PA technologies on rented land. Liability ratio, as calculated by total 

debt divided by total assets value, was also included, mainly to test the hypothesis that due 

to the investment requirement of PA technologies, the producers with a high liability may 

perceive the cost related issues as more challenging. It is a discrete variable, with 1 = ‘0%’, 

2 = ‘1–20%’, 3 = ‘21–40%’, 4 = ‘41–60%’, 5 = ‘61–80%’ and 6 = ‘More than 80%’.

Fig. 2  Average ratings of challenges in four different categories (from 1 = “strongly disagree” to 
5 = “strongly agree”) by adoption status (none to advanced). Note: Letters are used to denote Duncan’s mul-
tiple range test results, where the same letter implies no statistically significant difference at p < 0.05
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Three variables were included under the farmer characteristic category, namely age, 

education, and agricultural major in college. Age could play a twofold role in perceived 

challenges. On one hand, younger farmers are generally more accustomed to and confident 

in learning new technologies, thereby they perceive less challenge regarding the complex-

ity of PA technology.

On the other hand, younger farmers typically have not accumulated sufficient financial 

resources to afford the expensive PA technologies, so they are likely to view PA technology 

as more challenging when it comes to equipment and service costs. Education is expected 

to be negatively related to perceived challenges, especially when it comes to those issues 

under the complexity category, as farmers with higher level of education are more likely to 

possess the skills to learn and efficiently use PA technologies. In addition to general educa-

tion, agriculture related major (e.g., agronomy, animal science, agricultural business) in 

college was included to understand whether specialized education in the agriculture related 

area equips producers with more expertise about the crop production and related skills, 

thus reducing the corresponding challenges associated with PA usage.

Moreover, management goals could also affect farmers’ perceived challenges. Producers 

will likely express more concerns towards PA if they demonstrate less interest or motiva-

tion towards using the technology, and vice versa. For example, if farmers view ‘keeping 

pace with new technology’ as one of their most important farming goals, then it is likely 

that they do not perceive major challenges associated with PA due to their inner desire to 

learn and use the new technologies. On the contrary, those who think PA adoption benefits 

them in a way that it helps attract their kids back to the farm may perceive greater chal-

lenges as they may not be fans of PA technologies themselves.

External information sources and technical assistance may also play an important role 

in reducing or eliminating perceived PA challenges, regarding barriers to data analysis, 

interpretation, and recommendations (Robertson et al., 2012; Tey & Brindal, 2022). The 

role of university extension and machinery dealers, two potential sources that could help 

farmers better utilize PA technologies, were examined in this paper. Extension serves as an 

intermediary between researchers and producers and provides public goods, which include 

reducing technology implementation uncertainty and overcoming barriers to adoption for 

precision farming (Eastwood et  al., 2017). Similarly, machinery dealers could also be a 

source of information when it comes to issues such as compatibility between components 

and brands (Andrade-Sanchez & Heun, 2010). Therefore, farmers who value more about 

those information sources in their decision making are likely to perceive less challenges, 

especially in the categories of complexity and support issues.

The effectiveness of the PA technologies could vary across different soil quality and var-

iability, which in turn could affect the perceived challenges for PA. For example, fields with 

higher spatial variability will be more likely to gain from the adoption of VR technologies, 

Table 2  Producers groupings based on adoption status of precision agriculture technologies

Technologies Adoption status Frequency Percent (%)

Georeferencing Diagnostic Application

Non-adopter 133 13.9

X Entry adopter 65 6.8

X X Intermediate adopter 200 20.8

X X X Advanced adopter 562 58.5
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which allows variation in timing and application rates (Khanna, 2001). Therefore, four 

variables were included to capture the soil characteristics (Table 1). Among those, two of 

them are farmers’ own thoughts about percentages of their cropland that is under highly 

erodible land (HEL), and percentages that has saline/sodic conditions. Furthermore, farmer 

survey responses were complemented with soil information from gridded Soil Survey Geo-

graphic (gSSURGO) and the Soil Survey Geographic (SSURGO) databases. The latitude 

and longitude coordinates for the largest crop land unit (CLU) associated with each farm 

were purchased, and based on which, the average soil variable information was calculated 

for the 1-km buffer of each CLU. Among the publicly available soil variables, average land 

slope was used to capture the degree of variability in the terrain, and the percentage of soil 

under land capability class (LCC) I and II to indicate land suitability for cultivated crops. 

In addition, producers’ challenge perception could vary by region and states, potentially 

due to the differing trust in information sources, various stage of support and infrastructure 

development. To capture the state and regional effects, three states, ND, NE, and MN were 

used as dummy variables with SD serving as a baseline state.

Model description

The empirical model aims to locate potential variables that significantly affect producers’ 

perceived challenges in four different categories, as described in Fig. 3. Five options were 

provided in the survey so that towards each of the listed challenges producers could express 

their degrees of agreement, which are ‘strongly disagree’, ‘disagree’, ‘neutral’, ‘agree’ and 

‘strongly agree’. As demonstrated in Fig. 3, only few respondents (in most cases less than 

Fig. 3  Producers’ rated challenges towards precision agriculture adoption and usage. Note: The total num-
ber of responses for the listed challenges range from 1071 to 1077
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5%) selected ‘strongly disagree’ for the cost and technology concerns, and few respondents 

(in most cases less than 5%) selected ‘strongly agree’ for the complexity and support con-

cerns. Therefore, the ‘strongly disagree’ with the ‘disagree’ category were combined, as 

were the ‘strongly agree’ with the ‘agree’ category. In the regression model, the dependent 

variables take three different values, 1 = ‘disagree or strongly disagree’, 2 = ‘neutral’, and 

3 = ‘agree or strongly agree’.

Due to the ordinal nature of the responses, the ordered logit model is the appropriate 

modeling choice. According to Williams (2006), a generalized ordinal logit (GOL) model 

is specified as follows:

As each challenge variable takes three different values, The GOL model has two sets 

of coefficients, denoted by 𝛽j ( j ∈ {1, 2} ). The parameter 𝛼j denotes the model inter-

cepts, and Xi stands for the vector of explanatory variables. The Brant test was used to 

determine whether the Proportional Odds (PO) assumption held for each of the indi-

vidual explanatory variables, i.e., coefficients are the same across different values of 

j , or 𝛽j = 𝛽 for j ∈ {1, 2} . A series of Wald tests were conducted to check whether PO 

assumptions hold for 18 explanatory variables. Following Bonferroni correction criterion, 

p-value = 0.05/18 = 0.0028 was used instead of a p-value of 0.05. For all 11 models being 

estimated, the PO assumptions are violated by one or more variables. Therefore, for all 11 

challenges, partial proportional odds (PPO) models were used, which allows one or more 

coefficients to differ where PO assumption is violated, while the others are kept the same. 

Following Williams (2016), the PPO model can be specified as:

For a PPO model, the explanatory variables can be divided into two categories: (1) Xi 

stands for the vector of variables that meet the PO assumption for the challenge i model 

and therefore, the same coefficient 𝛽 is estimated across different values of j ; (2) Zi rep-

resents the vector of explanatory variables that violate the PO assumption for challenge i 

model and have different coefficients estimated for different values of j . The PPO models 

were estimated using Stata Software (version 17.1, StataCorp, College Station, TX, USA).

Results and discussion

Perceptions of different challenges

Among the four categories of potential concerns, cost was ranked by most producers as 

their top concern, followed by technology concerns. Of all producers, over 60% of produc-

ers regarded PA equipment and service fee as too high (either agree or strongly agree), 

and about 50% of producers listed lack of compatibility among brands and data privacy as 

their concerns (Fig. 1). Among those, 17.4% of producers strongly agreed that data privacy 

posed a concern for them, which ranked the highest among all the potential challenges, fol-

lowed by PA service cost (16.8%) and equipment cost (16.5%).

(1)P(Yi > j) = g(X𝛽j) =
exp(𝛼j + Xi𝛽j)

1 + exp(𝛼j + Xi𝛽j)
j ∈ {1, 2}.

(2)P(Yi > j) =
exp(𝛼j + Xi𝛽 + Zi𝛽j)

1 + exp(𝛼j + Xi𝛽 + Zi𝛽j)
j ∈ {1, 2}.
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The cost concerns identified in this paper is consistent with that of Steele (2017), which 

found the top PA barrier was price, posing a significant barrier for 40.2% and a barrier for 

36.2% of farmers. Similarly, Mitchell et al. (2020) found that financial pressure and high 

cost of PA services are the top two concerns rated by agri-retailers about their consum-

ers. However, data privacy and brand compatibility concerns have not been identified by 

other research as one of the top concerns, except for the study that is based on social media 

where public thoughts were examined (Ofori and EI-Gayar, 2021). This suggests that chal-

lenges faced by farmers are evolving along with technological development. In this regard, 

dealers/researchers’ views may differ from those of farmers.

Compared to the cost and technology concerns, fewer producers showed agreement with 

complexity concerns. Only less than 5% of producers indicated strong agreement towards 

the statement ‘not sure how to use PA data effectively’, and ‘PA technology too time con-

suming to learn’, with another 28.9% and 22.5% of producers showing agreement towards 

the two statements, respectively. Between the two complexity concerns, more producers 

showed concerns towards the effective use of PA data, rather than the time-consuming side 

of PA technology.

Similarly, for the support and infrastructure concerns, less than 5% of respondents 

showed strong agreement, except for the internet connectivity concern, with which 8.9% 

strongly agreed. The internet posed a constraint for one third of the respondents, who either 

agreed or strongly agreed that there is a lack of strong, reliable internet connectivity for 

them to use PA efficiently. Respondents’ opinion towards internet connectivity concern 

falls evenly under the ‘disagree’, ‘neutral’ and ‘agree’ categories, which indicated disparity 

in internet connection conditions across the study area. Among the other potential concerns 

that fall into the support and infrastructure category, over 30% either agreed or strongly 

agreed with the limitation in on-farm research and demonstration, potentially hampering 

them from utilizing PA.

Of all the provided concerns, least producers indicated agreement with concerns towards 

land suitability and expert opinions. In this regard, most producers (43.7%) indicated disa-

greement (either strongly disagree or disagree) towards ‘not confident in prescription maps 

and agronomic recommendations’, followed by 38.4% of producers disagreeing with ‘not 

sure whether soil conditions on my farm will benefit from PA’. In comparison, least pro-

ducers (6.9%) disagreed with the statement ‘lack of compatibility among different brands’, 

followed by 9.0% of those disagreeing with ‘cost of PA service fee too high’.

Comparison of perceived challenges across different adoption stages

Only 13.9% of the survey respondents indicated that they have not adopted any of the PA 

technologies (Table 2). Among the adopters, many have advanced from the entry level to 

the intermediate level, and the majority have made it to the advanced level. To qualify for 

the intermediate and advanced adopters, producers need to adopt at least one of the inform-

ative intensive technologies.

Results of Fig. 2 indicate that as the adoption level increases, generally the perceived 

challenge level will decrease. For example, the advanced adopters perceived significantly 

less challenge in the cost, complexity, and infrastructure/support concerns. The only excep-

tion occurs with the technology related concerns, as producers with different adoption sta-

tus showed similar concerns towards data privacy, and adopters at different adoption stages 

all expressed more agreement towards the compatibility concerns than the non-adopters. 
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This is reasonable as non-adopters have no experience using PA technologies, therefore, 

many of them do not foresee the type of issues that only become fully revealed after usage.

The top three challenges faced by different producer groups differ. The top two chal-

lenges for non-adopters, entry- and intermediate-adopters are high equipment and service 

cost, followed by data privacy as the third top challenge for non-adopters, and brand com-

patibility as the third top challenge for the other two groups. For the advanced-adopter 

group, the top challenge is lack of compatibility, followed by high service and equipment 

cost. The least important challenges also differ among different groups. For non-adopters 

of any PA technology, the top three least concerned issues are information, internet, and 

soil, all of which belong to the infrastructure/support issues. Similarly, entry-adopters also 

demonstrated the least concerns towards the infrastructure/support issues. This suggests 

that more input towards the local demonstration, information dissemination, and internet 

connection areas are unlikely to address the major concerns faced by non- and entry-adop-

ters, as they are more concerned by the cost.

In comparison to the non- and entry-adopters, the intermediate and advanced adopters 

treated ‘PA technology too time-consuming to learn’ as one of three least important chal-

lenges. Effective utilization of PA data is among the top five challenges for three groups, 

except for the advanced one. This indicates that for producers to invest in application tech-

nologies, they need to be confident with the effective use of the gathered PA data.

Summary statistics of the explanatory variables

Table 3 presents the summary statistics for the explanatory variables included in the PPO 

models. Adoption status varies from 0 = ‘non-adopter’ to 3 = ‘advanced adopter’. A mean 

Table 3  Summary statistics of explanatory variables used in the logit regression models

Category Variable N Mean Std dev Minimum Maximum

Farm characteristics and 
management

Adoption status 961 2.241 1.073 0 3

Cropland area 1056 1.426 1.608 0.002 16

Ownership 1056 0.528 0.329 0 1

Liability 1008 2.383 1.082 1 6

Farmer characteristics Age 1078 58.949 13.017 20 95

Education 1095 1.311 0.463 1 2

Ag major 1090 0.283 0.450 0 1

Personal goal Technology 1083 3.253 0.956 1 5

Kids 1083 3.440 1.252 1 5

Information sources Extension 1067 2.636 1.178 1 5

Machinery dealers 1074 3.130 1.246 1 5

Farm soil characteristics Highly erodible land 1077 2.316 1.554 1 6

Saline/sodic 1034 2.001 1.159 1 6

Slope 1118 2.743 1.785 0 15.3

Land capability class 1 or 2 1118 0.725 0.258 0 1

State ND 1119 0.198 0.399 0 1

NE 1119 0.231 0.421 0 1

MN 1119 0.312 0.463 0 1
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value of 2.241 indicates that on average, the adoption status was between the intermediate 

and advanced stage. The acres of cropland averaged 1426 acres, among which an average 

of 52.8% of the land was owned. The average liability of each farm was 2.383, which lied 

between the ranges of 2 = ‘1–20%’ and 3 = ’21–40%’.

The average age of producers was 59 years, and their education level was, on average, 

1.311, which means that 31% of producers had 4-year college or more advanced degrees. 

Of all respondents, 28.3% indicated that they had completed an agricultural major in col-

lege, such as agronomy, animal science and agricultural business. When it comes to the 

personal goals, the importance of goals ‘keeping pace with new technology’ and ‘getting 

kids into farming’ were rated as 3.253 and 3.440 respectively, both between the ‘somewhat 

important’ and ‘very important’ categories, yet on average the latter goal was regarded as 

slightly more important than the former.

On the importance of information sources, the rating for university extension was 2.636, 

which exceeded the ‘slight important’ category, but has not quite reached the ‘somewhat 

important’ category. In comparison, the importance of machinery dealers was rated as 

3.130, slightly greater than the ‘somewhat important’ category. This indicates that com-

pared with university extension, producers regarded machinery dealers as a more valuable 

information source when making PA usage decisions.

Within a 1-km radius of the producers’ largest CLU, 72.5% of the soil was under LCC 

I and II. The slopes of the field vary between 0 and 15.3 with an average slope of 2.743 

degrees. This indicates most of the fields operated by the survey respondents were suitable 

for crop cultivation purposes. According to producers’ knowledge, the percentage of land 

under HEL and saline/sodic conditions were 2.316 and 2.001 respectively, both slightly 

above the ‘1–5%’ category. Compared to the saline/sodic land conditions, more land is 

subject to the erodibility concerns. The mean values for the state variables indicate that 

among the 1119 respondents, 19.8%, 23.1% and 31.2% were from ND, NE and MN respec-

tively, and the rest 25.9% was from SD.

PPO model estimates for factors affecting PA challenges faced by farmers

Supplementary tables S1 to S3 demonstrate the PPO model estimation results for the 11 

challenges under four different categories. Note that the observation numbers for the 11 

regressions (734—737) differ from the total survey responses (1119) due to the missing 

values. It is commonplace for survey responses to have one or more variables not filled 

by respondents as their answers are not mandatory. Among the 18 explanatory variables 

listed in Table 3, adoption status has the lowest response rate for a single question, which is 

86%, while all other variables have response rate of more than 90%. Yet, the percentage of 

the responses included in the analysis is much lower at approximately 66%; this is because 

multiple variables are included in each model. As the number of variables included in the 

model increases, the completion rate decreases.

To better understand the nature of dropped observations, a series of t-test analyses 

between the complete and incomplete answer groups were carried out with results pre-

sented in Table 4. Compared to farmers who completed all questions, those who provided 

partial answers were on average, older and less educated at a statistically significance level 

of 1%. Meanwhile, they were more likely to live in southern and eastern portion of the 

studied region, as illustrated by their average latitude and longitude. State wise, ND farm-

ers were less likely to have skipped some questions, whereas MN farmers were more likely. 
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Yet the land quality (as indicated by slope and LCC I & II) demonstrated no statistical dif-

ferences between the two groups of farmers.

Tables  5, 6 and 7 present the marginal effects for cost, technology and complexity 

challenge categories, respectively, while marginal effects for support and infrastructure 

Table 4  Comparison between 
respondents who provided 
complete answers vs. those who 
provided incomplete answers

*, **, and *** represent p < 0.10, p < 0.05, and p < 0.01, respectively 
based on t-test

Variables Complete answers Incomplete answers Sig-
nificance 
level

Age 56.977 63.175 ***

Education 1.344 1.244 ***

Slope 2.853 2.686

LCC12 0.727 0.723

Latitude 44.243 43.926 **

Longitude − 97.054 − 96.764 ***

SD 0.260 0.258

ND 0.226 0.146 ***

NE 0.253 0.219

MN 0.295 0.344 *

Table 5  Marginal effects for cost challenges faced by farmers towards precision agriculture

Italics indicate statistically significant variables, where ***, **, and * represent p ≤ 0.01, p ≤ 0.05 and p ≤ 
0.10, respectively

Variable Equipment Service

Disagree Neutral Agree Disagree Neutral Agree

Adoption status 0.096*** − 0.061** − 0.034 0.084*** − 0.057** − 0.027

Cropland area 0.022*** − 0.016* − 0.006 0.022*** − 0.028*** 0.006

Ownership − 0.013 − 0.018 0.032 − 0.004 − 0.008 0.012

Liability − 0.011 − 0.014 0.025 − 0.002 − 0.005 0.007

Age 0.001 0.001 − 0.002 0.001 0.002 − 0.002

Education 0.016 0.022 − 0.038 0.026* 0.052* − 0.078*
Ag Major 0.013 0.018 − 0.032 − 0.002 − 0.004 0.006

Technology 0.028*** 0.038*** − 0.066*** 0.017** 0.034** − 0.051**
Kids − 0.014** − 0.019** 0.034** − 0.015*** − 0.029*** 0.044***
Extension − 0.019** − 0.025*** 0.044*** − 0.007 − 0.015 0.022

Machinery dealers 0.000 0.000 0.000 0.003 0.005 − 0.008

HEL − 0.006 − 0.008 0.014 − 0.007 − 0.014 0.022

Saline/sodic − 0.011 − 0.015 0.026 − 0.009 − 0.018 0.026

Slope 0.003 0.005 − 0.008 − 0.001 − 0.001 0.002

LCC12 0.019 0.026 − 0.046 − 0.011 − 0.023 0.035

ND 0.006 0.009 − 0.015 − 0.001 − 0.003 0.004

NE − 0.014 − 0.018 0.032 − 0.028 − 0.056 0.084

MN − 0.010 − 0.014 0.024 0.004 0.008 − 0.013
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categories are presented in Tables 8 and 9. When the adoption status increases by 1 unit 

on a 0–3 scale, producers are 9.6% and 8.4% more likely to disagree, while 6.1% and 5.7% 

less likely to be neutral towards the statements ‘cost of PA equipment too high’ and ‘cost of 

PA service fee too high’, respectively (Table 5). It is likely that more experienced produc-

ers perceive reduced challenges. On the other hand, perceived challenges may also affect 

producers’ adoption decisions in that some challenges such as data use challenge could 

prevent producers from advancing to the next stage. Among the listed marginal effects for 

the cost and technology related challenges, there was no significant effect in the agree-

ment level, which means that the adopters at different stages and non-adopters expressed 

similar levels of agreement towards the high service costs, brand compatibility and data 

privacy and that these three concerns are not fading with the advancement in adoption 

stages. Therefore, to ensure future PA adopters have an unchallenging user experience, the 

brand compatibility and data complexity issue should be listed as high priority areas in the 

agenda to be addressed by a combination of efforts from researchers, technology develop-

ers and policy makers.

When crop acres of the farm increase, producers’ perceived cost concerns were sig-

nificantly reduced. Specifically, when cropland area increases by 1000 acres, producers 

were 2.2% more likely to disagree with the cost related challenges (Table 5). This cost 

concern and cropland area relationship could be attributed to the scale effect. Farm size 

also reduces complexity concerns, in particular ‘not sure how to use PA data effectively’ 

(Table  7). This is potentially because larger farms, with much higher expenditure on 

hired labor than smaller farms, could afford to hire specialists to focus on implementing 

Table 6  Marginal effects for technology challenges faced by farmers towards precision agriculture

Italics indicate statistically significant variables, where ***, **, and * represent p ≤ 0.01, p ≤ 0.05 and p ≤ 
0.10, respectively

Variable Compatibility Privacy

Disagree Neutral Agree Disagree Neutral Agree

Adoption status 0.105*** − 0.129*** 0.024 0.053*** − 0.078*** 0.025

Cropland area 0.008* − 0.011 0.003 0.000 0.000 − 0.001

Ownership − 0.029 − 0.080 0.109* 0.007 0.005 − 0.011

Liability − 0.011 0.005 0.006 0.004 0.003 − 0.007

Age − 0.001 0.003* − 0.002 − 0.003** 0.003** 0.000

Education − 0.008 − 0.032 0.040 − 0.008 − 0.006 0.014

Ag Major − 0.003 0.011 − 0.008 0.026 0.017 − 0.043

Technology 0.021* − 0.023 0.002 0.007 0.005 − 0.012

Kids − 0.007 − 0.016 0.023 − 0.033*** − 0.022*** 0.055***
Extension 0.000 − 0.029 0.029 − 0.012 − 0.008 0.020

Machinery dealers − 0.005 − 0.030* 0.036* 0.015 0.010 − 0.025

HEL − 0.002 − 0.022 0.024* − 0.006 − 0.004 0.010

Saline/sodic − 0.025** − 0.031* 0.056*** − 0.005 − 0.003 0.008

Slope − 0.002 − 0.002 0.005 0.008 0.005 − 0.013

LCC12 − 0.081* − 0.076 0.157* 0.026 0.018 − 0.044

ND − 0.008 − 0.038 0.046 0.022 0.015 − 0.037

NE − 0.016 − 0.138** 0.155*** 0.026 0.018 − 0.044

MN 0.025 − 0.086* 0.061 − 0.005 − 0.003 0.008
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PA practice (Schimmelpfennig, 2016). Such strategy in specialization efficiently 

addresses complex concerns for large farms. In contrast, it can be inferred that smaller 

farms will find PA adoption more challenging due to financial constraints as well as 

lack of expertise. In this regard, custom service could offer a solution for small farms. 

Previous literature findings also indicated that small farms were likely to use custom 

service for precision mapping to target field operations when necessary (Schimmelpfen-

nig, 2016).

Land tenure plays an important role only when it comes to soil suitability to PA 

usage. Specifically, when a higher proportion of farmland is owned, producers expressed 

more concerns towards ‘not sure whether soil conditions on my farm will benefit from 

PA’ (Table 8). This indicates that the owners of the land, when compared to the renters, 

are more likely to be concerned about the soil suitability. Therefore, information about 

the soil variability on the specific farm level will likely help owners understand the soil 

variability of their farm and whether certain PA technologies can be utilized to better 

manage the soil variability. No significant relationship is observed between farm liabil-

ity and perceived cost challenge. However, farm liability significantly increased some 

perceived challenges in the complexity and support category. Specifically, farmers with 

high liability are more likely to be concerned over ‘PA technology too time-consuming 

to learn’ and ‘limited information about the best PA technologies for my farm/region’.

When operator age increases by 1  year, they are 0.3% less likely to disagree with 

the data privacy challenge, while 0.3% more likely to have a neutral opinion (Table 6). 

It shows that compared to younger farmers, older farmers are more likely to perceive 

Table 7  Marginal effects for complexity challenges faced by farmers towards precision agriculture

Italics indicate statistically significant variables, where ***, **, and * represent p ≤ 0.01, p ≤ 0.05 and p ≤ 
0.10, respectively

Variable Data Time

Disagree Neutral Agree Disagree Neutral Agree

Adoption status 0.209*** − 0.177*** − 0.032* 0.215*** − 0.161*** − 0.055***
Cropland area 0.018** 0.003* − 0.022** 0.009 − 0.001 − 0.008

Ownership − 0.021 − 0.004 0.025 − 0.014 0.001 0.013

Liability − 0.020 − 0.004 0.024 − 0.029** 0.002 0.028**
Age − 0.002* 0.000* 0.003* − 0.005*** 0.000 0.005***
Education − 0.023 − 0.004 0.027 − 0.007 0.000 0.007

Ag major 0.033 0.006 − 0.039 0.038 − 0.002 − 0.036

Technology 0.075*** 0.014*** − 0.089*** 0.057*** − 0.004 − 0.053***
Kids − 0.019* − 0.004 0.022* − 0.009 0.001 0.008

Extension 0.006 0.001 − 0.007 − 0.010 0.001 0.009

Machinery dealers − 0.024* − 0.004 0.028* − 0.006 0.000 0.006

HEL 0.004 0.001 − 0.005 0.005 0.000 − 0.005

Saline/sodic − 0.053*** − 0.010*** 0.063*** − 0.017 0.001 0.016

Slope − 0.012 − 0.002 0.015 − 0.007 0.000 0.007

LCC12 − 0.113* − 0.022* 0.135* − 0.027 0.002 0.025

ND − 0.057 − 0.011 0.067 − 0.037 0.002 0.034

NE − 0.027 − 0.005 0.033 0.010 − 0.001 − 0.009

MN 0.015 0.003 − 0.018 0.034 − 0.002 − 0.031
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data privacy as a concern. In addition, significantly positive relationships exist between 

age and complexity concerns (Table 7). Older farmers also tend to perceive higher con-

cerns on limited information and internet connectivity (Tables  8 and 9). These indi-

cate that older farmers are more likely to encounter difficulties towards the usage of PA 

technologies.

Education plays a significant role in reducing concerns about high service costs and 

limited information. Compared to the producers with high school and technical school 

degrees, producers with a 4-year college degree or above are 7.8% less likely to agree that 

service cost associated PA is too high (Table 5). This is probably because higher educated 

farmers generally have more understanding towards PA benefits and the value of PA ser-

vice, thereby less likely to regard the service cost as too high. In addition, they tend to 

be more capable of gathering the needed information. Having an agricultural discipline as 

their educational major also plays an important role in helping reduce support/infrastruc-

ture related challenges of PA usage. Specifically, farmers with an agricultural major are 

more likely to disagree and less likely to agree with concerns such as ‘whether soil condi-

tions on my farm will benefit from PA’ (Table 8), ‘not confident in prescription maps and 

agronomic recommendations’ (Table 8), and ‘lack of strong, reliable internet connectivity’ 

(Table 9).

Additionally, farmers’ personal goals frequently play a role in perceived challenges. 

Those who ranked ‘keeping pace with new technology’ as one of their most impor-

tant farm management goals are less concerned with the cost, technology, and complex-

ity related challenges. At the same time, these producers also feel more confident with 

prescription maps and agronomic recommendations (Tables  5 - 8). In contrast, those 

Table 9  Marginal effects for 
infrastructure challenges faced 
by farmers towards precision 
agriculture

Italics indicate statistically significant variables, where ***, **, and * 
represent p ≤ 0.01, p ≤ 0.05 and p ≤ 0.10, respectively

Variable Internet

Disagree Neutral Agree

Adoption status 0.098*** − 0.098*** 0.000

Cropland area 0.013 − 0.001 − 0.012

Ownership − 0.023 0.001 0.022

Liability − 0.012 0.001 0.012

Age − 0.003** 0.000 0.003**
Education 0.014 − 0.001 − 0.013

Ag major 0.085** − 0.005 − 0.080**
Technology − 0.003 0.000 0.002

Kids − 0.062*** 0.004 0.058***
Extension − 0.013 − 0.048*** 0.061***
Machinery dealers 0.023 − 0.001 − 0.022

HEL − 0.002 0.000 0.002

Saline/sodic − 0.013 0.001 0.012

Slope 0.011 − 0.001 − 0.010

LCC12 − 0.058 0.004 0.054

ND 0.083* − 0.005 − 0.077*
NE − 0.087* 0.005 0.082*
MN − 0.009 0.001 0.008
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who rated ‘getting kids into farming’ as more important are more concerned with the 

high equipment costs, service costs, and data privacy (Tables  5, 6). In addition, they 

demonstrated more concerns towards complexity, limited on-farm research, and inter-

net connectivity (Tables 6, 7, 8). These findings imply that farmers who are motivated 

to use new technologies tend to overlook the challenges, yet farmers use PA primarily 

to attract their kids back to farming will perceive more challenges since they might be 

slow to observe the other benefits generated by the technologies. Such linkages between 

goals and perceived challenges illustrate that producer perceived challenges are some-

how subjective, and there might be other subjective matters not captured here that could 

affect farmers’ perceived challenges as well.

Surprisingly, farmers who placed more weight towards the role of external informa-

tion sources were more likely to agree with some of the listed challenges. Specifically, 

those who rated university extension as a more important source for them when making 

PA decisions are more likely to perceive PA equipment costs are too high, and more 

likely to agree that lack of strong internet connectivity posed a challenge (Tables 5 and 

9). Meanwhile, those who placed more value upon machinery dealers’ inputs are more 

likely to agree with the challenges towards brand compatibility and data complexity 

(Tables 6 and 7). It is likely that farmers who rely more on those information sources to 

inform their PA usage decisions become more aware of the challenges associated with 

PA than farmers who use them less as they become more influenced by expert opinions 

in these matters.

The listed soil characteristics variables also affected farmers’ perceptions towards 

the following three challenges: brand compatibility, data complexity, and soil suitabil-

ity (Tables 6, 7, 8). When percentage of land with saline or sodic conditions increases, 

producers are more likely to perceive challenges towards brand compatibility, data 

complexity, and lack of on-farm research and demonstration. The percentage of land 

with LCC I and II plays a double-edged role in terms of perceived challenges. While it 

increases farmers’ agreement with the brand compatibility and data complexity chal-

lenge, it reduces the perceived challenges towards soil suitability (Tables 6, 7, 8). The 

soil model (Table 8) illustrates that farmers with higher proportions of land suitable for 

crop cultivation purposes, greater degrees of terrain variation, and less land with HEL 

conditions, are more likely to be certain that soil conditions on their farms will benefit 

from PA usage. Therefore, they might represent a target group where PA technology 

could be further promoted. Furthermore, to facilitate farmers’ decision-making, more 

research and outreach efforts should be carried out to quantify the benefits of PA on 

farms with diversified soil and terrain conditions.

While state variables played no role in terms of costs, data privacy and time-consum-

ing nature of the technology, indicating those are universal challenges faced by farmers 

across all studied regions, they do play a significant role when it comes to infrastruc-

ture, support, and brand compatibility. This indicates that the infrastructure and support 

for farmers across different regions are likely to vary. For example, compared with SD 

producers, producers from ND and NE perceive less challenges from information limi-

tation, and producers from NE also feel on-farm research and demonstration is less of a 

challenge (Table 8). Moreover, producers from regions such as MN expressed more con-

cerns towards their soil suitability for PA technologies (Table 8). In contrast, producers 

from NE are more likely to regard internet connectivity as a challenge (Table 9). These 

findings illustrate that to address infrastructure and support related concerns, develop-

ment and outreach efforts could be more tailored towards the unique regional needs to 

promote efficient PA usage on a regional basis.
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Conclusion

Challenges faced by producers towards the PA technologies, if not addressed, could hin-

der future adoption decisions and inhibit effective utilization of the technology. This paper 

used farmer survey data from U.S. Midwest to examine the farmer ratings of challenges 

surrounding their PA adoption and usage decisions. Findings of this paper indicate cost 

and technology related challenges, namely PA equipment and service costs, compatibility 

among different brands and data privacy concerns, are among the top and foremost chal-

lenges faced by producers.

The results from this study convey that producers with varying experience in PA tech-

nologies have different views regarding the main challenges towards PA usage and adop-

tion. Among them, non-adopters and entry adopters demonstrated greatest concerns 

towards high equipment cost and high service cost, yet least concerns towards the infra-

structure and support issues, including the commonly mentioned internet connectivity con-

cerns. Such findings suggest that in comparison to the input towards the local demonstra-

tion, information dissemination, and internet connection areas, monetary support such as 

farm loans and subsidies will more likely address the major concerns faced by these two 

groups.

Most challenges tend to decrease as adoption intensity increases, and correspondingly, 

the advanced adopters indicated significantly lower concerns with the cost, complexity, and 

infrastructure/support issues. Among the list of challenges, lack of compatibility among 

different brands was ranked as the top concern by the advanced adopters. Additionally, 

producers at all adoption stages expressed major concerns towards brand compatibility and 

data privacy issues. Attention and efforts towards addressing such concerns can create a 

relatively trouble-free experience for PA adopters, especially those who are utilizing infor-

mation-intensive technologies.

This paper also investigated the potential factors that alter producers’ perceived chal-

lenges. Through lessening or aggravating farmers’ perceived challenges, these factors 

could affect farmers’ PA adoption decisions. While previous literature has been focusing 

on their roles on PA adoption decisions, their effects on farmers’ challenge perceptions 

have been overlooked. Among these, farm characteristics and farmer demographics affect 

perceived challenges in significant ways. For example, larger farm size and reduced liabil-

ity ratio will also help reduce farmer perceived challenges in some categories. Younger and 

more educated farmers are less likely to perceive challenges regarding PA adoption and 

usage. Perceived challenges are also subject to personal beliefs and goals as farmers more 

motivated to use new technologies were less likely to agree with challenges associated with 

PA usage. Furthermore, soil variability and regional factors matter, as they play significant 

roles towards perceived challenges in different categories.

Overall, the findings on farmers’ topmost concerns towards PA technologies, contingent 

on their adoption stages, as well as the factors that could lessen or aggravate such percep-

tions, could be used to identify future directions in research, development, and policymak-

ing. It could also help university extension and PA industry effectively target their outreach 

and marketing efforts and ultimately enhance the effective usage of PA for all suitable crop 

production systems. For example, findings from this study indicate producers with college 

degrees and agricultural majors generally had less concerns with PA technologies, there-

fore could be a potential target group to promote PA usage. In contrast, older producers and 

small farm operators face greater challenges due to lack of expertise to address data com-

plexity concerns. Efforts in promoting custom service and training PA specialized labors 
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will provide such producers with more opportunities in PA usage. Results of this study also 

illustrate that PA benefits may vary across diversified soil and terrain conditions and there-

fore, call for more research and outreach efforts to quantify PA benefits in various farm 

conditions to facilitate farmer decisions. Finally, as farmer concerns over PA technology, 

support and infrastructure vary across regions, PA promotion efforts should be tailored to 

identify and address top challenges in different regions.
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