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Lifetime of excitations in atomic and molecular Bose-Einstein condensates
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Recent experimental progress produced molecular superfluids (MSF) in thermal equilibrium; this opens the
door to a new class of experiments investigating the associated thermodynamic and dynamical responses. We
review the theoretical picture of the phase diagram and quasiparticle spectrum in the atomic superfluid (ASF) and
MSF phases. We further compute the parametric dependence of the quasiparticle lifetimes at one-loop order. In
the MSF phase, the U(1) particle-number symmetry breaks to Z, and the spectrum exhibits a gapless Goldstone
mode in addition to a gapped Z,-protected atom-like mode. In the ASF phase, the U(1) symmetry breaks
completely, leaving behind a Goldstone mode and an unprotected gapped mode. In both phases, the Goldstone
mode decays with a rate given by the celebrated Belyaev result, as in a single component condensate. In the MSF
phase, the gapped mode is sharp up to a critical Cherenkov momentum beyond which it emits phonons. In the
ASF phase, the gapped mode decays with a constant rate even at small momenta. These decay rates govern the
spectral response in microtrap tunneling experiments and lead to sharp features in the transmission spectrum of

atoms fired through molecular clouds.
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I. INTRODUCTION

The study of the molecular superfluid (MSF) phase of
weakly interacting ultracold Bose atoms, first analyzed the-
oretically some two decades ago [1,2], has recently heated up
again [3-5] due to ground-breaking experimental progress [6]
in coherently trapping ultracold cesium atoms and controlling
their Feshbach resonances to produce cesium molecules (Cs;)
[7-11]. The refinement of these trapping techniques enables
a new generation of experiments probing both equilibrium
and dynamical properties of both the MSF and proximate
atomic superfluid (ASF) phase. While the thermodynamics of
the MSF-ASF system are well-known theoretically [2,12] (see
Fig. 1 for a phase diagram), its dynamical responses are more
complicated. A full dynamical theory of the system requires
an understanding of both the quasiparticle content and their
dissipative scattering properties.

In this work, we compute the near-equilibrium decay rates
of the quasiparticles in the ASF and MSF phases to one-
loop order at zero temperature. The quasiparticle decay rate
determines the width of the spectral function, schematically
illustrated in the insets of Fig. 1. In principle, this is directly
measurable by tunneling experiments in which a microtrap is
placed in tunnel contact with the MSF [13].

Single-atom transmission spectroscopy provides an alter-
native, and perhaps more striking, experimental signature of
the quasiparticle dynamics in the MSF phase. An incident
atom evolves into the gapped quasiparticle mode, which is
sharp up to a critical momentum k... Beyond this threshold, the
quasiparticle Cherenkov radiates phonons (the gapless mode).
Thus, a slow atom fired through a MSF cloud propagates
without dissipation, while faster atoms slow down until they
drop below the Cherenkov threshold. This leads to a sharp
feature in the energy spectrum of the transmitted atoms as the
incident energy crosses the threshold (assuming the cloud is
“optically dense” enough to slow the atom before it passes
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through). Using our computed scattering rates, we estimate
that the stopping power of a typical molecular cloud is suffi-
cient to observe these features (see Fig. 3). The existence of
k. follows from the symmetry structure of the MSF phase, as
we discuss below. Deep in the MSF phase k. >~ mc, where m
is the atomic mass and c the speed of sound [see Eq. (42)].

We summarize here the equilibrium properties of the sys-
tem to contextualize our work and keep the presentation
self-contained. The system has a global U(1) symmetry as-
sociated with total atom number conservation n = N, + 2N,,,
where N, is the number of atoms and N,, is the number of
molecules. The simplest model Hamiltonian for the system
[14] includes kinetic contributions, density-density interac-
tions, and a Feshbach interaction that coherently converts two
atoms into a molecule and vice versa [see Egs. (1) through
(6)]. This interconversion occurs thanks to the hyperfine inter-
actions between the closed and open scattering channels for
atomic collisions [7,15,16].

With the formation of the condensate the global U(1)
is spontaneously broken. At low temperature there are two
distinct scenarios for this U(1) breaking: (1) When just the
molecules condense the phase is known as molecular super-
fluid (MSF) and (2) when both the atoms and the molecules
condense as atomic superfluid (ASF). Due to the coherent
interconversion process, the condensation of the atoms forces
a condensation of the molecules, and thus there is no phase
where the atoms are condensed but the molecules are not.
In the MSF phase the global U(1) is reduced to a global
Z,, where the Z, charge is the parity of the atom number,
while in the ASF phase there is no remaining symmetry. Prior
work argued [1,17] that the zero-temperature quantum phase
transition between the MSF and ASF phases is continuous and
lies in the quantum Ising class.

There are two experimentally tunable parameters which
control the phase diagram: the total number of atoms »n and
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FIG. 1. The mean-field phase diagram as a function of the binding energy v and total condensate density n = n, + 2n,,, with two insets
showing the quasiparticle spectral weight. The white lines are the mean-field results for the quasiparticle dispersion discussed in Sec. IV. The
solid white line in the MSF side inset indicates that the excitation is infinitely long lived: in the MSF phase the Z, symmetry keeps the spectral
line for the gapped excitation sharp up to a threshold momentum k., above which decay by phonon emission is allowed. In the ASF phase
there is no such symmetry protection, the gapped mode is damped at arbitrarily low momenta, and is, in fact, very diffuse. In both phases the
gapless mode is always damped. To give the reader a reference for the momentum scales we marked k,, on the k axis: it is the scale where
the gapless excitation changes nature from predominantly phonon-like to particle-like. The phase boundary depicted assumes 2g,,, > g, see

Eq. (16).

the molecular binding energy v. When v is large and positive,
the molecular state is antibound, so we expect ASF to be the
equilibrium phase, while for large and negative v forming a
molecule is energetically favorable and we expect MSF. No
such simple argument can be made for the effect of the particle
number n on the phase. Indeed, the transition is reentrant as a
function of particle number at the mean-field level (see Fig. 1).

The quasiparticle content of the ASF and MSF phases is
as follows. Since the U(1) symmetry is broken in both the
ASF and MSF phases, there is one Goldstone boson on each
side of the transition. In the MSF phase, the molecules are
at lower energy than the atoms and the Goldstone mode is
molecular in nature, carrying a Z, even charge. A second,
gapped branch of the spectrum is atom-like, carrying odd Z,
charge. By Z, conservation, the upper mode can lose energy
and momentum into the Goldstone mode, but cannot disap-
pear. At zero temperature, such emission can only happen
above a Cherenkov momentum k., where the group veloc-
ity matches the Goldstone velocity. The decay width above
the Cherenkov transition is proportional to ~(k — k.)* and is
given by Eq. (52). The gapless mode in the MSF phase has a
similar lifetime to that of a single component Bose-Einstein
condensate (BEC) [18] and is given by Eq. (55).

In the ASF phase the Goldstone mode has mostly atomic
character while the high-energy mode has mostly molecular
character. However, there is no Z, conservation so no decays
are forbidden. The decay rate of the high-energy mode scales
with the gap A, as A* and is given by Eq. (70). The decay rate
of the Goldstone mode in the ASF phase is of similar form to
Eq. (55), however, with 2m — m.

To obtain these results, we derive a low-energy effective
theory on each side of the transition from the microscopic
theory of Eq. (1). This approach significantly simplifies the
calculation compared to using the microscopic theory directly
and is applicable as long as we restrict our attention to ex-
citations with wavelengths longer than the healing length of

the condensate and energies below the multiparticle threshold.
Using the effective theory, we compute for each excitation the
one-loop imaginary part of the self energy in the on-shell ap-
proximation, and thus estimate the decay rates of the gapped
modes.

Finally, some comments about the stability of the MSF
phase: if the effective interaction between the molecules is at-
tractive, mean-field theory fails. The instability is understood
as a likely liquid—gas transition [15,19], but the pressures in
typical experiments are so low that those systems still behave
as weakly interacting gases. Another stabilizing contribution
is given by the trap (which is not included in our calculation):
even in the attractive case, it is known that the Bose gas is
stable as long as the scattering length is not more negative
than a critical value [20], so that a description as a weakly
interacting gas still captures the essential physics.

To keep the calculations simple, we only discuss the regime
in which the molecules repel. While this is not a completely
general approach, it is experimentally relevant: for example,
the data reported in Ref. [6] suggests that, for the duration
of the experiment, the molecules interact repulsively. Their
system is ultimately metastable, but for the entire experiment
the molecules are thermalized (see the discussion in the main
text of Ref. [6] and the Supplementary Material).

Of course the mean-field theory is not appropriate if the
system decays due to three-body interactions or other effects
on short timescales or in the critical regime close to uni-
tarity. However, perturbative calculations around metastable
equilibria are used routinely in all parts of physics so long
as the underlying metastability has a much longer decay
time than the perturbative treatment, that is, so long as the
reference state is stable during the timescale of the cal-
culation or experiment considered. This regime, the one
in which our calculation is valid, is discussed with refer-
ence to the molecular condensate system in some detail in
Refs. [2,6].
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The paper is organized as follows. In Sec. II we setup the
problem, then in Sec. III we briefly review the mean-field
phase diagram. In Sec. IV we review the Bogoliubov mean-
field theory of the spectrum and in Sec. V we summarize our
results for the decay rates of the gapped mode in each phase.
The interested reader will find details of the calculation of
certain integrals in the Appendix.

II. EUCLIDEAN ACTION AND SYMMETRIES

The number of atoms N, and the number of molecules N,
are not separately conserved, only the total number N = N, +
2N,,. The Euclidean action of the system is

S=/drdt (T +Ho + Hpw + Ham + HrE), (D

T = \Ilmar \pm + lilaat q”aa (2)
_ V2 gm 4
Hm:\ym ___2M+V \Ijm+_|\pm| s (3)
4m 2

- V2 8a 4

Hazq]a - - — M ‘I[a+_|lpa| , (4)
2m 2

Ham = gam|\pa|2|\pm|2’ @)
Hr = —a(V]V, + ¥, 97). (6)

The subscript a denotes the atoms and m the molecules. Here
v is the molecular binding energy; a negative v means it is
energetically favorable to make bound states. The minus sign
in front of the Feshbach term is chosen so that o« > 0 in
equilibrium the phases of the condensates are locked to the
same value; Without loss of generality we assume « > 0, as it
is always possible to absorb its sign with the field redefinition
v, — —W,,. The chemical potential u appears with a factor
of 2 in the molecular part because two atoms bind to form a
molecule and only the total number is conserved. Under the
U(1) symmetry associated to this conservation law the atomic
field transforms with unit charge and the molecular one with
double charge

v, > v, W, > v, (7)

The system has two nontrivial low-temperature phases: the
ASF phase, in which the U(1) symmetry is completely broken
(both ¥, and W,, condense), and the MSF phase, in which the
U(1) breaks down to Z,,

v, - v, v, >V, (8)

As such, we expect any continuous transition between the two
phases to be Ising class [2].

III. MEAN-FIELD PHASE DIAGRAM

We briefly review the mean-field phase diagram (see Fig. 1)
of the system, to provide context for our calculations. We map
the phase diagram in terms of the total density n = n, + 2n,,
and the binding energy v, which are experimentally tunable.
As anticipated, there are two stable thermodynamic phases at
zero temperature (ASF and MSF), separated by an Ising-class
transition line [1,17]. If 2g,, > g, the transition is reen-
trant as a function of n for small negative v [see Eq. (16)].

Parametrizing the fields in polar form

\I/j = A/nje"ef,
clarifies the role of the relative phase between the condensates.
In the absence of an external potential the equilibrium solution
is uniform, so we drop the gradient terms. The mean-field
energy density is then

Jj=a,m, €))

1 2 1 2
Evr = 58alty + 38mMy, + amNallm

— 2ang,/n,, cos (26, — 6,,)

- M(na + 2nm - l’l) + v, (10)

which is minimized by
0 = any+/ny, sin(26, — 6,,), an
W= galg + amNm — 200/Ny, cOS(20, — 6,,), (12)

Ng
2u—v= EmMm + amMNag — X —— cos(26, — Op). (13)
A/

These equations have two nontrivial solutions:
MSF phase: n, =0, n,, = n/2 > 0. At mean field

2 —v = gmlim (14)

as usual for a weakly interacting Bose gas. The combina-
tion 20 — v acts as an effective chemical potential for the
molecules.

ASF phase: n, > 0, n,, > 0. While there is a closed form
expression for n, and n,,, it is complicated and we omit it. In
the large v limit at fixed density n, we find to lowest order in
v the relations ,/n,, = an/v and @ = g,n, which means that
the system behaves as a simple atomic BEC.

There is no phase where the atoms are condensed but the
molecules are not. Since « > 0, in the ASF phase the phases
of the atomic and molecular condensates lock together

20, — 6,, = 0. (15)

Eliminating the chemical potential and imposing n, = 0 we
find the phase boundary (see Fig. 1)

(gum— %)n—2av2n: . (16)
The phase boundary crosses the v = 0 axis at
nx =320 /(2gan — gn)’ 17
and the leftmost point is at
V'] = 40 /128an — &l (18)

so that using a negative binding energy with |v| < |v*| the
reentrant nature of the transition is visible. Finally, we point
out that the phase diagram and the order of the transition
are sensitive to the sign of g,g, — &>, (for concreteness we
assume g,gn, > g-,,)» but the realized phases are the same. For
a detailed discussion see Ref. [2].

IV. BOGOLIUBOV THEORY OF THE
MOLECULAR SUPERFLUID

In this section we review the Bogoliubov theory of
the molecular superfluid [1], which describes the quadratic
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fluctuations around the mean-field solutions of Sec. III. See
Ref. [21] for a detailed review of the Bogoliubov approach.
We expand the action around the mean-field configuration

<lIJj> =\/E, j=a,m,

where the two constants (n m) solve Egs. (11) to (13). We
redefine the fields to isolate the deviations ¥; from equilib-

rium
lllj:,/n9+1ﬁj, j=a,m,

S = /dl’dl’ [lﬁmarl/fm + &aarwa + &in <_

19)

(20)
|

2

4m

v 1
— =20V Y+ S&mhy,

and we drop from the action all terms of degree higher than
two in ;. The result is

S=Sz+/drdf5MF, (21)

where Evir is the mean-field energy density of Eq. (10), there
are no terms linear in the fluctuation fields and S, is the
quadratic action associated to the fluctuations

5 O (W + Uy 4 4lYml?)

v? YR ,
+1/fa(___ﬂ>l/fa+ ~8al (‘/f +1// + 4l )+gam nono(wmd/a+1/fm¢/a+wm1/fa+l/fmwa)

2

— a2t + 102 + 2 0+ ns,xﬁj)]. (22)
It is convenient to work in momentum space and organize the fields in a Nambu spinor
@y = ParcVa Tk Vm, k- (23)

We already extracted the spatially uniform part from the fields, so the Fourier expansion of ; does not have a k = 0 term. To
avoid double-counting the anomalous terms we organize the momentum sum as

=> ) Gy Dy,

n K,k;>0

(24)

where the inverse G ! of the matrix propagator is given in Eq. (25). Notice that, in the MSF phase ng = 0, so that the matrix is
block diagonal. This is a manifestation of Z, symmetry: the atom-like Bogoliubov quasiparticles only have overlap with v,
and v, _x, without a molecular component. The molecular block describes a simple weakly interacting condensate of molecules,
while the dynamics of the atomic fluctuations is nontrivial: the atoms are not condensed, but the anomalous averages (¥, ¥,)
acquire a finite value thanks to the off-diagonal Feshbach terms —2a./n® that provide coherent conversion of a condensed

molecule into two atoms.

wp + &+ 2gan2 + gamng)n gan2 — Za\/n%
gano — 2a\/nT)
8am Vv nm a 20[ V

0,0
8am~/ Ny, 1,

G,' =
Zam+/n9,n°
Zam/n0n0 — 2a,/nd

where w, are bosonic Matsubara frequencies, and for brevity
we introduce
k? k?

&, = -, En=——-2u+v

26
2m 4m (26)

The condition det(G, ') = 0 gives the excitation spectrum.
Notice that that the G;; ! matrix still depends on the chemical
potential w: when we substitute the mean-field value of u
found from Eqgs. (12) and (13) we describe the fluctuations
around the chosen mean-field solution, ignoring the feedback
of the fluctuations on the chemical potential itself. The dis-
persion of the gapless mode is convex in both phases and
thus allows spontaneous phonon emission. The lifetime is
known at large v [18,22], either positive or negative, where
the gapped mode is inaccessible and the system reduces to

—w, + &, + Zgano + gam”?,,

8am/n9n0 — 200,/nf
Zam~/ NN
wp + &y + 2gmn9n + gamng

0
8mh,,

Zam/ M1
8am \Y nm a 20{ V
gl
—wy + 'g:m + 2gm”21 + gamng
(25)

(

a single component BEC. Close to the transition the picture
is more complicated, as the phonon and gapped modes are
coupled: in this regime, the low-energy behavior of the system
is well described by an effective theory of two real fields
[2,17].

A. Spectrum in MSF phase

In the MSF phase the gapped excitation is protected by Z,
symmetry, so the only allowed process at low momentum it
the emission of a phonon. The kinematics of this decay are
such that the line is sharp until the group velocity matches
the speed of sound at the critical momentum k., then we
expect a decay rate proportional to (k — k.)*, based on gen-
eral considerations [23] for phonons. There are two modes:

033304-4



LIFETIME OF EXCITATIONS IN ATOMIC AND ...

PHYSICAL REVIEW A 107, 033304 (2023)

one particle-like excitation E, with odd Z, charge and one
molecule like E,, with even charge

Em =V 6m(zgmnm + 6m)v ZZ even, (27)
E, = /(€ —€T)(€, —€7), Z,odd. (28)

In these expressions the free atomic and molecular dispersions
are

k2

T om’

k2

€m = T,
4m

(29)

€q
and we defined

=2+ (%’” - gam)nm +2aym,.  (30)
The dispersion relations E,,, are plotted in the left inset of
Fig. 1. We note that Egs. (12) and (13) have already been
used to simplify these expressions. The molecular branch E,,
is phonon-like; it is the Goldstone mode arising from the
breakdown of U(1) to Z,, with the speed of sound given by the
familiar expression for a single-component mean-field BEC
[24] (the 2m in the denominator is the mass of a molecule)

o0E,,
ok

Emlm
= . (31)
k=0 2m

CMSF =

The atomic branch E, is gapped and is characterized at small
momentum by a gap A, and an effective mass mysp

k2
E, >~ A, + , (32)
2mMsk
as v — —oo we find
A [v] + gm 4a2n,, (33)
a = on P .
B 8am ) vl

The leading term |v|/2 corresponds to breaking a molecule
and creating two atomic excitations. The second term has
a simple physical interpretation: removing a molecule from
the condensate lowers the energy by n,,g,/2 because that
molecule does not interact with the others anymore and it
increases the energy by gamn, as now there are two extra
atoms interacting with the molecular condensate. In the same
limit, the effective mass mysg of the gapped excitation is

8a2n,,
mysg >~ m| 1 — ) . (34)

v

This reduces to the atomic mass if there is no interconversion
or if the binding energy is very large.

B. Spectrum in ASF phase

The spectrum in this phase has a closed form expression,
but it is very complicated and will not be produced here. The
qualitative features are the same as in the MSF phase: there
is one gapless mode and one gapped one (seethe right inset of
Fig. 1). The gapless mode is again the Goldstone mode arising
from breaking U(1), and we can gain some insight about the
gapped one looking at the mean-field energy Eq. (10): the
Feshbach term is proportional to cos(26, — 6,,), which gaps
the out-of-phase oscillation. The excitations are not protected

by parity, which is broken. Deep in the ASF phase v — oo,
the spectrum reduces to [25]

2

k
Ey = caspk + )/k3, E, = Ay +
? * T 2mase

(35)

The parameters in these expressions are, in the v — oo limit,

alla o?
CASF = g <1 - >, (36)
m Vg,
1 o?
- 1 , 37
Y 8mc2( + vga) 37)
am — 2 a)la 8 anaaz
A¢,=v<1+(g 8ala | S ) (38)
v vig,
4n,o?
masp = 2m| 1 — 2 . 39

As v — oo the speed of sound ¢ reduces to the expression
for a weakly interacting BEC, while the gap and the effective
mass show that in this limit the excitation is the formation of a
molecule. This intuitive understanding breaks down closer to
the transition, where the excitations are linear combinations
[2] of all bare atomic and molecular fields (Vu, Vu, Yin, ¥ ).
The convexity of Ey (since y > 0) implies that finite k
phonons can spontaneously emit lower momentum phonons.
The first subleading correction to the gap has like in the MSF
phase a simple interpretations: the excitation energy increases
by gumn, because the newly formed molecule interacts with
the atoms, but decreases by 2g,n, since two atoms that were
interacting with the (atomic) condensate disappeared.

V. EXCITATION LIFETIMES

In Sec. IV we derived the mode structure of the system
neglecting the interactions between excitations, which pre-
dicts infinitely long-lived quasiparticles. This result is far
from reality: in both ASF and MSF phases the gapless mode
is damped and the gapped mode may also decay. The field
theory predicts finite lifetimes if we include the interactions
beyond mean field. There are three approaches to set up the
perturbative calculation: one could diagonalize the matrix in
Eq. (25), which makes the bare propagator diagonal, but the
interaction terms become much more complicated and even
the lowest-order correction to the lifetime requires the eval-
uation of many diagrams. Alternatively, one could keep the
matrix in Eq. (25) unchanged and work with a nondiagonal
propagator, keeping the interaction simple but requiring the
evaluation of off-diagonal self energies: we have to solve

det [Gy (@, k) — Z(w, k)] =0 (40)

for w, where Gy and X are 4 x 4 dense matrices. The last
approach, the one we use in this section, is to restrict the range
of validity of the theory to low momenta and write an effective
theory with fewer degrees of freedom: in terms of these fields
the bare propagator is diagonal and computing the lifetime to
leading order requires the evaluation of a single diagram. We
use this low-energy theory to compute the one-loop decay rate
of the gapped modes.
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A. MSF Phase
1. MSF Kinematics
The dispersion relations for the two modes are given in
Eqgs. (27) and (28) (see also Fig. 1). The speed of sound has
a simple expression Eq. (31), while the group velocity of the

atomic excitation is complicated due to the square root, but
simplifies in the large (negative) v limit

oE, kK 8aln,k 1
= =—+— +0| =) (41)
1

Vg = = —
ok m vim

The critical momentum k. where the speed of sound matches
the group velocity of the excitation is then

mcv2

ke ~ ———— if
v? + 8a2n, > ‘

2
(42)

2gum — &m

This momentum scale must be compared to

km = 2\/ 2mgmnms (43)

the momentum at which the molecular spectrum crosses over
from linear to quadratic: taking the ratio

k. 1 8a’n,,
—~—|1- 44
kn 2 < v? ) “44)

shows that k,, > 2k, so that when the decay is kinematically
allowed the dispersion of the molecular excitation is to a good
approximation still linear and we are justified in considering
the speed of sound constant up to k.

2. Low-energy MSF theory

The first step is to pick the phase for the molecular field
so that the vacuum expectation value is real and positive and
reparametrize the fields as

U, =¢+ix W,=,/n)+pe", (45)

where (¢, x, p, 0) are real. Assuming, as usual, that the fluc-
tuations around the mean-field solution are small, we drop
from the action terms quartic in x and p and compute the
resulting Gaussian integrals over these two variables [2]. We
also drop terms quartic in ¢, as they cannot give a contribu-
tion to the imaginary part of the one-loop self-energy. After
integration, low-energy action is

Ser[0, @1 = Sspl0] + Sil@] + Sinc[0, @1, (46)

where the three contributions are

1
Ssp = E/dtdr ((3:0)* + eysp(VO)?),  (47)

B 1 (Ve
5= / drdr[m@m + O i } (48)
Sint = % / dtdr¢*3,6. (49)

The shifted chemical potential is pugr = p + 2a@. The
effective degrees of freedom are a phonon 6 with linear dis-
persion and a Klein-Gordon particle ¢, which matches the
structure of the spectrum discussed in Sec. IV A and Fig. 1.
The form of the vertex is the one we expect for the interaction

P—q,én-—m

FIG. 2. One-loop diagram contributing to the imaginary part of
the self-energy X, in the MSF phase. In this diagram a solid line
denotes the propagator of the massive mode ¢, while the dashed line
the propagator of the phonon 6.

between a phonon and a massive particle: at ¢ = 0 there must
be no interaction, as a perfectly uniform medium does not
scatter. the Sj,, term couples ¢ to 6: in this effective theory
the leading mechanism for sound absorption is the production
of a pair of massive particles, not two phonons like in liquid
helium [26], so that sound absorption measures the decay rate
of ¢. In the on-shell approximation, the decay rate of ¢ is

ymse(k) = —ImXy[E,(k), k], (50)

and the only diagram contributing to X4 to one-loop order is
the one presented in Fig. 2. Evaluating the diagram at zero
temperature we find

gmemsk [ oy/nd,
k) =
ymsk(k) a2 \ il

X /dq §(Eq(k) — cmspq — Eo(k —q)). (51)

We evaluate the integral in this expression using the technique
described in the Appendix, which finally gives

mckge (k —k)* [ay/nd
yasi(k) = —-2E ——s : (52)
T ny, [14rl

This result is compatible with the well-known k> dependence
for the lifetime at the endpoint of a spectrum due to soft
phonon emission (see Ref. [23], Sec. (26.3)), and has a few
simple experimental consequences: the decay rates are inputs
to the calculation of spectral functions, which are directly
observable in some experimental setups (for example, see
Refs. [27-29]). Furthermore, the existence of the threshold
momentum k. in the MSF phase (see Fig. 1, left inset) im-
plies that it behaves as a “momentum funnel” in transmission
experiments: neglecting reflection at the phase boundary, an
atom propagating with momentum k through a cloud of MSF
bosons will not lose any energy if k < k., but emit phonons
and decrease its momentum until it reaches k if initially k >
k.. To see this effect the cloud has to be thick compared to the
absorption length X, defined as

homsr (k)
yuse(k)
where vmsr = 0iE, (k) is the group velocity of the gapped
excitation: if the atom cloud is thinner than A(k) the atom
leaves the cloud before emitting phonons. To get an idea of
the typical size of A see Fig. 3, where give an example using
data for one of the Feshbach resonances in cesium. Notice
that A is sensitive to the condensate density n® (a higher

Ak) = (53)
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FIG. 3. Predicted decay length A of the gapped mode in MSF
phase, as a function of momentum (in units of the critical momentum
k.) using data for the 47.97 G Feshbach resonance of cesium [7],
assuming a condensate density ny = 10" cm™ and a constant mag-
netic field B = 47.87 G. The dashed vertical line is the asymptote at
k = k., where the decay length diverges.

density makes the cloud more opaque) and the background
magnetic field, through the shifted chemical potential g [see
Eq. (52)]. We also have to keep into account the trapping time:
the cloud must remain trapped while the projectile traverses it.
In particular, to see the sharp feature corresponding to k., the
cloud must survive for a time

L
NS (54)
c
where L is the diameter of the sample. Using the same pa-
rameters as in Fig. 3 for the speed of sound and assuming
L ~ 20 um we must have Af > 5ms, which is compatible
with the current experimental possibilities [6].

B. Lifetime of the gapless mode

For completeness we report the analogous result for the
decay of one phonon into two phonons. When the binding
energy is very large the phonon decay rate is the same as
in the single-component condensate and it was first derived
by Belyaev [18] at zero temperature. The decay rate does
not have an elementary expression. In the small and large
momentum limits it reduces to

3k°
s K<k
yr—o(k) = | 07 Cmr (55)
5 k> ke,

where a is the s-wave scattering length. We expect this same
behavior for the phonon in both phases, as long as ck < A,
where c is the speed of sound in the phase and A the gap. For
a discussion of the damping properties of the gapless mode in
the critical regime see Ref. [17].

C. ASF phase
1. ASF kinematics

In the ASF phase the phonons can spontaneously emit
other phonons and so can the gapped mode: there is no sym-
metry protecting the decay. At large momentum there are two

processes available for the decay of a gapped excitation: pair
production of two massive particles and phonon emission. We
focus on the long wavelength physics and only discuss phonon
emission. Deep in the ASF phase at k = 0 a gapped excitation
emits two back-to-back phonons with momentum k, fixed by
energy conservation

Ay = 2casrko

2
alta m _2 a
ko~ + 8aMa(8a g)7 (56)
2cAsF 2CASF&a

and at finite k the emission of two back-to-back phonons is
allowed if

k2
Ay + = casrq + casrlk — g
2masF
= case(k + 2¢), (57)
assuming g = —qIAc where k is the unit vector in the direction

of k. Requiring g > 0 we get
k> — 2masgcaspk + 2maspAg > 0, (58)

which is true as long as mASFCiSF < 2A4. Working at leading
order in v and using Eqgs. (36) to (39) this condition reduces
to

gallg < 2V, 59)

and holds if the density is low enough.

2. Low-energy ASF theory

In the ASF phase both the molecules and the atoms are
condensed. The Feshbach terms locks the phases of the atomic
and molecular order parameters, so it is convenient to redefine
the atomic fields as

U, — 2y (60)

where 0,, is the phase of the molecular field

v, =/nd + e (61)

We choose the phase of the molecular field so that in equi-
librium 6,, = 0. Then, for small fluctuations around the ASF
equilibrium condition,

RN (62)

and we expand to second order in v,. The terms linear in
Y, drop out. We further decompose the atomic fluctuations
in their real and imaginary parts

Va=¢+ix. (63)

As pointed out in Ref. [2], the fluctuations in the ¢ direction
reach criticality before the ones in yx, so we drop terms of
third and higher in x and perform the resulting x Gaussian
integral. Deep in the ASF phase the ¢ fluctuations are also
small, and integrating over ¢ first will give the same results.
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FIG. 4. One-loop diagram contributing to the imaginary part of
the self-energy in the ASF phase. In this diagram a solid line denotes
the propagator of the massive mode ¢, while the dashed line the
propagator of the phonon 6.

After integration the action is

81;9 2 0 ]
S:/dtdr[( ) +Z—;(V€)2+l\/;2(l—y)¢3t9

28m
(0:9)°

Vv? m
+o( — 5 =)o+ (28— 27
Za\/@ 2m 2

. V 2
< 21—t — v fss S o

+

where we relabeled 6,, — 6 and we dropped terms that cannot
produce one-loop diagrams. We also defined

_2 __“ (65)
y—gm 8am m )

gm
2

The low-energy description of the ASF phase is an interacting
theory of a phonon 6 and a gapped Klein-Gordon field ¢.
Unlike in the MSF phase, the decay of one gapped excitation
into two phonons is allowed here, and is, in fact, the only
allowed process at low-enough momentum. Furthermore, at
very small momentum the there is no phase space for the pro-
cess ¢ — ¢ + 6 and energy conservation forbids ¢ — ¢ + ¢,
so we only keep the ¢ (V0)? vertex. The term 1\/17245 0:0 mixes
the two fields, but it does not gap the phonon and is safe
to neglect in a first approximation, as its main effect is to
give a correction to the gap and the speed of sound. This
approximation simplifies the calculation of the decay rate of
the gapped mode: in the on-shell approximation

y2nl. (66)

a

Bo= 1 — 3gan) + gamny — 200\/nf, —

yase(k) = —ImXy[Eg (k), k]. (67)

We compute the self-energy X4 to one loop, evaluating the
diagram in Fig. 4 at zero temperature. The decay rate of the
gapped excitation is then

[q-(k—q)7

Z2)2
yase(k) = /d
32 gk —q

x 8[E4(k) — casrq — caselk — ql], (68)

where we defined the parameters

0 0
N an, g
Zg >~ on+ —4(n0)3/2 s A m .

m

(69)

We evaluate the integral using the method described in the
Appendix, which finally gives

Z222 (Egk)*  Es(k)*k?
327 ciSF

yasr(k) = + 0(k2)>. (70)

16¢3sr CASF
The parametric dependence of yasr is intuitively clear: when
the gap is larger there is more phase space available, which
leads to faster decay, while for larger speed of sound there is
less phase space and the decay slows down. The dependence
on Eg is the same reported in Ref. [26], but in that work the
particle disintegrating was itself a phonon, not a gapped ex-
citation. This result implies that the gapped mode is strongly
damped and will be hard to see in the experiment.

D. Effective theory range of validity

For our approximation to hold, we require the fluctuations
of the ¢; field, which we integrated out, to remain stable while
the ¢g field undergoes spontaneous symmetry breaking. Using
the mean-field value of the chemical potential

= gant) + Zamty, — 20t,/nY, (71)

the validity condition for the ASF low-energy theory is

2
o
gam - T = > gagm’ (72)
v,

which is verified if n9 is small enough.

VI. CONCLUSION AND OUTLOOK

In this work we studied the damping of excitation modes
in the ASF and MSF phases of a single-component ultracold
atomic gas. In both phases, away from the critical regime,
the phonon damps according to the Belyaev theory [18], as
expected of a single-component Goldstone mode in a non-
relativistic theory. In the ASF phase the gapped mode has
a finite lifetime even in the zero momentum limit, while in
the MSF phase we find a Cherenkov threshold: below the
critical momentum k. there is no damping, while for k > k.
the dissipation rate is proportional to (k — k.)>. We discussed
how this property of the MSF phase should be observable in
experiments in which an atom is transmitted through an MSF
cloud: the cloud acts as a momentum funnel, suppressing the
transmission amplitude at momenta larger than the threshold
and shifting the distribution of transmitted atoms to lower
energy.

Such transmission spectroscopy experiments promise to
provide great insight into the properties of the MSF and
other more exotic ultracold phases. Our work serves as a
building block to constructing a complete dissipative transport
theory for such near-equilibrium dynamics in the MSF and
ASF phases. It would be interesting to understand how our
results are modified as the system approaches the critical
regime, where the assumption of small fluctuations around the
mean-field breaks down. Another promising research direc-
tion is the study of heteronuclear condensates [5,30-32], for
which, strictly speaking, our theory does not apply as already
at mean-field level the phase diagram changes. Nonethe-
less, kinematic arguments still suggest the existence of a
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Cherenkov threshold and a damping structure qualitatively
similar to the homonuclear case.
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APPENDIX: OFF-SHELL CHERENKOV

In this section we catalog some useful tricks for the
kind of integration that shows up when dealing with one-
loop calculations. Consider a massive particle ¢ emitting a
phonon y:

ol

E, =A
» (D) + o

, Ey(p)=cp. (AD)
We compute the phase space for this process: the process
of a particle with momentum p and energy € spontaneously
emitting a phonon has phase space

)2
_dqda) 8(a)—cq)8<e —-—w— —(p L )

8p-€) = Qm)* 2m
(A2)

where we allow € to take any value: we include processes
where the emitted ¢ is virtual, as is the case in one-loop
perturbation theory. When evaluating a diagram of the kind
discussed in Sec. V the only difference is some extra factor
of ¢ in the integrand, the nontrivial part is dealing with the
energy-conserving Dirac delta. To evaluate this integral it is
convenient to measure the energy € with respect to the thresh-
old energy €y, defined as the lowest energy where the decay is
allowed, starting with a particle with momentum p and energy
€ = E4(p): the threshold energy is then the minimum as a
function of ¢ and Q2 of

P’ +4q° —2pqQ
2m

on the minimization domain g € [0, 00), 2 € [—1, 1]. The
derivatives of E are
0E  q— pQ+mc

9E _ _pra_, _ 4z piitme (Ad)
Q2 m aq m
The derivative of E with respect to 2 is always negative,
the function assumes its minimum on the upper edge of the
domain: the optimal value is 2" = 1 (at threshold the phonon
is emitted forward). For the other equation we have to discuss
two cases separately.
(1) If p < mc then we always have 9,E > 0, thus the
optimal g and threshold energy are

E=A+ +cq (A3)

e

€h = A+ _—, (A5)
2m

which is consistent with the discussion above: when p < mc

the on shell process cannot happen (it is only allowed to emit

a zero-momentum phonon, but there is no such thing). Later

we study the off-shell case, which is less trivial.

*

q =0,

(2) If p > mc the minimum is at nontrivial ¢, and gives

2

. . mc
q = p—mc, e[h_A+pc—T. (A6)

In the next section we will derive the phase space in these two
cases. The phase space is 0 when € < €y so the formulas we
derive should be understood as holding only for € > ¢,.

1. Phase space for p < mc

The integral over w is trivial:
dq rqa R
e)= | —8le—cgq————+———-A
8(p. €) /(27‘[)4 (6 D om " 2m T m

use the threshold energy to eliminate A and define Ae =
€ — €’

[ dq q | pgQ
g(p,e)—/m(S(Ae—cq—%—i-T). (A8)

At this point we have two options: integrate over €2 or inte-
grate over g. They are equivalent of course, but it is useful to
show the details to understand how the two approaches differ.

Let us integrate over 2 first. The support and Jacobian
factor of the Dirac delta are

2
1
Q = ﬂ(q— +cq— Ae), —_ =2 (a9
pg \2m If'(R0)]  pgq
where f(€2) is the argument of the Dirac delta in the integrand.
After integrating over 2 we get

0= [ sl < o0 0¢) <1]
8D, €)= g—|—-1<—=—+4+cqg—Ac) < 1],
)" pq pg \2m

(A10)
where the square brackets represent the Heaviside theta (the
condition evaluates to 1 when the condition is true and 0
otherwise). The restriction on the ¢ domain is equivalent to

2
|:—1<ﬁ<q—+cq—Ae> <1]
pg \2m

2 2
- [q_+cq_Ae>ﬂMq_+cq_Ae<ﬁ]
m m

2m 2m
(A11)
The first condition is equivalent to
g > —p—mc—++/(p+me)?+2mAe (A12)

(notice the right-hand side is always positive), and the second
to

g > p—mc—+/(p—mc)+2mAe,

and ¢ < p—mc—+/(p —mc)? + 2mAe. (A13)

The quantity in the right-hand side of the first line is negative,
so that condition is automatically verified by g > 0. The sec-
ond condition is complicated, but if we are only interested in
the small Ae limit we expand to first order the square root and
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find

m ([ ¢*
—l<—|—4+cg—Ae) <1
pg \2m

A A
= [ moe <qg< moe i|, (A14)
mc + p mc —p
so that finally the integral gives
(. €) m (mAe)? 1 1
€)= — -
PO 2 @ \me—pP ~ (me+ pp
4 A 2
_m’c (Ae€) (A15)

If we start by integrating over ¢ instead, the support and
Jacobian factor of the Dirac delta are

g0 = pQ — mc + v/ (pQ — me)? + 2mAe, (A16)
L _ n (A17)
|f'(qo)! \/(pSZ —mc)? + 2mAe
so after the integration over ¢ we have
1 ! mq(z,
8(p. ) = —/ 4 C(Al8)
Q) )y V(pQ — me) + 2mAe

The advantage with respect to the previous approach is
that there is no condition restricting the integration domain,
but the integrand is more complicated. It is convenient to
change the variable to x = mc — pQ2 (notice that x > 0),
which turns the integral into

(. ) m /m””d (—x + V22 4+ 2mAe)?
€)= —— X
8r (2” )3]7 mc—p vx2 + 2mAe

(A19)

expanding in small A€ again, this integral is approximately

(. ) m /Wﬂ]d mAe\?
€)= ——— xx
sr QPP Jne—p x?

m3(Ae)? 1 1

T 202n)p ((mc — PP (mc+ p)2>
m*c (Ae)?

47 [(me? — PP

(A20)

as expected from the previous section.

In conclusion, the trade-off we make integrating over g
first is that the result integral is harder, but we do not have
to think as hard about inequalities that restrict the domain: the
8(g — qo) is guaranteed to have the support in the integration
interval [0, 0o) as long as we use the positive root gq.

2. Phase space for p > mc

The starting point is the same as in the previous section

dq P4 pgQ
= A sle—cqg- L 4 PP A)),
&p.€) / 2m)* (e ¢ 2m  2m + m

(A21)

but the momentum of the phonon at threshold ¢* and the
threshold energy are different (we still have Q* = 1):

2

mc
€mh = A+ pc— —.

> (A22)

q" = p—mc,

Eliminating A using € we get (as usual Ae = € — €p)

dq .
g(p76)=/ 8<Ae—c(q—q)

Qm)*
®P-9° @P-q°)
 2m + 2m )’ (A23)

where q* is a vector in the same direction as p of length g*.
The argument of the Dirac delta simplifies a little defining

dq=q—q*:

(p. €) / (N e o5q - 00
)= | —— € —cdqg— —
8P 2n ) 17 om

4 %(Q —1)(3q +g*) + c5q>

[ dq (a—q)  pq
= (27‘[)45<A€_T+ (Q—l))

m

(A24)

Notice that the term quadratic in g is (¢ — ¢*)?, which is not
a vector difference, it is the difference of two real-positive
numbers. Again we have two possibilities, integrating over €2
or g first.

Integrating over €2 first, the support and Jacobian factor of
the Dirac delta are

*\2
— 1
Qo=1+ﬂ(—(q 9) —AG), zﬁv
pg\ 2m If Qo) pg
(A25)
so integrating over 2 we get
® dq ,m
g(p,e) = ——=q¢ —[-1 <8 <1]. (A26)
o (27)" pq

The condition restricting the integration domain is equivalent
to

[—1 < 2y < 1]
2 . %)\2 _%\2
:[_ﬂ<(q q)_AGM(q )’ _ ..
m 2m 2m

(A27)

If A€ is small enough, the first condition is always satisfied,
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so we only have to consider the second inequality

[(qg — q*)* < 2mAe]

=[g > q" —V2mAellg < ¢* + V2mAe].

Notice that g* — +/2mAce is a strictly positive number for Ae
small enough, so the first condition on the right-hand side
restricts the integration domain more than just asking g > 0.
The integral is then

(A28)

m q*+/2mAe
k] = d
PO =y /q*_.m *
=%<w* + V2mAeY: — (q" — v 2mAe))
m;’z Zn';c) V2mhe. (A29)

Integrating over q first, the Dirac delta support and Jaco-
bian are

GE=q" +p-1)
+ V(q* + p(Q2 — 1))2 = (¢*)? + 2mAe,

(A30)
1 _ m
@)l g+ p(@ — DI — () + 2mAe

using ¢* = p — mc and plugging in the phase-space integral
we have

. (A3D)

bdQ (gglgg > 0D + (g5 lgp > 01)°
_1 27 J(me + pQ)? — (p— me)? + 2mAe’
(A32)
and we should also require that the argument in the square
root appearing in q(jf is positive, which is a condition on 2.
Dealing with these inequalities is complicated, so in this case
integrating over €2 first is the the best approach.

gp,e)=m
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