
1. Introduction
The quality of surface freshwater underpins sustainable futures for the planet (Folke et  al.,  2020; Lee & 
Diop, 2009); however, water quality deterioration has been alarmingly persistent (Damania et al., 2019; Oliver 
et al., 2017). Human activities have greatly exacerbated lake eutrophication, or excess nutrient enrichment, which 
drives toxic phytoplankton blooms, reduced water clarity, and bottom water anoxia (Smith & Schindler, 2009). 
Eutrophication is associated with heightened nutrient loads to lakes (Schindler et al., 2016), especially watershed 
nitrogen (N) and phosphorus (P) export from lake catchments (Carpenter & Bennett, 2011). Water quality in 
lakes has shown troubling resistance to improvement, despite recognition of the problem and management action 
intended to reduce nutrient loads (Jenny et al., 2016; Søndergaard et al., 2007).

Slow recovery of lake water quality is due, in part, to the legacy of nutrient application in lake catchments 
(Chen et al., 2018). Here, we refer to nutrient legacies following Van Meter et al. (2018), specifically referring 
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to the excess N and P accumulated in catchment terrestrial soils due to decades of agriculture and other land use 
(Bennett et al., 1999; Sabo et al., 2021). For many catchments, the effect of this nutrient legacy is eutrophication 
in downstream lake ecosystems (Bennett et al., 1999; Keatley et al., 2011; Van Meter et al., 2021). Although 
catchment-scale nutrient management programs have led to reduced nutrient export to lakes in some cases 
(Sharpley et al., 2019), lakes can be slow to recover from eutrophication (McCrackin et al., 2017), due in part to 
legacy nutrients accumulated in lake sediments (Faridmarandi et al., 2020; Jeppesen et al., 2005).

Ecosystem memory in lakes may contribute to slow recovery from eutrophication. Here, we define ecosys-
tem memory (sensu, Ogle et al., 2015) as the influence of past ecosystem states on the rates and patterns of 
future responses to change. In lakes, many processes may contribute to ecosystem memory and associated 
responses to nutrient load reductions, such as slow flushing in lakes with long hydrologic residence times 
(Hotchkiss et al., 2018), internal loading of nutrients from large sediment pools (Carleton & Lee, 2023; Missimer 
et al., 2020; Søndergaard et al., 2007), and biological feedback mechanisms that promote persistently high algal 
biomass, despite decreasing nutrient loads (Scheffer et al., 2001). While specific biophysical processes may be 
well described, it remains a challenge to understand how their interactions control water quality metrics that 
emerge at the ecosystem scale, such as seasonal patterns of phytoplankton biomass, water clarity, and formation 
of deep-water anoxia.

Lake metabolism provides a framework for investigating ecosystem memory by linking changes in nutrient 
concentration to biophysical processes that can be expressed as ecosystem-scale water quality metrics over differ-
ent time scales. While lake metabolism can be generalized as the balance of primary production and respiration 
(Odum, 1956; Staehr et al., 2010), its implementation in analytical models often includes physical and biolog-
ical processes that quantify both metabolic processes and ecosystem states relevant to water quality (Ladwig 
et al., 2022; Winslow et al., 2016). For example, elevated epilimnetic nutrients stimulate primary production (i.e., 
autochthony), which reduces water clarity through phytoplankton-associated turbidity (Smith, 1982). Autoch-
thonous organic matter supports high microbial respiration, which leads to consumption of available oxygen in 
deeper waters of thermally stratified lakes (Matzinger et al., 2010; Müller et al., 2012). Allochthonous organic 
matter also contributes to lake metabolism (Hanson et al., 2003) and is generally considered a more recalcitrant 
and persistent source of organic carbon that contributes to long-term change in water quality metrics (Kothawala 
et al., 2014). Metabolism models that consider both autochthonous and allochthonous organic matter sources 
and cycling can recreate both short-term and long-term ecosystem dynamics (Hoellein et al., 2013). By linking 
physical, nutrient, and organic carbon cycles, metabolism models may also provide a mechanistic basis for the 
role of ecosystem memory in eutrophication recovery.

We investigated how linked cycles of phosphorus (P), carbon (C), and lake metabolism control the time scale 
of water quality responses to reduced nutrient loads projected for Lake Mendota (Wisconsin, USA). We used 
20 years of observational data to calibrate a physical-biogeochemical model and recreate annual dynamics of 
three water quality metrics, which are water column P concentrations, water clarity (as a function of dissolved 
and particulate organic carbon), and hypolimnetic dissolved oxygen (DO) depletion. Through a scenario of long-
term nutrient reduction, we quantified how P legacies in the lake influence the responses of water quality metrics, 
highlighting the role of long-term ecosystem memory. While we were interested in water quality recovery, we 
were equally interested in the internal feedbacks that alter the time scales of change for water quality to address 
the questions: How do P cycles and lake metabolism interact to determine the time scales of change for water 
clarity and summer anoxia? How long is the legacy of historical P loading from the catchment to the lake on 
future water quality conditions?

2. Materials and Methods
Our overarching modeling strategy was to link sediment and water column nutrient and organic matter cycles for 
the purpose of investigating how seasonal water quality metrics change over decades to centuries. While there 
are excellent examples of coupling sediment to water processes (reviewed by Paraska et al., 2014), we needed an 
approach that allowed us to model lake metabolism at the ecosystem scale and that included general sediment 
properties, such as area, depth and P and organic carbon (OC) pool sizes. Following the recent work by Carleton 
and Lee (2023), who used a relatively simple model to recreate long-term P change in lakes and their sediments, 
we focus on simplicity and flexibility, recognizing that our approach enables future scaling to build additional 
complexity and application. We also placed high importance on recreating both seasonal and long-term dynamics 
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in addressing how a lake responds to nutrient load reduction. Seasonal dynamics are important because water 
quality impairment, such as algal blooms and hypolimnetic anoxia, are generally summer phenomena in north 
temperate lakes. Long-term dynamics (decades to centuries) are important because of the persistence of nutrient 
legacies in lakes. We relied on high quality long-term data to inform the design of the model and calibrated it 
for predicting water quality. We used the calibrated model to run scenarios of water quality recovery, in which 
external nutrient loads to the lake were reduced.

2.1. Study System
Our study system was Lake Mendota, which is a eutrophic lake located in south-central Wisconsin, USA. The 
lake's surface area is 39.61 km 2, with a maximum and mean depth of 25 and 12.8 m, respectively. The lake has a 
dimictic mixing regime and typically is stratified during most of April-October. Lake Mendota is a drainage lake 
with an average water residence time of 4.3 years (Lathrop & Carpenter, 2014).

Lake Mendota and its catchment have a long history of human use. While people have lived near Lake Mendota 
for thousands of years, eutrophication likely occurred over a relatively short time period during the late 1800s 
to early 1900s, due to agricultural intensification, followed by urbanization (Brock, 1985; Lathrop, 2007). For 
our study, we assumed that Lake Mendota was either mesotrophic or oligotrophic in its water quality prior to 
European settlement, based on sediment cores (Brock, 1985). Currently, the lake is eutrophic and its catchment 
is predominantly urban and agricultural, with very high N and P mass in catchment soils (Bennett et al., 1999; 
Lathrop, 2007). As a result of decades of high N export from the catchment to the lake, the lake tends to be 
P-limited (Lathrop, 2007), and thus we focused on P dynamics when modeling the nutrient legacies of the lake.

2.2. Models Linking Physics, Phosphorus, Organic Carbon, and Dissolved Oxygen
We used a time-dynamic approach to model lake water quality and linked the three lake water quality cycles of 
interest—P, OC, and DO, all within the context of lake hydrodynamics (Figure 1). We used this model to generate 
daily metrics of water quality, which are water column P concentrations, water clarity (as a function of dissolved 
and particulate OC), and hypolimnetic DO depletion. To study long-term changes in water quality, we tracked 
ecosystem states in both the water column and sediments. Explicitly linking cycles of P, OC, and DO enabled us 
to study how changes in external loads led to changes in major lake pools and subsequent changes in seasonal 
water quality metrics.

Model details are provided in Supporting Information S1 (Tables S1–S3). The process-based implementation 
of thermodynamics was adapted from our previous work on pond thermal structure (Albright et al., 2022), lake 
metabolism modeling (Carey et al., 2018), and lake phosphorus modeling (Hanson et al., 2020). The model is 1-D 
in the vertical dimension, with three compartments modeled simultaneously using a box-modeling approach—
water column epilimnion and hypolimnion, and active sediments (Figure 1). Each compartment is treated as fully 
mixed.

The lake physical model solves the energy budget and mixing dynamics on an hourly time step and produces 
1 m vertical resolution temperature output. The lake physical model follows an integral energy approach for heat 
transport and solves vertical diffusion using an implicit scheme (see model formulations in Albright et al., 2022; 
note that we neglected the effects of macrophytes on energy attenuation in the current study). Water clarity, 
updated daily by the metabolism model, informs attenuation of short-wave radiation in the physical model. 
Hourly temperature output by the physical model is averaged to daily values, and sequentially linked to the water 
quality calculations. Thermal strata are calculated from the vertical temperature gradient. Strata volume and areal 
contact with sediments are calculated daily from the thermocline depth and lake hypsometry. In our application 
of the physical model output in the metabolism model, each thermal layer was considered fully mixed, and mean 
layer temperature was calculated from the layer's volume weighted average.

The metabolism model includes pools (i.e., state variables) of total phosphorus (P), organic carbon (OC), and 
dissolved oxygen (DO) (Figure 1; Table S1 in Supporting Information S1). OC pools include particulate (POC) 
and dissolved (DOC) fractions with labile (POCL, DOCL) and recalcitrant (POCR, DOCR) forms. The model 
information is provided in detail in Supporting Information S1, and summarized here. Pools are tracked sepa-
rately for the epilimnion and the hypolimnion. We assume allochthony is recalcitrant and autochthony is labile. 
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The model also includes an “active sediment layer,” which has pools for labile and recalcitrant POC and pools 
for tightly bound P (PB) and loosely bound (including organic) P, which we simplified to “unbound” (PU). At a 
conceptual level, our overall approach has similarities that of Carleton and Lee (2023) on P cycling in lakes. We 
highlight in Supporting Information S1 some key similarities and differences between their work and ours, and 
we use the findings of Carleton and Lee (2023) and references therein in evaluating the long-term behavior of 
our model.

The lake sediments are divided into an active sediment layer above a permanent burial zone. The active zone 
has POCR, POCL, PU, and PB, each of which interacts with the water column and is subject to permanent burial. 

Figure 1. The lake model has three compartments: epilimnion, hypolimnion (when the lake is thermally stratified), and 
active sediments. Boxes are state variables. DIC shown for reference and is not modeled. Arrows are fluxes or biogeochemical 
transformations. Modeled state variables are: phosphorus (P); in the sediments, P is divided between bound (PB) and unbound 
(PU) forms; dissolved oxygen (DO); particulate and dissolved organic carbon (POC and DOC, respectively) in two forms, 
labile (*OCL) and recalcitrant (*OCR). Three fluxes control ecosystem inputs and outputs for P and OC (blue arrows)—load, 
export, and burial. Movement of state variables between compartments indicated by black arrows. Metabolic processes are 
net primary production (NPP) (green) and respiration (R) (red). The dashed green arrow indicates that NPP is not a sink for 
P in our model and that P does not become part of the DOC pool. P efflux from the sediments is represented as recycling of 
PU and release of PB. Settling and rebinding return P to the sediments. All state variables are subject to entrainment as the 
thermocline depth changes. Numbers in parentheses refer to model equations (Table S1 in Supporting Information S1).
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Sources of sediment POCR,L are settling from the water column. Sinks for POCR,L include mineralization to inor-
ganic carbon and permanent burial. Sources for sediment P are settling (PU) and rebinding (PB) from the water 
column. Sinks for PU,B include recycling of PU back into the water column, release of PB back into the water 
column under anoxic conditions, and permanent burial of PU,B. The details of rates and how they vary by temper-
ature and oxic condition are provided in Supporting Information S1. Permanent burial of P and OC is deter-
mined by the accumulation of lake sediments. A sediment accumulation rate of 1.0 mm y −1 is assumed for Lake 
Mendota, unless otherwise stated in a scenario. While roughly half of the accumulation rate found previously for 
Lake Mendota sediment cores (Lathrop, 2007; Walsh et al., 2019), we used a lower rate due to sediment focusing 
not accounted in previous estimates. Permanent burial of P and OC is simply the product of the mass of each of 
the active sediment constituents and the ratio of the sedimentation rate and active sediment depth. For example, 
under the above conditions, permanent burial of POC would be POCSed × 0.001 m y −1/0.1 m = POCSed × 0.01 
years −1. We explore some of these assumptions in scenarios described below. See Supporting Information S1 for 
more detailed justification for sediment extent and dynamics.

2.3. Model Calibration and Sensitivity Analysis
The model was manually calibrated to recreate observed ice cover onset and breakup, Secchi depth, and 
volumetrically-weighted mean values for the epilimnion and hypolimnion for water temperature, dissolved 
oxygen, total phosphorus, and dissolved organic carbon. To compare model output to Secchi depth, we calculated 
a light extinction coefficient for the water column as a function of the dissolved and particulate OC output from 
the model, and converted light extinction coefficient to Secchi depth (Equation S23 in Supporting Informa-
tion S1). Calibration was based on the ∼20 years of observational data from 1995 to 2015. Free parameters (Table 
S2 in Supporting Information S1) were manually tuned to achieve visual correspondence between predictions 
and observations. Root mean square error (RMSE), Nash–Sutcliffe model efficiency coefficient (NSE), and 
Kling-Gupta Efficiency (KGE) are reported for the fit model over the calibration period.

We assumed that the calibrated model must approximate sediment core values of P. As described previously, it 
was necessary to run the model for hundreds of years (repeating the 20 years of driving data) to achieve sediment 
equilibrium for both P and OC. Because P recycling and sediment respiration are a function of sediment P and OC 
pool sizes, a change in equilibrium of the sediments affects water column predictions, requiring additional cali-
bration. Thus, calibration was an iterative process of selecting parameter values, running the model for centuries 
to long-term equilibrium, and then checking for calibration. Although automated optimization would likely yield 
more accurate predictions, the dominant sensitivities lie more in our assumptions regarding P pools and loads.

For the legacy scenarios described below, we did not have observational data for the Lake Mendota prior to 
western settlement. To test whether our calibrated model could reproduce oligotrophic and mesotrophic condi-
tions (i.e., water quality conditions prior to western settlement), we assumed external P loads more typical of 
oligotrophic and mesotrophic lakes (Table S3 in Supporting Information S1). We ran the model for 300 years, 
repeating the use of 20 years of driver data, to allow the full system to reach dynamic equilibrium. We then 
compared water quality metrics with published indices for the different trophic states (Table S4 in Supporting 
Information S1).

2.4. Legacy Scenarios
We ran three legacy scenarios to investigate the response of Lake Mendota to nutrient load reductions (Table S3 
in Supporting Information S1). In our base legacy scenario (Scenario 1), we assumed zero external load of P for 
120 years, repeating the same 20 years of hydrology and meteorology used in calibration. We also assumed a 50% 
reduction in allochthonous OC load and a 50% reduction in inert sediment load that determines P and OC burial 
rates. In Scenario 2, external P loads were reduced to values typical of mesotrophic lakes, but other conditions 
were the same as in the base scenario. In Scenario 3, permanent burial rate of sediment P was raised to values 
assumed for the calibrated model, which provided for a faster water quality recovery than the base scenario.

We tracked all model states and rates through the three scenarios and noted when water quality variables passed 
thresholds between trophic states (Table S4 in Supporting Information S1). We explored Lake Mendota's memory 
to historical P loads by comparing the relative rates of change of water quality variables with those of P in the 
sediments and water column over 120 years. Time series of variables were smoothed with a forward/backward 

 21698961, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007620, W
iley O

nline Library on [12/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Geophysical Research: Biogeosciences

HANSON ET AL.

10.1029/2023JG007620

6 of 17

moving average filter (10 years) to eliminate interannual variability due to 
climate and hydrology drivers, and then each time series was normalized to 
a range of 0–1, with 1 and 0 representing their values at the beginning and 
end of a scenario, respectively. With these normalized values, we calculated 
first differences for each variable and  divided by the first differences for epil-
imnetic P and sediment  P.  A value <1 indicated the variable was lagging 
(i.e., recovering more slowly than) epilimnetic P change, whereas a value 
>1 indicated the variable was leading (i.e., recovering more quickly than) 
epilimnetic P change.

While we used the model to address several questions, we were most inter-
ested in understanding why lake water quality responds slowly to nutrient 
reductions and how Lake Mendota, as a test case, helps us interpret this 
phenomenon more generally. Thus, a precise estimate of when Lake Mendota 
might reach an oligotrophic state in the future is less important than under-
standing how lake processes interact to control the patterns of water quality 
change we might expect in response to potential nutrient reductions. Through 
model scenarios, we demonstrate that the general patterns of water quality 
change are robust to changes in key assumptions about the model and about 
the lake.

3. Limnological Data and Model Driving Data
Limnological data for calibration were provided by the North Temperate 
Lakes Long Term Ecological Research program and available in the Environ-

mental Data Initiative repository (Magnuson et al., 2023). These data have been collected fortnightly (every two 
weeks) or monthly, depending on the variable, since 1995 (Magnuson et al., 2006). Lake sediment core data were 
used to inform the sediment component of the model (Bortleson & Lee, 1972; Hurley et al., 1992; Lathrop, 2007; 
Walsh et al., 2019).

Data for driving the model included daily discharge, P and organic carbon (OC) loads, as well as hourly meteoro-
logical data. Discharge was taken from Hanson et al. (2020); however, the entire time series was linearly adjusted 
so that mean hydrologic residence time over the 20-year calibration period of the model was 4.3 years (Lathrop & 
Carpenter, 2014). Meteorological forcing data were obtained from the second phase of the North American Land 
Data Assimilation System (Xia et al., 2012). Meteorological variables used in this study included wind speed, 
air temperature, specific humidity, surface pressure, surface downward short- and longwave radiation, and total 
precipitation, which were used as boundary data for physical model and metabolism model. Data and model code 
are published in Hanson (2023).

4. Results
4.1. Comparison of Model Predictions With Observations
The model reproduced well the time dynamics of observed winter ice cover duration, as well as ice-off date 
(Figure 2). Notable exceptions were 1998 and 2002, when the model over-predicted ice cover duration and ice-off 
date. The mean observed ice duration was 86 days (±26, 1 SEM), and the mean ice-off day of year 86 (∼March 
27th), which compared well with the a modeled mean ice duration of 85 days, and modeled mean ice-off day of 
year 85 (∼March 26th). On average, there was less variability among years in the model predictions than in the 
observations.

Physical and chemical dynamics of the epilimnion and hypolimnion compared well with the observed data 
(Figures 3a and 3b). The RMSE was 1.28°C and 1.29°C for the epilimnion and hypolimnion, respectively (Table 
S5 in Supporting Information  S1). For Secchi depth, predictions reproduced the observed annual dynamics 
(Figure 3d), although the RMSE was somewhat high at 2.12 m. Occasional high Secchi values in the obser-
vational data were missed by the model. The annual DO cycle was well reproduced for the epilimnion and 
hypolimnion (Figures 3d and 3e), and RMSE values were 1.45 and 1.97 mg L −1, respectively. Occasional very 

Figure 2. Model results and observational data for lake ice cover for the 
calibration period. (a) Simulated and observed values for ice covered days each 
year. The year corresponds to the year that ice-off occurred. (b) Simulated and 
observed values for ice-off day of year.
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high epilimnetic DO values during winter were missed by the model, and observed values well-below saturation 
later in summer were missed. We suspect that low observed epilimnetic DO during summer were due to inclusion 
of the upper half of the metalimnion in the calculation of average epilimnetic DO.
Total phosphorus annual dynamics were reproduced by the model (Figures 4a and 4b). The RMSE values for the 
epilimnion and hypolimnion were 51.0 and 134 μg L −1, respectively. In general, the model underpredicted epilim-
netic annual maxima early in the time series and over-predicted annual maxima late in the time series. Low summer 
P values were reproduced well, which was an outcome particularly relevant to summertime water quality predic-
tions. The hypolimnetic P predictions matched observations. However, we note the high modeled hypolimnetic P 

Figure 3. Model predictions (black line) and observations (red circles) for the full calibration period. Panels are (a) water 
temperature for the epilimnion, and (b) hypolimnion; (c) Secchi depth; (d) dissolved oxygen in the epilimnion, and (e) 
hypolimnion.
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concentrations at the end of the stratified period. These concentrations occur after the last observations of the season 
and cannot be verified due to lack of field data available for this time of year. High P mass in the hypolimnion prior 
to fall mixis is required to reproduce the observed high water column P immediately following fall mixis.

DOC predictions matched trends of the observations for both the epilimnion and hypolimnion (RMSE of 1.0 and 
0.98 mg L −1, respectively). However, the model over-predicted DOC by about 1.5 mg L −1 from about 2008 to 
2013. We have sparse information on DOC loads, and model deviations from observations may be due to unmeas-
ured changes in the driver data inflow concentrations.

Goodness-of-fit showed mixed results, depending on the test and the state variable (Table S5 in Supporting 
Information S1). Although NSE was strongly positive for T and DO and slightly positive for Secchi depth, it was 
negative for epilimnetic P and DOC. KGE, which is thought to be a more reliable statistic for environmental time-
series data (Gupta et al., 2009), was positive for all variables. However, KGE for DOC was near zero, suggesting 
our model for DOC only slightly outperformed a model based on the DOC mean alone.

Figure 4. Model predictions (black line) and observations (red circles) for the full calibration period. Panels are (a) total 
phosphorus for the epilimnion, and (b) hypolimnion; (c) dissolved organic carbon for the epilimnion, and (e) hypolimnion. 
Four high outlier values in A not shown, and model predictions through the end of the stratified period in B not shown.
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The test of the model using mesotrophic and oligotrophic P load scenarios 
produced expected water quality behaviors (Figures S1 and S2 in Support-
ing Information  S1). Phosphorus concentrations in the lake decreased to 
mesotrophic and oligotrophic levels, with annual epilimnetic P ranging from 
5 to 100 and 1 to 5 μg L −1, respectively. DOC concentrations in the epilimnion 
also decreased to mesotrophic and oligotrophic levels, at approximately 4 and 
3 mg L −1, respectively. Minimum summer Secchi depth increased to about 
2.5 and 5 m for mesotrophic and oligotrophic simulations, respectively. For 
the mesotrophic simulation, duration of hypolimnetic anoxia decreased by 
about 10 days y −1; whereas, in the oligotrophic simulation, anoxia no longer 
occurred.

4.2. Annual Cycles of Temperature, P, OC, and DO
The time dynamics of state variables underlying the water quality of Lake 
Mendota recreated the expected annual limnological patterns through four 
distinct seasons. The winter ice-covered period (Figure 5a) had stable phys-
ical, chemical and biological conditions relative to other seasons, with low 
but continuous P settling and P recycling (Figure 6d). Winter productivity 
was low (Figure  7d), resulting in relatively clear water (Figure  7a). Cold 
water temperatures drove high annual DO concentrations with oxygen at near 
saturation (Figure 5a). Spring ice-off was a time of rapid change, with high 
NPP and increasing settling of both POC (Figures 7d–7f) and P (Figures 6d 
and 6f). Spring catchment snowmelt and precipitation led to a rise in external 
P loads (Figure 6d; Figure 7d). Decreasing epilimnetic DO was largely driven 
by changing temperature (Figure 5a). Water clarity generally decreased in the 
spring, except during a distinct clear-water phase in late spring (Figure 7a). 
Thermal stratification began in spring (Figure 5c), along with a rapid decrease 
in hypolimnetic DO (Figure 5b).

Summer and autumn dynamics had high NPP and POC (algal biomass) 
(Figure  7d), leading to epilimnetic DO near or above saturation (due to 
high productivity), despite declining DO solubility as temperatures warmed 
(Figure  5a). Hypolimnetic DO decreased rapidly after the onset of stable 

thermal stratification, and the hypolimnion became anoxic (Figure 5b), except for occasional influxes of DO 
due to short-term variability in the thermocline depth and entrainment of DO-rich water from the epilimnion. 
High algal biomass resulted in low clarity (Figure 7a). Epilimnetic P decreased to its lowest annual values due 
to settling out of the epilimnion. Hypolimnetic P became very high (Figures 6a and 6b), due to recycling of P 
and release of P from the sediments (Figure 6e). Once the hypolimnion became anoxic, mineralization rate of 
organic P slowed, and the dominant efflux of P from the sediments switched to release of P from the PB pool in 
the active sediment layer (Figures 6e and 6f). Autumn turnover triggered the mixing of hypolimnetic nutrients 
into the entire water column. As P encountered oxic conditions in the surface waters, P rebinding increased, and P 
settled into the sediments (Figure 6d). Elevated nutrient concentrations supported continued primary production 
into the autumn (Figure 7d), although rates decreased because of cooling temperatures and reduced irradiance 
prior to the onset of winter ice cover.

4.3. Major Fluxes and Storage
On an annual basis, most of the P in the water column originated from internal loading from the sediment. Inter-
nal P loading (Figures 6d and 6e) was ∼5.5 x that of the external load (0.8 gP m −2 y −1). Note that in Figure 6d, 
the large flux of P from the hypolimnion to the epilimnion during fall mixis is not shown, but this accounts for 
the rapid epilimnetic P increase shown during mixis in Figure 6a. The range of external versus internal loads was 
relatively narrow across the calibration period, in part because of our model assumptions for external loading, 
which did not account for changing P concentrations as a function of hydrologic flow.

Figure 5. Modeled 2005 and 2006 temperature and dissolved oxygen (DO) for 
the (a) epilimnion and (b) hypolimnion, and (c) modeled thermocline depth. 
Periods of ice cover shown in (a). Gray shaded periods represents thermal 
stratification.
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Despite the seasonal variability in water column dynamics, permanent burial of P (Figure 6f) and OC (Figure 7f) 
in the sediments appeared near constant through the year. This is because sediment concentrations of these constit-
uents are high relative to water column values and therefore have low relative variability (Figures 6c and 7c).

Annual autochthony (i.e., NPP) was much higher than allochthony (Figure 7d). Although most of the autoch-
thony was respired (Figures 7d–7f), a substantial proportion was stored long term in the sediments and buried 
(Figures 7c and 7f), resulting in long term positive net ecosystem production (NEP) for the lake.

4.4. Legacy Scenarios
Improvement in water quality for Lake Mendota differed depending on the water quality metric and scenario. 
For Scenario 1 (Figure 8), in which external P loads were set to zero and OC and sediment loads were reduced, 
epilimnetic P decreased rapidly in the first 20 years due to water column flushing (Figure 8a), followed by a long 
slow decrease that tracked decreasing hypolimnetic and sediment P (Figures 8b and 8c). For OC, the initial rapid 
decrease occurred for both the epilimnion and the hypolimnion (Figures 8d and 8e), because the autochthonous 
pool of OC was produced by epilimnetic NPP. Over the 120 years simulation, sediment OC decreased to roughly 
half of its original value (Figure 8f). Secchi depth continually increased following decreases in OC (Figure 8g). 
Dissolved oxygen was the variable slowest to respond to reduced external loads. Although sediment oxygen 
demand decreased linearly (Figure 8h), the number of anoxic days decreased slowly for about 50 years, and then 
decreased rapidly until about year 95, at which time anoxia no longer occurred (Figure 8i). The annual range for P 
and POC decreased with the decreasing mean value. For Secchi depth, the range decreased with increasing value.

Overall, the pathways to improved trophic states differed among variables after external loads were set 
to zero (Figure  9). Light extinction, which is inversely related to Secchi depth, and epilimnetic P passed 
the eutrophic-mesotrophic threshold between years 10–15 of the simulation. Epilimnetic P passed the 
mesotrophic-oligotrophic threshold at year ∼40, while light extinction passed that threshold about 35 years later. 

Figure 6. Modeled total phosphorus (P) for 2005 and 2006. (a) P states for the epilimnion, (b) hypolimnion, and (c) sediments. (d) P rates for the epilimnion, (e) 
hypolimnion, (f) sediments. For rates, paired processes, such as release-rebinding and recycling-settling, are the same color. Positive values are sources and negative 
values are sinks, with legends above or below zero, respectively. Entrainment not shown. Gray shaded periods represents thermal stratification.
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The duration of anoxia showed a different pattern, which was convex until about year 60 of the simulation. 
Although there was a steady decrease in anoxia over time, anoxic days did not drop to mesotrophic levels until 
year ∼85 of the simulation and did not drop to oligotrophic values (i.e., disappear) until year ∼95.

Scenarios 2 and 3 (Figures S3, S4, S5, and S6 in Supporting Information S1) showed the same general patterns as 
Scenario 1, but with differing rates. For Scenario 2 (mesotrophic P loads), water quality values never passed the 
threshold from eutrophic to mesotrophic. The duration of the scenario, set to 120 years, was simply too short. In 
contrast, Scenario 3 (high inert sediment load and burial rate) demonstrated the importance of higher burial rates 
in the sediment nutrient and carbon budgets. When burial rate was high, water quality improvement occurred 
∼25% more quickly overall.

To quantify lags between changes in lake P and water quality responses, we calculated the relative annual rates 
of change for variables over the simulation period (Figures 9b and 9c). Until about year 20, all metrics lagged 
(changed at a lower relative rate) changes in epilimnetic P concentrations (Figure 9b). At 20 years, POCEpi and 
sediment oxygen demand led (changed at a higher relative rate) PEpi. Light extinction and anoxic days changed 
from lagging PEpi to leading PEpi at about year 50. When compared to sediment P (Figure 9c), only sediment 
O2 demand and anoxic days lagged PSed changes initially. Other metrics (PEpi, POCEpi, light extinction), which 
respond to water column flushing, led PSed until about year 20. All metrics, other than PEpi, lagged PSed until about 
years 50–70. PEpi continued to lag PSed through the end of the simulation.

5. Discussion
5.1. Legacies of Eutrophication for Lake Mendota
The legacy of more than a century of high nutrient loads to Lake Mendota is degraded water quality that persists 
for decades to longer than a century under the most aggressive nutrient reduction scenario. Fundamentally, a 
century of water quality degradation requires a century (or longer) of recovery. Although initial improvement in 

Figure 7. Modeled organic carbon and Secchi depth for 2005 and 2006. Lines for OC are stacked. (a) Organic carbon states and Secchi depth for the epilimnion, (b) 
organic carbon states for the hypolimnion, and (c) sediments. (d) Organic carbon rates for the epilimnion, (e) hypolimnion, (f) sediments. For rates, positive values are 
sources and negative values are sinks, with legends above or below zero, respectively. Lines are not stacked for d–f. Inflow and outflow are total organic carbon, settling 
is all forms of POC, and respiration includes both labile and refractory forms combined. Burial is all POC. Gray shaded areas represents thermal stratification.
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water clarity and epilimnetic P may occur in a couple of decades, high internal nutrient loads will continue to fuel 
elevated primary production for a century. The long and slow response of water quality to nutrient reduction has 
been shown empirically for other lakes (Jeppesen et al., 2005; Søndergaard et al., 2013). For Lake Mendota, we 
have demonstrated how nutrient cycling and lake metabolism interact to control how water quality responds to 
both the reduction of external loads and the long and slow depletion of sediment nutrient stocks.

Phosphorus stored in the sediments of Lake Mendota controlled the bottom-up response of water quality to 
nutrient load reductions. At approximately 125 g P m −2 of active sediment area, a typical sediment P density for 
eutrophic lakes (Carey & Rydin, 2011), the sediment pool has approximately two orders of magnitude more P 
than the annual average water column value of ∼1.0 g P m −2. Given Lake Mendota's hydrologic residence time of 
∼4 years and typical water column P concentrations, only ∼0.25 g P m −2 at most can be flushed annually from the 
water column, assuming no additional external loads. Thus, a ∼30% reduction in the sediment pool needed for the 
lake to return to a mesotrophic state would take about 150 years through the process of flushing alone. These find-
ings support previous work that eutrophication persists in lakes long-term, despite P remediation (Søndergaard 
et al., 2007, 2013). However, deposition of sediments that may bind P or bury it in sediments (Rothe et al., 2014) 
accelerates the recovery process, because permanent burial can be an important sink in the sediment P mass 
balance (Carleton & Lee, 2023). The high inert sediment load in Scenario 3 (Figure S6 in Supporting Informa-
tion S1) emphasizes the importance of burial to sediment P reduction and subsequent water column improvement.

5.2. Ecosystem Memory and Surprises on the Path to Trophic State Improvement
Ecosystem memory slowed the response of water quality to nutrient load reductions in Lake Mendota. Water 
clarity and DO improvement lagged the long, slow decline in sediment P because of the lags associated with 
the coupled dynamics of P-cycling, metabolism, and DO. Although water column P may change rapidly due 
to reduced external loads, the fraction of water column P derived from internal loads will lag sediment P 
decreases because of the lake's hydrologic residence time. Lake water quality is linked to water column P 

Figure 8. Recovery of water quality metrics following cessation of external P inputs. Data are smoothed annual means. Dashed lines indicate annual range. (a–c) 
Ecosystem total P. (d–e) Total POC in the water column and (f) sediments. (g) Secchi depth, (h) Sediment oxygen demand, and (i) anoxic days during.
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through metabolism, and a change in water quality, such as hypolimnetic anoxia, requires a shift in metabolic 
balance that may not be realized until water column P is greatly reduced. Our expectation was that all water 
quality metrics would improve following cessation of external loads in the legacy scenarios, even if the rate of 
improvement was slower than that of P in the water column. However, the rate of change in hypolimnetic anoxia 
initially remained nearly flat as the annual duration of hypolimnetic anoxia showed minimal improvement 
for nearly two decades (Figure 9). In Scenario 2 (60% reduction in P load), which arguably would be a more 
likely “real-world” scenario, the duration of anoxia actually became worse for the first decade. This surprising 
outcome was due to changes in the sediment OC mass balance. When allochthony was turned off, sediment 
deposition decreased in our model, reducing permanent burial rates for P and OC. For the first 1–2 decades 
of recovery, water column P was still at concentrations high enough to support high production of autochtho-
nous POC (positive NEP), which kept the sediment OC mass balance near neutral in Scenario 1 and positive 
(i.e., accumulation of sediment OC) in Scenario 2. At about year 20 of recovery, sediment P diminished to 
the point where P recycled to the water column was lower, and NPP and POC were sufficiently reduced to tip 
the sediment mass balance toward a reduction in POC. In general, consumption of hypolimnetic O2 depends 
on a number of factors, including lake morphometry (Steinsberger et al., 2020), climate variability (Ladwig 
et al., 2021; Snortheim et al., 2017), and water column stability (Ladwig et al., 2021), but chiefly the OC avail-
able as substrate for microbial respiration and the benthic flux of reduced substances (Müller et al., 2012). Once 
NEP in the water column became negative (i.e., lower export of POC to the sediments), sediment O2 demand 
and anoxic days diminished.
Linked cycles of P, OC, and DO produce nested lags in the response times of water quality metrics to reduced 
nutrient loads and provide a mechanistic basis for ecosystem memory. The recovery to an improved trophic state 
of some water quality metrics can only occur following substantial changes in other nutrient or carbon pools. For 
example, elimination of hypolimnetic anoxia requires depletion of the OC available for respiration, and depletion 
of OC lags recovery of P by several decades because of the influence of P on autochthony and NEP (i.e., lake 

Figure 9. (a) Response pathways for metrics of water quality. Water quality metrics normalized to a range of 0–1, with high 
values representing initial conditions and zero representing values at 120 years following cessation of external P loads. Circles 
on Pepi, light extinction, and anoxic days represent trophic thresholds, based on values before normalization. Earlier values 
are eutrophic to mesotrophic thresholds, and later values are mesotrophic to oligotrophic thresholds. Numbers in boxes are 
recovery phases. (b) Change in water quality metrics with respect to change in mean surface P and (c) sediment P. Horizontal 
line at y = 1 separates a lagged response in water quality (<1) from an accelerated response (>1).
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metabolism). Lake metabolism is sensitive to long-term lake changes (e.g., Richardson et al., 2017), highlighting 
its utility for tracking coupled biological and chemical water quality responses to external loading.

Differing lags of recovery explain why different water quality metrics pass inter-trophic thresholds at different 
times (Figure 9). During recovery in Scenario 1, water clarity, based on POC concentration (i.e., algal biomass 
in this model), lags P recovery by about 30 years, and hypolimnetic oxygen lags water clarity by about 20 years. 
Thus, transitioning to an oligotrophic state can vary in time from about 40 to 95 years, depending on the water 
quality metric. Nonetheless, the sequence of responses from decreasing P to improved oxic condition pass through 
a set of predictable phases, described below.

5.3. Phases of Water Quality Improvement
Our scenarios reveal five distinct phases of water quality improvement (Figure 9). The phases are identified 
visually, based on changes in water quality metrics relative to PEpi (Figure 9b), which is more easily measured in 
lakes than sediment P. The first phase is water column flushing, which corresponds to a rapid decrease in solutes 
as external loads of P and OC are eliminated and reduced, respectively. In Phase 2, water quality metrics lag 
changes in PEpi. In Phase 3, improvement in water quality metrics accelerates relative to PEpi and then decelerates 
in Phase 4 as all variables approach a new dynamic equilibrium in the oligotrophic state. In Phase 5, water quality 
metrics have reached their oligotrophic values.

The long time period needed for transitions across these five phases provides context for localized ecosystem 
behavior that otherwise might appear puzzling within the time frame of short-term monitoring programs. Any 
initial rapid improvement in water quality will stall following water column flushing. Further improvement in 
water quality will proceed more slowly than declining PEpi (i.e., values <1 in Figure 9b) for decades. Eventu-
ally, water quality will improve more rapidly than PEpi (i.e., values >1 in Figure 9b) until the system reaches its 
improved trophic state. In Lake Mendota, these phases would play out over decades and could be observed only 
through long-term monitoring. We expect that this behavior likely would be applicable to other eutrophic lakes 
with similar external loading history, although this remains unknown and motivates future work. Altogether, a 
long view that incorporates ecosystem memory is required to understand localized ecosystem behavior during 
remediation of degraded water quality.

5.4. Caveats
Two assumptions in our model regarding sediment P pools are especially worthy of further consideration for 
analyzing Mendota patterns and scaling these results to other lakes. First, the model sets sediment P binding 
capacity at 1 mg P per gram dry sediment, based on empirical measures of sediment total P concentrations in 
Lake Mendota (Hoffman et al., 2013). Although this static threshold works well in the model, the reality of 
sediment P sorption capacity is far more complex and may depend on factors such as changes in particle size 
and mineralogy of deposited sediments (Stone & English, 1993). Along with hypolimnetic dissolved oxygen 
status, the binding capacity parameter determines the rate at which P may re-bind to the mineral P pool in the 
sediments and influences the balance of sediment P retention versus release. As such, the model would benefit 
from further exploration of this parameter, including options for dynamic P binding capacity over time. Second, 
the model focuses primarily on redox-sensitive P minerals (iron- and manganese-bound P) in the bound sediment 
P pool, which is supported by empirical evidence of the importance of anoxic internal P loading in Lake Mendota 
(Hoffman et al., 2013). However, mineral sediment P may be associated with other metals, such as aluminum and 
calcium, which are generally considered less mobile than redox-sensitive P forms (Orihel et al., 2017), and are 
not explicitly represented in our model. Conversely, co-precipitation of soluble phosphorus with calcite may be 
another pathway for P burial in Lake Mendota (Gonsiorczyk et al., 1998; Reddy et al., 2021), motivating future 
work on linked calcium and P cycling, as well as more detailed P speciation modeling, in Lake Mendota.

Additionally, application of the modeling approach to other waterbodies may require consideration of legacy N 
pools and cycling. We focused our assessment of nutrient cycling on P due to evidence of P limitation in Lake 
Mendota (Lathrop, 2007) as well as numerous case studies of P control eliciting desirable water quality responses 
(Schindler et al., 2016). This assumption was supported by good model performance compared to the long-term 
observational data. However, model application to N-limited waterbodies will require consideration of N cycling 
as legacy N loads likely play an important role in long-term lake functioning in these systems.
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Repairing ecosystems usually requires more time and effort than damaging them (Jones et al., 2018), in part 
due to long ecosystem memory. Lake Mendota was eutrophied over a relatively short time period—probably 
less than 100 years and has likely had an anoxic hypolimnion as far back as the early 1900s (Lathrop, 2007). 
Our simulations indicate a return to pre-European settlement conditions using external P reduction alone will 
take decades, if not centuries. Interaction of cycles in Lake Mendota underlie that long memory, leading to long 
delays between external P load reduction and water quality improvement, because available P must be reduced 
sufficiently to tip the ecosystem OC balance toward net mineralization rather than net accumulation. Only then 
can microbes begin to consume the organic matter of past decades and slowly eliminate the substrate that fuels 
anoxia. This takes time and the will of a society to undergo a multi-generational remediation of a precious water 
resource.

Data Availability Statement
All data and software for this project are open and freely available through the Environmental Data Initiative 
(Hanson, 2023). Data and software are licensed as Creative Commons Attribution 4.0 International.

References
Albright, E. A., Ladwig, R., & Wilkinson, G. M. (2022). Influence of macrophytes on stratification and dissolved oxygen dynamics in ponds. 

Retrieved from https://eartharxiv.org/repository/view/3613/
Bennett, E. M., Reed-Andersen, T., Houser, J. N., Gabriel, J. R., & Carpenter, S. R. (1999). A phosphorus budget for the Lake Mendota watershed. 

Ecosystems, 2(1), 69–75. https://doi.org/10.1007/s100219900059
Bortleson, G. C., & Lee, G. F. (1972). Recent sedimentary history of Lake Mendota, Wis. Environmental Science & Technology, 6(9), 799–808. 

https://doi.org/10.1021/es60068a002
Brock, T. D. (1985). A eutrophic lake: Lake Mendota, Wisconsin (Vol. 55). Springer Science & Business Media.
Carey, C. C., Doubek, J. P., McClure, R. P., & Hanson, P. C. (2018). Oxygen dynamics control the burial of organic carbon in a eutrophic reservoir. 

Limnology and Oceanography Letters, 3(3), 293–301. https://doi.org/10.1002/lol2.10057
Carey, C. C., & Rydin, E. (2011). Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnology & Ocean-

ography, 56(6), 2051–2063. https://doi.org/10.4319/lo.2011.56.6.2051
Carleton, J. N., & Lee, S. S. (2023). Estimating lake recovery lag times following influent phosphorus loading reduction. Environmental Model-

ling & Software, 162, 105642. https://doi.org/10.1016/j.envsoft.2023.105642
Carpenter, S. R., & Bennett, E. M. (2011). Reconsideration of the planetary boundary for phosphorus. Environmental Research Letters, 6(1), 

014009. https://doi.org/10.1088/1748-9326/6/1/014009
Chen, S., Carey, C. C., Little, J. C., Lofton, M. E., McClure, R. P., & Lei, C. (2018). Effectiveness of a bubble-plume mixing system for managing 

phytoplankton in lakes and reservoirs. Ecological Engineering, 113, 43–51. https://doi.org/10.1016/j.ecoleng.2018.01.002
Damania, R., Desbureaux, S., Rodella, A.-S., Russ, J., & Zaveri, E. (2019). Quality unknown: The invisible water crisis. The World Bank.
Faridmarandi, S., Khare, Y. P., & Naja, G. M. (2020). Long-term regional nutrient contributions and in-lake water quality trends for Lake 

Okeechobee. Lake and Reservoir Management, 37(1), 77–94. https://doi.org/10.1080/10402381.2020.1809036
Folke, C., Carpenter, S. R., Chapin, F. S., III, Gaffney, O., Galaz, V., Hoffmann, H., et al. (2020). Our future in the anthropocene biosphere: 

Global sustainability and resilient societies. Folke.
Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake 

of the Baltic Lake District (Germany). Water Science and Technology, 37(3), 51–58. https://doi.org/10.2166/wst.1998.0173
Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: 

Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003
Hanson, P. C. (2023). Lake Mendota long term water quality model [Dataset]. EDI. https://doi.org/10.6073/pasta/f21259ba038cb517b876131 

b2fda41a1
Hanson, P. C., Bade, D. L., Carpenter, S. R., & Kratz, T. K. (2003). Lake metabolism: Relationships with dissolved organic carbon and phospho-

rus. Limnology & Oceanography, 48(3), 1112–1119. https://doi.org/10.4319/lo.2003.48.3.1112
Hanson, P. C., Stillman, A. B., Jia, X., Karpatne, A., Dugan, H. A., Carey, C. C., et al. (2020). Predicting lake surface water phosphorus dynamics 

using process-guided machine learning. Ecological Modelling, 430, 109136. https://doi.org/10.1016/j.ecolmodel.2020.109136
Hoellein, T. J., Bruesewitz, D. A., & Richardson, D. C. (2013). Revisiting Odum (1956): A synthesis of aquatic ecosystem metabolism. Limnol-

ogy & Oceanography, 58(6), 2089–2100. https://doi.org/10.4319/lo.2013.58.6.2089
Hoffman, A. R., Armstrong, D. E., & Lathrop, R. C. (2013). Influence of phosphorus scavenging by iron in contrasting dimictic lakes. Canadian 

Journal of Fisheries and Aquatic Sciences, 70(7), 941–952. https://doi.org/10.1139/cjfas-2012-0391
Hotchkiss, E. R., Sadro, S., & Hanson, P. C. (2018). Toward a more integrative perspective on carbon metabolism across lentic and lotic inland 

waters. Limnology and Oceanography Letters, 3(3), 57–63. https://doi.org/10.1002/lol2.10081
Hurley, J. P., Armstrong, D. E., & DuVall, A. L. (1992). Historical interpretation of pigment stratigraphy in Lake Mendota sediments. In Food 

web management (pp. 49–68). Springer.
Jenny, J., Francus, P., Normandeau, A., Lapointe, F., Perga, M., Ojala, A., et al. (2016). Global spread of hypoxia in freshwater ecosystems during 

the last three centuries is caused by rising local human pressure. Global Change Biology, 22(4), 1481–1489. https://doi.org/10.1111/gcb.13193
Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., et  al. (2005). Lake responses to reduced nutri-

ent loading–an analysis of contemporary long-term data from 35 case studies. Freshwater Biology, 50(10), 1747–1771. https://doi.
org/10.1111/j.1365-2427.2005.01415.x

Jones, H. P., Jones, P. C., Barbier, E. B., Blackburn, R. C., Rey Benayas, J. M., Holl, K. D., et al. (2018). Restoration and repair of Earth’s damaged 
ecosystems. Proceedings of the Royal Society B: Biological Sciences, 285(1873), 20172577. https://doi.org/10.1098/rspb.2017.2577

Keatley, B. E., Bennett, E. M., MacDonald, G. K., Taranu, Z. E., & Gregory-Eaves, I. (2011). Land-use legacies are important determinants of 
lake eutrophication in the anthropocene. PLoS One, 6(1), e15913. https://doi.org/10.1371/journal.pone.0015913

Acknowledgments
This work benefitted from decades of 
research and monitoring by the North 
Temperate Lakes Long Term Ecological 
Research program (NSF 2025982). We 
thank Sylvia Lee and James Carleton for 
inspiration in pursuing these ideas. Fund-
ing support for PCH provided by NSF 
2213549, NSF 1753657. Funding support 
for CCC provided by NSF 1753639, NSF 
1933016, NSF 1926050, NSF 2213550. 
Funding support for RL and CB provided 
by NSF 1759865, NSF 1934633. Funding 
support for EAA provided by NSF GRFP 
DGE-1747503, with additional Support 
from the Graduate School and the Office 
of the Vice Chancellor for Research and 
Graduate Education at the University 
of Wisconsin-Madison with funding 
from the Wisconsin Alumni Research 
Foundation.

 21698961, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007620, W
iley O

nline Library on [12/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://eartharxiv.org/repository/view/3613/
https://doi.org/10.1007/s100219900059
https://doi.org/10.1021/es60068a002
https://doi.org/10.1002/lol2.10057
https://doi.org/10.4319/lo.2011.56.6.2051
https://doi.org/10.1016/j.envsoft.2023.105642
https://doi.org/10.1088/1748-9326/6/1/014009
https://doi.org/10.1016/j.ecoleng.2018.01.002
https://doi.org/10.1080/10402381.2020.1809036
https://doi.org/10.2166/wst.1998.0173
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.6073/pasta/f21259ba038cb517b876131b2fda41a1
https://doi.org/10.6073/pasta/f21259ba038cb517b876131b2fda41a1
https://doi.org/10.4319/lo.2003.48.3.1112
https://doi.org/10.1016/j.ecolmodel.2020.109136
https://doi.org/10.4319/lo.2013.58.6.2089
https://doi.org/10.1139/cjfas-2012-0391
https://doi.org/10.1002/lol2.10081
https://doi.org/10.1111/gcb.13193
https://doi.org/10.1111/j.1365-2427.2005.01415.x
https://doi.org/10.1111/j.1365-2427.2005.01415.x
https://doi.org/10.1098/rspb.2017.2577
https://doi.org/10.1371/journal.pone.0015913


Journal of Geophysical Research: Biogeosciences

HANSON ET AL.

10.1029/2023JG007620

16 of 17

Kothawala, D. N., Stedmon, C. A., Müller, R. A., Weyhenmeyer, G. A., Köhler, S. J., & Tranvik, L. J. (2014). Controls of dissolved organic 
matter quality: Evidence from a large-scale boreal lake survey. Global Change Biology, 20(4), 1101–1114. https://doi.org/10.1111/gcb.12488

Ladwig, R., Appling, A. P., Delany, A., Dugan, H. A., Gao, Q., Lottig, N., et al. (2022). Long-term change in metabolism phenology in north 
temperate lakes. Limnology & Oceanography, 67(7), 1502–1521. https://doi.org/10.1002/lno.12098

Ladwig, R., Hanson, P. C., Dugan, H. A., Carey, C. C., Zhang, Y., Shu, L., et al. (2021). Lake thermal structure drives interannual variability in 
summer anoxia dynamics in a eutrophic lake over 37 years. Hydrology and Earth System Sciences, 25(2), 1009–1032. https://doi.org/10.5194/
hess-25-1009-2021

Lathrop, R. C. (2007). Perspectives on the eutrophication of the Yahara lakes. Lake and Reservoir Management, 23(4), 345–365. https://doi.
org/10.1080/07438140709354023

Lathrop, R. C., & Carpenter, S. R. (2014). Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara 
chain of lakes. Inland Waters, 4(1), 1–14. https://doi.org/10.5268/iw-4.1.680

Lee, M., & Diop, S. (2009). Millennium ecosystem assessment. An Assessment of Assessments: Findings of the Group of Experts Pursuant to 
UNGA Resolution 60/30, 1, 361.

Magnuson, J. J., Carpenter, S. R., & Stanley, E. H. (2023). North temperate lakes LTER: Chemical limnology of primary study lakes: Nutrients, pH 
and carbon 1981—Current ver 59 [Dataset]. Environmental Data Initiative. https://doi.org/10.6073/pasta/c923b8e044310f3f5612dab09c2cc6c2

Magnuson, J. J., Kratz, T. K., & Benson, B. J. (2006). Long-term dynamics of lakes in the landscape: Long-term ecological research on north 
temperate lakes. Oxford University Press on Demand. 

Matzinger, A., Müller, B., Niederhauser, P., Schmid, M., & Wüest, A. (2010). Hypolimnetic oxygen consumption by sediment-based reduced 
substances in former eutrophic lakes. Limnology & Oceanography, 55(5), 2073–2084. https://doi.org/10.4319/lo.2010.55.5.2073

McCrackin, M. L., Jones, H. P., Jones, P. C., & Moreno-Mateos, D. (2017). Recovery of lakes and coastal marine ecosystems from eutrophication: 
A global meta-analysis. Limnology & Oceanography, 62(2), 507–518. https://doi.org/10.1002/lno.10441

Missimer, T. M., Thomas, S., & Rosen, B. H. (2020). Legacy phosphorus in Lake Okeechobee (Florida, USA) sediments: A review and new 
perspective. Water, 13(1), 39. https://doi.org/10.3390/w13010039

Müller, B., Bryant, L. D., Matzinger, A., & Wüest, A. (2012). Hypolimnetic oxygen depletion in eutrophic lakes. Environmental Science & Tech-
nology, 46(18), 9964–9971. https://doi.org/10.1021/es301422r

Odum, H. T. (1956). Primary production in flowing waters 1. Limnology & Oceanography, 1(2), 102–117. https://doi.org/10.4319/lo.1956.1.2.0102
Ogle, K., Barber, J. J., Barron-Gafford, G. A., Bentley, L. P., Young, J. M., Huxman, T. E., et al. (2015). Quantifying ecological memory in plant 

and ecosystem processes. Ecology Letters, 18(3), 221–235. https://doi.org/10.1111/ele.12399
Oliver, S. K., Collins, S. M., Soranno, P. A., Wagner, T., Stanley, E. H., Jones, J. R., et al. (2017). Unexpected stasis in a changing world: Lake 

nutrient and chlorophyll trends since 1990. Global Change Biology, 23(12), 5455–5467. https://doi.org/10.1111/gcb.13810
Orihel, D. M., Baulch, H. M., Casson, N. J., North, R. L., Parsons, C. T., Seckar, D. C., & Venkiteswaran, J. J. (2017). Internal phosphorus loading 

in Canadian fresh waters: A critical review and data analysis. Canadian Journal of Fisheries and Aquatic Sciences, 74(12), 2005–2029. https://
doi.org/10.1139/cjfas-2016-0500

Paraska, D. W., Hipsey, M. R., & Salmon, S. U. (2014). Sediment diagenesis models: Review of approaches, challenges and opportunities. Envi-
ronmental Modelling & Software, 61, 297–325. https://doi.org/10.1016/j.envsoft.2014.05.011

Reddy, K., Hu, J., Villapando, O., Bhomia, R. K., Vardanyan, L., & Osborne, T. (2021). Long-term accumulation of macro-and secondary 
elements in subtropical treatment wetlands. Ecosphere, 12(11), e03787. https://doi.org/10.1002/ecs2.3787

Richardson, D., Melles, S., Pilla, R., Hetherington, A., Knoll, L., Williamson, C., et al. (2017). Transparency, geomorphology and mixing regime 
explain variability in trends in lake temperature and stratification across Northeastern North America (1975–2014). Water, 9(6), 442. https://
doi.org/10.3390/w9060442

Rothe, M., Frederichs, T., Eder, M., Kleeberg, A., & Hupfer, M. (2014). Evidence for vivianite formation and its contribution to long-term 
phosphorus retention in a recent lake sediment: A novel analytical approach. Biogeosciences, 11(18), 5169–5180. https://doi.org/10.5194/
bg-11-5169-2014

Sabo, R. D., Clark, C. M., Gibbs, D. A., Metson, G. S., Todd, M. J., LeDuc, S. D., et al. (2021). Phosphorus inventory for the conterminous United 
States (2002–2012). Journal of Geophysical Research: Biogeosciences, 126(4), e2020JG005684. https://doi.org/10.1029/2020jg005684

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413(6856), 591–596. https://
doi.org/10.1038/35098000

Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. (2016). Reducing phosphorus to curb lake eutrophication is a 
success. Environmental Science & Technology, 50(17), 8923–8929. https://doi.org/10.1021/acs.est.6b02204

Sharpley, A., Helmers, M. J., Kleinman, P., King, K., Leytem, A., & Nelson, N. (2019). Managing crop nutrients to achieve water quality goals. 
Journal of Soil and Water Conservation, 74(5), 91A–101A. https://doi.org/10.2489/jswc.74.5.91a

Smith, V. H. (1982). The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis 1. Limnology & 
Oceanography, 27(6), 1101–1111. https://doi.org/10.4319/lo.1982.27.6.1101

Smith, V. H., & Schindler, D. W. (2009). Eutrophication science: Where do we go from here? Trends in Ecology & Evolution, 24(4), 201–207. 
https://doi.org/10.1016/j.tree.2008.11.009

Snortheim, C. A., Hanson, P. C., McMahon, K. D., Read, J. S., Carey, C. C., & Dugan, H. A. (2017). Meteorological drivers of hypolimnetic 
anoxia in a eutrophic, north temperate lake. Ecological Modelling, 343, 39–53. https://doi.org/10.1016/j.ecolmodel.2016.10.014

Søndergaard, M., Bjerring, R., & Jeppesen, E. (2013). Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydro-
biologia, 710(1), 95–107. https://doi.org/10.1007/s10750-012-1091-3

Søndergaard, M., Jeppesen, E., Lauridsen, T. L., Skov, C., Van Nes, E. H., Roijackers, R., et al. (2007). Lake restoration: Successes, failures and 
long-term effects. Journal of Applied Ecology, 44(6), 1095–1105. https://doi.org/10.1111/j.1365-2664.2007.01363.x

Staehr, P., Bade, D., Van de Bogert, M., Koch, G., Williamson, C., Hanson, P., et al. (2010). Lake metabolism and the diel oxygen technique: State 
of the science. Limnology and Oceanography: Methods, 8(11), 628–644. https://doi.org/10.4319/lom.2010.8.0628

Steinsberger, T., Schwefel, R., Wüest, A., & Müller, B. (2020). Hypolimnetic oxygen depletion rates in deep lakes: Effects of trophic state and 
organic matter accumulation. Limnology & Oceanography, 65(12), 3128–3138. https://doi.org/10.1002/lno.11578

Stone, M., & English, M. (1993). Geochemical composition, phosphorus speciation and mass transport of fine-grained sediment in two Lake Erie 
tributaries. Hydrobiologia, 253(1–3), 17–29. https://doi.org/10.1007/bf00050719

Van Meter, K., Van Cappellen, P., & Basu, N. (2018). Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. 
Science, 360(6387), 427–430. https://doi.org/10.1126/science.aar4462

Van Meter, K. J., McLeod, M., Liu, J., Tenkouano, G. T., Hall, R., Van Cappellen, P., & Basu, N. (2021). Beyond the mass balance: Watershed 
phosphorus legacies and the evolution of the current water quality policy challenge. Water Resources Research, 57(10), e2020WR029316. 
https://doi.org/10.1029/2020wr029316

 21698961, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007620, W
iley O

nline Library on [12/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1111/gcb.12488
https://doi.org/10.1002/lno.12098
https://doi.org/10.5194/hess-25-1009-2021
https://doi.org/10.5194/hess-25-1009-2021
https://doi.org/10.1080/07438140709354023
https://doi.org/10.1080/07438140709354023
https://doi.org/10.5268/iw-4.1.680
https://doi.org/10.6073/pasta/c923b8e044310f3f5612dab09c2cc6c2
https://doi.org/10.4319/lo.2010.55.5.2073
https://doi.org/10.1002/lno.10441
https://doi.org/10.3390/w13010039
https://doi.org/10.1021/es301422r
https://doi.org/10.4319/lo.1956.1.2.0102
https://doi.org/10.1111/ele.12399
https://doi.org/10.1111/gcb.13810
https://doi.org/10.1139/cjfas-2016-0500
https://doi.org/10.1139/cjfas-2016-0500
https://doi.org/10.1016/j.envsoft.2014.05.011
https://doi.org/10.1002/ecs2.3787
https://doi.org/10.3390/w9060442
https://doi.org/10.3390/w9060442
https://doi.org/10.5194/bg-11-5169-2014
https://doi.org/10.5194/bg-11-5169-2014
https://doi.org/10.1029/2020jg005684
https://doi.org/10.1038/35098000
https://doi.org/10.1038/35098000
https://doi.org/10.1021/acs.est.6b02204
https://doi.org/10.2489/jswc.74.5.91a
https://doi.org/10.4319/lo.1982.27.6.1101
https://doi.org/10.1016/j.tree.2008.11.009
https://doi.org/10.1016/j.ecolmodel.2016.10.014
https://doi.org/10.1007/s10750-012-1091-3
https://doi.org/10.1111/j.1365-2664.2007.01363.x
https://doi.org/10.4319/lom.2010.8.0628
https://doi.org/10.1002/lno.11578
https://doi.org/10.1007/bf00050719
https://doi.org/10.1126/science.aar4462
https://doi.org/10.1029/2020wr029316


Journal of Geophysical Research: Biogeosciences

HANSON ET AL.

10.1029/2023JG007620

17 of 17

Walsh, J. R., Corman, J. R., & Munoz, S. E. (2019). Coupled long-term limnological data and sedimentary records reveal new control on water 
quality in a eutrophic lake. Limnology & Oceanography, 64(S1), S34–S48. https://doi.org/10.1002/lno.11083

Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., et al. (2016). LakeMetabolizer: An R package for estimat-
ing lake metabolism from free-water oxygen using diverse statistical models. Inland Waters, 6(4), 622–636. https://doi.org/10.1080/iw-6.4.883

Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., et al. (2012). Continental-scale water and energy flux analysis and validation 
for the North American land data assimilation system project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. 
Journal of Geophysical Research, 117(D3), D03109. https://doi.org/10.1029/2011jd016048

References From the Supporting Information
Blais, J. M., & Kalff, J. (1995). The influence of lake morphometry on sediment focusing. Limnology & Oceanography, 40(3), 582–588. https://

doi.org/10.4319/lo.1995.40.3.0582
Carlson, R. E. (1977). A trophic state index for lakes 1. Limnology & Oceanography, 22(2), 361–369. https://doi.org/10.4319/lo.1977.22.2.0361
Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., & Stanley, E. H. (2015). Integrating landscape carbon cycling: Research needs for resolv-

ing organic carbon budgets of lakes. Ecosystems, 18(3), 363–375. https://doi.org/10.1007/s10021-014-9826-9
Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., et al. (2019). A general lake model (GLM 3.0) for linking 

with high-frequency sensor data from the global lake ecological observatory network (GLEON). Geoscientific Model Development, 12(1), 
473–523. https://doi.org/10.5194/gmd-12-473-2019

McCullough, I. M., Dugan, H. A., Farrell, K. J., Morales-Williams, A. M., Ouyang, Z., Roberts, D., et al. (2018). Dynamic modeling of organic 
carbon fates in lake ecosystems. Ecological Modelling, 386, 71–82. https://doi.org/10.1016/j.ecolmodel.2018.08.009

Solomon, C., Bruesewitz, D., RichardsonRoseRose, D. C. K. C. K., Van de Bogert, M., Hanson, P., Kratz, T., et al. (2013). Ecosystem respiration: 
Drivers of daily variability and background respiration in lakes around the globe. Limnology & Oceanography, 58(3), 849–866. https://doi.
org/10.4319/lo.2013.58.3.0849

Wilkinson, G. M., Pace, M. L., & Cole, J. J. (2013). Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical 
Cycles, 27(1), 43–51. https://doi.org/10.1029/2012gb004453

 21698961, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007620, W
iley O

nline Library on [12/12/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1002/lno.11083
https://doi.org/10.1080/iw-6.4.883
https://doi.org/10.1029/2011jd016048
https://doi.org/10.4319/lo.1995.40.3.0582
https://doi.org/10.4319/lo.1995.40.3.0582
https://doi.org/10.4319/lo.1977.22.2.0361
https://doi.org/10.1007/s10021-014-9826-9
https://doi.org/10.5194/gmd-12-473-2019
https://doi.org/10.1016/j.ecolmodel.2018.08.009
https://doi.org/10.4319/lo.2013.58.3.0849
https://doi.org/10.4319/lo.2013.58.3.0849
https://doi.org/10.1029/2012gb004453

	Legacy Phosphorus and Ecosystem Memory Control Future Water Quality in a Eutrophic Lake
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. Study System
	2.2. Models Linking Physics, Phosphorus, Organic Carbon, and Dissolved Oxygen
	2.3. Model Calibration and Sensitivity Analysis
	2.4. Legacy Scenarios

	3. Limnological Data and Model Driving Data
	4. Results
	4.1. Comparison of Model Predictions With Observations
	4.2. Annual Cycles of Temperature, P, OC, and DO
	4.3. Major Fluxes and Storage
	4.4. Legacy Scenarios

	5. Discussion
	5.1. Legacies of Eutrophication for Lake Mendota
	5.2. Ecosystem Memory and Surprises on the Path to Trophic State Improvement
	5.3. Phases of Water Quality Improvement
	5.4. Caveats

	Data Availability Statement
	References
	References From the Supporting Information


