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ABSTRACT
Recent rapid advances in deep pre-trained language models and the
introduction of large datasets have powered research in embedding-
based neural retrieval. While many excellent research papers have
emerged, most of them come with their own implementations,
which are typically optimized for some particular research goals
instead of efficiency or code organization. In this paper, we in-
troduce Tevatron, a neural retrieval toolkit that is optimized for
efficiency, flexibility, and code simplicity. Tevatron enables model
training and evaluation for a variety of ranking components such
as dense retrievers, sparse retrievers, and rerankers. It also pro-
vides a standardized pipeline that includes text processing, model
training, corpus/query encoding, and search. In addition, Tevatron
incorporates well-studied methods for improving retriever effec-
tiveness such as hard negative mining and knowledge distillation.
We provide an overview of Tevatron in this paper, demonstrating
its effectiveness and efficiency on multiple IR and QA datasets. We
highlight Tevatron’s flexible design, which enables easy generaliza-
tion across datasets, model architectures, and accelerator platforms
(GPUs and TPUs). Overall, we believe that Tevatron can serve as a
solid software foundation for research on neural retrieval systems,
including their design, modeling, and optimization.
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1 INTRODUCTION
The popularity of neural retrieval in the research community has
greatly grown in the past few years, from neural rerankers based on
the cross-encoder architecture to the most recent neural retrievers
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based on the bi-encoder architecture [6, 13, 16, 22, 25]. However,
many recent research papers [13, 25] have focused on developing
their own software stacks with specialized support only for specific
datasets and models. This approach can be limiting as it does not
allow for flexible generalization across differentmodels and datasets.
To address these issues, Tevatron provides researchers with access
to state-of-the-art models and makes it easy for them to start a new
research project on a new dataset.

Taking dense retrieval as an example: in our past papers [6, 7, 18],
we have run into several engineering challenges. For example, in
terms of resources, large corpora and training sets require a large
amount of CPU memory; accelerator (GPU/TPU) memory usage
also grows with model size. While orthogonal to actual research,
these engineering hurdles slow down and constrain researchers,
especially those with limited hardware resources. With Tevatron,
we aim at providing a unified solution to common engineering
problems. To address these challenges, Tevatron provides a unified
framework that incorporates several popular and widely used open-
source packages. These packages include datasets, transformers,
FAISS, and Pyserini, which respectively serve as the backbone for
data management, neural network modeling, embedding-based
retrieval engines, and evaluation metrics.

In addition, to accommodate different research needs, we select
two deep learning frameworks for Tevatron, PyTorch [21] and
JAX [3]. PyTorch’s eager execution patterns and intuitive object-
oriented design have gained it a massive user base in the research
community. On the other hand, JAX, backed by just-in-time (JIT)
XLA compilation, offers smooth transitions across hardware stacks
with optimized performance.

Overall, Tevatron aims to streamline and simplify the research
process, enabling researchers to focus on their actual research prob-
lems rather than engineering challenges. Additionally, Tevatron
enables collaboration and ensures reproducibility, as others can
easily reproduce the same experiments using the same packages.

The rest of the paper is organized as follows: Section 2 gives an
overview of Tevatron. Section 3 demonstrates usage of Tevatron’s
command-line interface. Section 4 shares experimental results of
running Tevatron with various models and datasets.

2 TOOLKIT OVERVIEW
Tevatron1 is packaged as a Python module available on the Python
Package Index. The toolkit can be installed via pip, as follows:

$ pip install tevatron==0.1.0

In this section, we provide an overview of the core components of
Tevatron. We demonstrate how these components support the full
pipeline of data preparation, training, encoding, and search, respec-
tively. Code and documentation are available at tevatron.ai.

1http://tevatron.ai
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{
"query_id": "<query id>",
"query": "<query text>",
"positive_passages": [

{"docid": "<passage id>",
"title": "<passage title>",
"text": "<passage body>"}, ...

],
"negative_passages": [...]

}

Figure 1: Tevatron raw data template for IR datasets.

2.1 Data Management
Having data ready to use is a critical preliminary step before train-
ing or encoding starts. Data access overhead and constraints can di-
rectly affect training/encoding performance. In Tevatron, we adopt
the following core design: (1) text data are pre-tokenized before
training or encoding occurs, (2) tokenized data are memory-mapped
instead of lazy-loaded or residing in-memory. The former avoids
overhead when running sub-word/piece level tokenizers and also
reduces data traffic compared to raw text. The latter allows random
data access in the training/encoding loop without consuming a
large amount of physical memory.

Tevatron defines raw input format templates, shown in Fig. 1. We
organize a training instance into an anchor query, a list of positive
target texts, and a list of negative target texts. The positive targets
are usually human-labeled and the negative targets are usually non-
relevant texts from the top results of a baseline retrieval system
such as BM25 [6, 13].

Users can pass raw data file pointers and processing specifica-
tions to Tevatron’s dataset classes (HFTrainDataset for training,
HFQueryDataset and HFCorpusDataset for encoding), which will
perform fast parallel data formatting and tokenization. Processed
data is internally represented as a datasets.Dataset object and is
stored in the Apache Arrow format, which can be memory-mapped
and randomly accessed by offset.

For researchers who are focusing on building new models, we
make a collection of popular open-access datasets self-contained
within the Tevatron toolkit. For instance, with a single command,
one can load the training set of MS MARCO. Under the hood,
Tevatron will first download the raw data set we hosted through
HuggingFace.2 Then it will run the corresponding pre-defined pre-
processing script to format and tokenize the downloaded data.

2.2 Neural Encoder Models
Tevatron’s model class EncoderModel is a PyTorch nn.Module sub-
class that defines the encoder in a standard bi-encoder architecture,
which converts queries and passages individually into vector repre-
sentations. Based on the type of the retrieval model, the representa-
tion can be a low-dimensional dense vector or a high-dimensional
sparse vector. Functionally, the class wraps an underlying Trans-
former model and provides methods for text encoding and loss
computation. Thanks to duck typing in Python, the EncoderModel
class supports models in the HuggingFace transformers library that

2https://huggingface.co/tevatron

# initialize model
model = DenseModel.build(model_args)
# initialize dataset
train_dataset = HFTrainDataset(data_args).process()
train_dataset = TrainDataset(data_args, train_dataset)
# initialize trainer
trainer = GCTrainer if training_args.grad_cache \

else TevatronTrainer
trainer = trainer(

model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=QPCollator(data_args),

)
# start training
trainer.train()

Figure 2: Training process of Tevatron (PyTorch).

extend the standard base model. This means new Transformer mod-
els can be loaded into Tevatron as soon as they are available in the
transformers model hub. This design helps our toolkit reduce code
duplication. The EncoderModel class also handles loss computa-
tion during training. It implements a contrastive loss with in-batch
negatives and can perform negative sharing across devices using
the collective communication technique introduced in the NVIDIA
NCCL library.3

To complete the neural retriever training setup, we introduce
the TevatronTrainer class that implementsmiscellaneous training
utilities. It controls basic setup such as the batch size and the number
of training epochs.When running onmultiple GPUs, the trainer will
properly set up distributed training and wrap models for gradient
reduction. In Tevatron, we also implement the GCTrainer class,
which is a subclass of TevatronTrainer that uses gradient caching
to support large batch training on memory-limited devices [9].

Taking dense retrieval as an example, DenseModel is a subclass
of EncoderModel, which encodes text into dense vector represen-
tations. Representative dense retrieval models such as DPR [13]
and ANCE [25] can be implemented using this class. By combining
the data processor, dense retrieval model, and trainer, Tevatron
abstracts the training loop of a dense retrieval model into the code
block shown in Fig. 2. The training process is defined similarly for
neural sparse retrieval models (e.g., SPLADE [5], uniCOIL [17]).

2.3 Vector Search
At a high level, the bi-encoder model produces textual representa-
tions for both documents and queries. In order to perform end-to-
end retrieval, Tevatron implements indexing and search modules
for vector search (i.e., top-𝑘 retrieval) that rely on either dense or
sparse vector representations. These modules are facilitated by the
use of existing libraries.

For dense retrieval, we use the FAISS library [11] as our back-
end for top-𝑘 retrieval. It implements several efficient indexes in
C++ and exposes them through Python interfaces. For users who
want the best effectiveness, Tevatron provides a simple class called
BaseFaissIPRetriever that wraps the faiss.IndexFlatIP flat

3https://developer.nvidia.com/nccl
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index for exact search. Those who wish to trade off efficiency and
effectiveness can use the more powerful FaissRetriever class,
which takes an additional index_spec string argument in its initial-
ization method and uses faiss.index_factory method to build
custom indexes. Users can take advantage of this interface to build
approximate search indexes like HNSW [19] or PQ [10].

For sparse retrieval, Tevatron directly utilizes Pyserini [15] to
build inverted indexes for conducting efficient lexical search.

2.4 Additional Modules
JAX. Tevatron has a sub-package tevax that implements core

functionality for JAX. Following JAX’s functional nature [3], tevax
is designedwith a different philosophy.We define loss functions that
can be composed with other JAX transformations. In practice, they
can be combined with Flax models in the HuggingFace transformer
library for dense retriever training. With JAX as the backend, tevax
makes it possible for a single piece of code to run on a single GPU,
multiple GPUs, or TPUs.

Rerankers. Neural rerankers based on a cross-encoder archi-
tecture are commonly used in a rerank stage to further improve
retrieval effectiveness. In Tevatron, we implement reranker training
and inference based on the same data processing pipeline as retriev-
ers. The reranker training implements the Localized Contrastive
Estimation technique proposed by Gao et. al. [8].

Distillation. Distilling knowledge from rerankers to retriev-
ers is a commonly used technique to improve the effectiveness of
retrieval models. We implement knowledge distillation by using
a reranker to assign soft labels to the positive and hard negative
passages for each query. The retriever learns from the reranker
teacher by optimizing KL divergence.

3 TOOLKIT USAGE
On top of the various core components, Tevatron provides a set
of command-line interfaces (CLIs) to drive the retrieval pipeline.
With a flexible design in data management and support for neural
retrievers, one can conduct many types of research without writing
code. In this section, we provide an example using the Tevatron
CLI to run the previously discussed components to learn a model
and perform open-domain retrieval on Natural Questions (NQ) [14].
We use dense retrieval as an example.

With Tevatron, we can replicate the training of a DPR model for
the NQ dataset (details in Section 4) with a single command:
python -m tevatron.driver.train \

--dataset_name Tevatron/wikipedia-nq \
--model_name_or_path bert-base-uncased \
--per_device_train_batch_size 128 \
--train_n_passages 2 \
--num_train_epochs 40 \
--learning_rate 1e-5 \
--fp16 \
--grad_cache \
--output_dir model-nq

As introduced in Section 2.1, Tevatron will automatically handle the
downloading and pre-processing of our self-contained training data
Tevatron/wikipedia-nq. Then, the pre-processed dataset and ini-
tialized DenseModel will be fed into GCTrainer class, as shown in

NQ TriviaQA SQuAD CuratedTrec WebQuestion
DPR [13] 78.4 / 85.4 79.4 / 85.0 63.2 / 77.2 79.8 / 89.1 73.2 / 81.4
Tevatron 79.8 / 86.9 80.2 / 85.5 62.3 / 77.0 84.0 / 90.7 75.4 / 82.9

Table 1: Top-20/top-100 retrieval accuracy of DPR model
replication on five open-domain QA datasets.

Figure 2. Since the above command enables the grad_cache option,
it will use GCTrainer during training. Here we also enable mixed
precision training [20] via –fp16 to improve efficiency.

Besides training data, Tevatron also packages corresponding
corpus data for each dataset. Again, we simplify corpus encoding
into a single command:
python -m tevatron.driver.encode \

--model_name_or_path model-nq \
--dataset_name Tevatron/wikipedia-nq-corpus \
--encoded_save_path corpus-emb-00.pkl \
--encode_num_shard 20 \
--encode_shard_index 00 \
--fp16

As encoding the entire corpus within a single process may be in-
efficient, Tevatron support encoding the corpus by sharding. For
example, the above command encodes the first 1/20 split of the
entire corpus. Users can easily run multiple processes for multiple
shards in parallel to speed up the encoding process.

With the query and corpus embeddings, we can run retrieval
with the following command:
python -m tevatron.faiss_retriever \

--query_reps query.pkl \
--passage_reps corpus-emb-*.pkl \
--depth 100 \
--batch_size -1 \
--save_text \
--save_ranking_to result.txt

where –batch_size controls the number of queries passed to the
FAISS index for each search call and -1 will pass all queries in one
call for efficient parallel search.

4 EXPERIMENTS
In this section, we demonstrate the effectiveness and efficiency of
Tevatron using DPR [13], which is among the first studies to show
that text retrieval using learned dense representations outperforms
text retrieval using “traditional” sparse representations (e.g., BM25)
on open-domain question-answering tasks.

We evaluate the effectiveness of Tevatron by replicating retrieval
results on QA tasks [2, 12, 14, 23, 24] reported in the original DPR
paper [13]. We compare the models trained under the “Single” set-
ting defined in the original paper, where each model is trained using
the corresponding individual dataset. Following similar hyperpa-
rameters settings, we train the models with a learning rate of 1e-5
for 40 epochs with batch size 128. In Table 1, we see that Tevatron
produces slightly higher top-𝑘 accuracy on four datasets compared
to the original DPR paper, although the values are slightly lower on
SQuAD. Overall, we conclude that this is a successful replication
and that the Tevatron pipeline is effective.
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RAM GPU memory Time
DPR-repo 60G 20G × 4 2.0 hours
Tevatron-default 17G 17G × 4 1.5 hours
Tevatron-GradCache 4G 15G × 1 7.0 hours
Tevatron-TPU 10G – 1.0 hours

Table 2: Training efficiency comparison between the original
DPR repo and different settings with Tevatron.

We demonstrate the efficiency of Tevatron by comparing it with
code from the original DPR repo4 on three dimensions: RAM usage,
GPU memory usage, and training time. The experiments are con-
ducted on a machine with NVIDIA A100 GPUs. In both DPR-repo
and Tevatron-default settings, we train the dense retrieval model
on 4 GPUs in the distributed data-parallel mode of PyTorch. By
comparing the first two rows in Table 2, we see that Tevatron is
more efficient along all three dimensions than the original codebase:
Tevatron consumes 3/4 less RAM, 12G less GPU memory, and is
1/4 faster. This means that given the same resources, Tevatron has
the potential to support more training data, larger batch sizes, and
faster training.

The gradient caching feature of Tevatron can further improve
GPU memory efficiency [9]. DPR training requires batch size 128
to obtain the level of retrieval accuracy reported above. With the
original DPR repo, users cannot train a model with a sufficiently
large batch size if GPU resources are limited, which will result in a
drop in retrieval accuracy. Tevatron provides users the option to
train dense retrievers using limited GPU resources, retaining the
same batch size for each optimization step. To illustrate this, we
conduct experiments with Tevatron-GradCache on a single GPU.
Tevatron-GradCache trains dense retrievers by splitting each batch
of size 128 into sub-batches of size 32. By conducting two rounds
of forward steps [9], the model update step of Tevatron-GradCache
is mathematically equivalent to Tevatron-default. This experiment
only consumes 4G RAM and 15G GPU memory, to train a DPR
model on the NQ dataset with the desired equivalent batch size (but
at the cost of a longer training time). By reducing the sub-batch
size, Tevatron-GradCache can save even more GPU memory.

We also evaluate the performance of training a dense retrieval
model using the JAX backend of Tevatron on a V3-8 TPU VM.When
DPR [13] was first published, it costs around a day to train themodel
on the NQ dataset using the original DPR repo with 8× NVIDIA
V100-large GPUs (as noted by the DPR authors on their GitHub
page). Now, it is exciting to see that the same can be accomplished
within one hour with Tevatron.

To further show the flexibility of the Tevatron toolkit across
model architectures, accelerator platforms, and languages, we train
multiple dense retrieval baselines on the MS MARCO passage rank-
ing task and the XOR-TyDi cross-lingual retrieval task [1, 4]. Results
are shown in Table 3 and Table 4, respectively.

Table 5 demonstrates the effectiveness of teaching dense re-
trievers with a cross-encoder reranker. Notice that both reranker
training and knowledge distillation are integrated into Tevatron
and share the same data management pipeline. Specifically, we first
train a reranker with the default MS MARCO training data. Then

4https://github.com/facebookresearch/DPR; to be clear, the efficiency results are based
on the master branch on 2022-02-12.

Model MRR@10 TPU time GPU time
1. distilbert-base-uncased 0.316 1.0 hours 1.5 hours
2. bert-base-uncased 0.322 2.0 hours 3.0 hours
3. co-condenser-marco 0.357 2.0 hours 3.0 hours
4. bert-large-uncased 0.327 6.0 hours 7.5 hours
5. roberta-large 0.339 6.0 hours 7.5 hours
6. roberta-large + HN 0.361 8.0 hours 10.0 hours
7. co-condenser-marco + HN 0.382 3.0 hours 4.0 hours

Table 3: Results of training dense retrievers using Tevatron
with different Transformer backbones on the MS MARCO
passage ranking task. The models are trained on 4× A100
GPU or V3-8 TPU with a learning rate of 5e-6 and batch size
64 for 3 epochs. HN indicates hard negative mining.

Ar Bn Fi Ja Ko Ru Te avg
mDPR 50.4 57.7 58.9 37.3 42.8 44.0 44.9 48.0
Tevatron 50.5 64.1 57.3 41.9 60.4 48.5 58.4 54.4

Table 4: Recall@5kt of mDPR replication on the dev set of
the XOR-RETRIEVE task with Tevatron. The baseline model
replicated with Tevatron improves on average 6 points over
the original results on seven languages.

Model MRR@10
Dense Retriever 0.322
Dense Retriever + Distil. 0.354

Table 5: Results of training a dense retrieverwith andwithout
knowledge distillation from a reranker on the MS MARCO
passage ranking task.

we use the reranker to teach a dense retriever student by optimizing
KL divergence. Both retriever and reranker models are initialized
with bert-base-uncased. We can see that the dense retriever stu-
dent achieves higher effectiveness than the one trained with hard
labels without distillation. Recent studies [5, 22, 26] demonstrate
that combining hard negative mining and distillation is able to bring
further effectiveness improvements, which can also be easily run
in our Tevatron pipeline.

5 CONCLUSION
This paper introduces Tevatron, an efficient and flexible toolkit
for training and running neural retrievers with Transformers. The
toolkit has a modularized design for easy research exploration
and a set of command-line interfaces for fast development and
evaluation. Our experiments show that Tevatron can be used to train
neural retrieval models effectively and efficiently. These flexible and
generalizable functionalities provide the IR community convenience
in future neural retrieval research.
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