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Abstract: The changing climate and the projected increase in the variability and frequency of ex-
treme events make accurate predictions of crop yield critically important for addressing emerging
challenges to food security. Accurate and timely crop yield predictions offer invaluable insights to
agronomists, producers, and decision-makers. Even without considering climate change, several
factors including the environment, management, genetics, and their complex interactions make
such predictions formidably challenging. This study introduced a statistical-based multiple linear
regression (MLR) model for the forecasting of rainfed maize yields in Kansas. The model’s perfor-
mance is assessed by comparing its predictions with those generated using the Decision Support
System for Agrotechnology Transfer (DSSAT), a process-based model. This evaluated the impact of
synthetic climate change scenarios of 1 and 2 °C temperature rises on maize yield predictions. For
analysis, 40 years of historic weather, soil, and crop management data were collected and converted
to model-compatible formats to simulate and compare maize yield using both models. The MLR
model’s predicted yields (r = 0.93) had a stronger association with observed yields than the DSSAT’s
simulated yields (r = 0.70). A climate change impact analysis showed that the DSSAT predicted an
8.7% reduction in rainfed maize yield for a 1 °C temperature rise and an 18.3% reduction for a 2 °C
rise. The MLR model predicted a nearly 6% reduction in both scenarios. Due to the extreme heat
effect, the predicted impacts under uniform climate change scenarios were considerably more severe
for the process-based model than for the statistical-based model.

Keywords: climate change impacts; DSSAT; model inter-comparison; maize; multiple linear
regression (MLR) model

1. Introduction

Globally, the average temperature and precipitation have increased at an average
rate of 0.18 °C [1] since 1981 and 1.016 mm per decade since 1901 [2], respectively. For
the United States, this average rate of increase in temperature and precipitation has been
0.27 °C since 1981 [3] and 5.08 mm per decade since 1901 [2], respectively. The state of
Kansas forms a part of the central Great Plains and lies in the western boundary of the
United States Corn Belt, and faces an east-to-west precipitation gradient of climatology
and its changes [4]. During 1895-2015, the average temperature in Kansas increased by
0.06 & 0.03 °C per decade, with annual mean precipitation for the western third, the central
third, and the eastern third of Kansas being 531 mm, 660 mm, and 945 mm, respectively [5].
These uneven changes in temperature from north to south, and in precipitation from east
to west, have been shown to impact crop productivity [6].

Maize (Zea mays L.) is the major crop grown both in the USA and globally, and the USA
contributes to 50% of global maize production [7,8]. It is a global staple food, a major source
of the human diet as well as livestock feed, and has varied industrial and energy uses [9].
Maize production in Kansas ranks sixth in the nation and is the second most grown crop
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in Kansas [10] after winter wheat in terms of bushels produced, with the Kansas maize
industry playing a significant role in the US agricultural economy [11].

However, the changing climate adversely affects crop production [12], which is a chal-
lenge in the face of a growing global population. The changing climate results in frequent
warming events and irregular precipitation [13], which in turn impact crop production and
induce biotic [14] and abiotic stresses [15]. The impact of the climate on crop yield varies by
crop type and geographical location [16,17], and precise and timely predictions of crop yield
can provide valuable information to agronomists, producers, and decision-makers [18-21].
It has been shown that increasing temperatures reduce maize yields in the US Midwest,
with higher temperatures being associated with short grain filling periods that hasten
reproductive development [22]. Timely precipitation could mitigate rising temperatures,
though significant yield losses have been reported due to fluctuations in precipitation [13].
It has been found that a 1 °C rise in the maximum daily temperature (Tmax) has reduced
maize and rice yields in the southeastern USA by 34% and 8.3%, respectively [23], and
results from a statistical model have indicated an 8.3% maize yield reduction globally with
a 1 °C rise in temperature [24]. A recent study [25] conducted in Kansas found that tem-
perature has a more pronounced influence on maize production in the region than rainfall.
Maize yield reductions in the US of 43% to 44% have been predicted under a slow-warming
scenario (assuming resource-efficient technology) and 74% to 79% yield reductions in a
fast-warming scenario (assuming the continued use of fossil fuels, which results in the
largest increase in CO; concentrations and temperatures [26,27]). The changing climate
and the projected increase in the variability and frequency of extreme events make accurate
predictions of crop yield critically important for addressing emerging challenges to food
security [10,28].

To assess the impact of climate change on crop yield, two distinct approaches have
been used worldwide. The first approach uses process-based models that require de-
tailed input data for soils, weather, and crop management practices to simulate in-season
crop growth and end-of-season crop yield. The second approach links crop yield data to
weather variables to make predictions using statistical methods. Both approaches have
their strengths and weaknesses [10,29].

Though several studies have considered the impacts of future climate change on
crop production [12,13,16,23,27,30-34], and have studied comparisons and combinations of
process-based, statistical regression, and machine learning models [29,35,36], these models
have not been compared for their yield prediction performance and the impact of climate
change on yield at a county scale. Therefore, this study was undertaken to develop a new
statistically based multiple linear regression (MLR) model for predicting rainfed maize
yield at the county scale in Kansas; to compare the predicted yield from the MLR model
with that of a process-based model (DSSAT); and to assess the performance of both models
for predicting the impact of climate change on maize yield for synthetic climate change
scenarios of 1 and 2 °C temperature rises [10] from 1981 to 2020.

2. Materials and Methods
2.1. Study Region

The selected study region (Figure 1) is the state of Kansas, located in climatic zones
B and C, which comprise dry and moist subtropical mid-latitude climates [37]. Zone B
experiences potential evaporation and transpiration rates exceeding precipitation, resulting
in dry conditions, whereas Zone C has warm and humid summers with mild winters [37].
Kansas is a part of the midwestern United States and extends from 36°59'36.11” N to
40°00’10.07” N, and from 94°35’18.20” W to 102°03'04.43” W [10]. The selection of the
40 Kansas counties included in the analysis, as shown in Figure 1, was based on data
availability for maize grown under rainfed conditions, which is discussed in further detail.
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variability of rainfed maize yield due only to climate variables, the time series data were
detrended linearly to remove the trend of technological advancement on yields and in-
terannual variability within climate variables. Linear detrending is the most common
detrending process and consists of removing a straight line trend component from a time
series [43]. Detrending also minimizes the influence of slowly changing factors such as soil
and crop management [24]. Therefore, all climate variables (predictors) and rainfed maize
yields (response variable) were detrended linearly. Then, county-specific MLR models
were developed to evaluate the relationship between detrended rainfed maize yield and
detrended climate variables from 1981 to 2020. We developed MLR models for each county
using a 5-fold cross-validation (5-fold CV) method [29]. This method divides the data into
five roughly equal parts, then trains the model on four parts and tests the model on the
fifth. This procedure was repeated for all five parts of the data, then the R? and RMSE were
obtained for all tested parts and averaged at the county scale. Six variables out of the nine
variables resulting in high R? and low RMSE for each county were chosen (4 independent
and 2 interactions) to develop a model in the form given in Equation (3) [10]:

Y maize = &0 + B1P'1 4 BoP’'2 4+ B3P'3 + BaP's + BsP'iP'j + BeP' P 3)

where Y aize is the detrended predicted maize yield, «g is the intercept, B1—B4 are the
estimated coefficients of 4 independent variables and 2 interaction variables, P’'1—P’; are the
detrended independent predictor variables, and P'{P'j-P’\ P’ are the detrended interaction
predictor variables. Box plots were used to visualize the range and variability of county-
level independent variable coefficients.

2.2.2. Process-Based Model, DSSAT

The process-based crop simulation model, the Decision Support System for Agrotech-
nology Transfer (DSSAT), version 4.8 [44], was used to simulate maize yield for the years
1981-2020. DSSAT version 4.8 includes models for 42 crops, and the model can simulate crop
growth, development, and yield for user-defined management strategies [45]. DSSAT’s
Crop Estimation through Resources and Environmental Synthesis (CERES) Maize [46]
model calculates maize growth and the end-of-season crop yield and yield components,
along with the daily nutrient and water balance. The CERES Maize model simulates six
different phenological stages for a maize plant, with each stage controlled by the genetic
traits of the cultivar and their interactions with the environment [47]. For this study, we
used maize cultivar PIO 3489, which has been calibrated for north-east Kansas [48]. The
DSSAT requires daily weather data, soil information at a different depths of the soil profile,
detailed crop management information, and cultivars as input parameters to simulate crop
growth and development at a specific location [10,44].

After obtaining climate, rainfed maize yields, crop management, and soil properties
datasets, the area under rainfed maize cultivation was extracted using information from the
Global Map of Irrigation Areas (GMIA) [49] and CropScape [50]. The data from CropScape
were available at a 30 m resolution, whereas the GMIA data for the agriculture area
equipped for irrigation (AEI) were at a 10 km resolution. The GMIA data were downscaled
to 4 km, with the rainfed grid being defined as having an AEI of less than 5%. The data
were processed in ArcGIS Pro 3 [51] to obtain the rainfed maize yield gridded area for each
county, and was then merged with the pre-processed gSSURGO soil data. The gridded
soil data were converted into a DSSAT-compatible format, and rainfed maize yields were
simulated at a 4 km grid using the DSSAT model. The model was run for 1114 rainfed grid
points, with 702 dominant soils across 40 counties. Then, the gridded simulated yields were
aggregated at the county scale and averaged over dominant soil types for 40 years [10].
The DSSAT simulated yields were also detrended linearly as discussed above in MLR for
the comparison of predicted yields from the models.
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2.3.3. Rainfed Maize Yield Data

Historical rainfed maize yield data for Kansas counties were obtained from the USDA-
NASS Quick Stats database and K-State Research and Extension (KSRE) reports [55]. For
this study, we used annual county-level rainfed maize grain yields from 1981 to 2020. We
selected counties that had historic rainfed yield data available for at least 20 years within
the period of study (1981-2020). This resulted in a selection of 40 counties out of the 105
counties in Kansas. Crop management data were obtained from the USDA-NASS and
KSRE [55]. This included a plant population of 7.6 plant/m~2, a row spacing of 0.51 m, and
a total nitrogen fertilizer application in the form of urea at 170 kg/ha~!. Urea application
was divided into two equal halves, with the first half applied before planting and the
second half during side-dressing and fertigation. To ensure the comparability of the results,
we selected April to September as the growing season during the multiple linear regression
(MLR) simulations consistently across all counties in Kansas. In contrast, the growing
seasons varied from county to county in the DSSAT simulations due to variations in the
planting dates and crop management [10].

2.4. Model Evaluation

To evaluate the performance of the MLR and DSSAT models, the predicted yields
(Ypred) from both models were compared with the observed yield (yqps) using statistical met-
rics [56]. These were the root mean square error (RMSE), Pearson correlation coefficient (r),
and coefficient of determination (R?) given in Equations (4), (5), and (6), respectively [10].

The RMSE measures the difference in magnitude between predicted and observed
values and is given as

10 2
RMSE = \/ H Z <YObS,i - Ypred,i) (4)

i=1

wherey . ; and Ypred,i are the observed and predicted yield for the i data record, respec-
tively.

The Pearson correlation coefficient, r, measures the degree of linear association between
predicted and observed values, and ranges between —1 to +1, where y,c and y .4 are the
average observed and predicted yield, respectively.

20 (YObs,i - yobs) (yPred,i - ypred)

1
r=
\/ éo (Yobs,i - Vobs) i \/ é} (yPred,i - Vpred) ’

The coefficient of determination, RZ, measures how much variance in the observed
yield can be explained by predictors in a linear regression fit, and is given as

©)

2
Z |:YObS,i - Ypred,i}
RR=1-- .
Z (YObS,i - yobs)

i

(6)

2.5. Synthetic Climate Change Scenarios

To assess the impact of temperature rises on maize yield, as simulated with the MLR
and the process-based CERES Maize models, we developed synthetic climate datasets to
mimic the changes in climate that may occur in the future. For this, we chose scenarios
of 1 and 2 °C rises in daily temperature. It is important to note that these scenarios are
not tied to any future global circulation models and are hypothetical [29]. After adjusting
the historical temperature dataset by increasing the daily temperatures by either 1 or 2 °C,
both the MLR and the DSSAT models were run to simulate new maize yields under the
two synthetic climate change scenarios. The differences were calculated between the new
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two synthetic climate change scenarios. The differences were calculated between the new
pred1cted county -level yleld for each scenario of 1 and 2 °C rises and the or1g1nal7p1f‘e§l1cted

were plotted spatlally, and bar plots were developed to evaluate the overall yield changes

acsKarsasudiYHevel yield for each scenario of 1 and 2 °C rises and the original predicted
yield data. The changes in yields that were predicted using both models for each scenario
3. Resulimand dPiscilystdr bar plots were developed to evaluate the overall yield changes

3. PNRHIAPTI MR egression (MLR) Model

3. Rbeulé avidlmis d@gstba MLR models for the 40 counties of Kansas ranged from 0.32 to
0.87. (Fignitipld ] {1}, Redrickiom@piiR thaddat least 32% of the variability in the year-to-year
maize yiedRthangs wamenplEneddey [imateoasiabiesorrithsmaxipeatremch Brigmum
vani8bilityuobsefvelvihiRicacand thatah das tontatibthaeapabilitely. thbgenatinbelityniaizhe R*
shorwhﬂChamgarlaasleapﬂ@metbbmel1mbﬂnﬁ}bbs ﬂvﬁ@ﬂﬂ@iﬁ@m@émmﬁama&apﬂdmdmg
eviRhasesadhip fige et @P@h%@aéi”éle&? wdhgaadekibodinin RePRECIP-July.
Th@W&PaﬁErﬂthtWa%‘S?éll%ﬂfﬁl‘% Ye@%%ﬁ!faae%awéal&ﬁm%fgﬁfggar -to-

Lﬁu &u gﬁoi:lelrsa expl an %%%1‘1 eiféwas er1ve fro 112% CIP Jul}( The 10]@’?{2 values
cott ke

tlvsi(sl serve count1es cou e attr1%ut d to tl?s ar— ? cl]e uctuat1on .
ffed R AIRHEH RS AT PREKIETNR05¢ Va pest SR aAgons n

thea ﬁ%ﬂb@‘i&%&ﬁg\%ﬁa ﬁSﬁSQHﬁm%ge‘E%&‘?%‘r’d‘ElH?aa%ﬁ%ﬂ%?@%ﬁscﬁé fé}fgmp@{escale,
andrehangesiboacanasnics ireihicticenditionsihal inthiiensmepepananigemnsesinbetter
conrsidenaiicrood thesedaditionsvibul dnlfilvelycénofororre g gractormarseeo i theiteodigbntHow-
eve, tiesd/fadRomsodelistd Sl taperpéatire 30 dorfofs © b thlecomerdd]. v oiwbiléty thre thd Fainfed
diedeleths@bledouniiainadd tetu e diitie aveistlvafiobilits Bdhe brinedanaizeidbiver to
hl SReF, m&w&al&gﬁ% e&araa%ﬁs%t‘éaées&fgﬂaa@%{%ﬁﬂ%@%ﬁ%ﬁ%@%{@fame

O

a
ata

andia T land state- scale dies Can be found. in th f
As ng ear- 0- ear Val:l “In ma1ze d a SC e was
f - (l Tar 1e varla rnalze
explai ate var1,[a il 72 for
© Var1 ifay ano ed an va 26

S ex clim
ar%afﬁaoa&@%?&%lam 550 BAireisld TH%&XHH éeéa IS linois.

40.0 -

39.5 1

39.0 1

38.5 1

38.0 1

37.5+

37.0 1

0.8

Graham

0.7

- 0.6

- 0.5

- 0.4

—102

—-101 -100 -99 -98 -97 -96 —95

FigiR' % Sp a%mtoﬁsfll thation 9fR yalusspebiained o PR ARR et telsss S ain dnaize-
prodids %r Hinssor R Ao R RIS arst R s tisp kg ed:
The RMSE for the maize yield predictions ranged from 483 k ha~! for Pratt Coun

to 138 RMRE fes: theiseajgsyyieh @@qsl{@t}p%émggdcétfggbég%ﬁ&aégs SiRfpounty
to 138k gslnid tonkdlintonrbritigunaiddibbukialikely camsedithigavidrirang R MSE
vali983 is daRotd ltheamgnsnﬁtfrerh‘AﬁSaﬂaalfddsﬁmbmtmeldﬁﬁhmrbﬁ&f&d 020 zerpiclHatata from
198ete ZOinlQIHé%almgesmf&l@eﬂﬂ@lﬁ@mém@dmi&l&&?ihk@§\ﬁonﬂﬂ9&lﬁ@rﬂ®2®eétr©sm1<ansas
wet DR hha-inthteerbAlicgisn rdSovaritulipdndass Yipldaembetiwkutedgion,

and 500-800 kg ha! in the central region. The variability in these yields can be attributed
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maize yield, respectively [10].
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an r value of 0.70 and an RMSE of 1408 kg ha! [10]. The MLR model was able to capture
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counties that were included in the analysis showed an increase in predicted maize yield
for both scenarios. In Scenario I, the predicted maize yield from the MLR model showed
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(a) Scenario I as +1 °C rise in temperature and (b) Scenario II as +2 °C rise in temperature.
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4. Egnelusions

In this study, we delved inte the understanding of hew elimate ehange affects maize
yields in the agrieultural areas of Kansas. Our research eentered around esmparing twe
types of medels: 2 statistical multiple linear regression (MER) medel and a procese-based
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model (the Decision Support System for Agrotechnology Transfer, DSSAT). By doing so,
we aimed to shed light on the most effective approach for predicting maize yields under
changing climatic conditions [10].

We found that, using the developed MLR model, at least 32% of the predicted year-
to-year rainfed maize yield variability was explained by climate variables in Kansas
counties, which suggests that climate plays an important role in rainfed maize yield
predictions. We also found that the MLR model outperformed the DSSAT model, as is
evident from the higher correlation coefficient (r = 0.93) and lower root mean square
error (RMSE = 443 kg ha~!) of the MLR model compared to the values of r = 0.70 and
RMSE = 1408 kg ha~! that were observed with the DSSAT model. Notably, the DSSAT
model’s performance hinged largely upon crop management data, such as the planting
date and plant population, and soil information, variables that were not a part of the
MLR models.

This study demonstrated that rising temperatures generally have a detrimental impact
on maize yields in Kansas. As the temperature rose, the predicted reductions in rainfed
maize yields were more pronounced, particularly in the DSSAT model. This highlights
the vulnerability of maize crops to the intensifying heat that is expected with climate
change. However, it is important to recognize the limitations of these models. Both the
MLR and the DSSAT models have their respective constraints when it comes to mechanistic
understanding, computation demand, and complexity. It is interesting that the two models
project very different impacts of climate change. Based on our findings, we think these
differences deserve further research, and it might be worthwhile to consider a wider set of
models [10,68].

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390 /agronomy13102571/s1: Figure S1: Time series of observed (green)
and predicted yield from models (simulated yield from DSSAT in red, predicted yield from MLR
in blue) where y-axis represents detrended predicted yield (a) Central, (b) North Central, (c) South
Central, (d) West Central, (e) North Western, (f) North Eastern, (g) Eastern Central, (h) South Eastern
regions in Kansas.
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