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Enzyme-responsive
polymersomes ameliorate
autophagic failure in a cellular
model of GM1 gangliosidosis

Bipin Chakravarthy Paruchuri®, Sarah Smith® and
Jessica Larsen?*

‘Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC,
United States, Department of Bioengineering, Clemson University, Clemson, SC, United States

GM1 gangliosidosis is a lysosomal storage disorder caused by deficiency of -
galactosidase (Bgal) and subsequent accumulation of GM1 ganglioside in
lysosomes. One of the pathological aspects of GM1 gangliosidosis, and other
storage disorders, is impaired autophagy, i.e., a reduced fusion of
autophagosomes and lysosomes to degrade cellular waste. Enzyme
replacement therapy (ERT) can effectively treat systemic deficiency but is
limited by immunogenicity and shortened half-life of intravenously
administered enzyme. In this paper, we report a hyaluronic acid-b-polylactic
acid (HA-PLA) polymersome delivery system that can achieve an enzyme-
responsive and sustained delivery of pgal to promote the cell's self-healing
process of autophagy. HA-PLA polymersomes have an average diameter of
138.0 + 17.6 nm and encapsulate Bgal with an efficiency of 77.7 + 3.4%. In the
presence of model enzyme Hyaluronidase, HA-PLA polymersomes
demonstrate a two-fold higher release of encapsulant than without enzyme.
We also identified reduced autophagy in a cellular model of GM1 Gangliosidosis
(GM1SV3) compared to healthy cells, illustrated using immunofluorescence.
Enhanced autophagy was reported in GM1SV3 cells treated with Bgal-loaded
polymersomes. Most notably, the fusion of lysosomes and autophagosomes in
GM1SV3 cells returned to normal levels of healthy cells after 24h of
polymersome treatment. The HA-PLA polymersomes described here can
provide a promising delivery system to treat GM1 Gangliosidosis.

KEYWORDS

enzyme-responsive polymersomes, hyaluronic acid, GM1 gangliosidosis, lysosomal
storage disorder, enzyme replacement therapy, autophagy, drug delivery,
nanomedicine

1 Introduction

With a prevalence of one in 5,000 to 8,000 live births, lysosomal storage diseases
(LSDs) typically result from genetic mutations that lead to a lack of production or
inappropriate folding of lysosomal enzymes, causing systemic pathology (Kelly and
Bradbury, 2017). Linking these diseases together is the dysfunction of the lysosome,

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fceng.2022.997607/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.997607/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.997607/full
https://www.frontiersin.org/articles/10.3389/fceng.2022.997607/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fceng.2022.997607&domain=pdf&date_stamp=2022-10-12
mailto:larsenj@clemson.edu
https://doi.org/10.3389/fceng.2022.997607
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://www.frontiersin.org/journals/chemical-engineering#editorial-board
https://doi.org/10.3389/fceng.2022.997607

Paruchuri et al.

which leads to highly similar pathophysiology, especially in the
LSDs that are prevalent in the central nervous system (CNS).
These disorders are marked by failed autophagy (Figure 1), where
the autophagosome and the lysosome are unable to fuse, causing
the accumulation of both organelles. The autophagic failure
causes a large burden on the affected cells, ultimately leading
to premature cell death. This paper focuses on the autophagy-
lysosomal pathway in an LSD, GM1 Gangliosidosis (GM1). In
GM], the lysosomal enzyme p-galactosidase (Bgal) is missing or
underproduced (Brunetti-Pierri and Scaglia, 2008; Johnson,
2015). Pgal has the primary role of catabolizing down
GM1 ganglioside to GM2 ganglioside (Sandhoff and Harzer,
2013). In the absence of this enzyme, GM1 ganglioside remains
unmetabolized and accumulates in the cell along with other
storage products, which leads to swollen lysosomes and ultimate
cell death (Rha et al,, 2021). The deficiency of Bgal leads to the
upregulation of other lysosomal such as
hexosaminidase A (De Maria et al, 1998; McCurdy et al,
2014). This is believed to be a compensatory mechanism,

enzymes,

aiding the cell in the digestion of byproducts normally broken
down by Pgal. Although it is accepted that this upregulation
occurs, the point within the disease progression where lysosomal
enzyme upregulation occurs is unknown. This upregulation can
inform decisions on treatment design, specifically utilizing
upregulated enzyme activity to increase drug delivery through
enzyme-responsive degradation (Paruchuri et al., 2021).
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FIGURE 1
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Among the approaches proposed to treat LSDs, enzyme
replacement therapy (ERT) is the most often translated therapy
and is clinically effective in reducing the lysosomal storage (Solomon
and Muro, 2017). ERT involves periodic administration of the
recombinant enzyme to be delivered to the cell and catabolizes
the accumulated substrate. Even a partial restoration of the deficient
enzyme activity can result in a clearance of the substrate and show a
therapeutic effect (Muro, 2010; McCurdy et al, 2014). Currently,
15 ERTs have been approved to treat 11 different LSDs (Edelmann
and Maegawa, 2020). Despite the advantages, ERT is limited by
immunogenicity, short half-life in the circulation system, uneven
biodistribution, and reduced activity of the enzyme (Kakkis et al,,
1996; Ohashi et al., 2008; Wang et al., 2008; Banugaria et al., 2011; de
la Fuente et al., 2021). Furthermore, when the CNS is involved, as it
is in GM1 gangliosidosis, ERT is ineffective, as enzymes can not be
transported through the blood-brain barrier (BBB). In case of severe
immune response, systemic ERT may require immune modulation
to maintain efficacy (Garman, Munroe and Richards, 2004; Dickson
et al., 2008; Desai et al., 2020). One of the strategies to mitigate these
limitations is the encapsulation of recombinant enzyme in
nanoparticles (Mumtaz and Bachhawat, 1994; Muro, 2010;
Blackman et al., 2018; Galliani et al., 2018; Grosso et al., 2019;
Edelmann and Maegawa, 2020). Encapsulating enzymes in
nanoparticles increases the therapeutic effect and reduces
immune response by masking the enzyme molecule. Ultimately,
although beyond the scope of this paper, targeting ligands can be
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FIGURE 2

Phenotypic, Lysosomal, and Autophagic behavior of

untreated NSV3 (healthy) and GM1SV3 (diseased) cell lines. (Scale
bar = 30 ym)

added to the surface of these nanoparticles to facilitate the transport
of enzyme through the BBB (Sanchez-Purra et al., 2016; Kelly and
Gross, 2017; Nabi et al.,, 2018; Igbal et al., 2020).

Here we develop a nanoparticle tool capable of correcting
autophagic failure using ERT and promoting healthy cellular
digestion. We identify lysosomal hydrolase upregulation and
impaired autophagy in a cellular model of GMI, isolated
fibroblasts from GM1 affected felines (GMI1SV3 cells), in
isolated fibroblasts
A naturally occurring feline

comparison  to from healthy felines
(NSV3  cells). of
GM1 gangliosidosis was first identified in 1971 and closely

model

replicates the human pathology of the juvenile form of disease
(Baker et al., 1971; Baker and Lindsey, 1974; Martin et al., 2008).
This model has been used extensively in pre-clinical studies to
evaluate gene therapies targeting GM1 gangliosidosis (Rockwell
et al,, 2015; Gray-Edwards et al.,, 2017; Nicoli et al,, 2021; Gross
et al., 2022). These feline fibroblasts have previously been used to
explore the efficacy of nanoparticle mediated enzyme replacement
therapy (Reynolds et al., 1978; Kelly and Gross, 2017). Therefore,
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we use the feline cell model to evaluate our novel enzyme-
responsive polymersomes that can respond to lysosomal
enzymes and deliver Pgal in a pathologically driven manner.
We use hyaluronic acid (HA) and polylactic acid (PLA) as the
hydrophilic and hydrophobic components, respectively, to create
polymersomes that facilitate the entry of fgal into GM1-affected
cells and restore normal autophagic function. These polymersomes
could ultimately be used as a treatment for GM1 by helping the
cells clear storage products through the promotion of autophagy.

2 Results
2.1 Characterization of cell model

2.1.1 Phenotypic behavior

Phenotypically, NSV3 (healthy) and GM1V3 (affected) cell
lines are highly similar, with extended, spiny processes typical of
fibroblast cell lines, as seen under bright field (BF) (Figure 2).

2.1.2 Autophagic behavior

GMI1SV3 cells presented with a higher number of lysosomes
(green) compared to healthy NSV3 cells. Similar behavior was
observed with autophagosomes (red), where GM1SV3 cells
presented more autophagosomes than NSV3 cells. When the
green and red channels were overlaid, we observed that the
autophagic flux in GMISV3 cells was reduced in comparison
to the healthy NSV3 cells (Figure 2).

2.1.3 X-gal staining and enzyme assay

The X-gal stained GMISV3 cells qualitatively confirmed the
deficiency of Bgal as indicated by the negligible blue color compared
to healthy cells (Figures 3A,B). Both results are consistent with the
X-gal-stained tissue slices of GM1-affected and normal feline brain
and spinal cord (McCurdy et al, 2014) (Figure 3C). Standard
enzyme assay analysis indicated increased levels of lysosomal
hydrolases hexosaminidase A and mannosidase in GM1SV3 cells
compared to NSV3 cells. Fold normal enzyme activities presented in
Figure 3D demonstrate the deviation between GMISV3 and
NSV3 cellular lysosomal enzyme activities, with larger numbers
above a fold normal of one indicating upregulation.

2.2 HA-PLA polymersome synthesis and
characterization

The amphiphile HA-PLA was successfully synthesized
using a two-step conjugation method (Supplementary Figure
S1) (Deng et al., 2018). The absorbance at 3,284 cm™" in the
ATR-FITR spectrum of synthesized polymer was attributed to
the stretching of -OH and -NH groups of HA, while the
absorbance peaks for ester C=0 and C-O stretching in PLA-
NHS were observed at 1751 and 1,181 cm™, respectively
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FIGURE 3

Xgal staining results of (A) GM1SV3 and (B) NSV3 cell lines, compared to (C) brain (top) and spinal cord (bottom) of GM1-affected felines (From
McCurdy et al., 2015. Reprinted with permission from AAAS). (D) Fold normal activities of p-galactosidase, hexosaminidase A, hexosaminidase total,
and mannosidase in GM1SV3 cells. The dashed line represents activity in NSV3 cells. (n = 3).

(Supplementary Figure S2). This confirmed the successful
conjugation of the block polymers HA and PLA. The
hydrophilic fraction (f) of the resultant copolymer was
~0.17. HA-PLA polymersomes were self-assembled using the
solvent injection method (Kelly and Bradbury, 2017). The
hydrophobic membrane observed in TEM confirmed the
vesicular structure of the self-assembled nanoparticles
(Figure 4A). HA-PLA polymersomes have a monodisperse

size distribution (Figure 4B) with a Z-average diameter of
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138.0 +
-18.0 £

17.6nm (PDI = 0.212 + 0.06) and (-potential of
3.8 mV, measured using DLS (Figure 4C).

2.3 Encapsulation efficiency and enzyme-
responsiveness of HA-PLA polymersomes

HA-PLA polymersomes encapsulated AF488-tagged Pgal

with an efficiency of 77.7 + 3.4% and a loading capacity of
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FIGURE 4

Hyaluronic acid-polylactic acid (HA-PLA) polymersome characterization (A) The vesicular morphology of HA-PLA polymersomes observed by
transmission electron microscope (scale bar: 1 ym, inset: 100 nm), (B) the size distribution of HA-PLA polymersomes observed by dynamic light
scattering (n = 4), (C) the concentration of HA-PLA used in solvent injection method, Z-average diameter, polydispersity index and {-potential of HA-

PLA polymersomes measured using dynamic light scattering (n = 4).

0.194mg  AF488  Pgal/mL HA-PLA
polymersomes were loaded with hydrophilic fluorescein
isothiocyanate-dextran (FITC-D) to evaluate release with and
without enzymatic degradation. In the presence of model cognate

polymersomes.

enzyme Hyaluronidase, a total release of 30.8 + 4.4% was
observed after 68 h, while incubation in buffer and with non-
cognate Pgal released only 14.4 + 53% and 19.2 + 4.8% of
encapsulant (Figure 5).

2.4 Cellular uptake of polymersomes

The cellular uptake of HA-PLA polymersomes was studied
using the fluorescent molecule FITC-bovine serum albumin
(BSA) which was encapsulated with an efficiency of 93.3 +
3.6%. GMI1SV3 cells showed a similar fluorescence intensity
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for GM1SV3 cells incubated with free FITC-BSA and FITC-
BSA loaded HA-PLA polymersomes (Figure 6A), indicating that
cellular uptake of HA-PLA Ps was on par with the free drug. This
observation was consistent with the quantified fluorescence
results obtained using flow cytometry (Figure 6B).

2.5 In vitro autophagic modulation

We examined the therapeutic effect of current delivery
the Bgal-loaded
polymersomes at a dose of 0.35mg Pgal/cm® to restore the
enzyme levels (Kelly and Gross, 2017). After 24h of
polymersome GM1SV3
reduced number of lysosomes and enhanced autophagy

system by treating diseased  cells

treatment, cells presented with

compared to untreated cells (Figure 7). Confocal imaging
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FIGURE 5

Release of encapsulated fluorescein isothiocyanate-dextran
from Hyaluronic acid-polylactic acid (HA-PLA) polymersomes
when incubated with hyaluronidase (@), citrate phosphate buffer
(pH 4.8) (#) and p-galactosidase (A). These results show a
higher release of encapsulant in the presence of hyaluronidase
compared to buffer without enzyme (top) or in p-galactosidase, a
non-cognate enzyme (bottom). (n =4, * = p < 0.05, ** = p < 0.01).

confirms findings, with observable co-localization after treatment
with free Bgal for 6 h (Supplementary Figure S3C) or Pgal loaded
HA-PLA polymersomes after 24 h (Supplementary Figure S3D).
These observations are confirmed by image analysis quantifying
the autophagy as co-localization percentage per cell (Figure 8).
Importantly, after 24 h of polymersome treatment, with a co-
localization percentage of 38.4 + 11.1%, the autophagic behavior
of GM1SV3 cells is no longer statistically different from
NSV3 cells (38.4 + 10.5%) or GM1SV3 cells treated with free
Bgal for 6 h (40.4 + 12.7%).

3 Discussion

Phenotypically, NSV3 and GM1SV3 cells presented similar
morphological features, as characterized previously (Reynolds
et al., 1978; Kelly and Bradbury, 2017; Chen et al., 2020; Gross
et al,, 2022). These cell lines also match with enzyme activity
levels expected based on in vivo results from GM1 gangliosidosis-
affected felines where the X-gal-stained tissues of diseased
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animals showed deficient enzyme levels compared to healthy
controls (Figures 3A-C) (McCurdy et al, 2015). We also
observed that NSV3 and GMISV3 cells show differing levels
of autophagic activity. Greater intensities of red and green
indicate an increased presence of autophagosomes and
lysosomes independently, while yellow in overlay images
the of
lysosomes. Therefore, the presence of yellow in NSV3 cells

indicates co-localization autophagosomes and

implies a normal fusion of these organelles to form
autolysosomes, and the absence of yellow in GM1SV3 samples
indicates an impaired fusion and disruption of normal
autophagy. This was expected in in vitro GM1 model as
similar results were seen in the GM1 mouse model (Liu et al.,
2021) and other models of LSDs such as Multiple Sulfatase
(MSD) (Settembre et 2008),
mucopolysaccharidosis type IIIA (Settembre et al, 2008),
Pompe disease (Lim et al, 2018), and Gaucher disease
(Kinghorn et al., 2016). In a mouse model of MSD, about a
40% decrease in co-localization compared to wild-type animals

Deficiency al,,

was reported. However, the results presented here were more
dramatic than these, with an almost 90% decrease in co-
This
explained by the differences occurring between diseases and

localization in diseased cells. difference could be
disease models, with MSD co-localization studies using
embryonic fibroblasts of MSD-affected mice and this study
using skin fibroblasts of GMI1-gangliosidosis-affected felines.
Also, previously, an increase in expression of LC3-II, an
autophagosome-specific marker, has been observed in GM1I
(Takamura et al., 2008; Lieberman et al., 2012). The LC3-II
fluorescence intensity was much greater in the Pgal”™ mice
samples compared to the wild type. This was also shown in
our cell model when tagging autophagosome LC3-II with
LC3 antibody, the red intensity tagging autophagosomes was
greater in GM1SV3 than NSV3. This observed increase of LC3-1I
indicates that there is a buildup of autophagosomes that are not
fusing with lysosomes to form the autophagosome complex.
Because of this, GM1SV3 cells appear to be valid as a model
of GMI1 gangliosidosis, especially with respect to autophagic
behavior.

Polymersomes are suitable for delivering the deficient
enzyme to diseased cells (Igbal et al, 2020), which can
enhance the fusion of autophagosomes and lysosomes
(Ivanova et al, 2019; Marques et al., 2020). Within the
be
incorporated in either 1) the hydrophilic corona, 2) the

polymersome, an enzyme-responsive moiety can
hydrophobic membrane or 3) the link between the two zones
to offer better control over the release profile (Li et al., 2020;
Paruchuri et al,, 2021). In the current system, we synthesized an
amphiphile with the enzyme-degradable HA as the hydrophilic
block and acid-hydrolyzable PLA. As a result, HA is located in
the hydrophilic corona of the self-assembled structures, where it
is easily accessible to enzymes. The HA-PLA amphiphile self-

assembled into vesicles with a membrane observed in the TEM
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FIGURE 6

In vitro cellular uptake of Hyaluronic acid-polylactic acid (HA-PLA) polymersomes. (A) Fluorescent images of GM1SV3 cells without treatment,
after treating with free albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and FITC-BSA loaded HA-PLA polymersomes, (B) Flow cytometry
histograms for unstained GM1SV3 cells, GM1SV3 cells treated with free FITC-BSA, and FITC-BSA loaded HA-PLA polymersomes (n = 3). (Scale bar =

60 um)

imaging. HA-PLA polymersomes were within the biologically
relevant size range of 10-200 nm: greater than 10 nm to avoid
renal clearance (Choi et al., 2011) and smaller than 200 nm to
through the
(Moghimi et al., 2001; Moghimi and Szebeni, 2003; Emerich

avoid clearance reticuloendothelial ~ system
and Thanos, 2007; Kulkarni and Feng, 2013). Drug loading of
HA-PLA polymersomes was slightly lower than previously
reported PEGigo0-PLAsgo9 polymersomes (0.22 mg AF488
Bgal/mL polymersomes) (Kelly and Bradbury, 2017). The high
molecular weight of HA-PLA copolymer increases the thickness
of hydrophobic membrane (Discher and Ahmed, 2006), which
could limit the entry of AF488 Pgal into polymersomes during

the loading process.
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When HA-PLA polymersomes incubated with

hyaluronidase, the enzymatic hydrolysis of HA in corona

are

destabilizes the polymersome structure (Hu et al, 2017; Li
et al.,, 2020; Bourgat et al., 2021; Paruchuri et al.,, 2021). As a
result, a two-fold higher release of FITC-D was observed when
treated with hyaluronidase compared to buffer. A similar
phenomenon was previously observed with hyaluronic acid-g-
deoxycholic acid (DOCA) micelles loaded with doxorubicin
(Dox) targeting tumors (Kim et al, 2014). The release of
encapsulated Dox was two-fold higher in the presence of
hyaluronidase type II than without the enzyme. Other
enzyme-responsive

polymersomes and polymeric micelle

systems also exhibited similar release behavior in the presence

frontiersin.org


https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.997607

Paruchuri et al.

GM1SV3, 6h, free Bgal

FIGURE 7

10.3389/fceng.2022.997607

—

GM1SV3, 24h, Bgal-loaded polymersomes

Autophagic behavior of (A) untreated healthy (NSV3) cells, (B) untreated diseased (GM1SV3) cells, after treating GM1SV3 cells with (C) free p-
galactosidase (Bgal) for 6 h and (D) pgal-loaded hyaluronic acid-polylactic acid (HA-PLA) polymersomes for 24 h (Scale bar = 30 um). These results
show that treatment with pgal-loaded HA-PLA polymersomes causes the autophagy of diseased cells to look more like healthy cells.

of esterase (Yan et al., 2020), hyaluronidase (Tiicking et al., 2015)
and matrix metalloproteinase-2 (Barve et al., 2020; Ramezani
et al, 2020). Furthermore, in HA-PLA polymersomes, a
significant difference in the amount released with and without
hyaluronidase was observed starting at 12 h, indicating a slow
degradation of polymersomes initially. Interestingly, a similar
degradation behavior was reported previously in an HA-based in
situ cross-linkable hydrogel. When exposed to hyaluronidase, the
wet gel lost 50% of the original mass in 7 days but disappeared
completely in 10 days (Bajaj et al., 2012). The release from HA-
PLA polymersomes in buffer and with Bgal were not significantly
different, which is expected as Pgal does not hydrolyze any
This
translatable to other encapsulants as the drug release kinetics

component of polymersomes. release behavior is
of enzyme-responsive polymersomes are determined by stimuli
(rate of cleavage) and polymer degradation rate (Lee and Yeo,
2015; Hu et al., 2017). These results also suggest the utility of HA-
PLA polymersomes in other diseases with upregulation of
hexosaminidase A (Minami et al., 1980; Sferra et al., 2004) or
hyaluronidase (Tan et al., 2011). HA is a primary component of
the extracellular matrix and can bind with high affinity to the
CD44 receptor, a transmembrane glycoprotein (Tiwari and
Bahadur, 2019). The uptake mechanism of HA-grafted
liposomes was previously reported to follow lipid raft-
mediated pathways and the liposomes localized primarily in
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lysosomes (Syed et al., 2011). This native uptake mechanism
HA nanoparticle and endocytosis of albumin (Frei, 2011) can
explain the comparable fluorescence intensities of free FITC-BSA
and FITC-BSA loaded polymersomes in GM1SV3 cells after 4 h
treatment. Similarly, Bgal-loaded HA-PLA polymersomes in our
study could be taken up by cells and directed to lysosomes
through the endosomal-lysosomal pathway. It is important to
note that ultimately polymersomes could facilitate entry of
payloads, like BSA, into areas they are unable to natively
enter, like the BBB, through attachment of targeting ligands.
Within lysosomes, the HA in hydrophilic corona is degraded by
hydrolases such as hexosaminidase A, p-glucuronidase, and
lysosomal hyaluronidase (Gushulak et al, 2012) to induce the
release of encapsulated Pgal. Supplementing the deficient enzyme
levels in LSD models can activate the autophagy pathway (Ivanova
et al,, 2019; Marques et al.,, 2020). In peripheral blood mononuclear
cells (PBMCs) of patients with an LSD called Gaucher’s disease,
treatment with recombinant human glucocerebrosidase resulted in
normalized levels of lysosomal (LAMP1) and autophagosomes (LC3-
1) markers closer to healthy controls during the first hour (Ivanova
et al., 2019). This indicates the activation of autophagy, although the
mechanism remains unclear. Similarly, in the current study,
GM1SV3 cells treated with loaded polymersomes presented a
higher intensity of yellow, suggesting a greater healthy autophagic
activity compared to untreated cells. Figure 8 shows partial
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FIGURE 8

Co-localization (%) in untreated healthy (NSV3) and diseased
(GM1SV3) cells, GM1SV3 cells treated with free pgal (6 h treatment),
Bgal-loaded hyaluronic acid-polylactic acid (HA-PLA)
polymersomes for 6, 12 and 24 h. These results indicate that
HA-PLA polymersomes achieved a therapeutic effect in 24 h,
similar to 6 h of treatment with free pgal, due to the slow and
controlled release of encapsulated pgal. Star (*) indicate a
significant difference compared to NSV3 cells and diamond (#)
indicates a significant difference in colocalization compared to
GM1SV3 cells (n = 3, * = p < 0.05, ** = p < 0.025).

restoration of autophagic activity after 6 and 12 h of treatment with
Bgal-loaded polymersomes, and normalization of autophagic activity
upon 24 h of treatment, indicated by no significant difference in
colocalization compared to NSV3. In contrast, 6 h of treatment with
free Bgal was sufficient to increase the autophagic activity to normal
levels. This result also indicates the slow and controlled release of the
encapsulant from polymersomes compared to free Pgal.

4 Conclusion

In this study, we developed an enzyme-responsive polymersome
system made from HA and PLA that can degrade in the lysosomes
and deliver the cargo to increase autophagic activity in lysosomal
storage disorder GMIl-affected cells. These polymersomes are
capable of encapsulating active enzyme at high loading
efficiencies of 77.7 + 3.4%. Benchtop release studies demonstrate
the role of enzyme-responsive degradation on the release of
with behavior

encapsulated  payloads, enzyme-responsive
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apparent due to the two-fold increase in release when incubated
with the cognate enzyme at the same time points in comparison to
buffer or non-cognate enzyme incubations alone. When cultured
with GM1-affected cells, GM1SV3, at low doses, autophagic activity
is restored to healthy levels that are not statistically different from a
healthy cell line, NSV3. Free Bgal restores autophagic function as
well, but is unable to cross the BBB (Przybilla et al., 2021), which
could be facilitated through the addition of targeting ligands on the
HA-PLA nanoparticle surface. Restoration of autophagic activity is
likely to alleviate the burden of lysosomal storage in GM1-affected
patients. To our knowledge, this study represents the first time that
nanoparticles are used to alleviate the storage burden in lysosomal
storage disease through targeted autophagic modulation, making
this a promising study to promote further exploration towards a
non-invasive treatment.

5 Methods and materials

5.1 Materials

Dr. Douglas Martin of Auburn University donated skin
fibroblasts ~ from  healthy  cats, NSV3  cells, and
GM1 gangliosidosis-affected cats, GMISV3 cells. Media was
Dulbecco’s Modified Eagle Media (DMEM) (ThermoFisher, Cat.
Num. 12,430, Waltham, MA) with 10% Fetal Bovine Serum (FBS)
and 1X Penicillin-Streptomycin (PS) (ThermoFisher, Cat. Num.
15140122, Waltham, MA). Passages were performed using 0.25%
Trypsin (Corning, Cat. Num. 25-053-Cl, Manassas, VA).
CellLight™ Lysosomes-GFP BacMam 2.0 (ThermoFisher, Cat.
Num. C10507, Waltham, MA) and LC3 staining with an anti-
LC3B Rabbit Polyclonal Antibody (ThermoFisher, Cat. Num. PA1-
46286, Waltham, MA) (1:300) and Donkey anti-Rabbit IgG (H + L)
ReadyProbes™ Secondary Antibody conjugated to Alexa Fluor 594
(ThermoFisher, Cat. Num R37119, Waltham, MA) were used for
immunofluorescence. Fixation occurred with 4% paraformaldehyde
(PFA) (Ted Pella, Cat. Num. 18,505, Redding, CA) or
glutaraldehyde (Sigma Aldrich, Cat. No. G7651-10ML, St. Louis,
MO) and growth/starvation media. Cells were permeabilized with
0.1% Triton 100X (Acros Organics, Cat. No. 215682500, Waltham,
MA). When blocking was required, 5% donkey serum (Jackson
ImmunoResearch, Cat. No. 017-000-121, West Grove, PA) was
used. Mounting medium, Vectashield Antifade Mounting Medium
with DAPI (Vector, Cat. Num. H-1200, Burlingame, CA) and
cytoseal xyl (Fisher Scientific, Cat. No. 22050262, Waltham, PA),
were also used.

Enzyme assays and x-gal staining require the use of the
following materials: 4-methylumbelliferone (4-MU) (Sigma
Aldrich, Cat. No. M1381, St. Louis, MO), 10N NaOH (BDH,
Cat. No. BDH7247-1, Radnor, PA), citric acid (Fisher Scientific,
Cat. No. A104-3, Hampton, NH), sodium phosphate (Sigma
Aldrich, 7782-85-6, St. Louis, MO), sodium chloride (BDH, Cat.
No. BDH9286, Radnor, PA), 0.1% Triton X-100 (Acros Organics,
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Cat. No. 215682500, Waltham, MA), magnesium chloride
hexahydrate (Sigma Aldrich, Cat. No. M2670-100G, St. Louis,
MO), sodium deoxycholate (Sigma Aldrich, Cat. No. D6750-10G,
St. Louis, MO), potassium ferricyanide (Sigma Aldrich, Cat. No.
702587-50G, St. Louis, MO), potassium ferrocyanide (Fisher
Scientific, Cat. No. P236500, Waltham, PA), and 0.05% bovine
serum albumin (Fisher Scientific, Cat. No. BP1600-100, Hampton,
NH). Substrates to measure enzyme activity were 4-
methylumbelliferyl pgal (Acros Organics, Cat. No. 337210010,
Waltham, MA), 4-methylumbelliferyl —a-D-manopyranoside
(Toronto Research Chemicals, Cat. No. M334745, Ontario
Canada),
b-D-glucopyranosidase (Toronto Research Chemicals, Cat. No.
M335000, Ontario Canada), and 4-methylumbelliferyl N-acetyl
b-D-glucosaminide (Sigma Aldrich, Cat. No. M2133, St. Louis,
MO). Lowry solution A consisted of copper sulfate (Fisher
Scientific, Cat. No. C493-500, Waltham, MA), sodium potassium
tartrate (BDH, Cat. No. BDH9272, Radnor, PA), and sodium
carbonate (BDH, Cat. No. BDH9284, Radnor, PA). Solution B
was made of Folin and Ciocalteu’s phenol reagent (Sigma
Aldrich, Cat. No. F9252, St. Louis, MO) and MILLI-Q water.
Hyaluronic acid (molecular weight-5000 Da) (Lifecore
Biomedical LLC, Cat No. HA5K, Chaska, MN), Poly (L-lactide)-
N-hydroxysuccinimide endcap (M,, molecular weight ~24,450 Da)
(Akina, Inc, Cat. No. AIl74, West Lafayette, IN), 14-
diaminobutane (Fisher Scientificc, Cat No. AC112120250,
Hampton, NH), sodium cyanoborohydride (Chem-Impx Intl
Inc., Cat. No. 4836, Wood Dale, IL), 10N NaOH (BDH, Cat. No.
BDH7247-1, Radnor, PA), Sodium acetate trihydrate (BDH, Cat.
No. BDH9278, Radnor, PA), N,N-diisopropyl- ethylamine (Acros
Organics, Cat. No. 115220250, Waltham, MA) were used to
synthesize HA-PLA. Dimethyl sulfoxide (DMSO) (Sigma-Aldrich,
Cat. No. 472301, St. Louis, MO) and D-mannitol (Fisher Scientific,
Cat. No. MI120, Hampton, NH) were used in polymersome

4-methylumbelliferyl ~ 6-sulfa-2-acetoamido-2-deoxy-

synthesis. Fluorescently tagged (gal was prepared using Pgal
isolated from bovine liver (Sigma Aldrich, Cat. No. G1875, St.
Louis, MO) and Alexa Fluor 488 (AF488) Protein Labeling Kit
(Invitrogen, Cat. No. A10235, Waltham, MA). Fluorescein
isothiocyanate-dextran (FITC-D) (Sigma Aldrich, Cat. No.
46944, St. Louis, MO), Albumin Fluorescein isothiocyanate
Conjugate from bovine (FITC-BSA) (Sigma Aldrich, Cat. No.
A9771, St. Louis, MO) were used for encapsulation and cellular
uptake studies respectively. Hyaluronidase from bovine testes was
used in release studies (Sigma Aldrich, Cat. No. H3506, St.
Louis, MO).

5.2 Methods

5.2.1 Immunofluorescence analysis of
autophagosomal behavior

NSV3 and GM1SV3 cells were passaged into chamber slides
at a seeding density of 9.35 x 10* cells per well in normal growth
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media with 2 uL of CellLight per well. After overnight incubation,
cells were fixed with ice-cold 4% PFA in the appropriate growth
media (normal growth media or starvation media) for 15 min.
Cells were then permeabilized with 0.1% Triton X-100 in PBS,
3 times for 5 min each. A blocking step was performed with 5%
donkey serum in PBS for 1 h. Cells were then washed with PBS
and incubated overnight at 4°C with 1:300 primary antibody
dilution in PBS supplemented with 4% FBS for a total working
volume of 500 pl. After a second overnight incubation, cells were
washed 4 times with PBS for 10 min at a time. Secondary
antibody was added to the appropriate wells ensuring
untreated, primary-only, and secondary-only wells were run
during each experiment as internal controls (Supplementary
Figure S5) with 500 ul of appropriate growth media and
allowed to incubate in the dark at room temperature for
30 min. Cells were washed with PBS, chambers removed, and
one drop of Vectashield Antifade Mounting Medium with DAPI
was added. Slides were then sealed and allowed to dry overnight
at 4°C. The cells were imaged using both fluorescence microscopy
(Echo Revolve) and confocal microscopy (Leica SPE Confocal).
The fluorescence images were analyzed using Image] and the
“Color Inspector 3D” plugin. In order to quantify yellow and
blue pixels, the LAB color code was used to isolate the color
threshold. Scale bars were specified in the color range for
quantification; the values used are found in Supplementary
Table S2. After setting the color range, each cell body was
isolated, and the frequency of yellow and blue pixels was
determined. After obtaining this data, the percent co-
localization was calculated as the number of yellow pixels per
number of blue pixels.

5.2.2 Enzyme assays

After incubation of NSV3 and GM1SV3 cells in 6-well plates,
the media was changed, and wells were manually scraped. After
centrifugation, cells were re-suspended in Enzyme Isolation
Buffer (0.1% Triton X-100 in 50 mM citrate phosphate buffer,
pH 4.4 and 0.05% bovine serum albumin) and disrupted using
3 ml syringes with an 18-gauge needle. After enzyme isolation,
enzyme activity of lysosomal hydrolases [galactosidase,
hexosaminidase A, hexosaminidase B, and mannosidase were
measured using 4-methylumbelliferone enzyme assays described
previously (Martin et al., 2005; Martin et al., 2008; Kelly and
Gross, 2017).

5.2.3 X-gal staining

X-gal staining method causes blue staining to indicate the
activity of Pgal, the deficient enzyme in GM1 gangliosidosis
(Samoylova et al., 2008; McCurdy et al, 2014). NSV3 and
GM1SV3 cells were passaged into chamber slides at a seeding
density of 9.35 x 10* cells per well in normal growth media. After
overnight incubation, X-gal staining was completed as previously
described and compared to clinical feline data already published
(McCurdy et al., 2015).
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5.2.4 HA-PLA polymer synthesis

HA-PLA polymer was synthesized using a two-step
conjugation method adapted from a previous report (Deng
et al, 2018). Attenuated total reflection-Fourier transform
infrared (ATR-FTIR) spectra of the polymer blocks and the
copolymer were obtained.

5.2.5 Polymersome synthesis and
characterization

HA-PLA polymersomes were formed using the solvent injection
method. Briefly, HA-PLA was dissolved in DMSO at a
concentration of 0.8 pmol/ml. The polymer solution was injected
into 8wt/v% mannitol in water at a rate of 20 pL/min under stirring,
using a 20-gauge needle and a syringe pump. Polymersomes were
subsequently lyophilized after slow freezing at -20°C, followed by
overnight freezing at -80°C, and stored under vacuum conditions to
be used later for enzyme encapsulation and in vitro experiments.
The size distribution of HA-PLA polymersomes was obtained using
Malvern Zetasizer Nano ZS (Malvern Ltd.) at 25°C after separation
using 450 nm filters (n = 3). The morphology of polymersomes was
observed using transmission electron microscope (TEM) imaging.
The grid with polymersomes was stained using uranyl acetate and
imaged with Hitachi HT7830 UHR 120 kV TEM.

5.2.6 Encapsulation efficiency (EE) and loading
capacity (LC) of polymersomes

Encapsulation efficiency and dye release were determined by
UV-Vis analysis. The enzyme of interest Pgal was tagged with
fluorophore AF488 to allow the quantification of the
encapsulated enzyme. AF488 tagged (gal was prepared at a
of 0.25mg/ml loaded the
polymersomes by dropwise addition of enzyme solution to

concentration and into
lyophilized polymersomes. The unencapsulated enzyme was
removed through dialysis of the loaded polymersomes for 4 h.
The fluorescence of dialysate samples was measured in a UV
spectrophotometer to calculate the amount of free enzyme by
comparing it with a standard curve. Encapsulation efficiency
(EE) and loading capacity (LC) of the polymersomes were
calculated using the following equations.

_ total mass o fenz yme added — mass o f unencapsulated enz yme

EE (%) = 100
%) total mass o f enzyme added X

mass o f encapsulated enzyme

LC
massof polymer

5.2.7 Enzyme-responsive drug release

Following the loading protocol mentioned above, FITC-D
was encapsulated with an efficiency of 26.5 + 6.6%. Loaded
polymersomes were centrifuged and resuspended in 100 pL of
1 mg/ml  hyaluronidase (cognate enzyme) solution.
Polymersomes resuspended in 100 pL of 1mg/ml pgal
(non-cognate enzyme) solution and citrate phosphate

buffer (pH 4.8) were used as controls. The samples were
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dialyzed against citrate phosphate buffer at 37°C for 68 h.
The dialysate was analyzed periodically and compared against
a standard curve of FITC-D to calculate release profiles in both

enzymatic conditions.

5.2.8 Cellular uptake of polymersomes

FITC-bovine serum albumin (BSA) was used as a model
encapsulant for Pgal due to their similar molecular weights
[~66 kDa for FITC-BSA vs 68 kDa for Bgal (DiCioccio et al.,
1984)]. GM1SV3 cells were seeded in a 4-well chamber slide at a
seeding density of 5 x 10* cells per cell. After overnight
incubation, the cells were treated with free FITC-BSA and
HA-PLA polymersomes loaded with FITC-BSA for 4h to
allow internalization. For fluorescent imaging, the cells were
fixed with ice-cold 4% PFA 2 times for 10 min each. After
fixation, cells were washed with PBS, the chambers were
removed, and one drop of Vectashield Antifade Mounting
Medium with DAPI was added to stain the nucleus. The
slides were then sealed with a cover slip and dried overnight
at 4°C. Fluorescence imaging was carried out with an ECHO
Revolve microscope. For flow cytometry, after treating the cells
with polymersomes, cells were harvested using trypsin and
growth media, and the resultant cell pellet was resuspended in
PBS for immediate flow cytometry.

5.2.9 Immunofluorescence analysis of
autophagic behavior in cells treated with pgal-
loaded polymersomes

GMISV3 cells were passaged into chamber slides at a seeding
density of 5 x 10* cells per well and incubated in growth media
overnight, followed by in normal growth media with 2 pl of
CellLight Lysosome-GFP per well for 16 h. Then the cells were
treated with either free Pgal for 6h or Pgal-loaded HA-PLA
polymersomes at a dose of 0.35 mg/cm” for 6, 12, or 24 h. After
the polymersome treatment, the immunofluorescence labeling with
anti-LC3B and image analysis were carried out, as mentioned above.

5.2.10 Statistical analysis

Statistical analysis between NSV3 co-localization and co-
localization in GM1SV3 before and after treatment with free
Bgal or Bgal-loaded polymersomes was completed by using a
two-tailed student’s t-test with samples of unequal variance
(p < 0.05, p < 0.025). Statistical analysis between the release of
FITC-D with hyaluronidase and citrate phosphate buffer,
between hyaluronidase and Pgal was completed by using a
student’s t-test with samples of unequal variance (p < 0.05 and
p < 0.01).
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