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Net motion induced by nonantiperiodic vibratory or electrophoretic excitations
with zero time average
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It is well established that application of an oscillatory excitation with zero time-average but temporal
asymmetry can yield net drift. To date this temporal symmetry breaking and net drift has been explored primarily
in the context of point particles, nonlinear optics, and quantum systems. Here, we present two new experimental
systems where the impact of temporally asymmetric force excitations can be readily observed with mechanical
motion of macroscopic objects: (1) solid centimeter-scale objects placed on a uniform flat surface made to
vibrate laterally, and (2) charged colloidal particles in water placed between parallel electrodes with an applied
oscillatory electric potential. In both cases, net motion is observed both experimentally and numerically with
nonantiperiodic, two-mode, sinusoids where the frequency modes are the ratio of odd and even numbers (e.g.,
2 Hz and 3 Hz). The observed direction of motion is always the same for the same applied waveform, and
is readily reversed by changing the sign of the applied waveform, for example, by swapping which electrode
is powered and grounded. We extend these results to other nonlinear mechanical systems, and we discuss the
implications for facile control of object motion using tunable periodic driving forces.
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I. INTRODUCTION

The well known “ratchet” effect requires a periodic forcing
in a nonlinear system with some sort of broken symmetry
[1,2]. For example, a sinusoidal driving force in a medium
with spatial asymmetry in the resistance to motion yields net
drift in the direction of less resistance. Ratchets may also
be induced by a variety of different “temporal asymmetries,”
where symmetry is broken in the periodic excitation rather
than the physical medium [3–6]. As discussed in detail by
Denisov et al. [6], periodic excitations that are not “shift-
symmetric” (also known as “antiperiodic”) can induce net
drift. Prior work has considered and experimentally corrob-
orated this type of “temporally induced” ratchet in the context
of point particles [3,4,7,8], as well as optical [9–14] and quan-
tum [15,16] lattice systems. Although the theory predicts that
temporally asymmetric force excitations will also cause net
motion of macroscopic objects, to date, experimental evidence
for this claim is scarce. The goal of this article is to introduce
two new experimental systems where temporal ratchets are
easily induced with macroscopic and easily visualized objects.
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II. THEORY

To provide context, we begin by presenting a streamlined
derivation of the requirements for a temporal asymmetry in
the context of mechanical motion (consistent with prior re-
sults, e.g., Ref. [6]). Consider an object subject to a generic
periodic force excitation f (t ) with period 2τ and a resistance
to motion of the form G(v), where v is the object velocity. By
Newton’s second law, the equation of motion is

m
dv

dt
= f (t ) − G(v). (1)

We restrict focus to excitations with zero time average,

〈 f 〉 = 1

2τ

∫ 2τ

0
f (t )dt = 0. (2)

Furthermore, we are interested in situations where the resis-
tance to motion does not favor one direction over another,
so necessarily G(v) is an odd function of v. This restriction
excludes the wide variety of ratchet-like problems where net
motion is induced simply because motion occurs more easily
in one direction versus another [1].

In a spatially symmetric odd-G(v) system, let v be the
unique solution to Eq. (1) with initial condition v(0) = 0. In
this circumstance, −v(t ) is the solution to the reverse polariza-
tion excitation − f : the functional ψ , where v(t ) = ψ ( f , t ), is
odd in f .
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To make further progress, we must next specify something
about f (t ). In particular, note that some periodic functions
are also antiperiodic, which is the term used to describe any
periodic function with period 2τ that, for all t , obeys the
relationship

f (t + τ ) = − f (t ). (3)

That is, the second half of an antiperiodic waveform is equal
to the negative of the first half [18]. All single-mode sinusoids
are antiperiodic, but multimodal sinusoids can be antiperiodic
or nonantiperiodic depending on the frequency modes. A sub-
tle but important feature of nonantiperiodic functions is that
f (t ) and the reverse polarity function − f (t ) are intrinsically
different in the sense that no choice of time lag maps one onto
the other.

If a driving force satisfies the antiperiodic condition
Eq. (3), there is an important consequence for the force bal-
ance Eq. (1). Specifically, because the functional ψ ( f , t ) is
odd, if f (t ) is antiperiodic, we have

v(t + τ ) = ψ ( f , t + τ ) = ψ (− f , t ) = −v(t ), (4)

so v(t ) is also antiperiodic. In the long-time limit, when the
influence of initial conditions is negligible, a time lag does
not alter the time-average solution:

〈v(t )〉 = −〈v(t )〉, (5)

which can only be satisfied if 〈v(t )〉 = 0. Therefore, antiperi-
odic driving forces yield zero net motion if the resistance to
motion G(v) is odd. More detailed arguments giving rise to
the same conclusion are presented in Ref. [6].

As a demonstrative example, a two-mode excitation of
the form f (t ) = 1

2 [sin(t ) + sin(αt )], which has period 2τ =
2π/gcd(1, α), is antiperiodic if

sin(t + τ ) + sin[α(t + τ )] = − sin(t ) − sin(αt ), (6)

which requires τ = (2 j + 1)π and ατ = (2k + 1)π for inte-
ger j and k, and

α = 2k + 1

2 j + 1
. (7)

Two-mode excitations are antiperiodic provided that the mode
ratio α can be expressed as the ratio of two odd numbers.

What happens if the force excitation has zero time-average
but is nonantiperiodic? The preceding proof showed that
antiperiodic force excitations necessarily yield zero time-
average velocities, but it leaves open the possibility that
nonantiperiodic excitations might yield nonzero net velocities.
Clearly, whether a nonzero time-average occurs in that situa-
tion will also depend sensitively on the nature of G(v); for
example, if G(v) is a linear function of v, it is straightforward
to show that 〈v〉 must be zero even for nonantiperiodic func-
tions, provided 〈 f 〉 = 0. If G(v) is a nonlinear odd function,
however, there is no a priori reason why 〈v〉 must be zero
for nonantiperiodic excitations. We now present experimental
evidence demonstrating that nonantiperiodic force excitations
indeed can yield net motion of macroscopic objects.

III. VIBRATORY SOLID-SOLID FRICTION

We first consider a solid-solid friction system where an
object is placed on a vibrating surface (Fig. 1). An object
(here a red plastic cylinder) is placed in a glass test tube
attached perpendicularly to a standard dynamic speaker of
the kind typically found in television sets. A two-mode dig-
ital sound wave is fed to the speaker, generating a periodic
back and forth movement of the speaker diaphragm, which,
in turn, induces a two-mode lateral vibration of the test tube
with displacement f (t ) = �

2 [sin(ωt ) + sin(αωt )], where � is
the oscillation amplitude, and the ratio of frequency modes
α is a rational number. Importantly, the tube providing the
frictional driving force remains stationary on average, i.e., the
excitation f clearly has zero time average, 〈 f 〉 = 0. Despite
the zero time-average vibration, however, the experimental
observations indicate that the system behavior depends sensi-
tively on α. The time lapse photos in Fig. 1 and Supplemental
Material Video 1 [17] show that for a unimodal frequency of
50 Hz (α = 1), the plastic cylinder remains stationary. Like-
wise, for a two-mode waveform with 50 and 150 Hz (α = 3),
the cylinder also remains stationary. In contrast, application
of a waveform with 50 and 100 Hz (α = 2) immediately
causes the cylinder to displace rightward at 〈v〉 = 7 mm/s. A
waveform with 50 and 75 Hz (α = 3/2) caused the cylinder
to displace leftward at 〈v〉 = −6.5 mm/s. Tests for several
different values of α [Fig. 1(b)] showed that net drift of varied
magnitude was observed when α was even or a ratio that
included an even number (e.g., α = 3

2 , 4
3 , 5

4 , or 2), but that only
oscillatory motion with no net displacement was observed if
α was an odd number or a ratio of two odd numbers (e.g.,
α = 1, 5

3 , 49
25 , 3). Notably, in each case reversing the polar-

ity of the applied waveform (accomplished by switching the
leads to the speaker) induced motion in the opposite direction
but with equivalent speed. One such reverse polarity trial
is shown in [Fig. 1(b)], denoted as α = 2rp; note that the
average velocity is equal and opposite to that induced by the
original polarity.

To rule out the possibility that there was something unusual
about the plastic cylinder, we repeated the experiment with
a variety of different solid objects, including pebbles, metal
washers, and coffee beans. In each case we observe no net
drift for two-mode waveforms with frequency modes that can
be expressed as the ratio of odd numbers, and controllable
motion to the left or right for waveforms with frequency
modes that include an even number, the direction of which
was always swapped upon reversing the polarity. To mitigate
any possible influence of confined sound waves (the human
eye cannot follow the vibratory motion but the speaker emits
an audible hum, cf. Supplemental Material Video 1 [17]),
we replaced the enclosed glass test tube with a flat metal
plate. Again, similar behavior was observed on the flat plate,
suggesting it is indeed the frictional interaction between the
object and the vibrating surface that induces motion.

We emphasize that, unlike the classical Feynman–
Smoluchowski ratchet [1], the solid-solid friction system
shown in Fig. 1 has no spatial asymmetry. Instead, the phe-
nomenon appears to stem solely from a time-symmetry break
in the excitation. Furthermore, the observed net motion is
deterministic; the direction of motion remains the same for
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FIG. 1. Experimental evidence for deterministic ratchets in the solid-solid friction problem. (a) top panel: Schematic diagram of the system;
an object is placed in a test tube that is glued to the diaphragm of a speaker. A two-mode sound wave is fed to the speaker with base
frequency ω/2π = 50 Hz (see Appendix for further details). (a) bottom panel: Time lapse photos of the object dynamics for α = 1, 2, and
3
2 , corresponding to applied frequency modes of 50 Hz, 50 and 100 Hz, and 50 and 75 Hz, respectively. (b) Object location versus time for
different α values. Representative error bars are two standard deviations of the mean of at least three trial replicates. Also see Supplemental
Material Video 1 [17].

different trials. There is a rich literature on nonlinear oscil-
lations and frictional interactions with vibrating systems; see
for example the text by Nayfeh and Mook [19]. Although this
prior work does not describe net motion of the sort presented
in Fig. 1, it does provide a theoretical framework to develop
a model for the behavior. We assume that the object and sub-
strate interaction can be described in terms of the two standard
coefficients of friction used with Coulomb’s law of friction:
the coefficient of static friction μs when the object and sub-
strate do not move relative to each other, and the coefficient of
kinetic friction μk when the object slides along the substrate at
a different velocity. Typically these coefficients are not equal,
and they depend sensitively on the composition of the two
surfaces. We neglect drag force in the air and assume the
only lateral force acting on the object is the frictional force of
the substrate moving below it with position described by the
imposed periodic displacement waveform f (t ). In this case,
the dimensionless equations of motion for the object are

v̇ =
{
f̈ if v = ḟ and | f̈ | < λs

−λksgn(v − ḟ ) otherwise.
(8)

Here, sgn denotes the sign function; the length and time
dimensions are scaled by � (vibration amplitude) and 1/ω (in-
verse base angular frequency); we define λs = μsg/�ω2 and
λk = μkg/�ω2 as the dimensionless static and kinetic friction
coefficients, respectively, and the dimensionless two-mode
vibration is f (t ) = 1

2 [sin(t ) + sin(αt )]. Essentially, whenever
the substrate accelerates sufficiently slowly, the object is sim-
ply carried along at the same velocity, but if the substrate
accelerates too quickly, the object cannot keep up and slides
along at a smaller velocity. According to Eq. (8), the system
behavior is governed by the three dimensionless parameters

α, λs, and λk . The behavior is independent of mass because
both the inertial term and the frictional force are linearly
proportional to the object mass (see Appendix for additional
details).

Note that the model is nonlinear by virtue of the sgn
function since there is a discontinuity in the direction of
the imposed force (so it is not Lipschitz-continuous), but it
is readily solved by numerical methods (see Appendix for
details). Here we focus on the impact of α. During a single
time period for α = 1 (a unimodal vibration), we see that even
after the direction of the substrate switches from positive to
negative (solid blue curve, Fig. 2(b), α = 1, near t/2τ = 0.1),
the object continues to drift in the positive direction as it de-
celerates until finally switching directions (dashed blue curve,
α = 1, near t/2τ = 0.25). The object keeps accelerating in
the negative direction, until the magnitude of the substrate
velocity falls below the magnitude of the object velocity (in-
tersection of solid and dashed blue lines near t/2τ = 0.5),
at which point the substrate begins accelerating the object in
the opposite direction. Similar behavior is observed for the
two-mode waveform with α = 2, albeit with different periods
of acceleration and deceleration [red curves, α = 2, Fig. 2(b)].
For a more complicated waveform with α = 5

4 [Fig. 2(c)],
there are periods where the frictional force does not exceed
the static friction, so the object just moves in tandem with the
substrate (approximately near 0.4 < t/2τ < 0.6).

Inspection of the corresponding object positions versus
time shows that the model indeed yields net drift for certain
waveforms [Fig. 2(d)]. After a brief transient period, the time-
average velocity for α = 1 is zero (dark blue curve, α = 1).
Similarly, for the waveform α = 5

3 , after the transient stage,
the object ends up in a different position, but its average
velocity is again zero (purple curve, α = 5

3 ). In contrast, for
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f(t)= 1
2
[sin(t)+sin(αt)]

x
v

ḟ

FIG. 2. Dynamic response of an object placed atop a solid surface (solid-solid friction) to a two-mode displacement excitation of the surface
f (t ) = 1

2 [sin(t ) + sin(αt )] (dimensionless form). (a) Schematic diagram of the problem. (b), (c) Representative solutions to the harmonic
object and surface velocities (v and ḟ , respectively) versus time, for different α values. (d) Object location, x, versus time for different α

values. The case αrp denotes the response due to the reverse polarization excitation f (t ) = − 1
2 [sin(t ) + sin(αt )]. (e) Absolute value of the

harmonic time-average object velocity, |〈v〉|, versus α. Here, time is scaled by the inverse angular frequency 1/ω, and the dimensionless period
is 2τ = 2π/gcd(1, α), where gcd(1, α) denotes the greatest common divisor of 1 and α. The solution is considered “harmonic” if it is invariant
between different periodic intervals. Dimensionless parameters: λs = 0.5, λk = 0.25.

α = 2, the object displaces quickly in the negative direction,
while applying the reverse polarity of the same waveform
causes the object to displace quickly in the positive direction
(red curves, α = 2). Qualitatively, this behavior is strikingly
similar to the experimental observations in Fig. 1. System-
atic computational investigation of a wide variety of different
values of α indicates that qualitative differences in the di-
rection and magnitude of the motion occur with seemingly
small differences in α [Fig. 2(e)]. There is no clear pattern
to the distribution of positive and negative velocities, but one
trend is clear: whenever the frequency modes are the ratio of
odd numbers, the average velocity is zero (i.e., in the limit
of numerical noise). In contrast, values of α that include an
even number typically (but not always) induce a nonzero
velocity. Furthermore, we stress that the results in Fig. 2(e)
are representative. The direction of motion for a constant α

(i.e., retaining the same spatial structure of the waveform)
can be reversed by changing the frequency and amplitude of
the excitation. This is a reminiscent of the observed current
reversals in rocking ratchets [20,21].

IV. NON-NEWTONIAN AND NON-HOOKEAN SYSTEMS

A key implication of the general argument is that nonan-
tiperiodic driving forces can induce net motion for any system
governed by the generic Eq. (1), not just the solid-solid fric-
tional system explored in Figs. 1 and 2. To test this idea, we
developed numerical models for several different nonlinear
dynamical systems. First, we replace the solid-solid friction
with the drag of a non-Newtonian fluid film [Fig. 3(a)]. Here,
the source of nonlinearity is the nonlinear shear stress from
the fluid, rather than the solid-solid friction. The system is
spatially symmetric, nonlinear, and its solution [the object
velocity, v(t )] changes sign upon changing the polarity of

the excitation, and hence, has all the requirements needed for
temporally induced ratchets. Indeed, our representative nu-
merical results [Fig. 3(d)] show that, similar to the solid-solid
frictional problem, the object stays stationary on average for
antiperiodic vibrations (α = 1), but drifts for nonantiperiodic
ones (α = 4

3 , 3
2 , and 2). Another example is an isolated sphere

subjected to a two-mode periodic force excitation and a non-
linear drag G(v) [Fig. 3(b)]. (A familiar practical example is a
colloid translating through a non-Newtonian fluid in response
to a two-mode force.) Note that, again, we are interested in
nonlinear drag terms that do not favor a direction over another
[i.e., G(v) is odd in v]. We used a variety of odd nonlinear
drags such as G(v) = v3, sgn(v), |v|v, sinh (v) and observed
the same qualitative behavior; as demonstrated in Fig. 3(e), the
system behaves like a ratchet under nonantiperiodic forces,
and induces a net drift of the object (see α = 4

3 , 3
2 , and 2).

Our modeling indicates that temporally induced ratchets
also occur with spring forces, provided the spring force is
non-Hookean [Fig. 3(c)]. Here a pair of asymmetric masses
are connected by a nonlinear spring, and placed atop an ex-
cited surface coated with a Newtonian fluid film (linear shear).
Similar to the system in Fig. 3(b), we tested various odd
nonlinear spring forces. Shown here is a spring force model
that imposes two “solid walls” at displacements 	x = 1 and
	x = −1, which ensure that the spring does not elongate to
more than double of its resting value nor compress to negative
values. Figure 3(f) shows the scaled time-average distance
between the two masses for different α values. We note that
for antiperiodic vibrations [blue crosses in Fig. 3(f)] the time-
average of 	x = x+ − x− is zero. This result indicates that
the average distance between the two masses remains equal
to the resting value. However, 〈	x〉 can be nonzero otherwise
[red circles in Fig. 3(f)]. Depending on α, the masses stay far-
ther apart (〈	x〉 > 0) or closer (〈	x〉 < 0) than their resting
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displacement f(t) force F0f(t) displacement f(t)

FIG. 3. Existence of deterministic ratchet-like behavior in various nonlinear dynamical systems. Each vertical figure panel corresponds
to one problem. (a)–(c) Schematic diagrams of various nonlinear dynamical systems under a two-mode excitation f (t ) = 1

2 [sin(t ) + sin(αt )],
with their dimensionless governing equations. (a) An object subject to the drag of a non-Newtonian liquid film on an excited surface. (b) An
object subject to a force excitation and a nonlinear drag G(v) = v3. (c) A pair of asymmetric objects connected by a nonlinear spring [G(	x) =
	x[(	x − 1)−2 + (	x + 1)−2] ], and subject to the drag of a Newtonian liquid film on an excited surface. (d), (e) Time evolution (numerically
evaluated) of the object location (x versus t) for different α. (f) Time-average dimensionless distance between the two masses for different α.
Dimensionless parameters: (a), (d) λ = 0.5, n = 1.5. (b), (e) F0 = 1, γ = 1. (c), (f) λ+ = 10, λ− = 0.1, γ = 0.1, ε = 0.1.

condition. We emphasize that here, unlike the previous exam-
ples, the masses do not drift. It is instead the time-average
separation between the two masses (not their velocity) that
exhibits a ratchet-like behavior.

It is worth mentioning that our solid-solid friction system
(Figs. 1 and 2) and the systems described in Figs. 3(a) and
3(b) are all overdamped. In a dynamical system, oscillations
occur due to conversion of energy between different forms
(e.g., between kinetic and potential energy). It is a well know
fact that a system with a one-dimensional phase space (one
type of energy) cannot oscillate [22]. In mathematical terms,
oscillations are impossible in systems with a governing equa-
tions which are reducible to a first-order differential equation.
The mass spring problem illustrated in Fig. 3(c) is, however,
more complicated. The spring can store energy and hence, the
system can be either overdamped or underdamped, depending
on the system parameters.

V. COLLOIDAL ELECTROPHORESIS

As a final test, we investigated the electrophoretic motion
of colloidal particles in response to time-varying electric po-
tentials. Micron-scale colloids in water are well known to
move back and forth electrophoretically in response to ap-
plication of an AC electric field. The resulting velocity of
the colloids, however, is strongly coupled with the response
of the dissociated electrolytes present in the water to the
time-varying field [23]. The motion of the colloids cannot be
reduced to Eq. (1). Nonetheless, our numerical and experi-
mental results indicate that application of a nonantiperiodic
electric potential does give rise to a temporally induced ratchet
(Fig. 4).

Here we consider the classical electrokinetic problem of
a 1-1 binary electrolyte confined between two planar, par-

allel, electrodes at x = ±�. A two-mode potential φ(t ) =
1
2φ0[sin(ωt ) + sin(αωt )] [or −φ(t ) for the reverse polariza-
tion] is applied on the electrode at x = −�, and the electrode at
x = � is grounded. In continuum theory, the system behavior
is governed by the Poisson-Nernst-Planck model, a notori-
ously nonlinear and coupled system of equations [23]. The
nonlinearity of the problem stems from the electromigration
of ions due to the time varying, multimodal, electric field
present within the liquid. Recent work focused on the single-
mode potentials (α = 1) established that oscillatory electric
potentials induce a nonzero time-average electric field within
the electrolyte, 〈E〉, referred to as asymmetric rectified electric
field (AREF) [24–26], provided the ions present have unequal
mobilities. The single-mode AREF is antisymmetric in space,
and is identically zero at the midplane [α = 1, solid blue curve
in Fig. 4(a)], meaning the steady field is independent of which
electrode is powered or grounded. In contrast, when α = 2, a
nonantisymmetric 〈E〉 is induced, with a nonzero electric field
at the midplane. Here, swapping the powered and grounded
electrodes does alter the system; notably, the sign or direction
of 〈E〉 at the midplane changes [α = 2 and 2rp in Fig. 4(a)].

Our experimental observations accord with the numerical
results. We evaluated the action of the induced 〈E〉 on a cluster
of randomly dispersed colloids in the electrolyte [Figs. 4(b)
and 4(c)]. As demonstrated in Fig. 4(b) and Supplemental
Material Video 2 [17], the colloids are equally attracted to
either electrode for α = 1. When α = 2, however, we observe
a significant asymmetry in the movement of the colloids (see
also Supplemental Material Video 3 [17]). For the representa-
tive conditions studied here, Fig. 4(b), and the corresponding
histogram of the equilibrium distribution in Fig. 4(c), clearly
show that the colloids moved preferentially towards the right
electrode (the grounded one). Swapping the powered and the
grounded electrodes reversed the drift direction [cf. α = 2rp
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FIG. 4. Deterministic ratchets in the induced steady electric field between two parallel electrodes, placed at ±�, and under a two-mode
potential excitation φ(t ) = 1

2 φ0[sin(ωt ) + sin(αωt )]. (a) Numerical solution: spatial distribution of the dimensionless time-average electric
field, 〈Ẽ〉 = 2�〈E〉/φ0, at the micron scale, for α = 1, 2, and 2rp. The case αrp denotes the response due to the reverse polarization
excitation (the powered and grounded electrodes are swapped). Parameters: φ0 = 10φT , ω/2π = 50 Hz, 2� = 30 μm, 1 mM NaOH solution.
(b), (c) Experimental evidence: electrophoresis of charged colloidal particles due to asymmetric rectified electric field (AREF). (b) Cluster of
the colloids at t = 0 (no field) and t = 2 min (equilibrium conditions) for α = 1, 2, and 2rp. The black arrows show the drift direction of the
colloids. (c) The corresponding histograms of the percent particle count after t = 2 min. Parameters: φ0 = 4 V, ω/2π = 2 Hz, 2� = 270 μm,
0.01 mM NaOH solution, 2 μm sulfonated polystyrene particles. Also see Supplemental Material Videos 2–4 for α = 1, 2, and 2rp, respectively
[17].

in Figs. 4(b) and 4(c), and Supplemental Material Video 4
[17] ]. (Please see Appendix for details of the electrokinetic
experiments.)

VI. CONCLUSIONS

To summarize, the preceding theoretical, experimental, and
numerical results all strongly indicate that nonantiperiodic,
zero-time-average, driving forces can induce net motion in
isotropic media. Several questions, however, remain unan-
swered. Perhaps the most obvious question is in which
direction will the object move? Clearly, net motion is induced,
but at present we have not identified analytical or heuristic
criteria to relate the nature of the imposed nonantiperi-
odic waveform to nonlinearities in the equation of motion.
Vidybida and Serikov [27] present a theory for small and
Lipschitz-continuous restorative forces G(v) [e.g., Fig. 3(b)],
and for α = 2 specifically, which is not applicable for our
frictional system. Ultimately, the direction of motion must
be controlled by a subtle interplay between the waveform
and the nonlinear terms in the equation of motion. For the
electrokinetic system, the coupled nonlinear equations with
multiple length and timescales tremendously complicate the
interpretation. More importantly, the model does not explicitly
reduce to the generalized force-resistance problem given by
Eq. (1). But, even for the vibratory frictional system with a
much simpler equation of motion, it is unclear why the object
drifts to the left versus the right. Furthermore, it is unclear
as to what determines the magnitude of the response for dif-
ferent nonantiperiodic waveforms. Our results for a variety of
problems suggest that α = 2 induces the strongest temporal
ratchet (e.g., highest drift velocity). Meanwhile, some nonan-
tiperiodic waveforms tend to induce a near-zero response

[cf. Figure 2(e)]. Why some waveforms yield strong motion,
while others do not, remains unclear. Additionally, we have
not considered the existence of so-called “hidden” symmetries
in our systems. In particular, overdamped dynamical systems
exhibit symmetries that are unidentifiable by standard sym-
metry analyses [28].

Although we focused here on two-mode sinusoids, the
theory is not limited to the two-mode excitations. Our results
suggest any zero-time-average and nonantiperiodic excita-
tion (e.g., sawtooth waves, pulse waves, triangle waves) can
yield temporally induced ratchets. Likewise, other types of
periodic driving forces (magnetic, hydrodynamic, acoustic)
might give rise to net motion if they are nonantiperiodic.
The results presented here serve as a framework to consider
temporally induced ratchets in these more complicated
systems.
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APPENDIX

1. Numerical solutions

The following loop solves the solid-solid friction problem
(Fig. 2). Initially, v = ḟ , and then

(i) v = ḟ as long as | f̈ | < λs.
(ii) Once | f̈ | > λs, sliding starts: v̇ = −λksgn(v − ḟ ), un-

til v = ḟ again.
(iii) Go to step (i).
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The time t is updated in each step as well. Whenever t in-
creases by 2τ is considered a cycle of the solution. We repeat
the cycles until a harmonic solution is achieved. Let vk (t ) with
t ∈ [2(k − 1)τ, 2kτ ] denote the solution in the kth cycle. The
solution is considered harmonic if ‖vk − vk−1‖ < ε, where ε

is a tolerance. We also check |〈vk〉 − 〈vk−1〉| < ε.
The toy problems in Fig. 3 are solved by the Runge-Kutta

fourth-order method. The same criteria is used for the har-
monic solution check. Details of the numerical solution to the
nonlinear electrokinetic problem [Fig. 4(a)], and the corre-
sponding consistency checks are provided elsewhere [24,25].

2. Solid-solid friction model

Here we derive the solid-solid friction model given by
Eq. (8). Consider an object of mass m, and velocity v, on top

of a flat plate of mass M and velocity V [cf. Fig. 2(a)]. A
horizontal force F is applied on the plate.

The coupling frictional force Fc (on the object) is due to
static and kinetic friction between the object and the plate
(μs and μk are the corresponding friction coefficients). Equa-
tions of motion for the two masses are

mv̇ = Fc, (A1)

MV̇ = F − Fc. (A2)

The coupling force can be determined for when v = V and
v̇ = V̇ (i.e., the object and the plate are moving in tandem)
as Fc = mF/(m + M ). Note that this velocity matching con-
dition is maintained if v = V initially and |Fc| < μsFN . Here
FN = mg is the normal force. Otherwise, the object starts slid-
ing (or keeps sliding) with Fc = −μkFNsgn(v −V ). Hence,
one can write the Newton’s second law for the object as

mv̇ =
{

mF
m+M if v = V and

∣∣ mF
m+M

∣∣ < μsFN (velocity matched)

−μkFNsgn(v −V ) otherwise (sliding).
(A3)

Now let M � m and F = M f̈ , with f as the lateral displacement of the surface, to obtain

v̇ =
{
f̈ if v = ḟ and | f̈ | < μsg (velocity matched)

−μkgsgn(v − ḟ ) otherwise (sliding),
(A4)

which is the dimensional form of Eq. (8).

3. Solid-solid friction experiments

An object (a wire splice connector) is placed in a glass
test tube of length 15 cm and outer diameter 18 mm (IWAKI
TE-32 PYREX), that is glued to the diaphragm of a used tele-
vision speaker (R = 8 
). A two-mode sound wave, created
by MATLAB, enters a generic class D amplifier. The ampli-
fied current is then fed to the speaker as an excitation. The
sound actuator behaves linearly, i.e., its movement is linearly
proportional to the passing current. Harmonic oscillations of
the diaphragm translate to a one-dimensional displacement
excitation of the tube. Note that the tube geometry restricts
the object to move in one dimension. A digital camera is used
to record the object dynamics at 60 frames per second. Note
that the passing current, and consequently, the displacement
amplitude, are kept sufficiently low to ensure a linear behavior
of the sound actuator. As a result, the movement of the tube
itself is not easily discernible.

4. Electrokinetic experiments

The experimental setup consists of a microchannel con-
structed using two flat sheets of polydimethylsiloxane
(PDMS), that were separated by two 16-μm-thick 304
stainless-steel plates spaced 270 μm apart. In Fig. 4(b), the
electrodes (stainless-steel plates) are 270 μm apart, the depth
of the cell is 16 μm (through the page), and the point of
view is through the PDMS sheet. The channel had a total

length of 15 mm. Two polyethylene tubes of 0.58 mm inner
diameter were inserted into the top PDMS layer to introduce
and remove the fluid. Copper tape was used to connect the
stainless-steel sheets to the powered and grounded wires. The
device was then sealed using epoxy around the edges and fixed
in place over a glass substrate using clamps.

A 0.01 mM NaOH solution (conductivity, σ = 2 μS/cm)
was prepared using DI water (18.2 M
 cm), and 2-μm-
diameter fluorescent sulfonated polystyrene particles were
added at a volume fraction of 1×10−4 to the solution. The
colloidal suspension was washed three times by centrifuga-
tion and resuspension and then injected into the microchannel
using a syringe pump (PHD 2000, Harvard apparatus). Once
the flow inside the microchannel was stable and the parti-
cle density appeared uniform, a function generator (Agilent
33220A) was used to apply a sum modulated field of 4 Vpp

(volts peak to peak) at 2 Hz and 4 Vpp at 4 Hz. A digital camera
mounted on an optical microscope (Leica DM2500 M) was
used to record the particle behavior at 15 frames per second.
After two minutes, the field was removed and the channel was
then flushed for a minute. The powered electrode was changed
by physically exchanging the wire leads on the device, upon
which the same field was then applied. For the unimodal case
(α = 1), an 8 Vpp at 2 Hz field was applied using the same
procedure. Furthermore, when α = 1, swapping the powered
and grounded electrodes had no significant impact on the
system behavior.
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