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Abstract—This paper studies the adaptive optimal control
problem for a class of linear time-delay systems described by
delay differential equations (DDEs). A crucial strategy is to
take advantage of recent developments in reinforcement learning
(RL) and adaptive dynamic programming (ADP) and develop
novel methods to learn adaptive optimal controllers from finite
samples of input and state data. In this paper, the data-driven
policy iteration (PI) is proposed to solve the infinite-dimensional
algebraic Riccati equation (ARE) iteratively in the absence of
exact model knowledge. Interestingly, the proposed recursive
PI algorithm is new in the present context of continuous-time
time-delay systems, even when the model knowledge is assumed
known. The efficacy of the proposed learning-based control
methods is validated by means of practical applications arising
from metal cutting and autonomous driving.

Index Terms—Adaptive dynamic programming, optimal con-
trol, linear time-delay systems, policy iteration.

I. INTRODUCTION

Time-delay systems are ubiquitous in many branches of
science and engineering; see the books [1]-[3] for many
references and examples. Recently, many theoretical results
are developed for time-delay systems, such as input-to-state
stability [4], robust H., control [5], and stability analysis of
systems with time-varying delay [6], [7]. Examples of time-
delay systems are in transportation [8], [9], biological motor
control [10], and multi-agent systems [11], [12]. It is thus
not surprising that the optimal control problem of time-delay
systems has been a fundamentally important, yet challenging,
research topic in control theory for several decades. For
instance, Eller et al. [13] and Ross et al. [14], [15] pro-
posed solutions to the finite-horizon and infinite-horizon linear
quadratic (LQ) optimal control problems of linear time-delay
systems, respectively. In these papers, the certain infinite-
dimensional Riccati equations have to be solved. For this
problem, many numerical algorithms have been developed
[16]-[18]. However, an accurate model of the system is
required for these algorithms, and in reality, it is difficult to
derive an exact model due to the complexity of the system
and inevitable system uncertainties. Therefore, developing a
model-free optimal control approach for time-delay systems
is a timely research topic of both theoretical importance and
practical relevance. Recent progresses and successes in RL
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provide an opportunity to advance the state of the art in the
area of adaptive optimal control of time-delay systems.

RL is an important branch of machine learning and is aimed
at maximizing (or minimizing) the cumulative reward (or cost)
through agent-environment interactions. Traditional RL has
some fundamental limitations. For example, it often assumes
that the environment is depicted by Markov decision processes
or discrete-time systems with finite state-action space. Often,
the stability aspect of the learned controller by RL is not guar-
anteed. For many systems described by differential equations,
such as autonomous vehicles and quadrupedal robots, the state
and action spaces are infinite and the stability of the controller
generated by an RL algorithm is innegligible. Therefore, for
these safety-critical engineering systems, conventional RL is
not directly applicable to learning stable optimal controllers
from data, which has motivated the development of ADP
[19], [20]. In contrast with conventional RL, the purpose of
continuous-time ADP is addressing decision-making problems
for dynamical systems described by differential equations, of
which both the state and action spaces are continuous. It is
theoretically shown that at each iteration of ADP, a stable sub-
optimal controller with improved performance is obtained. Be-
sides, the sequence of these sub-optimal controllers converges
to the optimal one [19].

Recently, ADP techniques are developed for various impor-
tant classes of linear/nonlinear/periodic dynamical systems and
for optimal stabilization, tracking and output regulation prob-
lems [19], [21]-[25]. However, a systematic ADP approach to
adaptive optimal control of continuous-time time-delay sys-
tems is lacking, due to the infinite-dimensional nature of these
systems. In [26], although the model-free data-driven control
for continuous-time time-delay systems is studied, discretiza-
tion and/or linearization techniques are applied to transfer the
time-delay system to a finite-dimensional delay-free system
with augmented states, which leads to an approximate model.
In [9], [27]-[32], ADP for discrete-time systems with time
delays is studied. Due to the finite dimensionality of discrete-
time systems with time delays, these proposed ADP methods
are not applicable to continuous time-delay systems. In [33],
[34], ADP technique is applied for both linear and nonlinear
systems with time delays, but the resulting controller cannot
achieve optimality [33, Remark 9.1]. Technically, there are
several obstacles in the generalization of ADP to time-delay
systems. Firstly, for an infinite-dimensional system, optimality
properties are hard to analyze, because the corresponding ARE
are complex partial differential equations (PDEs). Secondly,
stability analysis and controller design for a time-delay system
are much more challenging than finite-dimensional systems.
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Therefore, the model-free optimal control for a continuous-
time time-delay system remains an open problem.

In this paper, in the absence of the precise knowledge
of system dynamics, a novel data-driven PI approach for
continuous-time linear time-delay systems is proposed based
on ADP. The contributions of this paper are as follows. Firstly,
inspired by Kleinman’s model-based PI algorithm for delay-
free linear systems [35], a new model-based PI algorithm is
proposed for a class of linear time-delay systems. Given an
initial admissible controller, both the stability of the updated
sub-optimal controller and the convergence of the algorithm to
the (unknown) optimal controller are proved theoretically. It is
worth pointing out that due to the infinite dimensionality, both
the value function and the control law are functional of the
system’s state, which in consequence increases the difficulty to
design the PI algorithm. Secondly, based on the model-based
PI, this paper contributes a data-driven PI approach to adaptive
optimal controller design using only the data measured along
the trajectories of the system.

The rest of this paper is organized as follows. Section II
introduces the class of linear time-delay systems and formu-
lates the adaptive optimal control problem to be addressed in
the paper. Section III proposes a model-based PI approach to
iteratively solve the LQ optimal control problem for linear
time-delay systems. In Section IV, a data-driven PI approach
is proposed, and the convergence property of the algorithm
is analyzed. Section V illustrates the proposed data-driven PI
approach by means of two practical examples. Finally, some
concluding remarks are drawn in Section VI.

Notations: In this paper, R (Ry) denotes the set of
(nonnegative) real numbers and N, denotes the set of
positive integers. | - | denotes the Euclidean norm of a
vector or Frobenius norm of a matrix. ||-|| , denotes the
supremum norm of a function. C°(X,Y) denotes the
class of continuous functions from the linear space X to
the linear space Y. AC ([-7,0],R™) denotes the class of
absolutely continuous functions. %() denotes the function
which is the derivative of the function f. @& denotes the
direct sum. L;([—7,0],R™) denotes the space of measurable
functions for which the ¢th power of the Euclidean norm
is Lebesgue integrable, My = R™ @ Lo([—7,0],R™), and
D = Lj("_)} €My feAC, 9 () € Ly, and f(0) :r}
(-,-) denotes the inner product in M, ie.
(z1,22) = 110 + [ £ (0) f2(0)d0, where z; = [ri, fi(-)] T
for ¢ = 1,2. £(X) and L(X,Y) denote the class of
continuous bounded linear operators from X to X and
from X to Y, respectively. ® denotes the Kronecker
product. vec(A) = [af,a],--- ,aﬂT, where A € R™*"
and a; is the idth column of A. For a symmetric
matrix P € R™7" with the entry p;;, vecs(P) =

[P117 21712, e 72p1nup227 219237 e 72p(n—1)napnn]—r,

vecu(P) = 2[pi2,  PinsD23s s Pn_1yn] |+ and
diag(P) = [pi1,p22,-- ;Pnn) . For two arbitrary
vectors v,u € R™, veed(v,pu) = [vipi1, s Unpin] |,
veev(v) = [V vive, e Un, V3 Un oV, V2T,
veep(v, i) = [Vif2, s Vifin, Vap3, o Vne1fin) - [alij

denotes the sub-vector of the vector a comprised of the

entries between the ith and jth entries. A’ denotes the
Moore-Penrose inverse of matrix A.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation

Consider a linear time-delay system
z(t) = Ax(t) + Agz(t — 7) + Bu(t), (1)

where 7 € R, denotes the constant delay of the system
and is assumed to be known, z(t) € R™, and u(t) € R™.
A, Ay € R™™ and B € R™ ™ are unknown constant
matrices. Let x:(0) = (¢t + 0),v0 € [—7,0], denote a
segment of the state trajectory in the interval [t — 7, t¢]. Due
to the infinite dimensionality of system (1), the state of
the system is 2(t) = [z (t),z] (:)]T € Ma. Define the
linear operators A € L(Ms) and B € L(R™, M) as

Az(t) = Az(?) E?wt(_ﬂ and Bu(t) = {B%(t)] Then,
according to [36, ”ﬁleorem 2.4.6], (1) is rewritten as
2(t) = Az(t) + Bu(t), 2)

with the domain of A given by D. Let 29 = [z (0),z4 (-)] " €
D denote the initial state of the system (2). The quadratic
performance index is defined as

J(wo,u) = / T 2T Qu(t) +u(t) Ru(t)dt,  (3)

where Q = Q" >0and R=R" > 0.

Definition 1 : A control policy u.(xy) is admissible for system
(1) with respect to (3), if system (1) with u.(x;) is globally
asymptotically stable (GAS) at the origin [37, Definition 1.1],
and the performance index (3) is finite for all zy € D.

Assumption 1. System (1) with output y(t) = Qzz(t) is
exponentially stabilizable and detectable, which are defined in
[36, Definition 5.2.1] and checked by [36, Theorem 5.2.12].

Remark 1. Assumption [ is a standard prerequisite for LQ
optimal control of system (1) to ensure the existence of a
unique stabilizing solution [36], [38].

Given the aforementioned assumption, the problem to be
studied in this paper can be formulated as follows.

Problem 1. Given an initial admissible controller uy(x;) =
—Koa1z(t) — fST K1.1(0)x(0)d0, and without knowing the
dynamics of system (1), design a Pl-based ADP algorithm to
approximate the optimal controller in (4) using only the input-
state data measured along the trajectories of the system.

B. Optimality and Stability

For a linear system without time delay, i.e. A3 = 0 in
(1), one can find the optimal solution by solving the ARE
as discovered by Kalman [39]. Correspondingly, for system
(1), the optimal solution is stated as follows.

Lemma 1 ( [14], [40]). For system (1) with Assumption I,

0
uw*(z:) = — RT'BT P§ z(t) f/ R'BTP{(0) z:()d0 (4)

Kg K1(0)

Authorized licensed use limited to: New York University. Downloaded on August 22,2023 at 02:39:54 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3273786

MANUSCRIPT

is the optimal controller minimizing (3), and the corresponding
minimal value functional is
0
V*(xo) =z (0)Piz(0) + 22" (0) / Py (0)x0(0)d6
o &)

* /_OT /_OT w9 (§)P5 (€, 0)x0(0)dédd,

where Py = P;T, Pi(0), and P;T(0,€) = Py(&,0) for
0, € T—T, 0] are the unique stabilizing solution to the
following PDEs
A'P; + PiA—P;BR'BT Py + P (0)+ Py (0) +Q =0,
(“29(9) — (AT — B BR'BT)P{(6) + P5(0,0),
P35 (€,0) + 00P5 (£,0) = P T (BR™'B' P{(0),
P{(=7)=PiAa,  P5(-7,0)=As P{(6). ©)

By [36, Theorem 6.2.7], the time-delay system (1) in closed-
loop with u* is exponentially stable at the origin.

III. MODEL-BASED POLICY ITERATION

According to Lemma 1, the optimal controller is obtained
by solving (6) . Since (6) is nonlinear with respect to Py, Py
and P73, it is difficult to solve it directly. In this section, a
model-based PI algorithm is proposed to simplify the process
of solving (6).

Given an admissible controller uq(x;) = —Koq1z(t) —
fET K1.1(0)x(0)d0, the model-based PI algorithm for system

(1) is proposed as follows.

1) Policy Evaluation: For i € N, and £,0 € [—7,0],
calculate Py; = Py, P1;(0), and P, ,(0,€) = P».:(&,0) by
solving the following PDEs, 7

Al Poi+ PoiAi + Qi + P1i(0) + P ;(0) =0,

dP; ; (0
39( ) _ Al Py i(0) — PoiBK1,:(0) + K ;RK1,i(0) + P2,:(0,0),
DeP2,i(6,0) + o P2,i(€,0) = K ;(RK1:(0) = 2K, () B Pro(0),

Pyi(—7) = Po,iAq,

where A; = (A — BKOJ‘) and Q; = Q + KS:iRKO,i'
2) Policy Improvement: Update the policy u; 41 by

Py i(—7,0) = Aj P1(0), @)

0
u¢+1(xt) = 7RilBTP0,i m(t) 7/ RilBTPLi(G) It(e)de. ®)
S—— — T N—r—
Koit1 Ki,i4+1(0)

The policy evaluation step calculates the value functional

Vi(xo) for the controller u;, which is expressed as
0

Pri(0)x0(0)do

- )

0 0
i [T [T zg (&) Pai(€, 0)x0(6)dédo.

By policy improvement, the value functional is monotonically
decreasing (V;11(zo) < Vi(z¢)), and converges to the optimal
value functional V*(x(). Correspondingly, Py ;, P ;(6) and
P, ;(&,0) converge to the optimal solutions g, P;(#) and
Py (&,0), respectively. The convergence of the model-based
PI algorithm is rigorously demonstrated in Theorem 1. Before
stating Theorem 1, we first introduce Lemma 2 which is
instrumental for the proof of Theorem 1. By Lemma 2, for

Vi(zo) =z " (0)Pyx(0) + 22" (0)

a linear controller wup, if J(zo,uy) is finite, the closed-loop
system consisting of (1) and wy is globally exponentially
stable.

Lemma 2. Consider system (1) with Assumption 1. If a linear
controller ur,(xy) = —Kz(t) satisfies J(xo,ur) < oo for any
20 € D, where K € L(Maq,R™), then the closed-loop system
with uy, is globally exponentially stable at the origin.

Proof. The details of the proof are in [41, Lemma 2]. O

Theorem 1. Given an admissible control uy(xz), for Py,
Py i(0), Ps,i(£,0), and w;y1(x,) obtained by solving (7) and
(8), and for all v € N, the following properties hold

1) wiy1(xy) is admissible;

2) V*(x0) < Vig1(wo) < Vi(xo);

3) Vi(zo) and u;(x¢) converge to V* (o) and w*(xy).
Proof. Along the trajectories of (1) driven by wu, where u
without subscript stands for an arbitrary input, V;(x;) is

VZ(:rt) = —mTQw — u?Rui + Zu;:_lRui — 2uTRu¢+1. (10)

The detailed derivation of (10) is in [41, Equation (10)]

Property 1) is proved by induction. When 7 = 1, the
admissibility of wi(x;) is given. For ¢ > 1, assume that u;
is admissible. When system (1) is driven by u;, by (10), the
expression of V;(xy) is

Vi(z) = —2"Qx — uzTRuZ

(1)

Following the fact that u; is admissible and integrating (11)
from 0 to oo, we have

Vi(zo) = /OOO " (H)Qux(t) + v (t)Ruy(t)dt

= J(xg,u;) < 00. (12)
By (10), along the trajectories of (1) driven by ;4 1,
Vl(a:t) =—2'Qu— uLlRuiH
. (13)
— (ui—i-l — ul) R(ui+1 — Uz)
Integrating both sides of (13) from 0 to oo yields
J(2o, uit1) = Vi(zo) — Vi(2e0) (14)

— / (’LLZ'+1 — ui)TR(’LLi+1 — ’Uq)dt < V;(l'o) < 00.
0

It follows from (14) and Lemma 2 that ;4 is a globally and

exponentially stabilizing controller. By Definition 1, wu;4; is

admissible. Via induction, u; is admissible for any 7 € N.
Along the trajectories of system (1) driven by u;11, by (10),

I7i+1(xt) = —2"Qx — uLlRuiH. (15)

Since u;41 is admissible, integrating (15) from 0 to oo yields

‘/1;+1(I0) = J(Io,ui+1). Hence, ‘/1'_;,_1(.’,80) S ‘/,(Io) is

obtained by (14). Furthermore, since V*(zg) = J(xo,u*) is

the minimal value functional by Lemma 1, for any i € N,

V*(x0) < Vi(zg). Therefore, the proof of 2) is completed.
Define P; € £(Ms), such that for any zg, P;2¢ is

Pox(0) + [° Pri(0)xo(0)d0

PR Pai(0)20(6)d6 + P, ()2(0)

(16)
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It is easy to check that P; is symmetric [42, Chapter 6], and
non-negative [42, Definition 6.3.1], and V;(x0) = (20, P;z0).
Furthermore, according to statement 2), for any 7 € N, P* <
P, < P;. According to [42, Theorem 6.3.2], there exists
P, = P;,'— > 0, such that for all zg € My, we have

‘lim PiZO = PpZ().
11— 00

a7

Therefore, Py,, Pi;(6) and P»;(&,0) pointwisely converge
to Py p, P1p(0), and Py (€, 0), respectively. When P; con-
verges, Py ., P1,,(0) and Ps (&, 0) satisfy (7) with 4 replaced
by p. Ky ; and K ; converge to K, and K ;. By the policy
improvement step (8), Ko, and K , satisfy

Ko, =R 'BTPy,, K1 ,(0) = R"'BT P ,(0). (18)

Substituting (18) into (7) with ¢ replaced by p, it is seen
that Py ,, P1,(0) and P ,(§,0) solve the PDEs (6). Due
to the uniqueness of the solution to (6), Py, Pi,:(6) and
P, ;(&,0) pointwisely converge to Pj, P;(#) and P5(§,6).
Since both P; ;(#) and P, ;(,6) are continuously differen-
tiable, {P1;(0) : « € Ny} and {P»;(¢,0) : i € Ny} are
equicontinuous, which leads to the uniform convergence by
[43, Chapter 4, Theorem 16]. Hence, 3) is proved. O

Notice that although (7) is linear with respect to Py ;, P i,
and P, ;, since (7) are PDEs, obtaining the analytical solution
to (7) is still non-trivial. Besides, the accurate knowledge of
the system matrices A, Ay, and B is required to implement the
model-based PI, and in practice due to the complex structure
of the system, it is often hard to derive such an accurate model.
Therefore, in the next section, a data-driven PI algorithm is
proposed to approximate the optimal solution.

Remark 2. When A; = 0, (1) is degraded to the normal
delay-free systems. According to (7) and (8), we can see
that PLZ(G) =0, PQyi(g,g) = 0, and Kl,l(g) = 0. As a
consequence, (7) and (8) are the same as the model-based
PI method in [35]. Therefore, the proposed model-based PI
algorithm is a generalization of celebrated Kleinman’s PI to
linear time-delay systems.

Remark 3. In [18], the model-based PI is developed for
infinite-dimensional linear systems in the Hilbert space. Al-
though system (1) is one of the infinite-dimensional systems,
the concrete expression of PI for linear time-delay systems is
not given in [18], and as a consequence, the PI developed
in [18] cannot be directly applied to solve the PDEs (6). In
this paper, the concrete expression of PI is constructed in (7)
and (8), which is one of the major contributions in this paper.
Besides, it can be checked that at each iteration, P; defined in
(16) satisfies the PI update equations in [18], which is another
way to prove the validity of the proposed PI theoretically.

Remark 4. As shown in [I8], the convergence rate of PI
algorithm in the Hilbert space is quadratic, and therefore,
the proposed model-based PI for system (1) has the same
quadratic convergence rate.

IV. DATA-DRIVEN POLICY ITERATION

The purpose of this section is to propose a corresponding
data-driven PI algorithm that does not require the accurate

knowledge of system (1) to solve Problem 1. The input-state
trajectories of system (1) is required for the data-driven PIL.
In other words, the continuous-time trajectories of x(t) and
u(t) sampled from system (1) within the interval [t1,¢7,41] is
applied to train the control policy. From the RL perspective,
u is named behaviour/exploratory policy.

Define v;(t) = u(t) — u;(x¢), where u;(x;) is the value of
the control policy u,; calculated along the sampled trajectory.
By (10), along the trajectories of system (1) driven by the
behaviour/exploratory policy w,

Vi(z:) = -2 Qx — u; Ru; — 2u; 4 Ru;. (19)

Let [tg, txr1] denote the kth segment of the sampling interval
[t1,tr+1]. Integrating both sides of (19) from ¢, to ¢4 yields

trt1
Vi(mtkH) —Vi(ze,) = / —.%‘TQ.T — uiTRui — 2uiT+1Rvidt.
th
' (20)

Plugging the expressions of u;4; in (8) and V; in (9) into (20)
yields

{xT(t)Po,ix(t) 42T (1) /_ Prs(0)z0(0)d0

tht1

+f OT / OT i~ (f)Pz,xs,e)xt(e)déde}

t=ty,

tho1 0
2 [T (T ORT e+ [ el ORTa0)0) Ruar
tr —T

tr41
_ / 2(6)T Qu(t) + ui(t) T Rus(t)dt. 1)
t
As seen in (7) and (8), K1,(0) and Py ;(0) (P2,:(€,0)) are
continuous functions defined over the set [—7,0] ([—7,0]?).
Next, we use the linear combinations of basis functions to
approximate these continuous functions, such that only the
weighting matrices of the basis functions should be determined
for the function approximation. Let ®(6), A(&,0), and ¥(¢&,0)
denote the N-dimensional vectors of linearly independent
basis functions. To simplify the notation, we choose the same
number of basis functions for ®, A and V. According to the
approximation theory [44], the following equations hold

vecs(Po,;) = Wo.i, vec(Py(0)) = Wﬁ@(@) + eg’i(ﬁ),
diag(Pyi(£,0)) = Wy U(E,0) + ey ,(£,0),
vecu(Pyi(£,0)) = WiGA(E,0) + en (€, 0),
vee(Ko,;) = Uy, vec(K1,:(0)) = U@ (0) + eX ;(0),

(22)

where Wo,; € R™, ny not) Wil e RVXN,
W2]Yz c Ran’ W?fvz c anxN, ny = n(n2—1),

Upi € R™, and UlN’Z- € R®»*N are weighting ma-
trices of the basis functions. ey ,(0) € C°([-, 0], R™),
eg,i(g’ 9) € CO([_T> O]Qan)’ ef\v,i(gv 9) € CO([_T’ 0]27Rn2)’
and ey ;(0) € C°([—7,0],R™") are approximation truncation
errors. Therefore, by the uniform approximation theory, as
N — o0, the truncation errors converge uniformly to zero, i.e.
for any 1 > 0, there exists N* € N, such that if N > N*,

leg:@llee<n  llex i (O)e< .

led (&0 o< n  llex(&,0)]s< n. (23)
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Therefore, the key idea of the data-driven Pl is that W ; (j=
0,---,3) and U, ;(j = 0,1) are directly approximated by the
data collected from system (1). Define T as the composite
vector of the weighting matrices, i.e.

TN = [Wol,vec (WIN’Z-)NecT(WQN’i),Vf:cT(W:;]Yi)
T (24)
Uo,i+17V6CT(U1N,i+1)]
Let TV be the approximation of T2, and then, the approxi-
mations of P;;(j =0,1,2) can be reconstructed by

Po,i = Vec_l([Y'jLV]LnJ, leyz = Vec_l([’i\ﬁv]n1+1,n3)v

Wzﬁ = Vecil([fﬁv]ng+1,n4)a WJJ\,IZ = Vecil([YZN]mﬁrl,ns)a

Pri(0) = vec™ (W1,@(0)), diag(P2,i(¢,0)) = Way (&, 0),

veeu(Pyi(€,6)) = WaiA(, 0), (25)
where ng = n; + n2N, ng = ng +nN, ns = ng + naN.
Furthermore, Ky ;41 and Kj ;+1(60), the approximations of
Ko,i+1 and K ;41(0) respectively, can be reconstructed by
1([Yﬁv}n6+1m7)’

(26)

([T Jns+1im6), Un,igr = vee
K1,i41(0) = vec ' (U1,i419(9)),

> —1
K01i+1 = vec

where ng = ns+nm, and ny = ng+nmN. As a consequence,
U;(x), the approximation of w;(z;), can be expressed as
() = —Koa(t) — [0 K1:(0)z:(6)ds.

Based on the approximations in (22), we will transfer (21)
to a linear equation with respect to Y. Then, the unknown
vector YV will be approximated by linear regression, and
consequently, P;;(j = 0,1,2) and K, 1(j = 1 2) can be
approx1mated by (25) and (26) In detail, let v; = uw — 4,
u; = u; — u;. Define the data-constructed matrices

Paa(t) = / T 0) @0 (0) 2T ()0,
t) :/_ /_ U (€,0) @ veed ' (24(€), z:(0))dEd,

F\I’zz(

0 0
Faze(t) = [ [ AT(&,0) @ veep (z:(€), z(0))dEd0, 27)

oo = / T () @ 07 () © R)dt

e 0
Gowo, o = / / o ()@
T -7

With the help of (22) and (27), each term in (21) is
expressed linearly with respect to the weighting matrices

z (t)Po,iz(t) = veev | (z(t))Wo,s,

T t) /j) Pl,z(e)mt(a)dé? = Fq>m(t)vec(W1,i) + 61,1'(1')7

zy (0) ® 0, (t))(I, ® R))dédt.

/ i / o (€)Pas(€,0)a(0)dEdD = T (B)vec(Way)
+ Daza(t)vec(Ws i) + €2,i(t) + €3,:(¢),

Bt T 0
z (t) Ko ir1 Rvi(t)dt = Guo, 1 Uoiv1 + pi g,
ty

(28)

to4+1
/ / CE;I—(Q)KIZJrl(H)RUz(t)det = quf,i,kvec(Ul,iH)
+ Pk + Pk

where €1 ;(t) €2,(t), €3,(t), and ;) are induced by the
approximation truncation errors in (23), and p?} . and p}’ 5 are

induced by u; (their expressions are in [41, Equation (38)]).
With the collected input-state trajectories, define

My = [veev T (@(O)]f, a1, Taaa (D117

FA:cz( ) fet _2Gw6i,k7 _2G<I>$1}i,k )

th41
Yip = _/ ¢ Qx + 4, Ruydt,

t
Eir = [2e1,4(t) + €2,i(t) + 631(15)]?;2 — 21, — 2p7), (29)
=20, ), = Pi ks
M; = [MJD... ,MiTk,... 7MZTL]T’
Vo= [Yia, oo Yigoooo Yirl
E;=[E,-Eip,  Eir]
where p?, = fti’““ @] R(t; + u;)dt.

By (285 and the definitions of M; j, Y; ;. and E; j in (29),
(21) is finally transferred to a linear equation

Mip XY + Eij = Yig. (30)
Combining (30) from k£ =1 to k = L yields
MYY + B =Y. (31
Let E; be the linear regression error defined as
E; =Y, — M;TN. (32)

Assumption 2. Given N € Ny, there exist L* € N and
o > 0, such that for all L > L* and i € N,

1
ZMITMi > al.

Remark 5. Assumption 2 is reminiscent of the persistent
excitation (PE) condition [45], [46]. It is needed to guarantee
the uniqueness of the least-square solution to (31), and prove
the convergence of the proposed data-driven PI algorithm. As
in the literature of ADP-based data-driven control [19], [20],
one can fulfill it by means of added exploration noise, such as
sinusoidal signals and random noise.

(33)

Under Assumptlon 2, the method of least squares is applied
to minimize E EZ, i.e. ETE is minimized by

Y = My, (34)

With the result of TV in (34), Pj;(j =0---2) and K;;(j =
0,1) can be reconstructed by (25) and (26) respectively.

The proposed algorithm is shown in Algorithm 1. From
(29), M; and Y; are constructed by the input-state trajec-
tory data of system (1). Hence, the system matrices are not
involved in the computation of TN Furthermore, since the
behaviour/exploratory policy w is different from the updated
policy w;, Algorithm 1 is called off-policy.

Remark 6. Due to the property that PQ—':i(f, 0) = Py ;(0,¢),
the diagonal elements of Ps; satisfy diag(Ps;(§,0)) =
diag(P5,;(0,€)). Hence, the vector of basis functions U should
satisfy U(E,0) = V(0,€) to approximate such functions.

Remark 7. In practice, the integrals in (27) are calculated by
Riemann sum, like midpoint, trapezoid, and Simpson’s rules.
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Lemma 3. Under Assumption 2, and given an admissible
controller uy(zy) = —Kox(t) — fET Kq1(0)x(0)d0, for
each i € Ny and any 1 > 0, there exists a positive integer
N* >0, such that if N > N7,

|Po,i — Poil<m, ||Pri — Prilloo< m, [P — Palloo<

|f(0,i+1 — Ko< 1, ||f(1,i+1 — K1 i41lee< 7. (35)

Proof. Define the approximation error as TN = TN — TN,
Subtracting (32) from (31) yields

E; = M;TN + E,. (36)

Since EAIT E; is minimized by the method of least squares,
1 1

L L

Furthermore, combining (36) and (37), we have

1~ - 1 . R 4

ETﬁvTMiTMinV = (B - E) (B — E;) < ZEIEZ. (38)
Therefore, via Assumption 2, the following inequality holds

ElE, < ~E'E;. (37)

T 4 4

TN < BB < < max Bl (39)
Then, the lemma is proved by induction. When ¢ = 1,
Gy = wug, so @y = 0, and pY, = pj, = pi, = 0.

Furthermore, since € ;(t) €2 (%), €3,:(¢), and v; , are induced
by the approximation truncation errors in (22), they converge
to zero as N — oo. Therefore, by the expression of F; ; in
(29), for any 1 < k < L, E; j, converges to zero as N — o0.
Consequently, by (39), for ¢ = 1,

lim YNTTYN =o0. (40)
N—o00

As a result, the estimation of the weighting matrices in (22)

converge to the true values as N — oco. By the boundedness

of the functions ®(0), U (&, 0), A(&, 6) on the compact interval

0,¢ € [—7,0] and the uniform convergence of the approxima-

tion truncation errors in (23), (35) holds for ¢ = 1.

Suppose (35) holds for some ¢ — 1 > 1. Then, from the
second line of (35), it is seen that u; converges to zero as
N — oo. Since p?k le,k’ and pik are induced by ,;, they
converge to zero as N — oo. Furthermore, since €1 ;(t) €2 ;(t),
€3(t), and v, ;, are induced by the approximation truncation
errors in (22), they converge to zero as N — oo. Consequently,
by the expression of I, in (29), for any 1 < k < L, E;
converges to zero as N — oo. Therefore, by (39), (40) holds
for 7. Following the logic of the content below (40), we obtain
that (35) holds for . The proof is completed by induction. [

Theorem 2. Given an admissible controller uq, for any n > 0,
there exist integers i* > 0 and N** > 0, such that if N > N**

|Po,ix — P3I< 0, | Pris — Pillsc< m, || Payie — P5 [loo< m,
|Ko,ix 11 — Kg|< 0, [[K1 i1 — K{[lo< 7. 41)

Proof. The theorem is proven by Theorem 1, Lemma 3, and
triangle inequality. See [41, Theorem 2] for details. O

By Theorem 2, we see that Kj,i+1(j = 0,1) obtained by
Algorithm 1 converges to K7 (j = 0,1) as the iteration step
of the algorithm and the number of basis functions tend to
infinity. Hence, the proposed data-driven PI solves Problem 1.

Algorithm 1 Data-driven Policy Iteration

1: Choose the vectors of the basis functions ®, ¥, and A.

2: Choose t1, tr,11, and ty € [t1,tr41]-

3: Choose input u = u; + e, with e an exploration signal, to
explore system (1) and collect the data of wu(t),z(t),t €
[t1,tr+1]. Set the threshold 6 > 0 and 7 = 1.

4: repeat

5: Calculate @;(t) = u;(z;) along the trajectory of x.

6: Construct M; and Y; by (29).

7: while Assumption 2 is not satisfied

8 Collect more data and insert it into M; and Y.

9: end while

10: Get 'ffv by solving (34).

11: Get Koiy1 and K1 ;41 by (26).

12: aiJrl(xt) = —K()’H,ll'(t) — f_o_r IA(MH(H)xt(G)dG

13: 1 1+1

14: until [TV — TN |< 6.

15: Use ;(x) as the control input.

V. PRACTICAL APPLICATIONS

The proposed data-driven PI algorithm is demonstrated by
two practical examples, with regards to regenerative chatter
in metal cutting (RCMC) and connected and autonomous
vehicles (CAVs) in mixed traffic consisting of autonomous
vehicles (AVs) and human-driven vehicles (HDVs).

A. Regenerative Chatter in Metal Cutting

Consider the example of metal cutting [37, Example 1.1],
[47]. The thrust force is proportional to the instantaneous
chip thickness ([z(¢)]y — [z(t — 7)]1), leading to the time-
delay effect. The model is described by (1) with A € R2*2,
Ay € R?*2 and B € R?*! expressed in [41, Section V-A],
and 7 = 1.3s. The initial admissible controller is @1 (x;) =
—Ko2(t), with Ko 1 = [1.74, 3.92]. The exploration noise
is e(t) = 20 2?21 sinw;t, where w; is randomly sampled
from an independent uniform distribution over [—10,10].
Q = diag([100,100]) and R = 1. 6 = 10~3. For the basis
functions, ®(0) = [1,0,0%,03]7, V(£,0) = [1,€ + 0,62 +
927697£3+937§29+€92’€39+§03’529275392+§29375393]T’
and A(&,0) = [1,0,0%,0%)T @[1,¢,€2,¢3 7.

As shown in Fig. 1, the weights of the basis functions T
converge after the eighth iteration. In order to inspect the evo-
lution of the performance index, we compare the controllers
updated at each iteration for the same initial state x. In Fig. 1,
it is seen that the performance index decreases. The responses
of the state with the initial controller and the learned ADP
controller are compared in Fig. 2. The performance indices
are J(.’E(),ﬁl) = 5.89 x 104 and J(l’(),’&g) =3.03 x 104

Semi-discretization [48] is applied to discretize (1) into a
delay-free system with sampling period At = 0.1s. Then,
Algorithm 1 is compared with the model-based discrete-time
linear quadratic regulator (DLQR) and the discrete-time ADP
algorithm in [9] (with the same length of trajectory data). For
the same initial state, the performance indices are shown in
Table I. The performance index is minimal under Algorithm 1,
showing that discretization sacrifices the system performance.
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Fig. 1: Evolution of T and J with respect to iterations.
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- - =Initial Controller: xy
ADP Controller: x;

——ADP Controller:

10 15 20 25 30
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Fig. 2: Compare the initial and ADP controllers for RCMC.

Ideally, the performance of the discrete-time ADP is similar as
the model-based DLQR. The large deviation between them is
induced by the fact that the PE condition for the discrete-
time ADP is not satisfied. This further illustrates that by
semi-discretization, the dramatically increased dimension of
the augmented state (26-dimensional) makes the requirements
on the sampled data more demanding.

The robustness of Algorithm | to measurement noise is
evaluated. The measurement of x(t) is disturbed by an inde-
pendent Gaussian noise ¢(t) ~ N(0,0.2). The result is shown
in Fig. 3. Using the noisy data, for the same initial state ¢, the
performance index converges to J = 3.35 x 10*. Comparing
Fig. 3 with the second figure in Fig. 1, we see that Algorithm
1 can still find a near-optimal solution in the presence of noise.

B. CAVs in Mixed Traffic

Consider the platoon in Fig. 4, where the human reaction
time results in the time delay. The system can be described as
system (1) with A, A; € R*** and B € R**! depicted in [41,
Section V-B], and 7 = 1.2s. The weighting matrices of the
performance index are @ = diag([1,1,10,10]), and R = 1.
The initial admissible controller is @y (x¢) = — Ko 12(t), with
Ky1 = [-0.09, —0.28, —0.30, 0.52]. The exploration noise
is set as e(t) = 22001 sinw;t, where w; is sampled from an
independent uniform distribution over [—100, 100]. The basis
functions are the same as in the previous example. § = 1073,
The analytical expressions of the optimal values K and K|
are derived by [8], where the precise model is assumed known.

The convergence of K o and K 1,; are shown in Fig. 5. At the
last iteration of PI, W = 0.0008 and % =
0.0137. Therefore, the proposed data-driven PI algorlthm
well approximates the optimal controller. The performance
comparisons of the initial controller and the ADP controller
are shown in Fig. 6. Since x; and x- are the states of HDV2,
which cannot be influenced by the controller for the AV, they
are not plotted in the figure. For the performance indices,

, x10*

5 10 15 20
Iteration

Fig. 3: Evolution of the performance index using noisy data.

e T

CAV 3 /“% HDV 2 /LT( HDV 1

Fig. 4: A platoon of two HDVs and an AV.

J(x0,71) = 1.46 x 10° and J (o, @10) = 4.73 x 10%. Hence,
the proposed algorithm minimizes the performance index.

VI. CONCLUSIONS

This paper has proposed for the first time a novel data-
driven PI algorithm for a class of linear time-delay systems
described by DDEs. The first major contribution of this paper
is to generalize the well-known Kleinman algorithm [35] — a
model-based PI algorithm — from linear time-invariant systems
to linear time-delay systems. The second major contribution of
this paper is that we have combined the proposed model-based
PI algorithm and RL techniques to develop a data-driven PI
algorithm for solving the direct adaptive optimal control prob-
lem for linear time-delay systems with unknown dynamics.
The efficacy of the proposed learning-based adaptive optimal
control design methods has been validated by two real-world
applications arising from metal cutting and connected vehicles.
Our future work will be directed at extending the proposed
learning-based control methodology to other practically impor-
tant classes of time-delay systems such as nonlinear systems
and multi-agent systems.

REFERENCES

[1] V. Kolmanovskii and A. Myshkis, Introduction to the Theory and
Applications of Functional Differential Equations. New York, NY:
Kluwer Academic Publishers, 1999.

[2] J. K. Hale and S. M. V. Lunel, Introduction to functional differential
equations. New York, NY: Springer-Verlag, 1993.

[3] L Karafyllis and Z. P. Jiang, Stability and Stabilization of Nonlinear
Systems. London, UK: Springer-Verlag, 2011.

[4] P. Pepe and Z. P. Jiang, “A Lyapunov—Krasovskii methodology for ISS
and iISS of time-delay systems,” Syst Control Lett, vol. 55, no. 12,
pp- 1006-1014, 2006.

[5] L. Xie, E. Fridman, and U. Shaked, “Robust H, control of distributed
delay systems with application to combustion control,” IEEE Trans.
Autom. Control, vol. 46, no. 12, pp. 1930-1935, 2001.

[6] Y. He, Q.-G. Wang, L. Xie, and C. Lin, “Further improvement of
free-weighting matrices technique for systems with time-varying delay,”
IEEE Trans. Autom. Control, vol. 52, no. 2, pp. 293-299, 2007.

[71 H. Gao and T. Chen, “New results on stability of discrete-time systems
with time-varying state delay,” IEEE Trans. Autom. Control, vol. 52,
no. 2, pp. 328-334, 2007.

[8] J. I. Ge and G. Orosz, “Optimal control of connected vehicle systems
with communication delay and driver reaction time,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 8, pp. 2056-2070, 2017.

Authorized licensed use limited to: New York University. Downloaded on August 22,2023 at 02:39:54 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3273786

MANUSCRIPT 8
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