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Abstract—This paper studies the adaptive optimal control
problem for a class of linear time-delay systems described by
delay differential equations (DDEs). A crucial strategy is to
take advantage of recent developments in reinforcement learning
(RL) and adaptive dynamic programming (ADP) and develop
novel methods to learn adaptive optimal controllers from finite
samples of input and state data. In this paper, the data-driven
policy iteration (PI) is proposed to solve the infinite-dimensional
algebraic Riccati equation (ARE) iteratively in the absence of
exact model knowledge. Interestingly, the proposed recursive
PI algorithm is new in the present context of continuous-time
time-delay systems, even when the model knowledge is assumed
known. The efficacy of the proposed learning-based control
methods is validated by means of practical applications arising
from metal cutting and autonomous driving.

Index Terms—Adaptive dynamic programming, optimal con-
trol, linear time-delay systems, policy iteration.

I. INTRODUCTION

Time-delay systems are ubiquitous in many branches of
science and engineering; see the books [1]–[3] for many
references and examples. Recently, many theoretical results
are developed for time-delay systems, such as input-to-state
stability [4], robust H∞ control [5], and stability analysis of
systems with time-varying delay [6], [7]. Examples of time-
delay systems are in transportation [8], [9], biological motor
control [10], and multi-agent systems [11], [12]. It is thus
not surprising that the optimal control problem of time-delay
systems has been a fundamentally important, yet challenging,
research topic in control theory for several decades. For
instance, Eller et al. [13] and Ross et al. [14], [15] pro-
posed solutions to the finite-horizon and infinite-horizon linear
quadratic (LQ) optimal control problems of linear time-delay
systems, respectively. In these papers, the certain infinite-
dimensional Riccati equations have to be solved. For this
problem, many numerical algorithms have been developed
[16]–[18]. However, an accurate model of the system is
required for these algorithms, and in reality, it is difficult to
derive an exact model due to the complexity of the system
and inevitable system uncertainties. Therefore, developing a
model-free optimal control approach for time-delay systems
is a timely research topic of both theoretical importance and
practical relevance. Recent progresses and successes in RL
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provide an opportunity to advance the state of the art in the
area of adaptive optimal control of time-delay systems.

RL is an important branch of machine learning and is aimed
at maximizing (or minimizing) the cumulative reward (or cost)
through agent-environment interactions. Traditional RL has
some fundamental limitations. For example, it often assumes
that the environment is depicted by Markov decision processes
or discrete-time systems with finite state-action space. Often,
the stability aspect of the learned controller by RL is not guar-
anteed. For many systems described by differential equations,
such as autonomous vehicles and quadrupedal robots, the state
and action spaces are infinite and the stability of the controller
generated by an RL algorithm is innegligible. Therefore, for
these safety-critical engineering systems, conventional RL is
not directly applicable to learning stable optimal controllers
from data, which has motivated the development of ADP
[19], [20]. In contrast with conventional RL, the purpose of
continuous-time ADP is addressing decision-making problems
for dynamical systems described by differential equations, of
which both the state and action spaces are continuous. It is
theoretically shown that at each iteration of ADP, a stable sub-
optimal controller with improved performance is obtained. Be-
sides, the sequence of these sub-optimal controllers converges
to the optimal one [19].

Recently, ADP techniques are developed for various impor-
tant classes of linear/nonlinear/periodic dynamical systems and
for optimal stabilization, tracking and output regulation prob-
lems [19], [21]–[25]. However, a systematic ADP approach to
adaptive optimal control of continuous-time time-delay sys-
tems is lacking, due to the infinite-dimensional nature of these
systems. In [26], although the model-free data-driven control
for continuous-time time-delay systems is studied, discretiza-
tion and/or linearization techniques are applied to transfer the
time-delay system to a finite-dimensional delay-free system
with augmented states, which leads to an approximate model.
In [9], [27]–[32], ADP for discrete-time systems with time
delays is studied. Due to the finite dimensionality of discrete-
time systems with time delays, these proposed ADP methods
are not applicable to continuous time-delay systems. In [33],
[34], ADP technique is applied for both linear and nonlinear
systems with time delays, but the resulting controller cannot
achieve optimality [33, Remark 9.1]. Technically, there are
several obstacles in the generalization of ADP to time-delay
systems. Firstly, for an infinite-dimensional system, optimality
properties are hard to analyze, because the corresponding ARE
are complex partial differential equations (PDEs). Secondly,
stability analysis and controller design for a time-delay system
are much more challenging than finite-dimensional systems.
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Therefore, the model-free optimal control for a continuous-

time time-delay system remains an open problem.

In this paper, in the absence of the precise knowledge

of system dynamics, a novel data-driven PI approach for

continuous-time linear time-delay systems is proposed based

on ADP. The contributions of this paper are as follows. Firstly,

inspired by Kleinman’s model-based PI algorithm for delay-

free linear systems [35], a new model-based PI algorithm is

proposed for a class of linear time-delay systems. Given an

initial admissible controller, both the stability of the updated

sub-optimal controller and the convergence of the algorithm to

the (unknown) optimal controller are proved theoretically. It is

worth pointing out that due to the infinite dimensionality, both

the value function and the control law are functional of the

system’s state, which in consequence increases the difficulty to

design the PI algorithm. Secondly, based on the model-based

PI, this paper contributes a data-driven PI approach to adaptive

optimal controller design using only the data measured along

the trajectories of the system.

The rest of this paper is organized as follows. Section II

introduces the class of linear time-delay systems and formu-

lates the adaptive optimal control problem to be addressed in

the paper. Section III proposes a model-based PI approach to

iteratively solve the LQ optimal control problem for linear

time-delay systems. In Section IV, a data-driven PI approach

is proposed, and the convergence property of the algorithm

is analyzed. Section V illustrates the proposed data-driven PI

approach by means of two practical examples. Finally, some

concluding remarks are drawn in Section VI.

Notations: In this paper, R (R+) denotes the set of

(nonnegative) real numbers and N+ denotes the set of

positive integers. | · | denotes the Euclidean norm of a

vector or Frobenius norm of a matrix. ‖·‖∞ denotes the

supremum norm of a function. C0 (X,Y ) denotes the

class of continuous functions from the linear space X to

the linear space Y . AC ([−τ, 0],Rn) denotes the class of

absolutely continuous functions. df
dθ (·) denotes the function

which is the derivative of the function f . ⊕ denotes the

direct sum. Li([−τ, 0],Rn) denotes the space of measurable

functions for which the ith power of the Euclidean norm

is Lebesgue integrable, M2 = R
n ⊕ L2([−τ, 0],Rn), and

D =

{[
r

f(·)
]
∈M2 : f ∈ AC, df

dθ (·) ∈ L2, and f(0) = r

}
.

〈·, ·〉 denotes the inner product in M2, i.e.

〈z1, z2〉 = r�1 r2 +
∫ 0

−τ
f�
1 (θ)f2(θ)dθ, where zi = [ri, fi(·)]�

for i = 1, 2. L(X) and L(X,Y ) denote the class of

continuous bounded linear operators from X to X and

from X to Y , respectively. ⊗ denotes the Kronecker

product. vec(A) =
[
a�1 , a

�
2 , · · · , a�n

]�
, where A ∈ R

n×n

and ai is the ith column of A. For a symmetric

matrix P ∈ R
n×n with the entry pij , vecs(P ) =

[p11, 2p12, · · · , 2p1n, p22, 2p23, · · · , 2p(n−1)n, pnn]
�,

vecu(P ) = 2[p12, · · · , p1n, p23, · · · , p(n−1)n]
�, and

diag(P ) = [p11, p22, · · · , pnn]�. For two arbitrary

vectors ν, μ ∈ R
n, vecd(ν, μ) = [ν1μ1, · · · , νnμn]

�,

vecv(ν) = [ν21 , ν1ν2, · · · , ν1νn, ν22 , · · · , νn−1νn, ν
2
n]

�,

vecp(ν, μ) = [ν1μ2, · · · , ν1μn, ν2μ3, ..., νn−1μn]
�. [a]i,j

denotes the sub-vector of the vector a comprised of the

entries between the ith and jth entries. A† denotes the

Moore-Penrose inverse of matrix A.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation
Consider a linear time-delay system

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t), (1)

where τ ∈ R+ denotes the constant delay of the system

and is assumed to be known, x(t) ∈ R
n, and u(t) ∈ R

m.

A, Ad ∈ R
n×n and B ∈ R

n×m are unknown constant

matrices. Let xt(θ) = x(t + θ), ∀θ ∈ [−τ, 0], denote a

segment of the state trajectory in the interval [t − τ, t]. Due

to the infinite dimensionality of system (1), the state of

the system is z(t) = [x�(t), x�
t (·)]� ∈ M2. Define the

linear operators A ∈ L(M2) and B ∈ L(Rm,M2) as

Az(t) =

[
Ax(t) +Adxt(−τ)

dxt

dθ (·)
]

and Bu(t) =

[
Bu(t)

0

]
. Then,

according to [36, Theorem 2.4.6], (1) is rewritten as

ż(t) = Az(t) +Bu(t), (2)

with the domain of A given by D. Let z0 = [x�(0), x�
0 (·)]� ∈

D denote the initial state of the system (2). The quadratic

performance index is defined as

J(x0, u) =

∫ ∞

0

x(t)�Qx(t) + u(t)�Ru(t)dt, (3)

where Q = Q� ≥ 0 and R = R� > 0.

Definition 1 : A control policy uc(xt) is admissible for system
(1) with respect to (3), if system (1) with uc(xt) is globally
asymptotically stable (GAS) at the origin [37, Definition 1.1],
and the performance index (3) is finite for all z0 ∈ D.

Assumption 1. System (1) with output y(t) = Q
1
2x(t) is

exponentially stabilizable and detectable, which are defined in
[36, Definition 5.2.1] and checked by [36, Theorem 5.2.12].

Remark 1. Assumption 1 is a standard prerequisite for LQ
optimal control of system (1) to ensure the existence of a
unique stabilizing solution [36], [38].

Given the aforementioned assumption, the problem to be

studied in this paper can be formulated as follows.

Problem 1. Given an initial admissible controller u1(xt) =

−K0,1x(t) −
∫ 0

−τ
K1,1(θ)xt(θ)dθ, and without knowing the

dynamics of system (1), design a PI-based ADP algorithm to
approximate the optimal controller in (4) using only the input-
state data measured along the trajectories of the system.

B. Optimality and Stability
For a linear system without time delay, i.e. Ad = 0 in

(1), one can find the optimal solution by solving the ARE

as discovered by Kalman [39]. Correspondingly, for system

(1), the optimal solution is stated as follows.

Lemma 1 ( [14], [40]). For system (1) with Assumption 1,

u∗(xt) = −R−1B�P ∗0︸ ︷︷ ︸
K∗

0

x(t)−
∫ 0

−τ

R−1B�P ∗1 (θ)︸ ︷︷ ︸
K∗

1 (θ)

xt(θ)dθ (4)
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is the optimal controller minimizing (3), and the corresponding
minimal value functional is

V ∗(x0) = x�(0)P ∗
0 x(0) + 2x�(0)

∫ 0

−τ

P ∗
1 (θ)x0(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x�
0 (ξ)P

∗
2 (ξ, θ)x0(θ)dξdθ,

(5)

where P ∗
0 = P ∗�

0 , P ∗
1 (θ), and P ∗�

2 (θ, ξ) = P ∗
2 (ξ, θ) for

θ, ξ ∈ [−τ, 0] are the unique stabilizing solution to the
following PDEs

A�P ∗0 + P ∗0 A− P ∗0 BR−1B�P ∗0 + P ∗1 (0) + P ∗�1 (0) +Q = 0,

dP ∗1 (θ)
dθ

= (A� − P ∗0 BR−1B�)P ∗1 (θ) + P ∗2 (0, θ),

∂ξP
∗
2 (ξ, θ) + ∂θP

∗
2 (ξ, θ) = −P ∗�1 (ξ)BR−1B�P ∗1 (θ),

P ∗1 (−τ) = P ∗0 Ad, P ∗2 (−τ, θ) = A�d P
∗
1 (θ). (6)

By [36, Theorem 6.2.7], the time-delay system (1) in closed-

loop with u∗ is exponentially stable at the origin.

III. MODEL-BASED POLICY ITERATION

According to Lemma 1, the optimal controller is obtained

by solving (6) . Since (6) is nonlinear with respect to P ∗
0 , P ∗

1

and P ∗
2 , it is difficult to solve it directly. In this section, a

model-based PI algorithm is proposed to simplify the process

of solving (6).

Given an admissible controller u1(xt) = −K0,1x(t) −∫ 0

−τ
K1,1(θ)xt(θ)dθ, the model-based PI algorithm for system

(1) is proposed as follows.
1) Policy Evaluation: For i ∈ N+, and ξ, θ ∈ [−τ, 0],

calculate P0,i = P�
0,i, P1,i(θ), and P�

2,i(θ, ξ) = P2,i(ξ, θ) by
solving the following PDEs,

A�i P0,i + P0,iAi +Qi + P1,i(0) + P�1,i(0) = 0,

dP1,i(θ)

dθ
= A�i P1,i(θ)− P0,iBK1,i(θ) +K�0,iRK1,i(θ) + P2,i(0, θ),

∂ξP2,i(ξ, θ) + ∂θP2,i(ξ, θ) = K�1,i(ξ)RK1,i(θ)− 2K�1,i(ξ)B
�P1,i(θ),

P1,i(−τ) = P0,iAd, P2,i(−τ, θ) = A�d P1,i(θ), (7)

where Ai = (A−BK0,i) and Qi = Q+K�
0,iRK0,i.

2) Policy Improvement: Update the policy ui+1 by

ui+1(xt) = −R−1B�P0,i︸ ︷︷ ︸
K0,i+1

x(t)−
∫ 0

−τ
R−1B�P1,i(θ)︸ ︷︷ ︸

K1,i+1(θ)

xt(θ)dθ. (8)

The policy evaluation step calculates the value functional

Vi(x0) for the controller ui, which is expressed as

Vi(x0) = x�(0)P0,ix(0) + 2x�(0)
∫ 0

−τ

P1,i(θ)x0(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x�
0 (ξ)P2,i(ξ, θ)x0(θ)dξdθ.

(9)

By policy improvement, the value functional is monotonically

decreasing (Vi+1(x0) ≤ Vi(x0)), and converges to the optimal

value functional V ∗(x0). Correspondingly, P0,i, P1,i(θ) and

P2,i(ξ, θ) converge to the optimal solutions P ∗
0 , P ∗

1 (θ) and

P ∗
2 (ξ, θ), respectively. The convergence of the model-based

PI algorithm is rigorously demonstrated in Theorem 1. Before

stating Theorem 1, we first introduce Lemma 2 which is

instrumental for the proof of Theorem 1. By Lemma 2, for

a linear controller uL, if J(x0, uL) is finite, the closed-loop

system consisting of (1) and uL is globally exponentially

stable.

Lemma 2. Consider system (1) with Assumption 1. If a linear
controller uL(xt) = −Kz(t) satisfies J(x0, uL) <∞ for any
z0 ∈ D, where K ∈ L(M2,R

m), then the closed-loop system
with uL is globally exponentially stable at the origin.

Proof. The details of the proof are in [41, Lemma 2].

Theorem 1. Given an admissible control u1(xt), for P0,i,
P1,i(θ), P2,i(ξ, θ), and ui+1(xt) obtained by solving (7) and
(8), and for all i ∈ N+, the following properties hold

1) ui+1(xt) is admissible;
2) V ∗(x0) ≤ Vi+1(x0) ≤ Vi(x0);
3) Vi(x0) and ui(xt) converge to V ∗(x0) and u∗(xt).

Proof. Along the trajectories of (1) driven by u, where u
without subscript stands for an arbitrary input, V̇i(xt) is

V̇i(xt) = −x�Qx− u�i Rui + 2u�i+1Rui − 2u�Rui+1. (10)

The detailed derivation of (10) is in [41, Equation (10)]

Property 1) is proved by induction. When i = 1, the

admissibility of u1(xt) is given. For i > 1, assume that ui

is admissible. When system (1) is driven by ui, by (10), the

expression of V̇i(xt) is

V̇i(xt) = −x�Qx− u�
i Rui. (11)

Following the fact that ui is admissible and integrating (11)

from 0 to ∞, we have

Vi(x0) =

∫ ∞

0

x�(t)Qx(t) + u�
i (t)Rui(t)dt

= J(x0, ui) <∞. (12)

By (10), along the trajectories of (1) driven by ui+1,

V̇i(xt) =− x�Qx− u�
i+1Rui+1

− (ui+1 − ui)
�R(ui+1 − ui).

(13)

Integrating both sides of (13) from 0 to ∞ yields

J(x0, ui+1) = Vi(x0)− Vi(x∞) (14)

−
∫ ∞

0

(ui+1 − ui)
�R(ui+1 − ui)dt ≤ Vi(x0) <∞.

It follows from (14) and Lemma 2 that ui+1 is a globally and

exponentially stabilizing controller. By Definition 1, ui+1 is

admissible. Via induction, ui is admissible for any i ∈ N+.

Along the trajectories of system (1) driven by ui+1, by (10),

V̇i+1(xt) = −x�Qx− u�
i+1Rui+1. (15)

Since ui+1 is admissible, integrating (15) from 0 to ∞ yields

Vi+1(x0) = J(x0, ui+1). Hence, Vi+1(x0) ≤ Vi(x0) is

obtained by (14). Furthermore, since V ∗(x0) = J(x0, u
∗) is

the minimal value functional by Lemma 1, for any i ∈ N+,

V ∗(x0) ≤ Vi(x0). Therefore, the proof of 2) is completed.

Define Pi ∈ L(M2), such that for any z0, Piz0 is

Piz0 =

[
P0,ix(0) +

∫ 0

−τ
P1,i(θ)x0(θ)dθ∫ 0

−τ
P2,i(·, θ)x0(θ)dθ + P�

1,i(·)x(0)

]
. (16)
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It is easy to check that Pi is symmetric [42, Chapter 6], and

non-negative [42, Definition 6.3.1], and Vi(x0) = 〈z0,Piz0〉.
Furthermore, according to statement 2), for any i ∈ N+, P∗ ≤
Pi+1 ≤ Pi. According to [42, Theorem 6.3.2], there exists

Pp = P�
p ≥ 0, such that for all z0 ∈M2, we have

lim
i→∞

Piz0 = Ppz0. (17)

Therefore, P0,i, P1,i(θ) and P2,i(ξ, θ) pointwisely converge

to P0,p, P1,p(θ), and P2,p(ξ, θ), respectively. When Pi con-

verges, P0,p, P1,p(θ) and P2,p(ξ, θ) satisfy (7) with i replaced

by p. K0,i and K1,i converge to K0,p and K1,p. By the policy

improvement step (8), K0,p and K1,p satisfy

K0,p = R−1B�P0,p, K1,p(θ) = R−1B�P1,p(θ). (18)

Substituting (18) into (7) with i replaced by p, it is seen

that P0,p, P1,p(θ) and P2,p(ξ, θ) solve the PDEs (6). Due

to the uniqueness of the solution to (6), P0,i, P1,i(θ) and

P2,i(ξ, θ) pointwisely converge to P ∗
0 , P ∗

1 (θ) and P ∗
2 (ξ, θ).

Since both P1,i(θ) and P2,i(ξ, θ) are continuously differen-

tiable, {P1,i(θ) : i ∈ N+} and {P2,i(ξ, θ) : i ∈ N+} are

equicontinuous, which leads to the uniform convergence by

[43, Chapter 4, Theorem 16]. Hence, 3) is proved.

Notice that although (7) is linear with respect to P0,i, P1,i,

and P2,i, since (7) are PDEs, obtaining the analytical solution

to (7) is still non-trivial. Besides, the accurate knowledge of

the system matrices A, Ad, and B is required to implement the

model-based PI, and in practice due to the complex structure

of the system, it is often hard to derive such an accurate model.

Therefore, in the next section, a data-driven PI algorithm is

proposed to approximate the optimal solution.

Remark 2. When Ad = 0, (1) is degraded to the normal
delay-free systems. According to (7) and (8), we can see
that P1,i(θ) = 0, P2,i(ξ, θ) = 0, and K1,i(θ) = 0. As a
consequence, (7) and (8) are the same as the model-based
PI method in [35]. Therefore, the proposed model-based PI
algorithm is a generalization of celebrated Kleinman’s PI to
linear time-delay systems.

Remark 3. In [18], the model-based PI is developed for
infinite-dimensional linear systems in the Hilbert space. Al-
though system (1) is one of the infinite-dimensional systems,
the concrete expression of PI for linear time-delay systems is
not given in [18], and as a consequence, the PI developed
in [18] cannot be directly applied to solve the PDEs (6). In
this paper, the concrete expression of PI is constructed in (7)
and (8), which is one of the major contributions in this paper.
Besides, it can be checked that at each iteration, Pi defined in
(16) satisfies the PI update equations in [18], which is another
way to prove the validity of the proposed PI theoretically.

Remark 4. As shown in [18], the convergence rate of PI
algorithm in the Hilbert space is quadratic, and therefore,
the proposed model-based PI for system (1) has the same
quadratic convergence rate.

IV. DATA-DRIVEN POLICY ITERATION

The purpose of this section is to propose a corresponding

data-driven PI algorithm that does not require the accurate

knowledge of system (1) to solve Problem 1. The input-state

trajectories of system (1) is required for the data-driven PI.

In other words, the continuous-time trajectories of x(t) and

u(t) sampled from system (1) within the interval [t1, tL+1] is

applied to train the control policy. From the RL perspective,

u is named behaviour/exploratory policy.

Define vi(t) = u(t)− ui(xt), where ui(xt) is the value of

the control policy ui calculated along the sampled trajectory.

By (10), along the trajectories of system (1) driven by the

behaviour/exploratory policy u,

V̇i(xt) = −x�Qx− u�
i Rui − 2u�

i+1Rvi. (19)

Let [tk, tk+1] denote the kth segment of the sampling interval
[t1, tL+1]. Integrating both sides of (19) from tk to tk+1 yields

Vi(xtk+1)− Vi(xtk ) =

∫ tk+1

tk

−x�Qx− u�i Rui − 2u�i+1Rvidt.

(20)

Plugging the expressions of ui+1 in (8) and Vi in (9) into (20)
yields[
x�(t)P0,ix(t) + 2x�(t)

∫ 0

−τ

P1,i(θ)xt(θ)dθ

+

∫ 0

−τ

∫ 0

−τ

x�t (ξ)P2,i(ξ, θ)xt(θ)dξdθ

]tk+1

t=tk

− 2

∫ tk+1

tk

(
x�(t)K�

0,i+1 +

∫ 0

−τ

x�t (θ)K
�
1,i+1(θ)dθ

)
Rvi(t)dt

= −
∫ tk+1

tk

x(t)�Qx(t) + ui(t)
�Rui(t)dt. (21)

As seen in (7) and (8), K1,i(θ) and P1,i(θ) (P2,i(ξ, θ)) are

continuous functions defined over the set [−τ, 0] ([−τ, 0]2).

Next, we use the linear combinations of basis functions to

approximate these continuous functions, such that only the

weighting matrices of the basis functions should be determined

for the function approximation. Let Φ(θ), Λ(ξ, θ), and Ψ(ξ, θ)
denote the N -dimensional vectors of linearly independent

basis functions. To simplify the notation, we choose the same

number of basis functions for Φ, Λ and Ψ. According to the

approximation theory [44], the following equations hold

vecs(P0,i) = W0,i, vec(P1,i(θ)) = WN
1,iΦ(θ) + eNΦ,i(θ),

diag(P2,i(ξ, θ)) = WN
2,iΨ(ξ, θ) + eNΨ,i(ξ, θ),

vecu(P2,i(ξ, θ)) = WN
3,iΛ(ξ, θ) + eNΛ,i(ξ, θ), (22)

vec(K0,i) = U0,i, vec(K1,i(θ)) = UN
1,iΦ(θ) + eNK,i(θ),

where W0,i ∈ R
n1 , n1 = n(n+1)

2 , WN
1,i ∈ R

n2×N ,

WN
2,i ∈ R

n×N , WN
3,i ∈ R

n2×N , n2 = n(n−1)
2 ,

U0,i ∈ R
nm, and UN

1,i ∈ R
nm×N are weighting ma-

trices of the basis functions. eNΦ,i(θ) ∈ C0([−τ, 0],Rn2

),

eNΨ,i(ξ, θ) ∈ C0([−τ, 0]2,Rn), eNΛ,i(ξ, θ) ∈ C0([−τ, 0]2,Rn2),

and eNK,i(θ) ∈ C0([−τ, 0],Rmn) are approximation truncation

errors. Therefore, by the uniform approximation theory, as

N →∞, the truncation errors converge uniformly to zero, i.e.

for any η > 0, there exists N∗ ∈ N+, such that if N > N∗,

‖eNΦ,i(θ)‖∞≤ η, ‖eNK,i(θ)‖∞≤ η,

‖eNΨ,i(ξ, θ)‖∞≤ η, ‖eNΛ,i(ξ, θ)‖∞≤ η. (23)
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Therefore, the key idea of the data-driven PI is that Wj,i(j =
0, · · · , 3) and Uj,i(j = 0, 1) are directly approximated by the

data collected from system (1). Define ΥN
i as the composite

vector of the weighting matrices, i.e.

ΥN
i =

[
W�

0,i, vec�(WN
1,i), vec�(WN

2,i), vec�(WN
3,i)

U�
0,i+1, vec�(UN

1,i+1)
]�

.
(24)

Let Υ̂N
i be the approximation of ΥN

i , and then, the approxi-
mations of Pj,i(j = 0, 1, 2) can be reconstructed by

P̂0,i = vec
−1([Υ̂N

i ]1,n1), ŴN
1,i = vec

−1([Υ̂N
i ]n1+1,n3),

ŴN
2,i = vec

−1([Υ̂N
i ]n3+1,n4), ŴN

3,i = vec
−1([Υ̂N

i ]n4+1,n5),

P̂1,i(θ) = vec
−1(ŴN

1,iΦ(θ)), diag(P̂2,i(ξ, θ)) = ŴN
2,iΨ(ξ, θ),

vecu(P̂2,i(ξ, θ)) = ŴN
3,iΛ(ξ, θ), (25)

where n3 = n1 + n2N , n4 = n3 + nN , n5 = n4 + n2N .
Furthermore, K̂0,i+1 and K̂1,i+1(θ), the approximations of
K0,i+1 and K1,i+1(θ) respectively, can be reconstructed by

K̂0,i+1 = vec
−1([Υ̂N

i ]n5+1,n6), Û1,i+1 = vec
−1([Υ̂N

i ]n6+1,n7),

K̂1,i+1(θ) = vec
−1(Û1,i+1Φ(θ)), (26)

where n6 = n5+nm, and n7 = n6+nmN . As a consequence,

ûi(xt), the approximation of ui(xt), can be expressed as

ûi(xt) = −K̂0,ix(t)−
∫ 0

−τ
K̂1,i(θ)xt(θ)dθ.

Based on the approximations in (22), we will transfer (21)
to a linear equation with respect to Υ̂N

i . Then, the unknown
vector ΥN

i will be approximated by linear regression, and
consequently, Pj,i(j = 0, 1, 2) and Kj,i+1(j = 1, 2) can be
approximated by (25) and (26). In detail, let v̂i = u − ûi,
ũi = ûi − ui. Define the data-constructed matrices

ΓΦxx(t) =

∫ 0

−τ

Φ�(θ)⊗ x�t (θ)⊗ x�(t)dθ,

ΓΨxx(t) =

∫ 0

−τ

∫ 0

−τ

Ψ�(ξ, θ)⊗ vecd
�(xt(ξ), xt(θ))dξdθ,

ΓΛxx(t) =

∫ 0

−τ

∫ 0

−τ

Λ�(ξ, θ)⊗ vecp
�(xt(ξ), xt(θ))dξdθ, (27)

Gxv̂i,k =

∫ tk+1

tk

(x�(t)⊗ v̂�i (t))(In ⊗R)dt,

GΦxv̂i,k =

∫ tk+1

tk

∫ 0

−τ

Φ�(θ)⊗ ((x�t (θ)⊗ v̂�i (t))(In ⊗R))dθdt.

With the help of (22) and (27), each term in (21) is
expressed linearly with respect to the weighting matrices

x�(t)P0,ix(t) = vecv
�(x(t))W0,i,

x�(t)
∫ 0

−τ

P1,i(θ)xt(θ)dθ = ΓΦxx(t)vec(W1,i) + ε1,i(t),

∫ 0

−τ

∫ 0

−τ

x�t (ξ)P2,i(ξ, θ)xt(θ)dξdθ = ΓΨxx(t)vec(W2,i)

+ ΓΛxx(t)vec(W3,i) + ε2,i(t) + ε3,i(t), (28)∫ tk+1

tk

x�(t)K�
0,i+1Rvi(t)dt = Gxv̂i,kU0,i+1 + ρ0i,k,

∫ tk+1

tk

∫ 0

−τ

x�t (θ)K
�
1,i+1(θ)Rvi(t)dθdt = GΦxv̂i,kvec(U1,i+1)

+ ψi,k + ρ1i,k,

where ε1,i(t) ε2,i(t), ε3,i(t), and ψi,k are induced by the

approximation truncation errors in (23), and ρ0i,k and ρ1i,k are

induced by ũi (their expressions are in [41, Equation (38)]).

With the collected input-state trajectories, define

Mi,k =
[
vecv�(x(t))|tk+1

tk
, 2ΓΦxx|tk+1

tk
,ΓΨxx(t)|tk+1

tk
,

ΓΛxx(t)|tk+1

tk
,−2Gxv̂i,k,−2GΦxv̂i,k

]
,

Yi,k = −
∫ tk+1

tk

x�Qx+ û�
i Rûidt,

Ei,k = [2ε1,i(t) + ε2,i(t) + ε3,i(t)]
tk+1

t=tk
− 2ψi,k − 2ρ0i,k

− 2ρ1i,k − ρ2i,k,

Mi =
[
M�

i,1, · · · ,M�
i,k, · · · ,M�

i,L

]�
,

Yi = [Yi,1, · · · , Yi,k, · · · , Yi,L]
�
,

Ei = [Ei,1, · · · , Ei,k, · · · , Ei,L]
�
,

(29)

where ρ2i,k =
∫ tk+1

tk
ũ�
i R(ûi + ui)dt.

By (28) and the definitions of Mi,k, Yi,k and Ei,k in (29),

(21) is finally transferred to a linear equation

Mi,kΥ
N
i + Ei,k = Yi,k. (30)

Combining (30) from k = 1 to k = L yields

MiΥ
N
i + Ei = Yi. (31)

Let Êi be the linear regression error defined as

Êi = Yi −MiΥ̂
N
i . (32)

Assumption 2. Given N ∈ N+, there exist L∗ ∈ N+ and
α > 0, such that for all L > L∗ and i ∈ N+,

1

L
M�

i Mi ≥ αI. (33)

Remark 5. Assumption 2 is reminiscent of the persistent
excitation (PE) condition [45], [46]. It is needed to guarantee
the uniqueness of the least-square solution to (31), and prove
the convergence of the proposed data-driven PI algorithm. As
in the literature of ADP-based data-driven control [19], [20],
one can fulfill it by means of added exploration noise, such as
sinusoidal signals and random noise.

Under Assumption 2, the method of least squares is applied

to minimize Ê�
i Êi, i.e. Ê�

i Êi is minimized by

Υ̂N
i = M†

i Yi. (34)

With the result of Υ̂N
i in (34), P̂j,i(j = 0 · · · 2) and K̂j,i(j =

0, 1) can be reconstructed by (25) and (26) respectively.

The proposed algorithm is shown in Algorithm 1. From

(29), Mi and Yi are constructed by the input-state trajec-

tory data of system (1). Hence, the system matrices are not

involved in the computation of Υ̂N
i . Furthermore, since the

behaviour/exploratory policy u is different from the updated

policy ui, Algorithm 1 is called off-policy.

Remark 6. Due to the property that P�
2,i(ξ, θ) = P2,i(θ, ξ),

the diagonal elements of P2,i satisfy diag(P2,i(ξ, θ)) =
diag(P2,i(θ, ξ)). Hence, the vector of basis functions Ψ should
satisfy Ψ(ξ, θ) = Ψ(θ, ξ) to approximate such functions.

Remark 7. In practice, the integrals in (27) are calculated by
Riemann sum, like midpoint, trapezoid, and Simpson’s rules.
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Lemma 3. Under Assumption 2, and given an admissible
controller u1(xt) = −K0,1x(t) −

∫ 0

−τ
K1,1(θ)xt(θ)dθ, for

each i ∈ N+ and any η > 0, there exists a positive integer
N∗ > 0, such that if N > N∗,

|P̂0,i − P0,i|≤ η, ‖P̂1,i − P1,i‖∞≤ η, ‖P̂2,i − P2,i‖∞≤ η

|K̂0,i+1 −K0,i+1|≤ η, ‖K̂1,i+1 −K1,i+1‖∞≤ η. (35)

Proof. Define the approximation error as Υ̃N
i = ΥN

i − Υ̂N
i .

Subtracting (32) from (31) yields

Êi = MiΥ̃
N
i + Ei. (36)

Since Ê�
i Êi is minimized by the method of least squares,

1

L
Ê�

i Êi ≤ 1

L
E�

i Ei. (37)

Furthermore, combining (36) and (37), we have

1

L
Υ̃N�

i M�
i MiΥ̃

N
i =

1

L
(Êi − Ei)

�(Êi − Ei) ≤ 4

L
E�i Ei. (38)

Therefore, via Assumption 2, the following inequality holds

Υ̃N�
i Υ̃N

i ≤
4

αL
E�

i Ei ≤ 4

α
max

1≤k≤L
E2

i,k. (39)

Then, the lemma is proved by induction. When i = 1,

û1 = u1, so ũ1 = 0, and ρ01,k = ρ11,k = ρ21,k = 0.

Furthermore, since ε1,i(t) ε2,i(t), ε3,i(t), and ψi,k are induced

by the approximation truncation errors in (22), they converge

to zero as N → ∞. Therefore, by the expression of Ei,k in

(29), for any 1 ≤ k ≤ L, Ei,k converges to zero as N →∞.

Consequently, by (39), for i = 1,

lim
N→∞

Υ̃N�
i Υ̃N

i = 0. (40)

As a result, the estimation of the weighting matrices in (22)

converge to the true values as N → ∞. By the boundedness

of the functions Φ(θ), Ψ(ξ, θ), Λ(ξ, θ) on the compact interval

θ, ξ ∈ [−τ, 0] and the uniform convergence of the approxima-

tion truncation errors in (23), (35) holds for i = 1.

Suppose (35) holds for some i − 1 > 1. Then, from the

second line of (35), it is seen that ũi converges to zero as

N → ∞. Since ρ0i,k, ρ1i,k, and ρ2i,k are induced by ũi, they

converge to zero as N →∞. Furthermore, since ε1,i(t) ε2,i(t),
ε3,i(t), and ψi,k are induced by the approximation truncation

errors in (22), they converge to zero as N →∞. Consequently,

by the expression of Ei,k in (29), for any 1 ≤ k ≤ L, Ei,k

converges to zero as N →∞. Therefore, by (39), (40) holds

for i. Following the logic of the content below (40), we obtain

that (35) holds for i. The proof is completed by induction.

Theorem 2. Given an admissible controller u1, for any η > 0,
there exist integers i∗ > 0 and N∗∗ > 0, such that if N > N∗∗

|P̂0,i∗ − P ∗
0 |≤ η, ‖P̂1,i∗ − P ∗

1 ‖∞≤ η, ‖P̂2,i∗ − P ∗
2 ‖∞≤ η,

|K̂0,i∗+1 −K∗
0 |≤ η, ‖K̂1,i∗+1 −K∗

1‖∞≤ η. (41)

Proof. The theorem is proven by Theorem 1, Lemma 3, and

triangle inequality. See [41, Theorem 2] for details.

By Theorem 2, we see that K̂j,i+1(j = 0, 1) obtained by

Algorithm 1 converges to K∗
j (j = 0, 1) as the iteration step

of the algorithm and the number of basis functions tend to

infinity. Hence, the proposed data-driven PI solves Problem 1.

Algorithm 1 Data-driven Policy Iteration

1: Choose the vectors of the basis functions Φ, Ψ, and Λ.

2: Choose t1, tL+1, and tk ∈ [t1, tL+1].
3: Choose input u = u1 + e, with e an exploration signal, to

explore system (1) and collect the data of u(t), x(t), t ∈
[t1, tL+1]. Set the threshold δ > 0 and i = 1.

4: repeat
5: Calculate ûi(t) = ûi(xt) along the trajectory of x.

6: Construct Mi and Yi by (29).

7: while Assumption 2 is not satisfied

8: Collect more data and insert it into Mi and Yi.

9: end while
10: Get Υ̂N

i by solving (34).

11: Get K̂0,i+1 and K̂1,i+1 by (26).

12: ûi+1(xt) = −K̂0,i+1x(t)−
∫ 0

−τ
K̂1,i+1(θ)xt(θ)dθ

13: i← i+ 1
14: until |Υ̂N

i − Υ̂N
i−1|< δ.

15: Use ûi(xt) as the control input.

V. PRACTICAL APPLICATIONS

The proposed data-driven PI algorithm is demonstrated by

two practical examples, with regards to regenerative chatter

in metal cutting (RCMC) and connected and autonomous

vehicles (CAVs) in mixed traffic consisting of autonomous

vehicles (AVs) and human-driven vehicles (HDVs).

A. Regenerative Chatter in Metal Cutting

Consider the example of metal cutting [37, Example 1.1],

[47]. The thrust force is proportional to the instantaneous

chip thickness ([x(t)]1 − [x(t − τ)]1), leading to the time-

delay effect. The model is described by (1) with A ∈ R
2×2,

Ad ∈ R
2×2 and B ∈ R

2×1 expressed in [41, Section V-A],

and τ = 1.3s. The initial admissible controller is û1(xt) =
−K0,1x(t), with K0,1 = [1.74, 3.92]. The exploration noise

is e(t) = 20
∑50

i=1 sinωit, where ωi is randomly sampled

from an independent uniform distribution over [−10, 10].
Q = diag([100, 100]) and R = 1. δ = 10−3. For the basis

functions, Φ(θ) = [1, θ, θ2, θ3]�, Ψ(ξ, θ) = [1, ξ + θ, ξ2 +
θ2, ξθ, ξ3+θ3, ξ2θ+ξθ2, ξ3θ+ξθ3, ξ2θ2, ξ3θ2+ξ2θ3, ξ3θ3]�,

and Λ(ξ, θ) = [1, θ, θ2, θ3]� ⊗ [1, ξ, ξ2, ξ3]�.

As shown in Fig. 1, the weights of the basis functions Υ̂
converge after the eighth iteration. In order to inspect the evo-

lution of the performance index, we compare the controllers

updated at each iteration for the same initial state x0. In Fig. 1,

it is seen that the performance index decreases. The responses

of the state with the initial controller and the learned ADP

controller are compared in Fig. 2. The performance indices

are J(x0, û1) = 5.89× 104 and J(x0, û8) = 3.03× 104.

Semi-discretization [48] is applied to discretize (1) into a

delay-free system with sampling period Δt = 0.1s. Then,

Algorithm 1 is compared with the model-based discrete-time

linear quadratic regulator (DLQR) and the discrete-time ADP

algorithm in [9] (with the same length of trajectory data). For

the same initial state, the performance indices are shown in

Table I. The performance index is minimal under Algorithm 1,

showing that discretization sacrifices the system performance.
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Fig. 1: Evolution of Υ̂ and J with respect to iterations.

Fig. 2: Compare the initial and ADP controllers for RCMC.

Ideally, the performance of the discrete-time ADP is similar as

the model-based DLQR. The large deviation between them is

induced by the fact that the PE condition for the discrete-

time ADP is not satisfied. This further illustrates that by

semi-discretization, the dramatically increased dimension of

the augmented state (26-dimensional) makes the requirements

on the sampled data more demanding.

The robustness of Algorithm 1 to measurement noise is

evaluated. The measurement of x(t) is disturbed by an inde-

pendent Gaussian noise ϕ(t) ∼ N (0, 0.2). The result is shown

in Fig. 3. Using the noisy data, for the same initial state x0, the

performance index converges to J = 3.35 × 104. Comparing

Fig. 3 with the second figure in Fig. 1, we see that Algorithm

1 can still find a near-optimal solution in the presence of noise.

B. CAVs in Mixed Traffic

Consider the platoon in Fig. 4, where the human reaction

time results in the time delay. The system can be described as

system (1) with A,Ad ∈ R
4×4 and B ∈ R

4×1 depicted in [41,

Section V-B], and τ = 1.2s. The weighting matrices of the

performance index are Q = diag([1, 1, 10, 10]), and R = 1.

The initial admissible controller is û1(xt) = −K0,1x(t), with

K0,1 = [−0.09, −0.28, −0.30, 0.52]. The exploration noise

is set as e(t) =
∑200

i=1 sinωit, where ωi is sampled from an

independent uniform distribution over [−100, 100]. The basis

functions are the same as in the previous example. δ = 10−3.

The analytical expressions of the optimal values K∗
0 and K∗

1

are derived by [8], where the precise model is assumed known.

The convergence of K̂0 and K̂1,i are shown in Fig. 5. At the

last iteration of PI,
|K̂0,10−K∗

0 |
|K∗

0 | = 0.0008 and
||K̂1,10−K∗

1 ||∞
||K∗

1 ||∞ =
0.0137. Therefore, the proposed data-driven PI algorithm

well approximates the optimal controller. The performance

comparisons of the initial controller and the ADP controller

are shown in Fig. 6. Since x1 and x2 are the states of HDV2,

which cannot be influenced by the controller for the AV, they

are not plotted in the figure. For the performance indices,

Fig. 3: Evolution of the performance index using noisy data.

Fig. 4: A platoon of two HDVs and an AV.

J(x0, û1) = 1.46× 105 and J(x0, û10) = 4.73× 104. Hence,

the proposed algorithm minimizes the performance index.

VI. CONCLUSIONS

This paper has proposed for the first time a novel data-

driven PI algorithm for a class of linear time-delay systems

described by DDEs. The first major contribution of this paper

is to generalize the well-known Kleinman algorithm [35] – a

model-based PI algorithm – from linear time-invariant systems

to linear time-delay systems. The second major contribution of

this paper is that we have combined the proposed model-based

PI algorithm and RL techniques to develop a data-driven PI

algorithm for solving the direct adaptive optimal control prob-

lem for linear time-delay systems with unknown dynamics.

The efficacy of the proposed learning-based adaptive optimal

control design methods has been validated by two real-world

applications arising from metal cutting and connected vehicles.

Our future work will be directed at extending the proposed

learning-based control methodology to other practically impor-

tant classes of time-delay systems such as nonlinear systems

and multi-agent systems.
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