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Abstract: Categorical data analysis becomes challenging when high-dimensional sparse covariates
are involved, which is often the case for omics data. We introduce a statistical procedure based
on multinomial logistic regression analysis for such scenarios, including variable screening, model
selection, order selection for response categories, and variable selection. We perform our procedure
on high-dimensional gene expression data with 801 patients, 2426 genes, and five types of cancerous
tumors. As a result, we recommend three finalized models: one with 74 genes achieves extremely low
cross-entropy loss and zero predictive error rate based on a five-fold cross-validation; and two other
models with 31 and 4 genes, respectively, are recommended for prognostic multi-gene signatures.

Keywords: multinomial logistic model; zero-inflated model; hurdle model; model selection; variable
selection; order selection; cross-validation

Key Contribution: We develop a statistical data analysis procedure tailored for high-dimensional
sparse data with categorical response variables. As an illustration of its application, we select
three statistical models and their associated prognostic multi-gene signatures to predict five types of
cancers using RNA-seq gene expression data.

1. Introduction

High-dimensional data is a dataset in which the number of covariates (d) is much
larger than the number of observations (1), often written as d > . It is raised in many
scientific fields, especially in biological sciences [1-3], where the datasets are difficult
to analyze using classical statistical tools such as linear, nonlinear, or generalized linear
regression models. When the covariates have a high percentage of zeros, it is necessary
to use zero-inflated models or hurdle models to address this sparsity [4-6]. The analysis
becomes more challenging due to the skewness of the distributions [7].

High-dimensional sparse data is wide-ranging. It arises in many different disciplines
such as genomics [8], mobile app usage logs [2], and energy technologies [9]. Omics data
such as microbiome [10] and gene expression data [11] are typically high-dimensional
and sparse.

As a motivating example, the RNA-seq gene expression data discussed in [1] consists
of n = 801 tissue samples with 20,531 genes. Among them, 2426 genes carry a good
proportion of zeros, from 5% to 50%. The goal of their analysis was to predict the response
category which belongs to one of the five different types of cancerous tumors, namely
BRCA, COAD, KIRC, LUAD, and PRAD, based on the 2426 sparse genes. A variable
selection criterion was proposed by [1] to rank the 2426 sparse genes for predicting the type
of tumors, and the top 50 genes were recommended with a 1-nearest neighbor classifier,
which is highly robust for high-dimensional classifications [12].
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Unlike statistical methods, the 1-nearest neighbor classifier, as well as many other
machine learning techniques, is a deterministic classification approach, which assigns a
single predictive label to each given subject or individual. Statistical methods, however,
typically produce a distribution answer, called a stochastic classification [13], which assigns
a probability to each possible response category or label. In general, a stochastic classifica-
tion result provides more information than a deterministic one, especially for mixed cases
or cases close to a boundary between classes.

In this paper, we consider statistical models and stochastic classifications for high-
dimensional sparse data with categorical responses. If the response is binary, generalized
linear models [14,15] have been widely used in practice. When the response has three or
more categories, such as the five tumor types in the motivating example of gene expression
data, we consider the multinomial logistic models [16-18], which include four commonly
used logit models, baseline-category, cumulative, adjacent-categories, and continuation-
ratio (please see [18] for a good review and the references therein).

2. Materials and Methods

In this section, we introduce the multinomial logistic models and order selection for
categorical responses, a variable screening technique for sparse covariates, and variable
selection techniques.

2.1. Multinomial Logisitic Models

In this paper, we suppose that the original data takes the form of {(x;,y;),i =1,...,n}
with covariates x; = (xﬂ,...,xid)T e R, d>1and categorical response y; € {1,...,]},
J > 2. We further assume that there are only m distinct x; vectors, and denote them
as x1,...,Xnm, m < n for simplicity. For applications with discrete covariates only, it is
often the case that m < n. Following the notations in [18], we consider the data in its
summarized form {(x;,Y;),i =1,...,m},where Y; = (Y;,..., Yi;)T, with Yii = #{k [ 5 = x
and yx = j}, the number of observations with covariates x; and response category j. We
denote n; = Z}Zl Yij, the number of observations with covariate x;, i = 1,...,m.

Following [18,19], a multinomial logistic model assumes that (i) Y; follows a multino-
mial distribution with number 7; and category probabilities 7;, . . ., 71;; independently for
different i, where Z]j-zl 7t;j = 1; (ii) the category probabilities 77;; are linked to functions of
covariates in one of the four following ways:

7'[4.
log<n’;) = th(xi )/3]' +h!(x;), baseline-category 1)
1
T+ e A TG . . .
Og<ni1+1+~ +7ri]> ] (Xl)ﬁ]—i— c(xz)C cumulative )
T
log (nlil) = th(xi )B; + h!(x;)Z, adjacent-categories 3)
ij
7'[1] T T . . .
1 = h; 6.+ h N\, t t —rat 4
© (ﬂi,]‘ﬂ 44 n,«,) j (Xl)ﬁ] +h, (x;)C , continuation-ratio 4)

Here h]T() = (hjr(-), ..,hjp].(~)) and h(-) = (h1(+), ..., hp.(-)) are known predictor func-
tions; B; = (Bj1,-- .,,B]«p],)T and { = ({1,...,{p.)" are unknown regression parameters,
i=1,...,mj=1,...,] = 1. It should be noted that when | = 2, all four logit models,
namely baseline-category (1), cumulative (2), adjacent-categories (3), and continuation-
ratio (4), are equivalent to the logistic regression model for binary responses.

In this paper, we consider two special classes of multinomial logistic models, pro-
portional odds (po) models assuming h].T(x,-) = 1, i.e., the same parameters for different

categories except the intercepts, and nonproportional odds (npo) models assuming h! (x;) = 0,
i.e., different parameters across categories. The four link models (1), (2), (3), and (4), com-
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bined with either the po or npo assumption, lead to eight different models. For example,
one model is called an adjacent-categories po model if it is an adjacent-categories logit
model (3) with the po assumption. In practice, people often adopt h.(x;) = x; for po
models and h;(x;) = (1, xiT)T for npo models, also known as main-effects models. More
general models and examples can be found in [18].

2.2. The Most Appropriate Order for Categorical Responses

In the statistical literature, the baseline-category logit model (1) is also known as a
multiclass logistic regression model (see, for example, [20]). It is commonly used for nomi-
nal responses, i.e., the response categories do not have a natural ordering [21]. In model (1),
the Jth category is regarded as the baseline category. The choice of the baseline category is
known to be irrelevant for prediction purposes for npo models. Nevertheless, as pointed
out by [19], the baseline category needs to be carefully chosen for po models, since it may
improve the prediction accuracy significantly. We adopt the Akaike information criterion
(AIC, [20,22]) for choosing the most appropriate baseline category for baseline-category
po models.

Models (2), (3), and (4) are typically used for ordinal or hierarchical responses, which
assume either a natural ordering or a hierarchical structure among the response categories.
Surprisingly, according to [19], even for responses whose categories do not have a natural
or known order, one may still use AIC or Bayesian information criterion (BIC, see also [20])
to choose the most appropriate order, called a working order, for the response categories.
Then models (2), (3), and (4) can also be used for nominal responses with the working order,
which may significantly improve the prediction accuracy.

In this paper, we use AIC to choose the most appropriate (working) order for the
five tumor types in the motivating example so that all the four logit models can be applied.

2.3. Sparse Variable Screening Using the AZIAD Package

To fit a multinomial logistic model and obtain the parameter estimates with the
corresponding confidence intervals, we need the number m of distinct x; vectors to be large
enough to keep the corresponding Fisher information matrix positive definite. According
to [18], the smallest possible m is p. 4 1 for po models or max{p1, ..., pj—1} for npo models.
If we consider main-effects models only, then m > d 4 1 is required for both po and npo
models. In other words, we need to reduce the number d of covariates below m — 1 before
fitting a multinomial logistic model.

For the motivating example, following [1], we focus on the 2426 sparse genes. In this
case, n = m = 801, since the gene expression levels are continuous. To reduce the number
of genes below 800, we first calculate a rank of all these genes based on the AIC differences
of the significance test proposed by [1], which involves model selections from a list of
candidate distributions based on the p-values of KS-tests using the R package AZIAD [23].
More specifically, for each gene, we consider two probabilistic models. In Model I, we
assume that all 801 gene expression levels follow the same probability distribution chosen
from a candidate set; while in Model II, we divide the 801 numbers into five groups
according to their response labels and assume that each group of numbers follows a distinct
distribution. We fit both models and denote the corresponding AIC values as AIC(I) and
AIC(II), respectively. According to [1], a bigger difference between AIC(I) and AIC(II)
indicates that the gene is more informative for predicting the response labels.

Since the gene expression levels are continuous and non-negative, we consider a
candidate set of 12 probability distributions, including normal (or Gaussian), zero-inflated
normal, normal hurdle, half-normal, zero-inflated half-normal, half-normal hurdle, log-
normal, zero-inflated log-normal, log-normal hurdle, exponential, zero-inflated exponential,
and exponential hurdle distributions (please see [7] for a complete list of distributions
available in AZIAD). As a result, we obtain a rank of the 2426 sparse genes from high
to low, corresponding to their AIC differences from high to low. We then use a five-fold
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cross-validation to select the best number of genes for fitting multinomial logistic models
(see Section 2.4).

2.4. Best Number of Covariates for Categorical Regression Analysis

In [1], a five-fold cross-validation with a 1-nearest neighbor classifier was used for
choosing the best number of genes. In other words, a predictive error count or error rate
was used as the criterion for variable selection.

When a stochastic classification is available, the cross-entropy loss, which measures the
difference between the predictive probabilities based on the fitted model and the observed
class labels, is more commonly used as a criterion and is more sensitive for variable selection
or model selection [20].

In this paper, we choose the number of ranked covariates that minimizes the cross-
entropy loss based on a five-fold cross-validation. More specifically, given a specified
regression model and the top ¢ covariates under consideration, (1) we randomly divide
the original n observations (not the summarized data) into five data blocks of roughly
the same size, then for each i = 1, ..., n, the ith observation belongs to one and only one
of the five data blocks, denoted as the k(i)th block; (2) for each k = 1,...,5, we fit the
regression model with the top ¢ covariates based on the four data blocks other than the kth
one, denoted as the kth fitted model; (3) for eachi = 1,...,n, we predict i, j=1,...,]

based on the k(i)th fitted model and denote the predictive probability as fr:.{j(i) ;and (4) the
(average) cross-entropy loss for the specified model and the given number ¢ is defined as

1 n R .
CE(t) = - }_log(#;,,) (5)
i=1

For the specified model, we choose the t that minimizes CE(t).

2.5. Backward Variable Selection Based on AIC

Backward variable selection aims to identify a good (if not the best) subset of variables
by iteratively removing the least-significant predictor from a statistical model. Typically,
AIC is used as the criterion for eliminating a variable (see, for example, Section 3.3 in [20]).
In our case, (1) we fit a specified multinomial logistic model with the top t covariates
obtained in Section 2.4 and record its AIC value as AIC(t); (2) we initialize r = t to be the
number of covariates in the model and perform the following steps while » > 1; (3) for
eachs =1,...,r, we fit the regression model with the sth covariates removed and denote
the corresponding AIC value as AIC(r — 1,5); (4) we let AIC(r — 1) = mins{AIC(r — 1,s)},
the smallest AIC value with r — 1 covariates; and (5) if AIC(r — 1) < AIC(r) and r > 1, we
remove the covariate that attains AIC(r — 1) and go back to step (3) with r replaced with
r — 1, otherwise we stop and report the model with the current set of r covaraites.

It should be noted that there are other strategies for selecting a subset of covariates,
such as forward selection or forward and backward selection. We refer [20] to the readers
for more options.

3. RNA-Seq Gene Expression Data

The illustrative example that we use in this paper is a high-dimensional RNA-seq
gene expression dataset. The original dataset consists of n = 801 tissue samples and 20,531
genes with five response categories (and frequencies), namely BRCA (300), COAD (78),
KIRC (146), LUAD (141), and PRAD (136) [1,24]. The data can be downloaded from the UCI
Machine Learning Repository (https:/ /archive.ics.uci.edu/ml/datasets/gene+expression+
cancer+RINA-Seq#, accessed on 4 November 2022).

Following [1], we consider only the 2426 genes whose expression levels have a pro-
portion of zeros between 5% and 50%, which is still high-dimensional. Since the gene
expression levels are continuous, all 801 x; vectors are distinct and thus n = m = 801 in our
notations (see also Section 2.1). Applying the significance test described in [1] to each of the
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genes (see also Section 2.3), we obtain a rank of the 2426 genes from high to low in terms
of relevance to the five response categories. Based on a five-fold cross-validation with the
1-nearest neighbor classifier, the top 50 genes were recommended by [1] for predicting
the response categories. The 1-nearest neighbor classifier based on the selected 50 genes
achieves zero predictive error rate based on the five-fold cross-validation.

In this paper, we use this data to illustrate how to use the proposed model selection pro-
cedure to build up the most appropriate regression model for analyzing a high-dimensional
sparse data with categorical responses.

4. Data Analysis and Results

Through this comprehensive analysis on the RNA-seq gene expression data, we aim
to identify the most appropriate regression model with selected genes that would provide
valuable insights into the relationship between the gene expression levels and the type
of cancers.

4.1. Model Selection and Variable Selection for Sparse Genes

We first use the R function vglm in package VGAM [25,26] to fit eight candidate
multinomial logistic main-effects models (see Section 2.1) given different numbers of
selected genes including the baseline-category po model (nompo), the baseline-category npo
model (nomnpo, also known as the multiclass logistic regression model), the cumulative
po model (cumpo), the cumulative npo model (cumnpo), the continuation-ratio po model
(crpo), the continuation-ratio npo model (crnpo), the adjacent-categories po model (acpo),
and the adjacent-categories npo model (acnpo). The R codes for the top 80 ranked sparse
genes are provided below, where yj stands for the vector (Yy;,..., Yn]-)T, ji=1,...,5

library (VGAM)
data = varselect80
fit.nompo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = multinomial(parallel=T), data = data)
fit.nomnpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = multinomial, data = data)
fit.cumpo <- vglm(cbind(y1l,y2,y3,y4,y5) ~ .,

family = cumulative(parallel=T), data = data)
fit.cumnpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = cumulative, data = data)
fit.crpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = sratio(parallel=T), data = data)
fit.crnpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = sratio, data = data)
fit.acpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,

family = acat(parallel=T), data = data)
fit.acnpo <- vglm(cbind(yl,y2,y3,y4,y5) ~ .,
family = acat(reverse=T), data = data)

The best models out of the eight candidates, along with their cross-entropy losses and
predictive error counts/rates based on a five-fold cross-validation, are listed in Table 1. Here,
the cross-entropy losses are calculated as described in (5) with the predictive probabilities

k(i)

(7t ﬁfS(’)) obtained from the k(i)th fitted model, while the predictive error counts are
calculated as #{i | y; # 7;}, where §; = argmaxjﬁf].(l), i.e., the j with the largest predictive
probability. For this dataset, three models, the adjacent-categories npo model (or adjacent-
cate. npo model in short), the baseline-category npo model, and the adjacent-categories po
model (or adjacent-cate. po model in short) frequently appear among the top. According
to Table 1, we choose the top t = 80 genes as the start. Compared with t =50, ¢ = 80 is a
more conservative choice since we will perform backward variable selections as the next

step anyway.
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Table 1. Best models with top f sparse genes based on five-fold cross-validation.

Top t Genes Best Models Cross-Entropy Loss Error Count/Rate
25 Baseline-category npo 1.50 40/801 = 0.049
30 Adjacent-cate. npo 0.59 11/801 = 0.013

Baseline-category npo 0.59 11/801 = 0.013

Adjacent-cate. po 1.88 58/801 = 0.072

50 Adjacent-cate. npo 0.14 7/801= 0.0087
Baseline-category npo 0.33 7/801 = 0.0087

Adjacent-cate. po 2.01 60/801 = 0.075

60 Adjacent-cate. npo 0.15 6/801 = 0.0075
Baseline-category npo 0.15 6/801 = 0.0075

Adjacent-cate. po 1.95 60/801 = 0.075

70 Adjacent-cate. npo 0.21 5/801 = 0.0062
Baseline-category npo 0.21 5/801 = 0.0062

Adjacent-cate. po 2.01 70/801 = 0.087

80 Adjacent-cate. npo 0.14 4/801 = 0.0049
Baseline-category npo 0.22 4/801 = 0.0049

100 Adjacent-cate. po 1.79 60/801 = 0.075
150 Adjacent-cate. po 241 69/801 = 0.086

4.2. Order Selection for Response Categories

At this stage of the proposed analysis, we keep three candidate models under con-
sideration: the adjacent-categories po model, the adjacent-categories npo model, and the
baseline-category npo model. According to [19], the order of the response categories
matters only for the adjacent-categories po model (see also Section 2.2).

To find the most appropriate order of response categories for the adjacent-categories
po model in this case, we explore all the 5! = 120 different orders of y1, y2, y3, y4 and y5.
For each order, we fit the adjacent-categories po model with the top 80 genes and record
the corresponding AIC value. The best order, which achieves the smallest AIC value, is
(y2, y3, y4, y1, y5), which corresponds to (COAD, KIRC, LUAD, BRCA, PRAD) with AIC
value 175.81, while the AIC value with the original order is 309.52. The improvement is
significant [27]. It should be noted that the reversed order of the best one achieves the same
AIC as well [19].

4.3. Backward Variable Selected Models

In this section, we apply the backward variable selection procedure (see Section 2.5) to
the three candidate models, starting with the top t = 80 genes.

We start with the adjacent-categories po model with order (y2, y3, y4, y1, y5) and
AIC = 176. After backward variable selection, we end with 31 genes and AIC value 90.
As for the adjacent-categories npo model, we start with 80 genes and AIC value 648 and
end with 74 genes and AIC value 600. We also run the backward variable selection for the
baseline-category npo model (i.e., the multiclass logistic regression model). Its 80 genes
are reduced to only 4 genes, along with AIC values from 648 to 52. The backward variable
selection improves all the three models significantly in terms of AIC values [27].

As a summary, after the backward variable selection, our three candidate models are
reduced as (1) an adjacent-categories po model with 31 genes; (2) an adjacent-categories
npo model with 74 genes; and (3) a baseline-category npo model with 4 genes. It should be
noted that two genes, gene_7965 and gene_9176, appear in all the three final models.

4.4. Final Models

We further evaluate the performance of the three final models obtained in Section 4.3,
whose cross-entropy losses and predictive error counts/rates based on a five-fold cross-
validation are provided in Table 2. In terms of prediction accuracy, the adjacent-categories
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npo model with 74 genes is clearly the winner since it achieves the lowest cross-entropy loss
of 2.2 x 10~? and error count of 0. For readers’ reference, we provide the adjacent-categories
npo model with 74 genes fitted on all 801 samples in Appendix C.

Table 2. Performance of final models based on five-fold cross-validation.

Number of Genes Type of Model Cross-Entropy Loss Error Count/Rate
31 Adjacent-cate. po 0.063 1/801 = 0.0012
74 Adjacent-cate. npo 22 %1077 0
4 Baseline-category npo 0.031 2/801 = 0.0025

Nevertheless, if one aims to find a prognostic multi-gene signature (see Section 4.5 for
more details) for predicting the risk of the five types of cancers, the remaining two models
have their values as well, since they require information from a much smaller number of
genes. As a comparison, all the three final models are much more accurate than the best
model based on the top 50 genes recommended by [1], which is an adjacent-categories npo
model with a five-fold cross-entropy loss of 0.14 and error rate of 0.0087 (see Table 1). The
final adjacent-categories po model with 31 genes misclassifies the case sample_190 with
predictive probabilities (1.04 x 1071%,2.68 x 10719,0.576,0.424,2.95 x 10~%7). Although the
observed label of sample_190 is type 4 (or LUAD), the predictive probability 0.424 is about
0.5, i.e., at the boundary between type 3 and type 4. We can even further reduce the multi-
gene signature to a set of four genes, gene_7965, gene_9176, gene_12977, and gene_15898.
With the final baseline-category npo model, we can still achieve high predictive accuracy
(801 — 2) /801 = 99.75% based on a five-fold cross-validation.

4.5. Prognostic Multi-Gene Signatures

A prognostic multi-gene signature is a set of genes whose expression patterns can serve as
a prognostic biomarker for the associated phenotype or condition, such as the cancer types
in our example [28,29]. In this section, we compare four potential prognostic multi-gene
signatures: (1) the 31 genes (see Appendix A) selected for the adjacent-categories po (acpo)
model; (2) the 74 genes (see Appendix B) selected for the adjacent-categories npo (acnpo)
model; (3) the 4 genes (see Section 4.4) selected for the baseline-category npo (nomnpo)
model; and (4) the top 50 genes (top50) recommended by [1].

In Table 3, we list the number of genes shared by the row multi-gene signature and the
column one. As mentioned in Section 4.3, two genes, gene_7965 and gene_9176, are shared
by acpo, acnpo and nomnpo, while only one gene, gene_9176, is shared by all four signatures.
It should be noted that the genes selected for acpo and nomnpo are neither subsets of acnpo
nor top50. They overlap with each other, but without inclusion.

Table 3. Counts of genes shared by different multi-gene signatures.

acpo acnpo nomnpo top50
acpo 31 29 2 20
acnpo 29 74 4 45
nomnpo 2 4 4 2
top50 20 45 2 50

Note: acpo: adjacent-categories po’s 31 genes; acnpo: adjacent-categories npo’s 74 genes; nomnpo: baseline-
category npo’s 4 genes; top50: top 50 genes in [1].

5. Discussion

In this paper, we propose a data analysis procedure for a high-dimensional sparse
data with categorical response variables, including covariate screening, model selection,
order selection, and variable selection. Different from typical machine learning techniques,
the prediction given the covariates is a probability distribution on the collection of response
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categories. For example, the prediction for sample_190 in the RNA-seq gene expression data
is (1.04 x 10713,2.68 x 10719,0.576,0.424,2.95 x 10~%) based on the adjacent-categories
po model with 31 genes. Although the observed label is type 4 (or LUAD), the prediction
should be interpreted as high risks in both KIRC (type 3) and LUAD since both predictive
probabilities are close to 0.5. It is important in practice, since the doctor may suggest the
patient receive early screening examinations on both types of tumors. If, instead, the pre-
diction is a deterministic one, in this case, KIRC, whose predictive probability 0.576 is the
highest, then the risk of LUAD is ignored by mistake. In other words, a distribution predic-
tion or stochastic classification is much more informative than a deterministic classification.

As mentioned in Sections 4.3—4.5, we recommend three predictive models for the
RNA-seq gene expression data at different levels of cost and accuracy. For predicting the
risks of five types of cancers, Model (3) based on four genes costs the least and achieves the
lowest accuracy level. In practice, it may be used for general cancer screening purposes.
Model (2), based on 74 genes, has the highest predictive accuracy and may be used for
clinical diagnosis. Model (1), with 31 genes, stands in the middle and may be used for
cancer screening practice for people with a higher risk due to a family history of cancers.
In other words, each recommended model may have its own appropriate applications.

Another interesting result obtained in our analysis is the order (COAD, KIRC, LUAD,
BRCA, PRAD) chosen for the adjacent-categories po model. According to the reduction in
the AIC value from 309.52 to 175.81, the chosen order works significantly better than the
original order for the adjacent-categories po model. It may be worth exploring whether the
selected order has any implication since it is supported by the data.

It should be noted that, for illustration purposes only, the original gene expression
levels x;; variables are used as predictors in Section 4, known as main-effects models.
In practice, however, transformations of covariates such as xizj and log(xij + 1), or interac-
tions of covariates such as x;;x;; may be considered as potential predictors as well. In that
case, the selected final models are expected to be different.

Besides the RNA-seq gene expression data or other omics data in medical sciences,
the proposed statistical approach can also be used for high-dimensional sparse data arising
in many other scientific disciplines, including survey and demographic data in social sci-
ences, bag-of-words representations of text in natural language processing and information
retrieval, mobile app usage logs in application usage analytics, recommender systems in
artificial intelligence (Al), etc. [2].
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Appendix A. List of 31 Selected Genes for the Adjacent-Categories Po Model (See
Sections 4.3 and 4.5)

gene_1054, gene_2288, gene_2639, gene_3439, gene_3598, gene_3737, gene_4467,
gene_5050, gene_6838, gene_7235, gene_7964, gene_7965, gene_8003, gene_8349,
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gene_9175, gene_9176, gene_9626, gene_10284, gene_10460, gene_10489, gene_11449,
gene_12013, gene_12995, gene_14866, gene_15447, gene_15633, gene_15894, gene_15945,
gene_16817, gene_17688, gene_19236

Appendix B. List of 74 Selected Genes for the Adjacent-Categories Npo Model (See
Sections 4.3 and 4.5)

gene_706, gene_742, gene_1510, gene_2288, gene_3439, gene_3461, gene_3552,
gene_3598, gene_3737, gene_3836, gene_3862, gene_4223, gene_4467, gene_4618,
gene_4640, gene_4833, gene_4979, gene_5050, gene_5394, gene_6162, gene_6226,
gene_6722, gene_6838, gene_6890, gene_7235, gene_7560, gene_7792, gene_7964,
gene_7965, gene_8003, gene_8349, gene_8891, gene_9175, gene_9176, gene_9181,
gene_9626, gene_9680, gene_9979, gene_10061, gene_10284, gene_10460, gene_10489,
gene_10809, gene_10950, gene_11440, gene_11449, gene_11566, gene_12013, gene_12068,
gene_12695, gene_12977, gene_12995, gene_13210, gene_13497, gene_14569, gene_14646,
gene_14866, gene_15447, gene_15633, gene_15894, gene_15896, gene_15898, gene_15945,
gene_16169, gene_16246, gene_16337, gene_16392, gene_16817, gene_17688, gene_17801,
gene_17949, gene_19236, gene_19661, gene_20476

Appendix C. Fitted Adjacent-Categories Npo Model with 74 Selected Genes (See
Section 4.4)

As a special case of Model (3), the fitted (main-effects) adjacent-categories npo model
with 74 selected genes in Section 4.4 can be written as

A . B
log| - =P+ Y BirXik—1
k=2

T j+1

wherei =1,...,801 is the sample index; j = 1 (BRCA), 2 (COAD), 3 (KIRC), and 4 (LUAD)
(thus 7tj5 represents PRAD); .Bjk variables are estimated parameters listed in Tables A1-A3;
and x;;_1 is the expression level of the (k — 1)th selected gene listed in Appendix B.

Table Al. Fitted parameters for the adjacent-categories npo model with 74 selected genes (Part I).

k Name j=1 j=2 j=3 j=4
1 Intercept —19.842 —1.624 9.602 —10.581
2 gene_706 —0.232 0.0232 —0.592 0.281
3 gene_742 —0.549 —0.651 —0.406 0.355
4 gene_1510 0.0648 0.0107 0.0758 —0.344
5 gene_2288 —0.791 —0.277 —0.493 1.134
6 gene_3439 0.113 0.897 —0.997 —0.00296
7 gene_3461 0.272 0.028 —0.389 0.531
8 gene_3552 0.235 —0.398 0.428 —0.432
9 gene_3598 0.225 —0.142 —0.583 0.983
10 gene_3737 0.431 —0.394 0.0109 0.827
11 gene_3836 0.297 —0.546 0.538 —0.162
12 gene_3862 —0.463 0.207 —0.372 0.0824
13 gene_4223 —0.521 0.313 —1.592 1.269
14 gene_4467 0.167 0.139 0.500 —0.673
15 gene_4618 —0.669 0.358 —2.068 1.973
16 gene_4640 —0.738 0.711 -0.173 0.168
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Table Al. Cont.
k Name j=1 j=2 j=3 j=4
17 gene_4833 0.286 0.317 —0.611 0.229
18 gene_4979 —-0.121 0.390 —1.267 1.178
19 gene_5050 —0.100 0.201 —0.256 0.222
20 gene_5394 0.124 0.150 -1.162 1.046
21 gene_6162 —-1.111 —0.530 —0.306 0.327
22 gene_6226 0.135 0.130 0.663 —0.826
23 gene_6722 —0.392 0.356 —0.234 0.0363
24 gene_6838 0.525 -0.276 0.597 —0.494
25 gene_6890 —-0.159 0.0228 —-0.112 —0.333
Table A2. Fitted parameters for the adjacent-categories npo model with 74 selected genes (Part II).
k Name j=1 j=2 j=3 j=4
26 gene_7235 -1.114 0.178 —0.0569 0.193
27 gene_7560 0.160 —0.275 0.206 -0.392
28 gene_7792 0.331 —0.0609 —0.253 0.430
29 gene_7964 1.010 0.529 —0.142 —0.498
30 gene_7965 1.559 0.139 0.745 —0.534
31 gene_8003 0.042 —0.319 0.188 —0.185
32 gene_8349 0.488 —0.235 —0.0766 0.273
33 gene_8891 0.371 0.111 1.253 —1.249
34 gene_9175 0.0943 -0.219 1.001 0.192
35 gene_9176 0.0486 0.211 —1.320 0.985
36 gene_9181 0.0786 -0.196 0.139 -0.159
37 gene_9626 0.429 0.0889 0.204 0.169
38 gene_9680 —0.189 0.00538 0.364 —0.354
39 gene_9979 —0.201 —0.139 0.904 —0.950
40 gene_10061 —0.544 0.389 —1.463 0.909
41 gene_10284 —0.0725 0.0631 —0.593 0.712
42 gene_10460 0.526 —1.255 —0.416 1.049
43 gene_10489 —0.862 0.466 —0.206 0.231
44 gene_10809 —0.0157 0.00227 —0.662 0.613
45 gene_10950 0.127 0.219 —0.186 0.244
46 gene_11440 —0.548 0.385 0.0711 —-0.231
47 gene_11449 0.366 0.0614 —0.336 —0.542
48 gene_11566 0.0015 —0.958 0.320 0.210
49 gene_12013 0.810 —0.662 —0.391 0.499
50 gene_12068 0.233 0.171 0.477 -0.391
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Table A3. Fitted parameters for the adjacent-categories npo model with 74 selected genes (Part III).

k Name j=1 j=2 j=3 j=4
51 gene_12695 0.544 —0.276 0.426 —0.101
52 gene_12977 —0.173 0.319 —1.094 0.702
53 gene_12995 —0.0335 —0.032 —0.0601 0.207
54 gene_13210 0.736 —0.422 1.404 —0.650
55 gene_13497 0.0561 —0.175 0.335 —0.142
56 gene_14569 0.374 —0.000751 0.077 —0.262
57 gene_14646 0.269 —0.328 —0.199 0.212
58 gene_14866 —0.00596 0.307 1.347 —1.000
59 gene_15447 —0.209 0.00293 0.0196 0.0194
60 gene_15633 —0.000597 —0.0341 —0.0535 —0.122
61 gene_15894 —0.0516 —0.309 0.732 —0.596
62 gene_15896 —0.0755 0.0453 0.268 —0.332
63 gene_15898 0.640 0.272 0.674 —0.676
64 gene_15945 —1.183 0.683 0.232 —0.576
65 gene_16169 —0.633 0.213 —0.944 0.848
66 gene_16246 —0.248 0.646 —1.134 0.682
67 gene_16337 —0.384 —0.0586 0.373 —0.220
68 gene_16392 0.529 0.680 0.118 —0.271
69 gene_16817 0.0321 —0.0286 —0.127 —0.353
70 gene_17688 1.044 —0.438 1.351 —1.215
71 gene_17801 0.680 —0.0994 0.475 —0.0449
72 gene_17949 0.357 0.176 0.356 —0.456
73 gene_19236 -0.117 —0.0792 —0.0906 —0.173
74 gene_19661 —0.280 0.325 —0.501 0.327
75 gene_20476 0.151 —0.0272 0.597 —0.542
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