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Abstract— This paper studies the issue of data-driven opti-
mal control design for traffic signals of oversaturated urban
road networks. The signal control system based on the store
and forward model is generally uncontrollable for which the
controllable decomposition is needed. Instead of identifying
the unknown parameters like saturation rates and turning
ratios, a finite number of measured trajectories can be used to
parametrize the system and help directly construct a transfor-
mation matrix for Kalman controllable decomposition through
the fundamental lemma of J. C. Willems. On top of that, an
infinite-horizon linear quadratic regulator (LQR) problem is
formulated considering the constraints of green times for traffic
signals. The problem can be solved through a two-phase data-
driven learning process, where one solves an infinite-horizon
unconstrained LQR problem and the other solves a finite-
horizon constrained LQR problem. The simulation result shows
the theoretical analysis is effective and the proposed data-driven
controller can yield desired performance for reducing traffic
congestion.

I. INTRODUCTION

Traffic congestion in urban road can cause a strong degra-
dation in performance of network infrastructure, increase the
travel delay and decrease the traffic throughput [1]. Traffic
signal control aims at reducing the traffic congestion by
adjusting the signal splits in each intersection to smooth the
traffic flow and improve the traffic efficiency.

Decreasing the queue length is a straightforward way
to mitigate traffic congestion, and a stabilizing controller
is defined to make the queue length finite in average [2].
TUC (Traffic-Responsive Urban Control) utilized a store
and forward model to describe the traffic flow of urban
networks and introduced linear quadratic regulator to de-
sign a dynamic signal split law such that the number of
vehicles can be minimized [3]. This strategy was extended
to handle the constraints with multiple states and controls
combined with nonlinear programming [4]. Furthermore, a
multi-agent control strategy was derived based on this model
and, together with a model predictive control technique, had
improved the traffic conditions [5]. Similarly, decentralized
controller design was considered in [6] and the obtained
controller had comparable performance with the centralized
TUC controller. Besides, TUC has been extensively studied
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and experimentally implemented in many places, and had
shown around 15% improvement in average network speed
compared with a pre-existing signal plan in a mid-sized
Brazilian city [7].

However, most of the research on TUC assumes the
system model is known, and the model parameters are
identified from experimental data offline [3]. In practice,
the traffic conditions at intersections can change due to
the randomness of vehicle movements [8]. Therefore, the
offline parameters may not be applicable for the controller
design. On the other hand, data-driven control is a promising
approach as it derives desirable control laws directly from
real-time data collected from the traffic systems. Adaptive
linear quadratic regulator was proposed to online identify
the traffic dynamics and adjust the controller to decrease
travel delay [9]. Function approximation based reinforcement
learning was proposed to dynamically react to different traffic
conditions and had been shown to outperform other pretimed
and longest queue methods [10]. Besides, multi-agent deep
reinforcement learning was employed to control local traffic
signals using neighboring information and had shown the
superior optimality, robustness, and sample efficiency over
other decentralized algorithms [11].

The learning or adaptation process can be complicated and
the optimality of the controlled process is generally not guar-
anteed. By contrast, data-driven control by adaptive dynamic
programming and Willems’ fundamental lemma has been
developed with rigorous theoretical guarantee on optimality,
stability and robustness [12][13]. The purpose of this paper
is to integrate the store and forward model for network-wide
traffic signals with data-driven control methods. Besides, the
controllability and controllable decomposition are analyzed
and data-driven methods are proposed to solve the con-
strained infinite-horizon linear quadratic regulator problem
with theoretical convergence and optimality analysis.

The rest of the paper is organized as follows. Section II
describes the store and forward model for traffic networks. In
Section III, the controllability of the system is analyzed and
the transformation matrix for Kalman controllable decompo-
sition is obtained. A linear quadratic regulator problem with
control constraints is formulated and solved by a two-phase
data-driven algorithm in Section IV. The simulation results
are included in Section V and some concluding remarks are
contained in Section VI.

Notations. Throughout this paper, In stands for the iden-
tity matrix with size n. N denotes the natural number and
N+ denotes the positive integers. ⊗ stands for the Kronecker
product. The image space of an m×n matrix A is Im[A] =
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Fig. 1. An urban road link

{y ∈ Rm : ∃x ∈ Rn, y = Ax}; rank(A) is the rank of

matrix A and col(A) ∈ Rmn is the vector which stacks all

columns of A. For a linear space V , V{ = {x ∈ Rn :
xT z = 0, ∀z ∈ V} is its orthogonal complement. Given a

discrete-time signal x : N → Rq and i, j ∈ N with i ≤ j,

f[i,j] =
[
fT
i fT

i+1 · · · fT
j

]T
and the Hankel matrix of

depth d (d ≤ j − i+ 1) associated with f[i,j] is

Hd(f[i,j]) =

⎡
⎢⎢⎢⎣

fi fi+1 · · · fj d+1

fi+1 fi+2 · · · fj d+2

...
...

. . .
...

fi+d 1 fi+d · · · fj

⎤
⎥⎥⎥⎦ .

II. SYSTEM MODELLING

In this section, we consider the store and forward model

in [3] for the network-wide traffic signal control of oversat-

urated urban roads.

The traffic network can be defined as a directed graph

where the intersections are regarded as vertices and links are

regarded as directed edges. Consider a typical unban road

link as shown in Fig. 1, where vehicles run through link z
from intersection M to intersection N . For a fixed sampling

time T , the vehicle flow satisfies

xz(k+1) = xz(k)+T [qz(k)−sz(k)+dz(k)−uz(k)], (1)

where for moment k, xz(k) denotes the number of vehicles at

link z; qz(k) denotes the inflows from upstream intersection

M ; uz(k) denotes the outflows towards downstream intersec-

tion N ; sz(k) is the exit flow and dz(k) is the demand flow.

The exit flow can be defined as sz(k) = tz,0qz(k) where tz,0
denotes the exit rate from inflow qz(k). Besides, the inflow

qz(k) can be expressed as

qz(k) =
∑

w⊥I(M)

tw,zuw(k) (2)

where I(M) denotes the approaching links of intersection

M and tw,z denotes the turning rate from link w to link z.

The outflow uz(k) has a close relation with the signal timing

plan as

uz(k) =
Sz

C

∑
i⊥vz

gN,i(k) (3)

where Sz denotes the saturation rates of link z; C is the

cycle time for all intersections; gN,i(k) is the green time for

phase i in intersection N and vz denotes the phases when

link z has right of way. Notice that (3) holds only when T
is an integer multiple of C. Combining the formulas (1), (2)

and (3), we have

xz(k + 1) = xz(k) + T [(1− tz,0)∑
w⊥I(M)

tw,zSw(
∑

i⊥vw
gM,i(k)

C
+

dz(k)−
Sz(

∑
i⊥vz

gN,i(k))

C
].

(4)

For intersection j ∈ {1, 2, ..., S} where S is the

number of intersections in the network, Fj denotes the

number of phases for intersection j. Therefore gj(k) =
col(gj,1(k), gj,2(k), .., gj,Fj (k)) ∈ RFj denotes the time of

all phases for intersection j at moment k. We only consider

green time for each phase, while, for the sake of simplicity,

the yellow time and the red time are assumed to be fixed

constants. Considering all incoming links z ∈ {1, 2, ..., Z},

where Z is the number of incoming links in the network, the

system model is described by

x(k + 1) = Ax(k) +Bg(k) + Td(k) (5)

where x(k) = col(x1(k), x2(k), ..., xZ(k)) ∈ RZ ;

d(k) = col(d1(k), d2(k), ..., dZ(k)) ∈ RZ ; g(k) =

col(g1(k), g2(k), ..., gS(k)) ∈ Rm with m =
S∑

j=1

Fj ; A =

IZ ∈ RZ∗ Z and B ∈ RZ∗ m.
Assume there exist a nominal control ḡ(k) ∈ Rm and

historical demand d̄(k) ∈ RZ such that Bḡ(k) + T d̄(k) = 0
[4]. Then, using this equation, (5) can be rewritten as

x(k + 1) = Ax(k) +BΔg(k) + TΔd(k) (6)

where Δg(k) = g(k) − ḡ(k) and Δd(k) = d(k) − d̄(k).
By selecting an appropriate nominal control ḡ(k), ‖Δd(k)‖
can be minimized [6] and removed from (5) [3]. Thus the

dynamic model becomes

x(k + 1) = Ax(k) +BΔg(k). (7)

Some constraints on the phases of traffic signals are

described as follows. For each j ∈ {1, 2, ..., S} and i ∈
{1, 2, ..., Fj},

gj,i,min ≤ gj,i(k) ≤ gj,i,max (8)

where gj,i,min and gj,i,max are the minimum and maximum

green times for phase i in intersection j, respectively. In

addition, for each j ∈ {1, 2, ..., S},

Fj∑
i=1

gj,i(k) + Lj = C (9)

where Lj is the sum of yellow and red times of intersection

j. Notice that (9) still holds for the nominal control ḡ(k),
and, as a result, for each j ∈ {1, 2, ..., S},

Fj∑
i=1

Δgj,i(k) = 0. (10)
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Therefore, control variable Δgj,1(k) can be discarded from

Δg(k) by reorganizing the matrix B as follows. Define mj

as the index of the first column for intersection j in matrix

B, and by (10),

Fj∑
i=1

Δgj,iB[×,mj+i 1] =

Fj∑
i=2

Δgj,i(B[×,mj+i 1] −B[×,mj ])

where B[×,k] denotes the kth column of B. Therefore, define

Δgrj (k) = col(Δgj,2(k), ...,Δgj,Fj (k)) and corresponding

columns Br
j = [B[.,mj+1] − B[.,mj ], ..., B[.,mj+Fj 1] −

B[.,mj ]]. Then

Δgr(k) = col(Δgr1(k),Δgr2(k), ...,ΔgrS(k)) ∈ Rm S

and Br = [Br
1 , B

r
2 , ..., B

r
S ] ∈ RZ∗ (m S). Thus the system

(7) can be rewritten as

x(k + 1) = Ax(k) +BrΔgr(k). (11)

III. CONTROLLABILITY ANALYSIS AND DECOMPOSITION

In this section, we investigate the controllability of (11)

and obtain a data-driven transformation matrix for Kalman

controllable decomposition through the fundamental lemma

of Willems [14].

We have the following result on system controllability.

Lemma 1: The pair (A,B) in (7) is not controllable when

m < Z, and the pair (A,Br) in (11) is not controllable when

m < Z + S.

Proof: Since A = IZ , the controllability matrix C =
[B,B, ..., B] and rank(C) = rank(B) ≤ m < Z is not of full

row rank. Thus (A,B) in (7) is not controllable [15]. The

second argument can be proved similarly.

Remark 1: It is proved in [6] that B in (7) has full column

rank assuming open traffic network and minimum complete

stage strategy. For simplicity, we assume the assumptions

still hold and rank(B) = m implies rank(Br) = m − S.

Thus when m = Z, the pair (A,B) in (7) is controllable.

However, in general, the number of phases is fewer than that

of links, i.e. m < Z, thus the pairs (A,B) and (A,Br) will

be uncontrollable.

Furthermore, since A is an identity matrix, the uncontrol-

lable mode λ = 1. Therefore, the pairs (A,B) and (A,Br)
are not stabilizable [16] and the controllable decomposition

is needed for the control design.

To obtain a data-driven transformation matrix for con-

trollable decomposition, we first introduce some necessary

preliminaries.

Definition 1 ([17]): {u[0,T i 1]}τi=1 is collectively persis-

tently exciting of order d ∈ N+ if d ≤ T i for all i =
1, 2, ..., τ , and the mosaic-Hankel matrix,

[Hd(u
1
[0,T 1 1]), ..., Hd(u

τ
[0,T τ 1])],

has full row rank.

Lemma 2 ([18]): Let {ui
[0,T i 1], x

i
[0,T i 1]}τi=1 be a set

of input-state trajectories generated by the system xk+1 =
Axk + Buk with xk ∈ Rn and uk ∈ Rm. If {ui

[0,T i 1]}τi=1

is collectively persistently exciting of order δ + L where δ

is no more than the degree of the minimal polynomial of A,

then

Im

[
H1(x

1
[0,T 1 L]) · · · H1(x

τ
[0,T 1 L])

HL(u
1
[0,T 1 1]) · · · HL(x

τ
[0,T 1 1])

]

= (R+K[x1
0, x

2
0, ..., x

τ
0 ])× RmL

(12)

where R = Im[B,AB, ..., An 1B] and K[x1
0, x

2
0, ..., x

τ
0 ] =

Im[X0, AX0, ..., A
n 1X0] with X0 = [x1

0, x
2
0, ..., x

τ
0 ] and xi

0

is the first state in the trajectory xi
[0,T i 1] for all 1 ≤ i ≤ τ .

The key of controllable decomposition is to find a basis

of the controllable subspace R, which stays in the span of

trajectories {xi
[0,T i L]}τi=1. With appropriate initial states xi

0,

the controllable subspace can be fully identified in our case

as follows.

Proposition 1: Let u1
[0,T 1 1], x

1
[0,T 1 1] be an input-state

trajectory generated by system (11). If u1
[0,T 1 1] is collec-

tively persistently exciting of order 2 and x1
0 ∈ R, then

R = Im[H1(x
1
[0,T 1 1])]. (13)

Proof: Suppose τ = 1 and L = 1, since A = IZ , the

degree of the minimal polynomial of A is 1. Since u1
[0,T 1 1]

is collectively persistently exciting of order 2, by Lemma

2, R + Im[x1
0] = Im[H1(x

1
[0,T 1 1])]. When x1

0 ∈ R, R =

Im[H1(x
1
[0,T 1 1])].

The main difficulty of applying Proposition 1 is that we

do not know Br matrix in advance, and we can only check

it afterwards through rank[H1(x
1
[0,T 1 1])] = m − S. If the

condition does not hold or equivalently x1
0 /∈ R, we have

the following proposition to find R by collecting another

trajectory.

Proposition 2: Let {ui
[0,T i 1], x

i
[0,T i 1]}2i=1 be two input-

state trajectories generated by system (11). If u1
[0,T 1 1] and

u2
[0,T 2 1] are both collectively persistently exciting of order

2, then if x1
0 /∈ R and x2

0 /∈ Im[H1(x
1
[0,T 1 1])],

R = Im[H1(x
1
[0,T 1 1])] ∩ Im[H1(x

2
[0,T 2 1])]. (14)

Proof: Suppose τ = 1 and L = 1, then by

Lemma 2, Im[H1(x
1
[0,T 1 1])] = R + Im[x1

0]. Thus R ⊆
Im[H1(x

1
[0,T 1 1])]. Similarly R ⊆ Im[H1(x

2
[0,T 2 1])], so

R ⊆ Im[H1(x
1
[0,T 1 1])] ∩ Im[H1(x

2
[0,T 2 1])]. Conversely,

when x1
0 /∈ R, rank[H1(x

1
[0,T 1 1])] = m − S + 1 and

there exists a matrix H{
1 ∈ RZ∗ (Z m+S 1) such that

rank[H1, H
{
1 ] = Z and Im[H{

1 ] is the orthogonal com-

plement of Im[H1] (H1 refers to H1(x
1
[0,T 1 1])). Besides,

there exists a matrix R ∈ RZ∗ (m S) such that R = Im[R].
If x ∈ Im[H1(x

1
[0,T 1 1])] ∩ Im[H1(x

2
[0,T 2 1])], there exist

a0 ∈ Rm S and a1 ∈ R such that x = Ra0 + x1
0a1,

and there exist b0 ∈ Rm S and b1 ∈ R such that x =
Rb0 + x2

0b1. Since x2
0 /∈ Im[H1], there exist m0 ∈ RT 1 1

and m1 ∈ RZ m+S 1 such that x2
0 = H1m0 + H{

1 m1

with H{
1 m1 �= 0 . Arranging these equations, we have

R(a0−b0)+x1
0a1−H1m0b1 = H{

1 m1b1, where the left side

term lies in Im[H1] and the right side term lies in Im[H{
1 ].

Since Im[H1]∩Im[H{
1 ] = 0 and H{

1 m1 �= 0, b1 = 0 and x =
Rb0 ∈ R. Thus Im[H1(x

1
[0,T 1 1])]∩ Im[H2(x

2
[0,T 2 1])] ⊆ R
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and the proof is completed considering the other inclusion

relation.

To get the basis of R from (14), the following equation

[
H1(x

1
[0,T 1 1]) −H1(x

2
[0,T 2 1])

] [ X
Y

]
= 0

can be solved with unknown variables X ∈ RT 1 1 and

Y ∈ RT 2 1. The basic solutions X = {Xi}Ii=1 define a

set of vectors {H1(x
1
[0,T 1 1])Xi}Ii=1, where we can find the

maximum number of linearly independent vectors {ri}m S
i=1

through the Gaussian Elimination method [19] as the basis

of R. Similarly, when x1
0 ∈ R, the basis {ri}m S

i=1 can be

directly constructed from H1(x
1
[0,T 1 1]) based on Proposi-

tion 1. Therefore we have matrix R = [r1, r2, ..., rm S ] ∈
RZ∗ (m S) with R = Im[R].

On top of that, there exists a matrix R{ ∈ RZ∗ (Z m+S)

with full column rank such that RTR{ = 0. As a result, T =
[R,R{ ] is the transformation matrix for Kalman controllable

decomposition. Under x(k) = Tz(k), for system (11), we

have {
zc(k + 1) = zc(k) +BcΔgr(k)

zu(k + 1) = zu(k)
(15)

where z(k) = col[zc(k), zu(k)]; zc(k) ∈ Rm S and

T 1Br =

[
Bc

0

]
with Bc ∈ R(m S)∗ (m S), and the

pair (Im S , Bc) is controllable. From (15), the controllable

subsystem and uncontrollable system are decoupled and

we only need to design a controller for the controllable

subsystem.

IV. DATA-DRIVEN OPTIMAL CONTROLLER DESIGN

In this section, we consider a constrained infinite-horizon

linear quadratic regulator (LQR) problem for system (11).

Specially, based on the controllable decomposition, we em-

ploy a data-driven algorithm to solve the problem with

only controllable subsystems without relying on a prior

knowledge of system parameters.

To decrease the number of vehicles and mitigate traffic

congestion with moderate control efforts, the following prob-

lem is first considered,

min
u

∈∑
k=0

xT
kQxk + uT

kRuk

s.t. xk+1 = xk +Bruk, ∀k ≥ 0;
x0 = x0; u ∈ U

(16)

where Q = QT > 0 and R = RT > 0 are weighting

matrices; uk refers to Δgr(k); xk refers to x(k); u =
col[u0, u1, ...] and U = {u|uk ∈ U, ∀k ≥ 0} denotes the

constraints of (8) with U = {uk|Muk ≤ ū} where ū >
0 ∈ R2m and M ∈ R2m∗ (m S). We assume the nominal

control ḡ(k) satisfies (8) strictly for each component, thus 0
is an interior point of U. Under xk = Tzk, problem (16) can

be transformed into an equivalent form where the relevant

terms of uncontrollable variables zuk can be removed to get

a well-defined problem as follows,

min
u

∈∑
k=0

(zck)
TQcz

c
k + uT

kRuk

s.t. zck+1 = zck +Bcuk, ∀k ≥ 0;
zc0 = zc(0); u ∈ U

(17)

where zck = zc(k); Qc > 0 is the upper left block matrix of

TTQT with size (m−S)×(m−S) and zck is the first m−S
components of T 1xk. If there exists a feasible solution to

the problem (17), a two-phase data-driven algorithm can be

employed to solve the problem.

A. Phase 1. Unconstrained Infinite-horizon LQR

In this stage, the aim is to find the optimal solution of the

following problem,

min
u

∈∑
k=0

(zck)
TQcz

c
k + uT

kRuk

s.t. zck+1 = zck +Bcuk, ∀k ≥ 0;
zc0 = zc(0)

(18)

where the control constraints are removed from (17). The

optimal solution can be found through the following value

iteration process.

Lemma 3: [20] For i ∈ N, consider the iteration

Pi+1 = Pi − PiBcKi +Qc

Ki = (BT
c PiBc +R) 1BT

c Pi

(19)

with P0 ≥ 0, then

lim
i∞∈

Pi = P→, lim
i∞∈

Ki = K→.

In Lemma 3, P→ defines the optimal cost function

J→(zc0) = (zc0)
TP→zc0 and K→defines the optimal control

u→k = −K→zck for problem (18). But the iteration process

needs the explicit form of Bc matrix, which can be bypassed

by adaptive dynamic programming techniques as follows.

Consider that

(zck+1)
TPiz

c
k+1 = (zck +Bcuk)

TPi(z
c
k +Bcuk)

= (zck)
TPiz

c
k + 2uT

kB
T
c Piz

c
k + uT

kB
T
c PiBcuk,

and by using the Kronecker product,

((z̃ck+1)
T − (z̃ck)

T )vecs(Pi)

= 2(zck ⊗ uk)
T vec(BT

c Pi) + ũT
k vecs(BT

c PiBc)
(20)

where the notations of z̃ck and ũk can be found in [21]. Let

{u[0,M ], z
c
[0,M ]} be a long input-state trajectory which leads

to a matrix equation as

Φ

[
vec(BT

c Pi)
vecs(BT

c PiBc)

]
= Ψvecs(Pi) (21)

where

Ψ = [ z̃c1 − z̃c0 z̃c2 − z̃c1 · · · z̃cM − z̃cM 1 ]T ,

Φ = [ δ0 δ1 · · · δM 1 ]T

with δTj = [ 2(zcj ⊗ uj)
T

ũT
j ] for j = 0, 1, ...,M − 1.

Therefore we can solve (21) iteratively to execute the value

iteration process. To get a unique solution, the following

assumption is imposed.
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Assumption 1: Given {u[0,M ], z
c
[0,M ]}, Φ has full column

rank.

Now we are ready to give our algorithm and its conver-

gence result.

Algorithm 1 Data-driven Value Iteration for Phase 1

1: Choose a large enough I ∈ N. Collect an input-state

trajectory {u[0,M ], z
c
[0,M ]} such that Assumption 1 holds.

Let i = 0 and P0 = 0.

2: Solve BT
c Pi and BT

c PiBc from (21), and get Ki and

Pi+1 from (19).

3: If i ≥ I , go to step 4; Otherwise, let i ← i + 1 and

return to step 2.

4: Output PI and KI .

Theorem 1: Under Assumption 1, for Algorithm 1,

lim
I∞∈

Pi = P→, lim
I∞∈

Ki = K→

Proof: Since P0 = 0, under Assumption 1, solving (21)

gives the unique solution of (19) for each iteration, and the

convergence is obtained by Lemma 3.

B. Phase 2. Constrained Finite-horizon LQR

After we get PI and KI from Phase 1, the following

problem is considered,

min
}uk

N 1
0

(zcN )TPIz
c
N +

N 1∑
k=0

(zck)
TQcz

c
k + uT

kRuk

s.t. zck+1 = zck +Bcuk, uk ∈ U, ∀0 ≤ k < N ;
zc0 = zc(0),

(22)

where the time horizon N is determined based on whether

zcN is in the admissible set [21]. To solve (22) needs

the information of Bc matrix, based on the following

Lemma, sampled trajectories can be used to implement the

parametrization.

Lemma 4: [14][18] For system zck+1 = zck +Bcuk, if the

input ud
[0,T 1] is collectively persistently exciting of order

1 + L, and xd
[0,T 1] is the state trajectory, then any L-long

input-state trajectory of system can be expressed as[
u[0,L 1]

zc[0,L 1]

]
=

[
HL(u

d
[0,T 1])

HL(x
d
[0,T 1])

]
g

with g ∈ RT L+1. Conversely, for any g ∈ RT L+1,[
HL(u

d
[0,T 1])

HL(x
d
[0,T 1])

]
g

is an L-long input-state trajectory.

Based on this Lemma, for L = 2, we have the following

equivalent form of problem (22) [21].

min
}gk

N 1
0

(zcN )TPIz
c
N +

N 1∑
k=0

(zck)
TQcz

c
k + uT

kRuk

s.t.

[
u[k,k+1]

zc[k,k+1]

]
=

[
H2(u

d
[0,T 1])

H2(x
d
[0,T 1])

]
gk,

H1(x
d
[1,T 1])gk = H1(x

d
[0,T 2])gk+1,

uk ∈ U, ∀0 ≤ k < N ; zc0 = zc(0)

(23)
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Fig. 2. Traffic network for simulation

It can be proved that this problem is a convex quadratic

programming problem and can be solved efficiently. If the

solution for (23) is u→k = H1(u
d
[0,T 2])gk with k < N , then

the near optimal control law for the whole problem is

ũk =

{
u→k, 0 ≤ k < N

−KIz
c
k, k ≥ N

.

The whole algorithm is as follows, which is data-driven

and converges to the optimal solution of (17) as I tends

to infinity.

Algorithm 2 Data-driven Algorithm for the Whole Problem

1: Find the transformation matrix T based on Section III.

2: Run Algorithm 1 to find PI and KI .

3: Solve (23) to get u→k for k < N .

4: Output the near optimal control law ũk.

V. SIMULATION RESULTS

In this section, we illustrate our proposed data-driven

control method for a benchmark traffic signal network.

We use the traffic network in Section 2.3 of [6] as Fig. 2

shows, where there are 5 intersections, 11 incoming links

and 9 phases in total, and the solid lines refer to the

incoming links and the dashed lines are outgoing links of

the network. The parameters including phase setting, turing

rates, saturation rates and exit rates are same as those in [6].

The cycle time and sampling time are both 60 seconds. For

all intersections, the fixed yellow and red time are 4 seconds

in total. And the minimum and maximum green time can be

obtained by shifting the nominal green time by 5 seconds

for all phases.

In the first stage, the number of control variables is

reduced to get Δgr(k). It is noted that intersection 3 only

has 1 phase and it occupies the whole available time, which

means it is open all the time. In this case, we can directly

discard the 5th column in B matrix since Δg3,1 = 0.

Through the elimination method in Section II, we only

have 4 control variables Δg1,2,Δg2,2,Δg4,2 and Δg5,2 and

all the other phases’ time can be derived according to

(10). To get a transformation matrix T , two persistently

exciting input-state trajectories with order 2 are collected
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Fig. 3. Convergence of Pi and Ki

with initial states [11, 5, 27, 18, 23, 16, 15, 13, 18, 15, 16]T

and [10, 28, 12, 34, 28, 13, 20, 13, 26, 12, 15]T . And the per-

sistently exciting inputs are chosen through random numbers

between (0, 1) for 30 data points in each trajectory. The

conditions of Proposition 2 are satisfied and T matrix is

found by the proposed data driven method. Bc matrix is

with full rank under this T matrix. Notice that the orthogonal

basis can give more numerically stable solutions compared

with the regular basis in the solving process.

After that, we apply the two-phase learning process to

compute the optimal control law. In the first unconstrained

case, Q and R are both identity matrix and another trajec-

tory with 30 data points is collected based on the random

signals as above to satisfy the Assumption 1. Algorithm 1 is

implemented and P→and K→are computed for comparison.

It can be seen from Fig. 3 that, P i and Ki converge to P→

and K→within 5 steps. After solving PI , the admissible set

is calculated and the planning horizon N is selected as 2

to guarantee zcN can reach the admissible set [21], which

implies that after 2 steps, the trajectory is generated by the

controller from the unconstrained linear quadratic regulator.

A new persistent exciting input-state trajectory is collected

with order 3 and length T = 15 to parametrize the system.

The optimal cost is 917.43, higher than 844.11, which refers

to the optimal cost for the unconstrained case.

VI. CONCLUSIONS

In this paper, the optimal traffic signal control problem in

urban road network based on the store and forward model

is considered. The controllability of the traffic system is

investigated and the controllable decomposition process is

constructed by collecting at most two persistently exciting

input-state trajectories. A constrained infinite-horizon linear

quadratic regulator problem is proposed and solved through

a two-phase data-driven learning process based on the con-

trollable decomposition result. Finally, the simulation results

have validated the effectiveness of our proposed method.
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