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Abstract— This paper studies the issue of data-driven opti-
mal control design for traffic signals of oversaturated urban
road networks. The signal control system based on the store
and forward model is generally uncontrollable for which the
controllable decomposition is needed. Instead of identifying
the unknown parameters like saturation rates and turning
ratios, a finite number of measured trajectories can be used to
parametrize the system and help directly construct a transfor-
mation matrix for Kalman controllable decomposition through
the fundamental lemma of J. C. Willems. On top of that, an
infinite-horizon linear quadratic regulator (LQR) problem is
formulated considering the constraints of green times for traffic
signals. The problem can be solved through a two-phase data-
driven learning process, where one solves an infinite-horizon
unconstrained LQR problem and the other solves a finite-
horizon constrained LQR problem. The simulation result shows
the theoretical analysis is effective and the proposed data-driven
controller can yield desired performance for reducing traffic
congestion.

I. INTRODUCTION

Traffic congestion in urban road can cause a strong degra-
dation in performance of network infrastructure, increase the
travel delay and decrease the traffic throughput [1]. Traffic
signal control aims at reducing the traffic congestion by
adjusting the signal splits in each intersection to smooth the
traffic flow and improve the traffic efficiency.

Decreasing the queue length is a straightforward way
to mitigate traffic congestion, and a stabilizing controller
is defined to make the queue length finite in average [2].
TUC (Traffic-Responsive Urban Control) utilized a store
and forward model to describe the traffic flow of urban
networks and introduced linear quadratic regulator to de-
sign a dynamic signal split law such that the number of
vehicles can be minimized [3]. This strategy was extended
to handle the constraints with multiple states and controls
combined with nonlinear programming [4]. Furthermore, a
multi-agent control strategy was derived based on this model
and, together with a model predictive control technique, had
improved the traffic conditions [5]. Similarly, decentralized
controller design was considered in [6] and the obtained
controller had comparable performance with the centralized
TUC controller. Besides, TUC has been extensively studied
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and experimentally implemented in many places, and had
shown around 15% improvement in average network speed
compared with a pre-existing signal plan in a mid-sized
Brazilian city [7].

However, most of the research on TUC assumes the
system model is known, and the model parameters are
identified from experimental data offline [3]. In practice,
the traffic conditions at intersections can change due to
the randomness of vehicle movements [8]. Therefore, the
offline parameters may not be applicable for the controller
design. On the other hand, data-driven control is a promising
approach as it derives desirable control laws directly from
real-time data collected from the traffic systems. Adaptive
linear quadratic regulator was proposed to online identify
the traffic dynamics and adjust the controller to decrease
travel delay [9]. Function approximation based reinforcement
learning was proposed to dynamically react to different traffic
conditions and had been shown to outperform other pretimed
and longest queue methods [10]. Besides, multi-agent deep
reinforcement learning was employed to control local traffic
signals using neighboring information and had shown the
superior optimality, robustness, and sample efficiency over
other decentralized algorithms [11].

The learning or adaptation process can be complicated and
the optimality of the controlled process is generally not guar-
anteed. By contrast, data-driven control by adaptive dynamic
programming and Willems’ fundamental lemma has been
developed with rigorous theoretical guarantee on optimality,
stability and robustness [12][13]. The purpose of this paper
is to integrate the store and forward model for network-wide
traffic signals with data-driven control methods. Besides, the
controllability and controllable decomposition are analyzed
and data-driven methods are proposed to solve the con-
strained infinite-horizon linear quadratic regulator problem
with theoretical convergence and optimality analysis.

The rest of the paper is organized as follows. Section II
describes the store and forward model for traffic networks. In
Section III, the controllability of the system is analyzed and
the transformation matrix for Kalman controllable decompo-
sition is obtained. A linear quadratic regulator problem with
control constraints is formulated and solved by a two-phase
data-driven algorithm in Section IV. The simulation results
are included in Section V and some concluding remarks are
contained in Section VL.

Notations. Throughout this paper, I,, stands for the iden-
tity matrix with size n. N denotes the natural number and
N denotes the positive integers. © stands for the Kronecker
product. The image space of an m x n matrix A is Im[A] =
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Fig. 1. An urban road link

{y € R™ : 3z € R",y = Ax}; rank(A) is the rank of
matrix A and col(4) € R™” is the vector which stacks all
columns of A. For a linear space V, V{ = {z ¢ R" :
2Tz = 0,Vz € V} is its orthogonal complement. Given a

discrete-time signal = : N — R? and 7,5 € N with ¢ < j,

fig =1 fla I }T and the Hankel matrix of
depth d (d < j — i + 1) associated with f; j; is
Ji fit1 [i a+1
Ha(fi5) = !ﬁfl 'ﬂTQ 'ﬂ-f+2
fi+.d 1 fi-er f:j

II. SYSTEM MODELLING

In this section, we consider the store and forward model
in [3] for the network-wide traffic signal control of oversat-
urated urban roads.

The traffic network can be defined as a directed graph
where the intersections are regarded as vertices and links are
regarded as directed edges. Consider a typical unban road
link as shown in Fig. 1, where vehicles run through link z
from intersection M to intersection /N. For a fixed sampling
time 7', the vehicle flow satisfies

2. (k+1) = 2.(k)+T[q. (k) — 5. (k) + d- (k) —u-(k)], (1)

where for moment k, x. (k) denotes the number of vehicles at
link z; ¢, (k) denotes the inflows from upstream intersection
M; u, (k) denotes the outflows towards downstream intersec-
tion N; s, (k) is the exit flow and d (k) is the demand flow.
The exit flow can be defined as s, (k) = t. oq.(k) where ¢
denotes the exit rate from inflow ¢. (k). Besides, the inflow
q.(k) can be expressed as

(k)= D tut(k)

wlI(M)

2)

where I(M) denotes the approaching links of intersection
M and t,, . denotes the turning rate from link w to link 2.
The outflow u, (k) has a close relation with the signal timing
plan as

S
uz(k) = 5 D2 9va(k) (3)
ilv,
where S, denotes the saturation rates of link z; C is the
cycle time for all intersections; g Nl(k) is the green time for

phase 7 in intersection N and v, denotes the phases when

845

link z has right of way. Notice that (3) holds only when T’
is an integer multiple of C'. Combining the formulas (1), (2)
and (3), we have

2 (k+1)=a,(k)+T[(1—ts0)
tw,sz(ZiJ_v, gM,i(k)
< +
UEEM) ¢ 4
d.(k) — Sz@mégzv,i(k))]_

For intersection j € {1,2,...,5} where S is the
number of intersections in the network, F); denotes the
number of phases for intersection j. Therefore g;(k)
col(gj1(k), gj2(k), ... gj,r, (k) € RY denotes the time of
all phases for intersection j at moment k. We only consider
green time for each phase, while, for the sake of simplicity,
the yellow time and the red time are assumed to be fixed
constants. Considering all incoming links z € {1,2,..., Z},
where Z is the number of incoming links in the network, the
system model is described by

x(k+1) = Ax(k) + Bg(k) + Td(k) (3)
where x(k) = col(zi(k),xa(k),....,zz(k)) € R%;
dk) = col(ds(k),da(R), - dz(h) € R g(k) —

col(g1(k), g2(k),...,gs(k)) € R™ with m = > F;; A =
j=1
I; € RZ*Z and B € R%* ™.
Assume there exist a nominal control g(k) € R™ and
historical demand d(k) € RZ such that Bg(k) + T'd(k) =0
[4]. Then, using this equation, (5) can be rewritten as

2(k +1) = Ax(k) + BAg(k) + TAd(k) 6)

where Ag(k) = g(k) — g(k) and Ad(k) = d(k) — d(k).
By selecting an appropriate nominal control g(k), ||Ad(k)||
can be minimized [6] and removed from (5) [3]. Thus the
dynamic model becomes

x(k+1) = Ax(k) + BAg(k). (7)

Some constraints on the phases of traffic signals are
described as follows. For each j € {1,2,....,.5} and i €
{1,2,..., F;},

(®)

where ¢ ; min and g;; max are the minimum and maximum
green times for phase ¢ in intersection j, respectively. In
addition, for each j € {1,2,..., S},

Gjimin < 95,i(k) < gj,i,max

Fy

> gjik)+Lj=C )
i=1

where L; is the sum of yellow and red times of intersection
j. Notice that (9) still holds for the nominal control g(k),
and, as a result, for each j € {1,2,..., S},

F;
> Agji(k) =0. (10)
i=1

Authorized licensed use limited to: New York University. Downloaded on April 14,2023 at 20:02:18 UTC from IEEE Xplore. Restrictions apply.



Therefore, control variable Ag; (k) can be discarded from
Ag(k) by reorganizing the matrix B as follows. Define m;
as the index of the first column for intersection j in matrix
B, and by (10),

F F
Z Ag;jiBism;vi 1) = Z Ag;i(B
i=1 =2

where B[Xk.] denotes the kth column of B. Therefore, define
Agi(k) = col(Ag;2(k),...,Agj r,(k)) and corresponding
columns B], [B[.,mj+1] - B[.,mj]7~-~
B[.’m]]]. Then

Ag" (k) = col(Agy (k), Agy(k), ...,
Bg]

[xmy+i 1] — Blxm,))

7B[.,m]‘+F]‘ 1] -

Ags(k)) e R™ 2

and B" = [BY, B}, ..., e RZ*(m S) Thus the system

(7) can be rewritten as
ok +1) (10

III. CONTROLLABILITY ANALYSIS AND DECOMPOSITION

= Ax(k) + B"Ag" (k).

In this section, we investigate the controllability of (11)
and obtain a data-driven transformation matrix for Kalman
controllable decomposition through the fundamental lemma
of Willems [14].

We have the following result on system controllability.

Lemma 1: The pair (A, B) in (7) is not controllable when
m < Z, and the pair (A, B") in (11) is not controllable when
m<Z+8S.

Proof: Since A = Iz, the controllability matrix C =
[B, B, ..., B] and rank(C) = rank(B) < m < Z is not of full
row rank. Thus (A, B) in (7) is not controllable [15]. The
second argument can be proved similarly. [ |

Remark 1: 1t is proved in [6] that B in (7) has full column
rank assuming open traffic network and minimum complete
stage strategy. For simplicity, we assume the assumptions
still hold and rank(B) = m implies rank(B") = m — S.
Thus when m = Z, the pair (A, B) in (7) is controllable.
However, in general, the number of phases is fewer than that
of links, i.e. m < Z, thus the pairs (A, B) and (A, B") will
be uncontrollable.

Furthermore, since A is an identity matrix, the uncontrol-
lable mode A = 1. Therefore, the pairs (A, B) and (A, B")
are not stabilizable [16] and the controllable decomposition
is needed for the control design.

To obtain a data-driven transformation matrix for con-
trollable decomposition, we first introduce some necessary
preliminaries.

Definition 1 ([17]): {ugor: 17};—; is collectively persis-
tently exciting of order d € N if d < T* for all 4
1,2, ..., 7, and the mosaic-Hankel matrix,

in(“[lo,Tl 1])7~-~7

has full row rank.

Lemma 2 ([18]): Let {“io,Ti 1],xf07T1- 1]};1 be a set
of input-state trajectories generated by the system 41 =
Az, + Buy, with 2 € R™ and uy, € R™. If {u! 0,7 1]}1 1
is collectively persistently exciting of order ¢ —|— L where 6

Hd(u[To,TT 1])],

846

is no more than the degree of the minimal polynomial of A,
then

Im Hl(x[li),Tl 1) Hy(a [0T1 1)
Hp(up i q)) Hp(zjym ) (12)
= (R+K[zp, 22, ..., 27]) x R™E
where R = Im[B, AB, ..., A" 'B] and K[z}, 23, ...,2]] =
Iln[)(o,z4)(07 L, A 1X0] with Xg = [.’L’é,.]?%, ,376] and .1'6

is the first state in the trajectory xfo Ti 1] forall 1 <: < 7.

The key of controllable decomposition is to find a basis
of the controllable subspace R, which stays in the span of
trajectories {xfom I }7_,. With appropriate initial states z{),
the controllable subspace can be fully identified in our case
as follows.

Proposition 1: Let “[0 o [0 71 1] be an input-state
trajectory generated by system (11). If u[o Tl 1] is collec-
tively persistently exciting of order 2 and z} € R, then

R =Im[H, ([ 1 1)) (13)
Proof: Suppose 7 =1 and L = 1, since A = Iy, the
degree of the minimal polynomial of A is 1. Since u[107T1 1]
is collectively persistently exciting of order 2, by Lemma
2, R + Im[z}] = Im[H;(x] Tjo 11 1])]. When 2z} € R, R =
Im[H, (2o 71 )] u
The main difficulty of applying Proposition 1 is that we
do not know B" matrix in advance, and we can only check
it afterwards through rank[Hl(ac[O m q)] =m— S If the
condition does not hold or equivalently z{ ¢ R, we have
the following proposition to find R by collecting another
trajectory.
Proposition 2: Let {u' o7 1T [0 Ti 1]}Z 1 be two input-
state trajectories generated by system (11). If “[o ™ and
[20sz ) are both collectively persistently exciting of order
2, then if g ¢ R and a§ ¢ Im[H: ({71 )],

R—ImiHl(x[o T! 1)] Im[H; (x [20,T2 1])i- (14)
Proof: Suppose 7 = 1 and L = 1, then by
Lemma 2, Im[Hl(x[O m ol = R + Im[z ] Thus R C
Im[H, (x} Tjo 1 1])] Similary R C Im[H,(z? Tior2 1)) SO
R C Im[Hl(x[O 1 1)) N Im[H1(2f, 72 )] Conversely,
when zy ¢ R, rank[Hy(zjgu )] = m — S+ 1 and

there exists a matrix H{ € R#*(Z m+5 1) quch that
rank[H,, H} ] = Z and Im[Hi{] is the orthogonal com-
plement of Im[H;] (H; refers to Hl(;v[lo’Tl 17))- Besides,
there exists a matrix R e RZ*(m 5) such that R = Im[R)].
If € Im[Hy(z} (o 1 1])} N Im[H; (2?3 (o 2 1])], there exist
ap € R™ S and a; € R such that z Rag + zhas,
and there exist by € R™ S and b; € R such that z =
Rby + x2by. Since 22 ¢ Im[H], there exist mo € RT 1
and m; € RZ ™S 1 guch that 22 = Hymg + Hf{ my
with H{m; # 0 . Arranging these equations, we have
R(ag—bo)+xgay—Hymoby = Hf myby, where the left side
term lies in Im[H] and the right side term lies in Im[H{ ].
Since Im[H,|NIm[H{ ] = 0and H{ m; # 0,b; = 0and x =
Rby € R. Thus Im[H1 (zf v )] NIm[Ha (2, 72 )] SR

Authorized licensed use limited to: New York University. Downloaded on April 14,2023 at 20:02:18 UTC from IEEE Xplore. Restrictions apply.



and the proof is completed considering the other inclusion
relation. u
To get the basis of R from (14), the following equation

>H }:0

can be solved with unknown variables X € R”" ! and
Y € RT* 1. The basic solutions X = {X;}/_, define a
set of vectors {Hl(x[lo’T1 1])Xi}f:1, where we can find the
maximum number of linearly independent vectors {r;}™*
through the Gaussian Elimination method [19] as the basis
of R. Similarly, when z} € R, the basis {r;}",* can be
directly constructed from Hl(x%O,Tl 1]) based on Proposi-
tion 1. Therefore we have matrix R = [ry,72,...,7m s] €
RZ* (M 9) with R = Im[R].

On top of that, there exists a matrix R{ € RZ* (2 m+5)
with full column rank such that RT Rt = 0. As aresult, T =
[R, R1] is the transformation matrix for Kalman controllable
decomposition. Under x(k) = Tz(k), for system (11), we

have

X
Y

2

—Hy(zjg 12

Hy (x[lo,Tl 1)

2k 4+ 1) = 2°(k) + B.Ag" (k)

24k +1)=z2"(k) (13)

where z(k)
T 1Br —

col[z¢(k), z%(k)]; 2°(k) € R™ 9 and
with B, € R(m S)*(m S) and the

c

0
pair (I,, s,B.) is controllable. From (15), the controllable
subsystem and uncontrollable system are decoupled and
we only need to design a controller for the controllable
subsystem.

IV. DATA-DRIVEN OPTIMAL CONTROLLER DESIGN

In this section, we consider a constrained infinite-horizon
linear quadratic regulator (LQR) problem for system (11).
Specially, based on the controllable decomposition, we em-
ploy a data-driven algorithm to solve the problem with
only controllable subsystems without relying on a prior
knowledge of system parameters.

To decrease the number of vehicles and mitigate traffic
congestion with moderate control efforts, the following prob-
lem is first considered,

€
min > @] Quy, + ul Ruy,
U k=0

sit. Tpy1 = xk + B uy, vk > 0; (16)

2z0=2%uecU

where Q = QT > 0 and R = RT > 0 are weighting
matrices; uy refers to Ag"(k); xy refers to z(k); u =
collug, u1,...] and U = {u|uy, € U,¥k > 0} denotes the
constraints of (8) with U = {ug|Muy < @} where @ >
0 € R?™ and M € R?>"* (™ S) We assume the nominal
control g(k) satisfies (8) strictly for each component, thus 0
is an interior point of U. Under x; = Tz, problem (16) can
be transformed into an equivalent form where the relevant
terms of uncontrollable variables z}' can be removed to get

847

a well-defined problem as follows,

€

min > (2§)TQczf + ul Ruy,
U k=0

st zg, 1 = 2, + Beug, Vk > 05

z5=2°(0);uelU

a7

where z; = 2°(k); Q. > 0 is the upper left block matrix of
TTQT with size (m—S) x (m—S) and 2§ is the first m —.S
components of 7' 'xy. If there exists a feasible solution to
the problem (17), a two-phase data-driven algorithm can be
employed to solve the problem.

A. Phase 1. Unconstrained Infinite-horizon LOR

In this stage, the aim is to find the optimal solution of the
following problem,

€
muin 3 (29)TQezf + ul Ruy,

k=0
sitozpy =2+ Boug,Vk > 0; (18)
z5 = 2°(0)

where the control constraints are removed from (17). The
optimal solution can be found through the following value
iteration process.

Lemma 3: [20] For 7 € N, consider the iteration

Py =P, — PB.K; + Q.
K; = (B'P,B.+ R) 'BTP,
with Py > 0, then

19)

lim P, =P~ lim K; =K~
In Lemmaw%,€ P~ defines wtohee optimal cost function
J25) = (25)T P25 and K defines the optimal control
up’ = —K%; for problem (18). But the iteration process
needs the explicit form of B, matrix, which can be bypassed
by adaptive dynamic programming techniques as follows.
Consider that

(213+1)Tpi2'12+1 = (2 + Bcuk)TPi(Zﬁ + Beouy)
= (20)" Pz + 2u} BY Pz + vl BT P, By,

and by using the Kronecker product,

((F)" = (Z0)")vees(P)

20
= 2(2¢ @ up,) vec(BT P;) + ul vecs(BY P,B,) 0)

where the notations of Zj and % can be found in [21]. Let
{0, M1 2 M]} be a long input-state trajectory which leads
to a matrix equation as

Vec(BCTPi) _ .
P [ vees(BIP,B.) | = Uvecs(P;) 21
where
U=[2—-% 252 =250 17,
d=[3d b o1 )b
with 67 = [ 2(z¢@u;)" @l ] for j = 0,1,...,M — 1.

Therefore we can solve (21) iteratively to execute the value
iteration process. To get a unique solution, the following
assumption is imposed.
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Assumptiop. Iss Given {ujo,n, [y} ¥ Ras™full column
rank. 06
Now we g ready) to give our algorithm fand its conver-

gence result.

Algorithm 1 Data=driv&n Value Iterafian for Phake(d)

1: Choose a largg—endugh I € N.
trajectory {uo, 1], [ pg1 } such th
Let =0 and P, = 0.

2: Solve BI'P; and BI'P,B,. from
P+ from (19).

3: If ¢ > I, go to step 4; Otherwise, let 7 < ¢ + 1 and
return to step 2.

4: Output Py and Kj.

(21), and gleti K; and

“+— a o, A

Theorem 1: Under Assumption 1, for Algorithm 1,
Ilim P, =P zhm K;=K~
eSIS el
Proof: Since Py = 0, under Assumption 1, solving (21)
gives the unique solution of (19) for each iteration, and the
convergence is obtained by Lemma 3. |

B. Phase 2. Constrained Finite-horizon LOR

After we get Pr and K; from Phase 1, the following
problem is considered,

N 1
min (25)" Prag + 3 (25)"Qezf + uf Ruy
}Ul»' 0 k=0
st zgyq = 25 + Beug,up € U,V0 < k < N;
25 = 2°(0),

where the time horizon NN is determined based on whether
z% 1s in the admissible set [21]. To solve (22) needs
the information of B, matrix, based on the following
Lemma, sampled trajectories can be used to implement the
parametrization.

Lemma 4: [14][18] For system zj | = 2} + Beuy, if the
input u[doj 1] is collectively persistently exciting of order

(22)

‘1 + L, and xfO,T 1] is the state trajectory, then any L-long
input-state trajectory of system can be expressed as

[ u[,O’L 1] } _ HL(UEI(LT 1])
20,0 1] HL(xflo,T 1)

with g € RT L+l Conversely, for any g € RT £+1

HL(UgO,T 1) g
Hi(afr 1)
is an L-long input-state trajectory.

Based on this Lemma, for L = 2, we have the following
equivalent form of problem (22) [21].

N 1
min (25)T P25 + X (25)7 Qezi + uf Ruy,
Yo o1 k=0
d
s.t. ["L’“’“* I } - HQ(UE?’T 2 g, (23)
k1] Hy(xjo 7 )
Hl(xflLT 1])9k = Hl(x[do’T 2])gk+1a
up € UV0 < k < N; 25 = 2°(0)

Fig. 2. Traffic network for simulation

It can be proved that this problem is a convex quadratic
programming problem and can be solved efficiently. If the
solution for (23) is u’= Hi(uff . 5)gr with k < N, then
the near optimal control law for the whole problem is

~ up, 0<k<N
U = .
- K ]Zg, k Z N
The whole algorithm is as follows, which is data-driven

and converges to the optimal solution of (17) as [ tends
to infinity.

Algorithm 2 Data-driven Algorithm for the Whole Problem
1: Find the transformation matrix 7" based on Section III.

: Run Algorithm 1 to find Pr and K.

: Solve (23) to get u; for k < N.

: Output the near optimal control law 1.

B Lo

V. SIMULATION RESULTS

In this section, we illustrate our proposed data-driven
control method for a benchmark traffic signal network.

We use the traffic network in Section 2.3 of [6] as Fig. 2
shows, where there are 5 intersections, 11 incoming links
and 9 phases in total, and the solid lines refer to the
incoming links and the dashed lines are outgoing links of
the network. The parameters including phase setting, turing
rates, saturation rates and exit rates are same as those in [6].
The cycle time and sampling time are both 60 seconds. For
all intersections, the fixed yellow and red time are 4 seconds
in total. And the minimum and maximum green time can be
obtained by shifting the nominal green time by 5 seconds
for all phases.

In the first stage, the number of control variables is
reduced to get Ag" (k). It is noted that intersection 3 only
has 1 phase and it occupies the whole available time, which
means it is open all the time. In this case, we can directly
discard the 5th column in B matrix since Ags; = 0.
Through the elimination method in Section II, we only
have 4 control variables Agj 2, Ags 2, Aga 2 and Ags o and
all the other phases’ time can be derived according to
(10). To get a transformation matrix 7', two persistently
exciting input-state trajectories with order 2 are collected
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Fig. 3. Convergence of P; and K;

with initial states [11,5,27,18,23,16,15,13,18,15,16]7
and [10,28,12,34,28,13,20,13,26,12,15]7. And the per-
sistently exciting inputs are chosen through random numbers
between (0,1) for 30 data points in each trajectory. The
conditions of Proposition 2 are satisfied and 7" matrix is
found by the proposed data driven method. B. matrix is
with full rank under this 7" matrix. Notice that the orthogonal
basis can give more numerically stable solutions compared
with the regular basis in the solving process.

After that, we apply the two-phase learning process to
compute the optimal control law. In the first unconstrained
case, () and R are both identity matrix and another trajec-
tory with 30 data points is collected based on the random
signals as above to satisfy the Assumption 1. Algorithm 1 is
implemented and P~and K —~are computed for comparison.

It can be seen from Fig. 3 that, P' and K’ converge to P~

and K ~within 5 steps. After solving Py, the admissible set
is calculated and the planning horizon N is selected as 2
to guarantee zf; can reach the admissible set [21], which
implies that after 2 steps, the trajectory is generated by the
controller from the unconstrained linear quadratic regulator.
A new persistent exciting input-state trajectory is collected
with order 3 and length 7" = 15 to parametrize the system.
The optimal cost is 917.43, higher than 844.11, which refers
to the optimal cost for the unconstrained case.

VI. CONCLUSIONS

In this paper, the optimal traffic signal control problem in
urban road network based on the store and forward model
is considered. The controllability of the traffic system is
investigated and the controllable decomposition process is
constructed by collecting at most two persistently exciting
input-state trajectories. A constrained infinite-horizon linear
quadratic regulator problem is proposed and solved through
a two-phase data-driven learning process based on the con-
trollable decomposition result. Finally, the simulation results
have validated the effectiveness of our proposed method.
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