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Abstract—This paper presents a unified approach to the prob-
lem of learning-based optimal control of connected human-driven
and autonomous vehicles in mixed-traffic environments including
both the freeway and ring road settings. The stabilizability of
a string of connected vehicles including multiple autonomous
vehicles (AVs) and heterogeneous human-driven vehicles (HDVs)
is studied by a model reduction technique and the Popov-
Belevitch-Hautus (PBH) test. For this problem setup, a linear
quadratic regulator (LQR) problem is formulated and a solution
based on adaptive dynamic programming (ADP) techniques is
proposed without a priori knowledge on model parameters.
To start the learning process, an initial stabilizing control law
is obtained using the small-gain theorem for the ring road
case. It is shown that the obtained stabilizing control law can
achieve general Lp string stability under appropriate conditions.
Besides, to minimize the impact of external disturbance, a
linear quadratic zero-sum game is introduced and solved by an
iterative learning-based algorithm. Finally, the simulation results
verify the theoretical analysis and the proposed methods achieve
desirable performance for control of a mixed-vehicular network.

Index Terms—Connected and autonomous vehicles (CAVs),
stabilizability, adaptive dynamic programming, optimal control,
disturbance attenuation.

I. INTRODUCTION

INTELLIGENT transportation is aimed at enhancing the
safety, throughput, and energy efficiency through emergent

communication techniques, e.g., vehicle-to-vehicle commu-
nication, by which vehicles can be virtually connected and
controlled, leading to significant performance improvements
[1]–[3].

One emerging important topic in connected vehicles is co-
operative driving where connected vehicles communicate with
each other to coordinate the motions of the vehicular network.
The longitudinal motion control of connected vehicles has a
huge impact on the energy efficiency of the whole system
[4]. In this topic, considerable theoretical research has been
carried out on the system modeling and control of CAVs with
guaranteed internal stability and string stability under desirable
communication topologies [5]. Naus et al. [6] designed a co-
operative adaptive cruise control (CACC) system and analyzed
the frequency-domain condition for string stability considering
a velocity-dependent intervehicle spacing policy. Zheng et al.
[7] discussed the impact of different information flows on the
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internal stability and stability margin of a platoon of AVs. Hu
et al. [8] proposed a distributed coordinated control strategy
for the longitudinal collision avoidance of CAVs. Zhang et al.
[9] considered the unknown input delays for the connected
vehicles and proposed adaptive switching control methods
with guaranteed stability. Besides, Xiao et al. [10] presented
a distributed cooperative platooning control of CAVs with an
event-triggered communication mechanism to achieve efficient
utilization of communication resources.

With the deployment of AVs, there will be a transition stage
when both AVs and HDVs exist in the connected vehicles
[2]. This mixed-traffic environment provides new challenges
to control synthesis and closed-loop vehicular system analysis
as HDVs cannot be directly controlled. In this direction, there
have been plenty of studies on the control of CAVs in the
mixed-traffic setting. When full HDVs running on a ring road,
a traffic jam can occur without any bottleneck [11], which
inspired the control of a CAV in the string to maintain the
expected states of the vehicles [12]. The optimal control design
of a single CAV in the freeway was studied in [13] based on
LQR considering communication delay, driver reaction time,
and string stability of the vehicular system. A robust control
strategy was introduced for the CAV considering the uncertain
driving reaction times of the preceding HDVs [14]. An eco-
driving strategy for CAVs in mixed platoons was developed
to reduce the total fuel consumption of the platoons [15].
Control of a single CAV and multiple heterogeneous HDVs
in the ring road through H2 optimal control was proposed
in [16], and the controllability and reachability conditions
were established to achieve the internal stability of the mixed-
traffic platoon. Similarly, multiple CAVs and homogeneous
HDVs were considered in [17] to derive the conditions on
system stabilizability and an H2 optimal control problem was
formulated to decrease the impact of external disturbance.

In the mixed-traffic environment, the behaviors of HDVs
can be different from the predicted behaviors using the mod-
els with empirical parameters, causing the degradation of
performance of model-based control methods. Reinforcement
learning (RL) and ADP are learning-based optimal control
methods, where the actions or controls are learned from data
through the interaction between agents and environments in an
online adaptive process [18]. Input and state data represent the
past experience and data-driven controllers can be gradually
learned as the experience increases, e.g., a Gaussian process
model was utilized to learn car-following behaviors [19], and
a model-free approach was applied to CACC using a function
approximation RL algorithm [20]. Besides, deep RL methods
were applied to design stabilizing and platooning policies for

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3287131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on September 13,2023 at 22:02:34 UTC from IEEE Xplore.  Restrictions apply. 



2

mixed vehicular systems [21], and validated in the freeway and
ring road environments [22], [23]. However, the convergence
and optimality of the algorithms are not guaranteed with the
learning mechanisms. By contrast, ADP techniques exploit the
structure of the optimal control problems and provide learning-
based iterative algorithms with rigorous theoretical analysis,
which have been applied to the longitudinal control of one
CAV in a platoon with heterogeneous HDVs on a freeway
[24], with further consideration of driver reaction time and
lateral control of AVs [25], [26]. In addition, Gao et al. [27]
proposed a nonlinear model for the CAV in the platoon and
employed global ADP to design learning-based suboptimal
controllers for the mixed vehicular system with robustness to
nonvanishing disturbances.

External disturbance can cause stop-and-go waves along the
platoon and the designed controller should be able to attenuate
the disturbance [28], [29]. Lp string stability and head-to-tail
string stability are proposed to describe the propagation of the
disturbance in the freeway [13], [30]. However, in the ring
road case, it is difficult to recognize the head vehicle or the
tail vehicle and we need to consider the impact of disturbance
on all the vehicles. Thus, a system-level performance that
describes the impact of the disturbance on the output related
to all states was proposed [16]. The minimization of the
performance comes down to an H∞ control problem and can
be transformed into a linear quadratic zero-sum game [31],
[32]. A data-driven algorithm is proposed to solve the optimal
controller for the zero-sum game in order to reduce the impact
of the external disturbance in this paper.

This paper is aimed at proposing a unified approach for
the optimal control of a general class of mixed vehicular
systems including CAVs and heterogeneous HDVs in both the
freeway and ring road cases. This paper has combined the
results in our previous work [33], [34], and presented more
systematic tools on this issue. Specifically, the stabilizability of
the mixed-traffic system is established under mild conditions.
On top of that, instead of using a model-based method,
ADP techniques are employed to design a data-driven optimal
controller without relying on the precise knowledge of human
driver parameters. Besides, the initial stabilizing controllers
are constructed explicitly to start the learning algorithm. The
convergence analysis of the algorithm and the Lp string
stability analysis of the vehicular network in closed-loop
with the obtained learning-based controllers are also given
under appropriate conditions. Furthermore, a robust controller
which achieves the maximum level of attenuation for external
disturbance is constructed by solving a linear-quadratic zero-
sum game and implemented by a learning-based value iteration
algorithm. The proposed methods are further validated through
SUMO simulation, a microscopic traffic simulation [35].

The main contributions are summarized as follows:
1) We introduce a novel way to study the stabilizability

of the connected vehicles, independent of the order in which
HDVs and AVs are arranged in the platoon, and the environ-
ments of freeways and ring roads. The first independence relies
on the fact that the stabilizability of the system does not change
after applying appropriate state feedback transformation, and
the second one depends on a model reduction technique for the

ring road environment, from which the similarity of systems in
the freeways and ring roads will be clear. Most of the previous
studies focus on the control of connected vehicles on either the
freeway case or the ring road case, e.g. [13]–[17], [24], [25],
[27], but after using the stabilizability results in this paper, the
control approach can be synthesized in a unified way without
specifying the environment as shown in Sections IV and V.

2) We propose a complete data-driven solution based on
ADP techniques for the linear quadratic optimal control of
the mixed vehicular platoons, by optimizing the performance
of operational costs and enhancing the ability of disturbance
attenuation. Compared with the model-based control [13],
[16], [17], our approach does not rely on any prior information
about system parameters, which usually come from the offline
system identification process [36]. By contrast, our method is
an off-policy learning process and optimal controllers can be
learned either online or offline by collecting enough input and
state data along the trajectories of the vehicles [18]. And this
feature is extremely useful for the control of mixed vehicular
platoons, as human drivers’ behavior can vary significantly
in different situations, and this online learning process can
capture the real-time behavior of human drivers and adaptively
change the output of the controllers to improve the driving
performance.

3) We provide rigorous theoretical analysis of the learning
algorithms for the mixed vehicular platoons. In most appli-
cations of RL and ADP, an initial stabilizing controller is
not easy to find. But for the control of connected vehicles,
the initial stabilizing controllers are constructed to guarantee
the asymptotic stability of the closed-loop systems based
on the small-gain theorem [37], which can also be used
for data collection. And the resulting optimal controllers
can guarantee the general Lp string stability of the platoon
[30]. Sufficient data, which is characterized as the persistent
excitation condition, is utilized to guarantee the convergence
of the learning algorithms combined with the policy iteration
process. Furthermore, for the robust optimal control aiming at
reducing the impact of external disturbance, the original H∞
optimization problem is translated into a linear quadratic zero-
sum game [32], and solved by a learning-based value iteration
algorithm without any initial stabilizing controller.

Although we consider the system models with linear dynam-
ics, the techniques in this paper can be extended to nonlinear
system models by using similar model reduction techniques,
nonlinear optimal control theory, small-gain techniques, non-
linear H∞ control theory, and ADP techniques [18], [38], [39].
In this sense, we have provided a unified framework for the
data-driven optimal control of connected vehicles in mixed
platoons either in the freeway or the ring road environments.

The rest of the paper is organized as follows. Section II
describes the mathematical model of HDVs and CAVs on the
freeway and ring roads. In Section III, we analyze the stabiliz-
ability of the connected vehicles by the classical PBH test [40,
Theorem 14.2]. In Section IV, we formulate an LQR problem
and propose a learning-based algorithm with constructed initial
stabilizing controllers by ADP techniques, and the general Lp

string stability is guaranteed with the obtained controllers.
Section V presents an iterative data-driven algorithm that
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yields a robust optimal controller with guaranteed disturbance
attenuation ability. Section VI demonstrates the effectiveness
of the theoretical analysis by simulation results and the paper
is concluded in Section VII.

Notations. R+ denotes the set of non-negative real numbers.
I denotes the identity matrix of the appropriate size. C−
denotes the set of complex numbers with negative real parts.
C+ denotes the set of complex numbers with non-negative
real parts. AH denotes the conjugate transpose of matrix A.
Z≥0 denotes the set of non-negative integers. ∥·∥ denotes the
Euclidean norm of a vector and the induced 2-norm of a
matrix. ⊗ denotes the Kronecker product. σ(·) denotes the set
of eigenvalues of a matrix. vec(A) = [AT

[·,1], A
T
[·,2], ..., A

T
[·,n]]

T

where A[·,i] ∈ Rm denotes the ith column of A ∈ Rm×n.

II. MATHEMATICAL MODELLING

This section describes the system models of the mixed
vehicular platoons with CAVs and heterogeneous HDVs in
the freeway and ring road cases.

A. Car Following Models

We consider the longitudinal control of a platoon of n
connected vehicles, in which m vehicles are CAVs with
1 ≤ m ≤ n, and let S = {c1, c2, ..., cm} denote the order
set of CAVs in the platoon. The longitudinal car-following
models for HDVs and CAVs are presented as follows.

The car-following model for HDV i is,

v̇i = fi(∆pi,∆ṗi, vi) (1)

where vi ∈ R+ denotes the vehicle speed and ∆pi ∈ R
denotes the space headway between vehicle i and i − 1, as
shown in Fig. 1 and Fig. 2 for the freeway and ring road
cases, respectively. Let (v∗,∆p∗i ) be the equilibrium of (1),
which satisfies

0 = fi(∆p∗i , 0, v
∗). (2)

The objective is to keep vehicle i in the platoon achieving
the speed v∗ and headway ∆p∗i . Denote the speed error and
headway error by ṽi = vi − v∗ and p̃i = ∆pi − ∆p∗i ,
respectively, and xi = [p̃i, ṽi]

T denotes the state of vehicle
i. After linearizing (1) around (∆p∗i , v

∗), for HDV i,

ẋi = Ah
i xi + Eh

i xi−1 (3)

with Ah
i =

[
0 −1
ai −bi

]
and Eh

i =

[
0 1
0 ci

]
where ai, bi, ci

are three positive constants that describes the regular diving
behavior of HDVs, and can vary from driver to driver [16].
Similarily, for CAV i [24],

ẋi = Ac
ixi + Ec

i xi−1 +Bc
i ui (4)

with Ac
i =

[
0 −1
0 0

]
, Ec

i =

[
0 1
0 0

]
, and Bc

i =

[
0
1

]
.

Notice that ui can have access to the information of all
connected vehicles, not limited to the neighboring vehicles
[41]. Here we use superscript h and c to denote the matrices
about HDVs and CAVs, respectively. The problem is to design
control input ui ∈ R for each CAV i such that the whole

...

12n-1n

1v2v1nv nv

2pnp HDVHDV CAVCAV

Fig. 1. A platoon of n vehicles on the freeway

platoon can achieve different control objectives. Besides, we
employ a linear system to describe the dynamics of car-
following models since the behavior of a nonlinear system
can be approximated by the linearized system around the
equilibrium, and the analysis and control of the linearized
system is effective in a small neighborhood of the equilibrium
for the original nonlinear system [42].

B. Freeway Case

In the freeway case as shown in Fig. 1, we assume a virtual
vehicle 0 in front of vehicle 1 and let x0 = [p̃0, ṽ0]

T denote the
state of virtual vehicle 0. Then the state-space representation
for the platoon is

ẋ = Afx+Bfu+ Eṽ0 (5)

where x = [xT
1 , x

T
2 , ..., x

T
n ]

T denotes the state of the platoon
and u = [u1, ..., um]T denotes the control input of the platoon.
Bf = [e2c1 , e2c2 , ..., e2cm ] with ej ∈ R2n being the standard
coordinate vector where its jth component is 1 and the others
are 0. Besides, when the head vehicle is an HDV, E =
[1, c1, 0, ..., 0]

T , otherwise, E = e1. In addition, Af ∈ R2n×2n

can be arranged into n2 submatrices Ai,j ∈ R2×2 with
i ∈ {1, ..., n} and j ∈ {1, ..., n}. When i ∈ S, Ai,i = Ac

i

and Ai,i−1 = Ec
i , otherwise, Ai,i = Ah

i and Ai,i−1 = Eh
i ,

and the other elements in Af are zero. For example, consider
the platoon with the sequence of vehicles ”CAV-HDV-HDV”
where the tail vehicle is a CAV, then S = {3} and ẋ1

ẋ2

ẋ3

 =

 Ah
1 0 0

Eh
2 Ah

2 0
0 Ec

2 Ac
i

 x1

x2

x3

+ e6u+ Eṽ0

with x = [xT
1 , x

T
2 , x

T
3 ]

T ∈ R6 and u ∈ R.

C. Ring Road Case

The ring road case provides a closed environment for
connected vehicles and removes other effects like boundary
conditions and intersections on the traffic flows [12]. In this
case, vehicle n is in front of vehicle 1 as shown in Fig. 2, and
the state-space representation for the platoon is

ẋ = Arx+Bru (6)

where Ar ∈ R2n×2n and Br ∈ R2n×m. Ar and Br have the
same expressions as Af and Bf , respectively, except that if
1 ∈ S, A1,n = Ec

1, otherwise A1,n = Eh
1 . Considering the

same example in the freeway case, we have ẋ1

ẋ2

ẋ3

 =

 Ah
1 0 Eh

1

Eh
2 Ah

2 0
0 Ec

2 Ac
i

 x1

x2

x3

+ e6u
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Fig. 2. A platoon of n vehicles on the ring road

with x = [xT
1 , x

T
2 , x

T
3 ]

T ∈ R6 and u ∈ R, where Eh
1 appears

in the top right corner of Ar, and this extra term implies that
the state of the head vehicle is influenced by the tail vehicle.

The ring road case is more challenging than the freeway
case in two aspects: firstly, the vehicle subsystems are more
coupled, since in the ring road case, the behaviors of the head
vehicle and the tail vehicle can affect each other, while the
behavior of the tail vehicle cannot influence the head vehicle in
the freeway case. Secondly, the circumference of the ring road
is fixed, thus partial states in the ring road case are constrained
in a hyperplane and system (6) cannot be controllable.

To bypass the uncontrollable situation, we exploit the fact
that the length of the ring road, denoted as L, is fixed, to
consider a reduced-dimension state space. And the following
assumption is imposed, i.e.,

Assumption 1.
n∑

i=1

∆p∗i = L.

Recall that ∆p∗i is the expected relative distance between
vehicle i and i − 1, and this assumption implies that the
sum of expected relative distance for all vehicles should be
the circumference of the ring road (vehicle length is ignored
without loss of generality), otherwise the expected states can
not be reached physically.

Under Assumption 1,

n∑
i=1

p̃i =

n∑
i=1

(∆pi −∆p∗i ) = 0

and p̃n = −
n−1∑
i=1

p̃i. Thus, the state p̃n can be discarded from

(6) using ˙̃vn = −(
n−1∑
i=1

anp̃i)− bnṽn + cnṽn−1 if vehicle n is

an HDV. To represent the reduced-order model in this case,
let us first assume that the first n− 1 vehicles are running on
a freeway, and correspondingly, (5) is denoted as ˙̂x = Āf x̂+
B̄f û+Ēṽ0. Then, defining state x = [xT

1 , x
T
2 , ..., x

T
n−1, ṽn]

T ∈
R2n−1 and if vehicle n is a CAV, we have

ẋ =

[
Āf Ē
0 0

]
x+

[
B̄f 0
0 1

]
u,

otherwise,

ẋ =

[
Āf Ē
FT −bn

]
x+

[
B̄f

0

]
u

with F = [−an, 0,−an, 0, ...,−an, cn]
T ∈ R2n−2. This

reduced-order system is denoted as

ẋ = Arrx+Brru (7)

with Arr ∈ R(2n−1)×(2n−1) and Brr ∈ R(2n−1)×m. Consid-
ering the same example as before, the corresponding reduced-
order system is

 ẋ1

ẋ2

˙̃v3

 =


0 −1 0 0 1
a1 −b1 0 0 c1
0 1 0 −1 0
0 c2 a2 −b2 0
0 0 0 0 0


 x1

x2

ṽ3

+ e5u

with x = [xT
1 , x

T
2 , ṽ3]

T ∈ R5 and u ∈ R.

Remark 1. It turns out that using (7) instead of (6) greatly
simplifies the stabilizability analysis as shown in section III.

III. STABILIZABILITY ANALYSIS

In this section, the stabilizability of the mixed vehicular
systems (5) and (7) is studied by the PBH test. To make
the paper self-contained, we introduce the following necessary
preliminaries.

Definition 1. The pair (A,B) is stabilizable if there exists a
matrix K such that A−BK has all eigenvalues in C−.

Lemma 1 (PBH test [39]). The pair (A,B) is stabilizable if
and only if the matrix [A− λI,B] is of full row rank for any
λ ∈ C+.

The following result gives a useful characterization of
stabilizability under state feedback.

Lemma 2. The pair (A,B) is stabilizable if and only if for
any given K, the pair (A−BK,B) is stabilizable.

Proof. Let V (A) = {η|ηH(A − λI) = 0, ηHB = 0,∀λ ∈
C+}. Then, by Lemma 1, the pair (A,B) is stabilizable if
and only if V (A) = {0}. Similarly, the pair (A− BK,B) is
stabilizable if and only if V (A−BK) = {0}. Since V (A) =
V (A−BK) for any given K, the proof is completed.

By Lemma 2, the stabilizability does not change after state
feedback, which is employed to study the stabilizability of
(A,B) as follows.

Proposition 1. In the freeway case, the pair (Af , Bf ) is
stabilizable.

Proof. Let ui = aip̃i− biṽi+ ciṽi−1 with ai, bi > 0 for i ∈ S
and c1 = 0 if 1 ∈ S, which defines a matrix Kf such that
u = −Kfx. Consequently, Âf = Af −BfKf and

Âf =


Ah

1 0 · · · 0
Eh

2 Ah
2 · · · 0

...
...

. . .
...

0 0 Eh
n Ah

n

 ,

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3287131

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on September 13,2023 at 22:02:34 UTC from IEEE Xplore.  Restrictions apply. 



5

where Ah
i is Hurwitz since ai, bi > 0 for i ∈ {1, ..., n}. Hence

Âf is Hurwitz and the pair (Âf , Bf ) is stabilizable by Lemma
1. Then, by Lemma 2, the pair (Af , Bf ) is stabilizable.

The same conclusion can be established for the ring road
case using similar proof techniques as follows.
Proposition 2. In the ring road case, the pair (Arr, Brr) is
stabilizable.

Proof. Let ui = aip̃i− biṽi+ ciṽi−1 with ai, bi > 0 for i ∈ S
and ṽ0 = ṽn if 1 ∈ S, which defines a matrix Kr such that
u = −Krx. Consequently, Ârr = Arr −BrrKr and

Ârr =

[
Âc

f Eh

FT −bn

]
where Eh = [1, c1, 0, ..., 0]

T ∈ R2n−2, F has been defined in
section II.C, and

Âc
f =


Ah

1 0 · · · 0
Eh

2 Ah
2 · · · 0

...
...

. . .
...

0 0 Eh
n−1 Ah

n−1


is Hurwitz since Ah

i is Hurwitz for i ∈ {1, 2, ..., n − 1}.
Without loss of generality, we assume the last vehicle is a
CAV and the last column in Brr is e2n−1. Suppose there
exists a vector ρ = [ρ1, ρ2]

T ∈ C2n−1 with ρ2 ∈ C, such
that ρHBrr = 0, then ρ2 = 0. Thus, ρH [Ârr − λI,Brr] = 0
is equivalent to ρH1 [Âc

f − λI,Eh] = 0. Since Âc
f is Hurwitz,

Âc
f − λI is of full row rank for any λ ∈ C+, which implies

that ρ1 = 0 and ρ = 0. By Lemma 1, the pair (Ârr, Brr)
is stabilizable. Then, by Lemma 2, the pair (Arr, Brr) is
stabilizable.

Remark 2. The stabilizability result in [17] assuming ho-
mogeneous HDVs is a special case of Proposition 2. If we
use system (6) for the stabilizability analysis, there exists a
non-zero vector ρ0 = [1, 0, 1, 0, ..., 1, 0]T ∈ R2n such that
ρT0 Ar = 0 and ρT0 Br = 0, which implies [Ar − λI,Br] is
not of full row rank when λ = 0. Thus the pair (Ar, Br)
is not stabilizable by Lemma 1. In fact, what hinders the
stabilizability is exactly the constraint imposed by the fixed
ring road circumference, and this constraint has been explicitly
exploited by establishing Assumption 1 and the system model
(7). Furthermore, for the original system (6), Assumption 1 is
equivalent to the condition x(0) ∈ Π with

Π = {x ∈ R2n|
n∑

i=1

p̃i(0) = 0}.

Besides, by the facts of
n∑

i=1

p̃i =
n∑

i=1

p̃i(0) and Proposition

2, there exists a control u in (6) such that x(t) can converge
to 0 as t → ∞ if and only if x(0) ∈ Π, which relaxes the
condition required in Corollary 1 of [34] and provides another
characterization of Assumption 1.

The stabilizability results for both freeway and ring-road
environments, provide a sound foundation for further control
synthesis including stabilization and disturbance attenuation in
Section IV and Section V, respectively.

IV. LEARNING-BASED OPTIMAL CONTROL

This section presents an LQR problem for mixed vehicular
systems with disturbance, and a learning-based method by
ADP techniques is proposed to obtain the optimal control in
the absence of prior knowledge of system dynamics. Besides,
we construct the initial stabilizing controllers to start the data-
driven control algorithm. Finally, we investigate the general
Lp string stability of the system in the closed-loop with the
obtained optimal controllers.

A. Data-Driven Algorithm

To unify the two cases, let us consider a general uncertain
system

ẋ = Ax+Bu+Hw (8)

where x refers to the distance and velocity errors of all vehicles
relative to the expected states; u is the control input of the
CAVs; w is an exogenous disturbance and constant matrix H
denotes the gain of the disturbance. Besides, the pair (A,B)
is stabilizable as shown in Section III. Let us consider the
following LQR problem:

min
u

∫∞
0

(xTQx+ uTRu)dt

subject to ẋ = Ax+Bu
(9)

where Q and R are two real symmetric and positive definite
matrices. The cost function penalizes the state and control, and
Q and R can be manually chosen to guarantee satisfactory
closed-loop system performance. Besides, by selecting appro-
priate Q and R matrices, some constraints, e.g., the saturation
of control, can be incorporated into consideration [24].

It is well-known that solving problem (9) reduces to solving
the following algebraic Riccati equation [38],

ATP + PA+Q− PBR−1BTP = 0. (10)

The solution P ∗ defines the optimal control u = −K∗x with
K∗ = R−1BTP ∗ for the problem (9), and can be obtained
by a policy iteration process.

Lemma 3 ( [43]). Select a stabilizing gain K0, i.e., σ(A −
BK0) ⊆ C−. Solve P j from the Lyapunov equation

(A−BKj)TP j+P j(A−BKj)+Q+(Kj)TRKj = 0 (11)

where
Kj+1 = R−1BTP j (12)

for j ∈ Z≥0. Then, σ(A − BKj) ⊆ C− for j ∈ Z≥0, and
lim
j→∞

P j = P ∗, lim
j→∞

Kj = K∗ where P ∗ is the solution of

(10) and K∗ = R−1BTP ∗.

Equation (11) evaluates current policy u = −Kjx and (12)
improves the policy. ADP techniques build a bridge between
the iterative equations in Lemma 3 and the collected input and
state data from system (8). Then the optimal controller can be
learned with the collected data iteratively without resorting to
the specific parameters of A and B in the computation of (11)
and (12). The process is described as follows.
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For any P j ≥ 0, along the solution curve x(t) of (8) for an
interval [T0, Ts],

xTP jx|Ts

T0
=

∫ Ts

T0

xT (−Q− (Kj)TRKj)x+ 2wTHTP jx

+ 2(u+Kjx)TRKj+1xdt
(13)

where (8), (11) and (12) were used. Since vec(ABD) =
(DT ⊗ A)vec(B) for any matrices A,B,D with compatible
sizes [38], xTP jx

∣∣T1

T0
= (xT ⊗ xT

∣∣T1

T0
)vec(P j). Similarly, the

right-side terms of (13) can be represented as the multiplica-
tion of matrices about state and input, and the other matrices.

For vectors r ∈ Rnr , and a symmetric matrix M ∈ RN×N

with positive integers nr and N , respectively, and time-varying
signals g(t) and q(t), let us define

M̄ = [M1,1, 2M1,2, ..., 2M1,N ,M2,2, ..., 2MN−1,N ,MN,N ]T ,

r̄ = [r21, r1r2, ..., r1rnr
, r22, r2r3, ...rnr−1rnr

, r2nr
]T ,

Ig,q =

[∫ T1

T0

g ⊗ qdt,

∫ T2

T1

g ⊗ qdt, ...,

∫ Ts

Ts−1

g ⊗ qdt

]T

,

and

Dg,g = [ḡ(T1)− ḡ(T0), ḡ(T2)− ḡ(T1), ..., ḡ(Ts)− ḡ(Ts−1)]
T ,

where T0 < T1 < T2 < ... < Ts are several selected times.
Then, considering the corresponding data of the trajectory at
the times,

Ωj

 P̄ j

vec(Kj+1)
vec(HTP j)

 = Ψj (14)

with Ωj =[
Dx,x,−2Ix,u(I ⊗R)− 2Ix,x(I ⊗ (Kj)TR),−2Ix,w

]
and Ψj = −Ix,xvec(Q+(Kj)TRKj). It can be seen that Ωj

depends on the input and state data, and known matrices R
and Kj in the iteration. Therefore, solving (14) provides a way
of solving (11) and (12) iteratively with only state and input
data. To guarantee the solvability, the following assumption is
imposed.

Assumption 2. Ωj in (14) is of full column rank for j ∈ Z≥0.

Therefore, the main theorem for this section is summarized
as follows.

Theorem 1. Assume there exists a matrix K0 such that σ(A−
BK0) ⊆ C−, and Assumption 2 holds. Then, starting from
K0, P j and Kj+1 can be uniquely solved from (14) for j ∈
Z≥0. Besides, lim

j→∞
P j = P ∗, lim

j→∞
Kj = K∗, and u = −K∗x

is the optimal control of problem (9).

Proof. For j ∈ Z≥0, let V1(j) denote the set of pairs
(P j ,Kj+1) satisfying (11) and (12), and V2(j) be the set of
pairs (P j ,Kj+1) satisfying (14). When j = 0, V1(0) contains
only one pair, because there exists a unique solution P 0 of
(11) since σ(A − BK0) ⊆ C−, and K1 is uniquely defined
by (12). V2(0) contains this pair by (13) and only this pair by
Assumption 2, thus V1(0) = V2(0). Assuming V1(j) = V2(j)

when j = k, let us consider the case when j = k + 1.
Since σ(A − BKk+1) ⊆ C− by Lemma 3, P k+1 can be
uniquely solved by (11) and Kk+2 is uniquely decided by
(12), thus V1(j) contains only one pair. Similarly, this pair
is the only pair of V2(j) by (13) and Assumption 2, which
implies that V1(j) = V2(j) when j = k + 1. Therefore,
by mathematical induction, V1(j) = V2(j) for j ∈ Z≥0. By
Lemma 3, lim

j→∞
P j = P ∗ and lim

j→∞
Kj = K∗ where P ∗ is

the solution of (10) and K∗ = R−1BTP ∗, and u = −K∗x is
the optimal control of problem (9) [38].

Based on Theorem 1, Algorithm 1 is constructed. There are
two unsolved issues in Algorithm 1: one is the initial stabiliz-
ing gain K0 and the other is the check of Assumption 2, since
Ωj relies on the iteration j. The first issue is thoroughly solved
in Section IV-B and this section focuses on the second issue.
We provide sufficient conditions to guarantee Assumption 2
that are independent of j, using only Ix,u, Ix,x and Ix,w. We
consider the freeway and ring road cases separately to provide
accurate descriptions.

Algorithm 1 Learning-Based Optimal Control of AVs
1: Choose a stabilizing gain K0, i.e., σ(A − BK0) ⊆ C−,

a small threshold value ε0, and the selected times of
exploration: T0, T1, ..., Ts.

2: For system (8), let u = −K0x+ ξ with exploration noise
ξ(t) and gather trajectories of x(t), u(t), and w(t) for t ∈
[T0, Ts] such that Assumption 2 holds.

3: Obtain P 0, K1, P 1, and K2 by solving (14). Let j = 1.
4: while

∥∥P j − P j−1
∥∥ > ε0 do

5: Let j = j + 1.
6: Obtain P j and Kj+1 by solving (14).
7: end while
8: Save P j and Kj+1, and u = −Kj+1x is the control

output.

1) Freeway Case: In this case, system (8) is replaced by
system (5) with A = Af , B = Bf , H = E, and w = ṽ0,
where the speed error of virtual vehicle 0 is regarded as the
disturbance [24]. Besides, Assumption 2 is assured as follows.
Lemma 4. In the freeway case, when

rank([Ix,x, Ix,u, Ix,ṽ0 ]) = n(2n+ 2m+ 3), (15)

Assumption 2 holds.

Proof. See [44].

Therefore in Algorithm 1, we can directly check condition
(15) with collected data to know if Assumption 2 holds. Hence,
the condition in step 2 of Algorithm 1 can be replaced by ”such
that condition (15) holds”. Similarly, a revision of Theorem 1
is as follows, which provides an extension of the result in [24]
in the sense of uncertain number of CAVs in the platoon.
Corollary 1. In the freeway case, assume there exists a matrix
K0 such that σ(Af −BfK

0) ⊆ C−, and condition (15) holds.
Then, starting from K0, P j and Kj+1 can be uniquely solved
from (14) for j ∈ Z≥0. Besides, lim

j→∞
P j = P ∗, lim

j→∞
Kj =

K∗, and u = −K∗x is the optimal control of problem (9).
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2) Ring Road Case: In this case, we consider extra distur-
bance w = [w1, w2, ..., wp]

T ∈ Rp for system (7) and p ≤ n
[16] (see an example of noise signals in [34]). Thus A = Arr,
B = Brr and the disturbed system is

ẋ = Arrx+Brru+Hw. (16)

with some matrix H ∈ R(2n−1)×p. Similarly, to guarantee
Assumption 2, the following condition can be obtained.
Lemma 5. In the ring road case, when

rank([Ix,x, Ix,u, Ix,w]) = (m+ n+ p)(2n− 1), (17)

Assumption 2 holds.

Proof. See [44].

Therefore, the condition in step 2 of Algorithm 1 can be
replaced by ”such that condition (17) holds”. A revision of
Theorem 1 is as follows.
Corollary 2. In the ring road case, assume there exists a
matrix K0 such that σ(Arr − BrrK

0) ⊆ C−, and condition
(17) holds. Then, starting from K0, P j and Kj+1 can be
uniquely solved from (14) for j ∈ Z≥0. Besides, lim

j→∞
P j =

P ∗, lim
j→∞

Kj = K∗, and u = −K∗x is the optimal control of

problem (9).

B. Initial Stabilizing Controllers

To complete Algorithm 1, initial stabilizing controllers are
constructed for both cases as follows.

For the freeway case, from the proof of Proposition 1, it is
straightforward to construct a stabilizing controller. For each
CAV i ∈ S in the platoon, ui = aip̃i − biṽi + ciṽi−1 with
ai, bi > 0 and c1 = 0 if i = 1. This control is denoted as the
regular HDV control. Since Âf is Hurwitz, the controller is
stabilizing.

For the ring road case, the stabilizing controller is not
obvious. In fact, if we still apply the regular HDV control
laws as the freeway case, the controller can be destabilizing.
Let us consider a platoon of two HDVs in the ring road case
with a1 = b1 = a2 = b2 = 1, c1 = c2 = 2 and in this case

Ârr =

 0 −1 1
1 −1 2
−1 2 −1

 ,

and det(λI− Ârr) = (λ−1)(λ+1)(λ+2). Thus an unstable
mode λ = 1 will appear when we apply the regular HDV
control laws, which may explain the reason why stop-to-go
waves can occur when all HDVs were running on a ring road
without bottleneck [11], which shows the necessity of intro-
ducing CAVs into the platoon in the ring road environment.

However, the stabilizing controller can be constructed with
a minor revision to the regular HDV control laws. The problem
is to ask that the eigenvalues of

Ârr =

[
Âc

f Eh

FT −bn

]
all have negative real parts and this fact can be achieved by
the well-known small-gain theorem [37].

Proposition 3. There exists a constant c > 0 such that when
bn > 0 and √

(n− 1)a2n + c2n
bn

< c, (18)

Ârr is Hurwitz.

Proof. Consider the system ẋ = Ârrx with x = [xT
1 , x2]

T

where x1 ∈ R2n−2 and x2 ∈ R, and the system can be
decomposed into two interconnected systems:{

ẋ1 = Âc
fx1 + Ehx2

ẋ2 = −bnx2 + FTx1.
(19)

Since Âc
f is Hurwitz,

∥∥∥eÂc
f t
∥∥∥ ≤ k1e

−λ1t with constants
k1, λ1 > 0 [40], and

x1(t) = eÂ
c
f tx1(0) +

∫ t

0

eÂ
c
f (t−τ)Ehx2(τ)dτ,

which implies that

∥x1(t)∥ ≤max{2k1e−λ1t ∥x1(0)∥ ,
2k1

√
1 + c21
λ1

max
0≤τ≤t

∥x2(τ)∥}

and x1 subsystem is input-to-state stable regarding x2 as the
input [45]. Similarly, since bn > 0,

∥x2(t)∥ ≤max{2e−bnt ∥x2(0)∥ ,
2
√

(n− 1)a2n + c2n
bn

max
0≤τ≤t

∥x1(τ)∥},

which implies x2 subsystem is input-to-state stable regarding
x1 as the input. Thus, if the following small-gain condition

2k1
√

1 + c21
λ1

·
2
√
(n− 1)a2n + c2n

bn
< 1

holds [39] or equivalently (18) holds with c = λ1

4k1

√
1+c21

,

the system ẋ = Ârrx is asymptotically stable and Ârr is
Hurwitz.

Remark 3. Any CAV can be chosen as the tail vehicle n, and
its HDV control law can be designed by (18) to achieve the
asymptotic stability of the vehicular system, since permutation
transformation does not change the stability properties of
systems. When an = cn = 0, bn > 0, condition (18) always
holds. In this case, FT = 0 and σ(Ârr) = −bn ∪ σ(Âc

f ) have
negative real parts. In general, the constant c can be small
and condition (18) implies that the stabilizing control of a
CAV in the platoon should be more sensitive to current speed
variations, compared with other factors. It is worth pointing
out that, due to the existence of uncontrollable mode 0, the
full-order system (6) cannot be rendered asymptotically stable
from any initial conditions. Thus this small-gain technique can
not be applied to system (6) to get an initial stabilizing policy,
which shows the necessity of introducing the reduced-order
system (7).

Therefore, a stabilizing control law in the ring road case
can be obtained as follows: all CAVs use the regular HDV
control laws with one CAV taking the control parameters based
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on Proposition 3. And it should be mentioned that, the initial
controllers in both cases do not require the specific information
of parameters of the heterogenous HDVs, which is necessary
for data-driven control methods.

C. String Stability

String stability is proposed to study the impact of distur-
bance when propagated along the platoon [46]. The general
Lp string stability is considered with any positive integer p
[30]. The definition is introduced as follows.
Definition 2 ( [30]). The platoon system (8) is Lp string stable
if there exist class K functions α1, α2 such that, for any initial
state x̂(0) = [w(0), x(0)T ]T , and any ζ(t) ∈ Lp,

∥xi∥Lp
≤ α1(∥ζ∥Lp

) + α2(∥x̂(0)∥) (20)

for i ∈ {1, 2, ..., n}, assuming w is governed by an exosystem
ẇ = f(w, ζ).

The definitions of class K functions and Lp space are in
[42]. The definition of Lp string stability considers yi = xi

as the output for each vehicle i in the platoon, and applies to
both freeway and ring road cases.
Proposition 4. The platoon system (8) with the obtained
controller by Algorithm 1 is Lp string stable if there exist class
K functions α3, α4 such that for any w(0) and ζ(t) ∈ Lp,

∥w∥Lp
≤ α3(∥ζ∥Lp

) + α4(∥w(0)∥). (21)

Proof. The closed-loop system is ẋ = (A−BKj+1)x+Hw
with u = −Kj+1x from Algorithm 1, and by Lemma
3, σ(A − BKj+1) ⊆ C−. Thus there exist class K
functions α5, α6 such that, for any x(0) and w ∈ Lp,
∥x∥Lp

≤ α5(∥w∥Lp
) +α6(∥x(0)∥) [42]. With (21), ∥x∥Lp

≤
α1(∥ζ∥Lp

) + α2(∥x̂(0)∥) where α1 = α5 ◦ α3 and α2 =
α5 ◦ α4 + α6. Since ∥xi∥Lp

≤ ∥x∥Lp
for i ∈ {1, ..., n}, the

proof is completed.

Condition (21) implies that the exosystem should behave
well in the sense of input-output stability, and can represent a
large class of signals, e.g., constant signals and sinusoidal sig-
nals. Proposition 4 extends the result in [24] for p = 2. Similar
to the discussions in Section IV-A, different implementations
of A,B and H can provide more accurate descriptions in the
freeway and ring road cases. Furthermore, when p = ∞, the
string stability gives an upper bound of amplitude of the states
and can be utilized to study the safety constraints [47], [48].

V. LEARNING-BASED ROBUST OPTIMAL CONTROL

In the previous contents, disturbance attenuation is not
considered, which is critical for the suppression of stop-and-go
waves along the platoon. In this section, by invoking the robust
and optimal control theory, a model-based controller design
method is first introduced for the disturbance attenuation,
which highly relies on the parameters of human behavior.
Then, based on the model-based results, a learning-based
controller design approach is proposed such that the robust
and optimal controller can be directly obtained from input-
state data in the absence of the accurate parameters of the
human behavior.

A. Model-Based Robust Optimal Control

This section presents model-based robust and optimal con-
trol for the disturbance attenuation. Let us consider a system-
level output [16]

z(t) =

[
Q

1
2

0

]
x(t) +

[
0

R
1
2

]
u(t) (22)

where Q
1
2 and R

1
2 are the square roots of two real, symmetric,

and positive definite matrices Q and R1, respectively, denoting
the weights on the states and controls (see Appendix A.3 in
[38]). Since undesired perturbation w exists in the vehicular
system (8), the state x may have a large fluctuation causing
stop-and-go waves, and control u can be amplified causing
additional energy assumption. By suppressing the impact of
w on the output z, it is expected that stop-and-go waves can
be dampened and energy consumption can be reduced.

Denote the transfer function matrix from input w to output
z as Gzw whose H∞ norm is

∥Gzw∥∞ = ess sup
w∈R

σ̄{Gzw(jw)}

where σ̄(·) denotes the maximum singular value of a given
matrix [31]. The disturbance attenuation problem is to mini-
mize ∥Gzw∥∞ as

min
u

∥Gzw∥∞
s.t. ẋ = Ax+Bu+Hw

z =

[
Q

1
2

0

]
x+

[
0

R
1
2

]
u.

(23)

whose solution is related to the linear quadratic zero-sum
differential game

min
u

max
w

Jγ(x0, u, w) =

∫ ∞

0

zT (t)z(t)− γ2wT (t)w(t)dt

where x0 is the initial state and γ ∈ R is a positive constant
[32].
Proposition 5 ( [32]). Let (A,B) be stabilizable and
(A,Q

1
2 ) be observable. Define γ∞ = inf{γ >

0|min
u

max
w

Jγ(0, u, w) ≤ 0}. If γ > γ∞, the game has a
finite upper value, and there exists a unique symmetric positive
definite solution P ∗ of the Riccati equation

ATP + PA− P (BR−1BT − γ−2HHT )P +Q = 0 (24)

with the property that A− (BR−1BT −γ−2HHT )P ∗ is Hur-
witz. Besides, the optimal control of the game is u = −K∗x
with K∗ = R−1BTP ∗.

Since the H∞ norm is an induced gain from the L2 space
of the inputs to the L2 space of the outputs and

∥Gzw∥∞ = sup
w∈L2

(

∫∞
0

zT (t)z(t)dt∫∞
0

wT (t)w(t)dt
)

1
2 ,

by solving the linear quadratic zero-sum game with γ > γ∞,
the suboptimal control will approach the optimal solution of
(23) when γ decreases towards γ∞.

1This section studies a different control problem and some notations, i.e.,
Q,R, P,K, P ∗,K∗, N , are reused but irrelevant to the content of section
IV.
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Since the pair (A,B) is stabilizable as shown in Section III,
and the pair (A,Q

1
2 ) is observable as Q is positive definite,

the central problem is to solve (24) with a given feasible γ.
Different from the Riccati equation (10) considered in section
IV, (24) has an indefinite quadratic term P (BR−1BT −
γ−2HHT )P , thus the iterative algorithm based on Lemma 3
cannot be applied. The policy iteration process [49] is one way
of solving (24) with an initial admissible policy, but the initial
policy is not easy to obtain considering general heterogeneous
HDVs. Instead, the following way is taken, known as a value
iteration process, which does not rely on any initial admissible
policy, but guarantees the convergence to the solution of (24).
Denote B2 = BR− 1

2 and B1 = γ−1H .
Lemma 6 ( [50]). Given real matrices A,B1, B2, Q

1
2 with

compatible dimensions such that (A,Q
1
2 ) is observable, and

(A,B2) is stabilizable. Define a mapping F as F (P ) =
PA+ATP−P (B2B

T
2 −B1B

T
1 )P+Q. Suppose there exists a

positive definite stabilizing solution P ∗ of the algebraic Riccati
equation (24). Then, two square matrix series Zk and Pk can
be defined for all k ∈ Z≥0 recursively as follows:

P0 = 0
Ak = A+B1B

T
1 Pk −B2B

T
2 Pk

(25)

and Zk ≥ 0 is the unique stabilizing solution of

0 = ZkAk +AT
k Zk − ZkB2B

T
2 Zk + F (Pk) (26)

and Pk+1 = Pk + Zk. Then, lim
k→∞

Pk = P ∗.

The algebraic Riccati equation (26) with a negative semidef-
inite quadratic term needs to be recursively solved in Lemma
6. Applying Lemma 3 is difficult because Ak is updated in
each iteration, making it generally impossible to construct a
universal stabilizing controller based on Ak. Instead, a value
iteration process is proposed without any initial stabilizing
controller as follows.
Lemma 7 ( [51]). Assume (Ak, B2) is stabilizable and
(Ak, F (Pk)

1
2 ) is detectable. Define the differential Riccati

equation

Żk = ZkAk +AT
k Zk − ZkB2B

T
2 Zk + F (Pk) (27)

with a real symmetric matrix Zk(0) ≥ 0, then lim
t→∞

Zk(t) =

Z∞
k where Z∞

k is the unique positive semidefinite solution of
(26).

In [50], it was proved that (Ak, B2) is stabilizable and
(Ak, F (Pk)

1
2 ) is detectable for k ∈ Z≥0. Thus, for the Riccati

equation (26), Zk can be obtained by solving the correspond-
ing differential Riccati equation (27) from any initial real
symmetric and positive semidefinite matrix. We propose the
Euler method to solve (27) numerically as follows [52]. Let
h > 0 be a small constant, then,

(1) Z0
k = 0;

(2) For i = 0, ..., N − 1,

Zi+1
k =Zi

k + h(Zi
kAk +AT

k Z
i
k

− Zi
kB2B

T
2 Z

i
k + F (Pk)).

(28)

For this process, by selecting a small enough step size h, Z∞
k

can be approximated by ZN
k with any accuracy. Indeed, for

any ε
2 > 0, there exists a T > 0 such that when t > T ,

∥Zk(t)− Z∞
k ∥ < ε

2 . For any t > T , there exist h > 0 and
N = ⌊ t

h⌋ such that
∥∥Zk(t)− ZN

k

∥∥ < ε
2 [52], from which∥∥ZN

k − Z∞
k

∥∥ < ε.
In summary, the robust optimal control algorithm relies on

the iteration in Lemma 6, which is implemented through the
value iteration process (28). The following section develops
learning-based methods by ADP techniques without requiring
the parameters of A, B, and H .

B. Learning-Based Robust Optimal Control

This section presents learning-based methods based on
Lemma 6 and value iteration (28) with fully unknown system
dynamics by ADP techniques. Let û = R

1
2u and ŵ = γw,

then (8) can be rewritten as

ẋ = Ax+B1ŵ +B2û. (29)

For any Pk ≥ 0, along the solution curve x(t) of (29),

d

dt
(xTPkx) = (Ax+B1ŵ +B2û)

TPkx

+ xTPk(Ax+B1ŵ +B2û)

=xT (ATPk + PkA)x+ 2ŵTBT
1 Pkx

+ 2ûTBT
2 Pkx

=xTHkx+ 2ŵTLkx+ 2ûTMkx

where Hk = ATPk + PkA, Lk = BT
1 Pk, and Mk = BT

2 Pk.
Integrating the above equation from T0 to Ts,

xTPkx|Ts

T0
=

∫ Ts

T0

xT⊗xT dtvec(Hk)

+ 2

∫ Ts

T0

xT⊗ŵT dtvec(Lk)

+ 2

∫ Ts

T0

xT⊗ûT dtvec(Mk).

(30)

For selected times {T0, T1, ..., Ts}, let

Ix̄ =

[∫ T1

T0

x̄dt,

∫ T2

T1

x̄dt, ...,

∫ Ts

Ts−1

x̄dt

]T

where x̄ has been defined in Section IV. Then, using the
corresponding sampling data consistent with (30),

Θ

 H̄k

vec(Lk)
vec(Mk)

 = DxxP̄k (31)

with Θ = [Ix̄, 2Ixŵ, 2Ixû]. When Θ is of full column rank, H̄k

vec(Lk)
vec(Mk)

 = (ΘTΘ)−1ΘTDxxP̄k,

and F (Pk) can be solved accordingly as F (Pk) = Hk +
LT
k Lk − MT

k Mk + Q. Similarly, let w̃ = ŵ − Lkx and
ũ = û+Mkx, and (8) can be rewritten as

ẋ = Akx+B1w̃ +B2ũ. (32)
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For any Zi
k ≥ 0, along the solution curve x(t) of (32),

d

dt
(xTZi

kx) = (Akx+B1w̃ +B2ũ)
TZi

kx

+ xTZi
k(Akx+B1w̃ +B2ũ)

= xT (AT
k Z

i
k + Zi

kAk)x+ 2w̃TBT
1 Z

i
kx

+ 2ũTBT
2 Z

i
kx

= xTHi
kx+ 2w̃TLi

kx+ 2ũTM i
kx

where Hi
k = AT

k Z
i
k + Zi

kAk, Li
k = BT

1 Z
i
k and M i

k = BT
2 Z

i
k.

Integrating the above equation from T0 to Ts,

xTZi
kx|

Ts

T0
=

∫ Ts

T0

xT⊗xT dtvec(Hi
k)

+ 2

∫ Ts

T0

xT⊗w̃T dtvec(Li
k)

+ 2

∫ Ts

T0

xT⊗ũT dtvec(M i
k).

(33)

Using the data consistent with (33) based on the selected times
{T0, T1, ..., Ts},

Θk

 H̄i
k

vec(Li
k)

vec(M i
k)

 = DxxZ̄
i
k (34)

with Θk = [Ix̄, 2Ixw̃, 2Ixũ]. When Θk is of full column rank, H̄i
k

vec(Li
k)

vec(M i
k)

 = (ΘT
kΘk)

−1ΘT
kDxxvecs(Z

i
k),

and the increment in (28) can be solved as ∆Zi
k = Hi

k −
(M i

k)
TM i

k +F (Pk). Thus the value iteration step (28) can be
achieved by data-driven methods. Regarding the data needed
to make Θ and Θk full column rank, the following Lemma
shows that Θk is of full column rank when Θ is of full column
rank. Therefore, there is no need to repeatedly collect data as
long as Θ is of full rank.

Lemma 8. If Θ has full column rank, so does Θk, ∀k ∈ Z≥0.

Proof. Since w̃ = ŵ − Lkx and ũ = û+Mkx,

Ixw̃ = Ixŵ − Ixx(I ⊗ LT
k ), Ixũ = Ixû + Ixx(I ⊗MT

k ).

Besides, there exits a matrix Y such that Ixx = Ix̄Y . Using
these equations, when Θ has full column rank, so does Θk,
∀k ∈ Z≥0.

Algorithm 2 is given based on the above analysis. Similar to
step 2 in Algorithm 1, exploration noise is injected into input
u to guarantee that Θ has full column rank. This algorithm
starts with a predefined large constant γ and the value of γ
is gradually decreased until there is no feasible solution for
Algorithm 2, and the final value of γ is the approximately
optimal cost of (23).

VI. SIMULATION AND RESULTS

In this section, we validate our theoretical analysis and
algorithms by simulations using SUMO [35].

Algorithm 2 Learning-Based Robust Optimal Control of AVs
1: Given γ > 0 and let k = 0 and P0 = 0. Collect data of

x, û, ŵ such that Θ has full column rank.
2: If k = 0, F (Pk) = Q; Otherwise, solve Hk, Lk and Mk

from (31) and let F (Pk) = Hk + LT
k Lk −MT

k Mk +Q.
3: Let i = 0 and Zi

k = 0.
4: Solve Hi

k, L
i
k and M i

k from (34) and let ∆Zi
k = Hi

k −
(M i

k)
TM i

k + F (Pk).
5: If

∥∥∆Zi
k

∥∥ < ε1 where ε1 is a predefined small constant,
go to step 6; Otherwise, Zi+1

k = Zi
k + h∆Zi

k where h is
a predefined small constant. Let i = i + 1 and return to
step 4.

6: If
∥∥Zi

k

∥∥ < ε2 where ε2 is a predefined small constant, stop
the procedure and u = −R− 1

2Mkx is the approximate
optimal control law; Otherwise, Pk+1 = Pk + Zi

k. Let
k = k + 1 and return to step 2.

A. Parameter Settings for the Platoons

For the freeway case, a four-vehicle platoon is considered
with 2 CAVs and 2 HDVs, and the sequence of the vehicles
is CAV-HDV-CAV-HDV as shown in Fig. 3. For the ring road
case, an eight-vehicle platoon is considered with 2 CAVs and
6 HDVs, and the sequence of the vehicles is CAV-HDV-HDV-
HDV-CAV-HDV-HDV-HDV where the leading vehicle is an
HDV as shown in Fig. 4. For each HDV i, optimal velocity
model in [25] is taken as the car-following model and the
desired velocity is

v∗(∆pi) =


0, ∆pi ≤ ∆pl
vm

2 (1− cos(π ∆pi−∆pl

∆ph−∆pl
)), ∆pl ≤ ∆pi ≤ ∆ph

vm, ∆pi ≥ ∆ph

where ∆pl and ∆ph denote the lower and upper bounds of
spacing headway, respectively. On top of that, the dynamics
is {

∆ṗi = vi−1 − vi,
v̇i = a∗i [v

∗(∆pi)− vi] + b∗i∆ṗi,
(35)

where a∗i and b∗i denote the relative velocity gain and spacing
headway gain of vehicle i, respectively. For HDVs, a∗i = 0.15
and b∗i = 0.25 when i is an odd number, otherwise a∗i = 0.25,
and b∗i = 0.25. Each vehicle’s length is 4.8 m [12]. For the
freeway case, the platoon runs in a sufficiently long straight
line. Besides, for HDVs, the desired velocity is v∗ = 28 m/s
and the desired headway is ∆p∗ = 30.02 m based on the
freeway traffic data [13]. While desired headways decrease
to 16 m for AVs under the same desired velocities [53].
In addition, the velocity of the virtual leading vehicle 0 is
v∗ + 2e−t. For the ring road case, the total length of the ring
road is 99.2 m. Besides, we set the desired velocity v∗ = 7.5
m/s and headway ∆p∗ = 7.6 m for all the vehicles based on
Experiment A in [12], and it can be checked that Assumption
1 holds. Moreover, the disturbance w in (16) is 2e−t and
H = e2 ∈ R7.

B. Learning-Based Optimal Control

In this section, we implement Algorithm 1 for both freeway
and ring road cases. For the freeway case, based on Proposition
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Fig. 3. Vehicular network for the freeway case in the SUMO simulation.

Fig. 4. Vehicular network for the ring road case in the SUMO simulation.

1, let u2 = a2p̃2 − b2ṽ2 + c2ṽ1 + ξ2(t) and u4 = a4p̃4 −
b4ṽ4 + c4ṽ3 + ξ4(t) be the initial control controllers for CAV
2 and CAV 4, where a2 = a4 = 0.3927, b2 = b4 = 0.5,
c2 = c4 = 0.25, and ξ2(t) and ξ4(t) are exploration noise.
Then, the initial state feedback gain is

K0 =

[
0 −c2 −a2 b2 0 0 0 0
0 0 0 0 0 −c4 −a4 b4

]
.

To collect the training data, the initial state x(0) =
[0,−1, 1, 1.5, 0.1, 0.2, 0.3,−0.1]T . Exploration noise is in-
jected into each input with

ξi(t) =
1

M

M∑
k=1

sin fkt

where i ∈ {2, 4}, M = 100 and frequency fk ∼ U [−250, 250]
with U denoting the uniform distribution. The sampling time
is 0.01 s and rank condition (15) is satisfied by collecting 800
data points. Q and R are identity matrices. P ∗ and K∗ are
solved by the algebraic Riccati equation (10) using Af and
Bf as the baseline for comparison. The errors in the iteration
process are shown in Fig. 5, and it can be seen that P j and Kj

converge to P ∗ and K∗ within 6 iteration steps, respectively,
which validates the effectiveness of Corollary 1.

For the ring road case, based on Proposition 3, let
u4 = a4p̃4 − b4ṽ4 + c4ṽ3 + ξ4(t) and u8 = −b8ṽ8 + ξ4(t)
where a4 = 0.3927, b4 = b8 = 0.5, c4 = 0.25,
and ξ4(t) and ξ8(t) are exploration noise. The initial
state feedback gain can be obtained similarly. To
collect the training data, the initial state x(0) =
[1,−1, 1, 1.5, 0.1, 0.2, 0.3, 0.5,−0.5, 1, 0.4, 0.5,−0.5, 1,−1]T .
Exploration noise signals ξ4 and ξ8 have the same forms as
the freeway case and rank condition (17) holds with 3300 data
points. Q = 2I and R is the identity matrix. P ∗ and K∗ are
obtained by solving the algebraic Riccati equation (10) using
Arr and Brr. The errors in the iteration process are shown

Fig. 5. Convergence of P j and Kj for the freeway case using Algorithm 1.

Fig. 6. Convergence of P j and Kj for the ring road case using Algorithm
1.

in Fig. 6. It can be observed that P j and Kj converge to P ∗

and K∗ within 8 iteration steps, respectively, which validates
the effectiveness of Corollary 2. Besides, we carried out an
experiment to illustrate the efficiency of the training process.
We fix 2 CAVs and gradually increase the number of HDVs
in the platoon, and observe the required data points to satisfy
condition (17), and compute the training time for different
platoon sizes. The result is shown in Fig. 7. During this
process, we do not change any settings except the collected
data points, and it can be seen that condition (17) can be
satisfied by collecting large enough data. In addition, the
training time is within 4 seconds for the platoons with sizes
less than 10, which is due to the quadratic convergence speed
of the policy iteration algorithm [43], and the training time is
significantly lower than the training time of deep-RL-based
methods, e.g., the training process takes a few hours in [23].

C. Learning-Based Robust Optimal Control

To apply Algorithm 2, for the freeway case, exploration
noise is injected using the same signal as Section VI-B. Θ
in (31) is of full column rank by collecting 200 data points.
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Fig. 7. Training time and training samples needed for condition (17).

Fig. 8. Convergence of Pk and Kk for the freeway case using Algorithm 2.

The step size h is 0.01. Q and R matrices remain the same as
Section VI-B. P ∗ and K∗ are obtained by solving the algebraic
Riccati equation (24) using Af , Bf , and E for comparison.
The errors in the learning process are shown in Fig. 8, and it
can be seen that Pk and Kk converge to P ∗ and K∗ within 8
steps. The minimum γ found by the learning algorithm is 3.91,
which is close to the H∞ gain 3.901 from input ṽ0 to output
z, and this value is smaller than 4.075, the gain computed by
the previous learning-based optimal controller.

For the ring road case, Q and R remain the same matrices
as Section VI-B, and the other parameters are based on the
freeway case. Similarly, P ∗ and K∗ are solved from (24) based
on Arr, Brr, and H for comparison. The errors in the learning
process are shown in Fig. 9, and it can be observed that Pk

and Kk converge to P ∗ and K∗ within 8 steps. The minimum
γ found by the learning algorithm is 6.45 which is close to
the H∞ gain 6.443 from input w to output z, and this value is
smaller than 8.17, the gain computed by the previous learning-
based optimal controller.

Fig. 9. Convergence of Pk and Kk for the ring road case using Algorithm
2.

D. Performance Comparison

This section presents the comparison results of the perfor-
mance of different controllers. Three performance indices are
first considered, i.e. J0, J1 and J2, where

J0=

∫ ∞

0

xTQx+ uTRu dt

denoting the overall cost; J1 represents the overshoot de-
scribed by the percentage of maximum offsets compared
to the equilibrium states and J2 denotes the entering time
when the state errors stay within the 2% range. To illustrate
the effectiveness of the learning process, for both cases, we
compute the corresponding performance indices of the learned
controllers during iterations under the same initial conditions.
The result is shown in Fig. 10, where the normalized value
refers to the original value divided by the minimum value
over the iteration process. It turns out that, in the freeway
case, compared with the initial controller, J0, J1 and J2
have improved by 31.6%, 5.8% and 55.5%, respectively, and
in the ring road case, compared with the initial controller,
J0, J1 and J2 have improved by 433.7%, 22.1% and 395.5%,
respectively. Therefore, the performance of the learning-based
controllers has improved during the learning process.

In [12], FollowerStopper (FS) and PI with saturation (PI)
controllers are two non-model-based controllers that have been
validated experimentally to stabilize the mixed traffic flow.
Both controllers need to track the command speeds where the
FS controller uses a proportional control and the latter applies
integral control additionally. The control parameters are cho-
sen from [12] and well-tuned to achieve good performance. Let
J3 denote the average speed variation per vehicle per second
[54], and J4 denote the fuel consumption [55] (unit: mililiter).
Table I and Table II show the comparison results for different
controllers with the same initial conditions, where ADPs refers
to the optimal controller in Section VI-B and ADPr refers
to the robust controller in Section VI-C. It can be seen that
ADPs outperforms the other three controllers on J0, J1 and
J4, and has a similar performance to that of ADPr on J2 and
J3 for both freeway and ring road cases. Finally, we obtain the
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Fig. 10. (a) Normalized performance of the learned controllers in the freeway
case. (b) Normalized performance of the learned controllers in the ring road
case.

execution times of the controllers for the control process, and
the times are 0.001, 0.004, 0.014 and 0.014 seconds for ADPs,
ADPr, FS, and PI, respectively. Considering the training times
in Section VI-B, the proposed methods have relatively short
computation times. Also, after training, an optimal controller
can be utilized for real-time control without frequent retraining
until the performance deteriorates.

TABLE I
COMPARISON OF PERFORMANCE FOR DIFFERENT CONTROLLERS

IN THE FREEWAY CASE

Met.
Perf.

J0 J1 J2 [s] J3 J4

ADPs 2422.8 26.9% 15.4 1.7 52.2
ADPr 2943.0 33.7% 13.1 1.5 57.3
FS 3984.3 29.3% 18.0 1.9 55.3
PI 4303.7 30.1% 19.4 2.3 59.5

TABLE II
COMPARISON OF PERFORMANCE FOR DIFFERENT CONTROLLERS

IN THE RING ROAD CASE

Met.
Perf.

J0 J1 J2 [s] J3 J4

ADPs 72.2 18.6% 6.7 0.14 11.9
ADPr 226.9 21.4% 8.5 0.18 12.1
FS 1134.0 19.7% 14.7 0.20 13.1
PI 1126.4 20.1% 15.2 0.20 13.1

The robust controller ADPr is not proposed to optimize the
cost function J0, but to attenuate the impact of the external
disturbance. Here the disturbance 2e−t vanishes fast and its
impact is not prominent. Therefore, to show the effectiveness
of ADPr, other forms of disturbance signals are selected. For
the freeway case, let the disturbance ṽ0 be sin(0.2759t). The
trajectory of ∥z(t)∥ is shown in Fig. 11 with zero initial
conditions. The output of the robust controller has a smaller
fluctuation. The truncated costs J0, J3 and J4 decrease from

Fig. 11. (a) Trajectory of ∥z(t)∥ in the freeway case. (b) Trajectory of ∥z(t)∥
in the ring road case.

776, 0.76, and 41.2 to 719, 0.71, and 40.8, respectively, com-
pared with the optimal controller in Section VI-B. Similarly,
for the ring road case, when the disturbance w is sin(0.5t),
the trajectory of ∥z(t)∥ is shown in Fig. 11 with zero initial
conditions. The attenuation of the disturbance can be observed.
The truncated costs J0, J3 and J4 decrease from 3185, 1.3,
and 38.2 to 2020, 0.91, and 33.7, respectively, which shows
the effectiveness of the proposed robust controller.

VII. CONCLUSIONS

This paper has presented a unified framework for learning-
based optimal control of mixed vehicular systems with CAVs
and heterogenous HDVs in the freeway and ring road environ-
ments. By using a model reduction technique and the PBH test,
it is shown that the vehicular systems in both cases are stabiliz-
able, and this fact is independent of the formation of HDVs and
CAVs in the platoon. Based on ADP techniques, a data-driven
algorithm with guaranteed convergence has been employed
to solve an LQR problem for the mixed vehicular system
without prior knowledge of system parameters, and small-
gain techniques are utilized to construct the initial stabilizing
control laws. The obtained optimal controllers can achieve
the general Lp string stability. To attenuate the effects of the
disturbance, a learning-based value iteration process has been
proposed to solve the corresponding linear quadratic zero-sum
game. SUMO simulation has been used to demonstrate the
effectiveness of the proposed methods. Our future work will
investigate the robustness of our proposed learning algorithms
with respect to model uncertainties [56], [57], and consider
the coordination of CAVs in particular several platoons at
intersections [58] and the integration of the proposed methods
with data-driven traffic signal control [59], [60].
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