
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Reducing Urban Traffic Congestion Using Deep
Learning and Model Predictive Control

Zhun Yin , Tong Liu , Graduate Student Member, IEEE, Chieh Wang , Member, IEEE,
Hong Wang , Fellow, IEEE, and Zhong-Ping Jiang , Fellow, IEEE

Abstract— This article proposes a deep learning (DL)-based
control algorithm—DL velocity-based model predictive con-
trol (VMPC)—for reducing traffic congestion with slowly
time-varying traffic signal controls. This control algorithm con-
sists of system identification using DL and traffic signal control
using VMPC. For the training process of DL, we established a
modeling error entropy loss as the criteria inspired by the theory
of stochastic distribution control (SDC) originated by the fourth
author. Simulation results show that the proposed algorithm can
reduce traffic congestion with a slowly varying traffic signal
control input. Results of an ablation study demonstrate that this
algorithm compares favorably to other model-based controllers
in terms of prediction error, signal varying speed, and control
effectiveness.

Index Terms— Deep learning (DL), gain-scheduling, model
predictive control (MPC), traffic signal control, velocity-based
linearization (VL).

I. INTRODUCTION

WITH the increase in traffic congestion, urbanization, and
vehicle ownership, the optimal setting and control of

traffic lights have become a challenge for urban areas [1],
[2]. In recent decades, systematic control-theoretic methods
have been applied to tackle this problem [3], [4], [5], [6].
Because of the complexity of traffic systems, an accurate
system identification method for a model-based controller
design is needed. Compared with least-squares (LS) methods
commonly used in system identification, it has been shown that
deep neural networks can model the inherent nonlinearity of
traffic system. Indeed, deep learning (DL) for traffic system
prediction has been studied recently [7], [8], [9]. However,
few control schemes have been considered based on the DL
prediction models for traffic systems, which have recently been
attracting more attention [10].

To control the identified system, researchers often linearize
the system at an equilibrium point of interest [5]. This
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linearization method is accurate only when the system state
is near the equilibrium point. However, in the traffic system,
operating points are often far away from any specific equilib-
rium point in the presence of unpredictable, and sometimes
large, traffic demands as disturbances.

The gain-scheduling methods (see research from Leith and
Leithead [11] and numerous references therein), on the other
hand, are powerful approaches to the nonlinear control system
design, retaining the advantage of linearizing a nonlinear
system at a sequence of operating points. Specially, the lin-
earization method adopted by Leith and Leithead [11], namely,
the velocity-based linearization (VL), is a good approximation
to the original system, provided that the system has locally
bounded first-order derivatives, and the system states and con-
trol signals are slowly time-varying [11], [12], [13]. Because
of physical limitations from the dynamics of traffic flows, and
the rate of change of control signals is not expected to be
overly rapid in real-world applications, the requirements of
slowly varying states and inputs can usually be met. Thus,
such VL is suitable for the traffic system intuitively, and we
will validate this intuition by means of numerical simulation
results. Note that in this article we approximate the nonlinear
dynamics of the traffic system using the fact that the deep
neural network can act as a universal approximator [14], which
is also a salient feature of fuzzy logic systems [15], to which
the gain-scheduling method was recently adopted in the work
[16]. More specifically, in [16], the Takagi–Sugeno (T-S)
fuzzy system is adopted to approximate nonlinear systems
by smoothly merging several linear systems, and a switching-
type gain-scheduling control law is proposed to reduce the
conservativeness of the alert threshold condition for resilient
fuzzy stabilization [17].

To take into account the control effect and the varying speed
of the control signals, we designed the controller based on the
optimal control methods. Velocity-based optimal control has
been studied in the literature [18], [19]. Since infinite-horizon
linear quadratic regulation (LQR) is not generally applicable
for the VL of nonlinear systems [18], we applied techniques
in finite-horizon LQR and model predictive control (MPC) to
tackle this problem. Another reason for selecting MPC is that
it can handle the state and input constraints that often exist in
real-world applications. Recently, a field deployment experi-
ment of the MPC algorithm based on the virtual phase-link
(VPL) model has been conducted in downtown Chattanooga,
Tennessee [20].

In this article, an MPC controller for the VL of the nonlinear
traffic system modeled by DL is proposed. A multilayer
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perceptron (MLP) was used to model the traffic system as
a discrete-time nonlinear system with the number of vehicles
in each link as the state variables, and the difference between
the green times of the actual traffic signal and a fixed-time
traffic signal as the control input. In addition, for the training
process of DL, we propose learning error entropy by regarding
the training process as a stochastic distribution control (SDC)
problem [21]. The VL method is then applied to this nonlinear
system model along the operating trajectory. As a conse-
quence, the original nonlinear system can be regarded as a
linear time-varying system with the system matrix being the
Jacobian of the neural network at each operating point. Linear
MPC control is then applied to the linearized system at each
operating point to obtain the optimal green time splits for
a set of intersections, subject to state and input constraints.
Finally, the bounded-input, bounded-output (BIBO) stability
of the closed-loop linear time-varying system is proven.

The contributions of this article are threefold.
1) For traffic systems, although DL has been intensively

used in traffic congestion prediction [7], [8], this article
is the first to apply gain-scheduling control to traffic
signal control tasks based on DL prediction.

2) The combination of DL and velocity-based MPC
(VMPC) for the controller design has not been inves-
tigated, and a new training loss inspired by SDC is
proposed.

3) From a theoretical perspective, this article demonstrates
the BIBO stability for the proposed method, contrary
to other similar traffic-responsive urban control methods
[22], [23], which often lack stability guarantees [24].

This article is structured as follows. Section II conceptually
introduces the traffic signal control, DL, entropy loss, VL,
and VMPC; Section III introduces the proposed DL-VMPC;
Section IV introduces two baseline methods and an ablation
study; Section V provides the numerical results; Section VI
demonstrates the BIBO stability for the proposed method; and
Section VII provides conclusions of this research.

Notation: N (N+) denotes the set of all (positive) natural
numbers. Z denotes the set of all integers. R denotes the set
of all real numbers. Rn denotes the n-dimensional Euclidean
space. For any vector x ∈ Rn , we denote x = [x1, x2, . . . , xn]

T.
Zn denotes set {x ∈ Rn

| xi ∈ Z for all i}, Nn denotes set
{x ∈ Rn

| xi ∈ N for all i}. Rn
+

denotes set {x ∈ Rn
| xi ≥

0 for all i}, and Nn
+

denotes set {x ∈ Rn
| xi ∈ N+ for all i}.

A partial order “⪯” on Rn is defined by x ⪯ y if and only if
y − x ∈ Rn

+
. The Hadamard product between two matrices of

the same dimension A, B ∈ Rm×n is denoted as A ⊙ B.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Traffic Signal Control

Generally, traffic signal control consists of four primary
aspects: phase specification, signal timing/split control, cycle
duration, and cycle offset. Among these four aspects, signal
timing/split control, which sets the relative green duration of
each phase, has potentially the most significant effect on the
operation of traffic flows in a network of intersections [3].
Thus, in this article, we describe the control signal as the

green time of all traffic lights, denoted as uk
∈ Nm for time

step k, where m is the number of controlled green phases in a
particular area and the output as the number of vehicles on the
concerned n links in the area denoted by xk

∈ Nn [22]. As a
result, the object of the control system design is to select uk

so that xk is made as small as possible subjected to variable
traffic demand.

At present, the fixed-time traffic light signal control scheme
has been widely used, especially in urban settings, partly
because of the nature of the randomness of traffic conditions
in cities, and partly because of its simplicity for implementa-
tion. For example, stage-based approaches SIGSET [25] and
SIGCAP [26] use the well-known Webster’s delay formula to
generate fixed-time strategies [24]. In this article, the control
input is set as the differences between the green time of all
traffic lights and a predetermined fixed-time controller u ∈ Nm ,
denoted as δuk

:= uk
− u.

To achieve the aforementioned control objective, it is
imperative to develop an effective modeling strategy at first.
Considering the unknown and nonlinear nature of the traffic
system, neural networks such as MLP will be used here as
discussed in the next subsection.

B. Multilayer Perceptron

MLP is a class of feedforward artificial neural networks.
We use this terminology to refer to networks comprising
multiple layers of neurons.

In the mathematical theory of artificial neural networks,
universal approximation theorems ensure that such MLP can
closely approximate any continuous function defined on a
compact set arbitrarily, provided that the width of the net-
work is sufficiently large [27]. This universal approximation
property of MLP was used to learn the underlying nonlinear
dynamics of the traffic system, denoted as

xk+1
= f

(
xk, δuk) (1)

where f : Rn
× Rm

→ Rn is a unknown nonlinear function
that captures the system dynamics, and we assume that f has
locally bounded first-order derivatives.

Remark 1: Since u is a constant vector, by defining
f0(xk, uk) := f (xk, uk

− u), we can see that learning the
traffic system in the form f (xk, δuk) is equivalent to learning
the traffic system in the form f0(xk, uk). Using δuk instead
of using uk directly is based on the model introduced in
[22] which was designed for the traffic-responsive urban
control (TUC) strategy. In [22], the traffic model is as follows:

xk+1
= xk

+ B0δuk (2)

for some constant matrix B0. One of the motivations of our
article is to generalize (2) to a nonlinear model xk+1

=

f (xk, δuk) via DL. Thus, we use δuk as our control inputs.

C. Neural Network Training Using Learning Error Entropy
as the Loss Function

1) Stochastic Distribution Control: For a stochastic system
subjected to random signals w(t), where t ∈ R+ represents
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Fig. 1. Feedback structure of SDC.

Fig. 2. Training process of a neural network regarded as an SDC problem.

the time, an important aspect of the controller design is to
attenuate the uncertainties contained in the controlled system
outputs or tracking errors. As shown in Fig. 1, SDC is a
control system theory developed to control non-Gaussian and
dynamic stochastic systems whose actual controlled output is
the shape of its output probability density functions (PDFs)
γ (y, uSDC, w), where y ∈ [a, b] is the distributions’ range,
and −∞ < a < b < ∞ [21].

The objective of the SDC theory is to make the output PDF
γ (y, uSDC, w) as close to a target PDF g(y) as possible by
formulating the control inputs uSDC(t) [28].

2) Learning Error Entropy Loss: In this article, the training
process of a neural network is regarded as an SDC problem.
As shown in Fig. 2, a neural network with parameter θ can
be regarded as a stochastic system, and the finite sequence
of batches of the training dataset {Bτ

}
T −1
τ=0 can be regarded

as random signals, where τ ∈ N represents the τ th iteration.
The actual controlled output is the PDF of each component of
the neural network’s error (label minus the neural network’s
output). The PDF of the qth component of error is denoted as
γeq (y, θ,Bτ ).

Thus, the training process of a neural network can be
regarded as a controller design problem of SDC, which formu-
lates parameters {θ τ

}
T
τ=0 for the neural network as SDC control

inputs uSDC(τ ). For each q, the aim is to make γeq (y, θ τ ,Bτ )

as close to a Dirac delta distribution as possible. This is
because a narrowly distributed PDF of the modeling error with
zero mean would generally indicate that the uncertainties in the
error are small and the trained model thus obtained has a high
reliability and robustness. In practice, a normal distribution
PDF g(y) with zero mean and a very small variance was
adopted. Based on this target PDF of the modeling error,

we formulate the modeling error entropy loss as

LEntropy(θ
τ ,Bτ )

=
c

noutput

noutput∑
q=1

∫ b

a
γeq (y, θ τ ,Bτ ) log

{
γeq (y, θ τ ,Bτ )

g(y)

}
dy

+
1

|Bτ |

|Bτ |∑
i=1

∥∥e[i]
∥∥

2 (3)

where e[i]
∈ Rnoutput is the error for the i th sample in batch Bτ ;

noutput is the dimension of the neural network’s output layer;
c > 0 is a constant; and |Bτ

| is the size of batch Bτ .

D. Gain-Scheduling and VL
Gain-scheduling is a nonlinear control approach that aims

to achieve desirable performance by scheduling the feedback
gains of a family of linear controllers. Each linear controller
provides a satisfactory control to a different system operating
point. The controller is selected and enabled based on a subset
of observable variables, called “scheduling variables.”

To apply a linear controller at each operating point, suitable
linearization methods should be adopted for the nonlinear
system. In this article, VL [11] was used. For nonlinear system
(1), using Taylor’s theorem [29], we have

xk+1
= f

(
xk, δuk)

= f
(
xk−1, δuk−1)

+ Ak−11xk

+ Bk−11uk
+ o

(∥∥∥[(1xk)T
,
(
1uk)T

]∥∥∥
2

)
(4)

where Ak−1 := (∂ f )/(∂x)| x=xk−1 ,

u=δuk−1
, Bk−1 := (∂ f )/(∂u)| x=xk−1 ,

u=δuk−1
,

1xk
:= xk

− xk−1, and 1uk
:= δuk

− δuk−1. The final term
in (4) stands for the approximation error or higher order
approximation error.

Based on (1), we have xk
= f (xk−1, δuk−1). Thus, we can

rewrite (4) as

1xk+1
= Ak−11xk

+ Bk−11uk
+ o

(∥∥∥[(1xk)T
,
(
1uk)T

]∥∥∥
2

)
.

(5)

If xk and δuk are slowly time-varying, we can omit the last
term of (5). Then, we can derive the VL at (xk, δuk) for (1)[

xk+1

1xk+1

]
=

[
I Ak−1
0 Ak−1

][
xk

1xk

]
+

[
Bk−1
Bk−1

]
1uk . (6)

Note that at time step k, the Taylor expansion is adopted at
(xk−1, δuk−1) in (6). From the viewpoint of gain-scheduling,
the VL takes the operating point of the previous time step as
its scheduling variable for the current time step.

E. Velocity-Based MPC
To reduce traffic congestion with slowly time-varying traffic

control signals, an MPC controller is applied, whose cost
function at each sampling instance k is

Jk :=

N∑
i=1

([
xk+i

1xk+i

]T[Q 0
0 0

][
xk+i

1xk+i

]

+ 1
(
uk+i−1)T

R1uk+i−1

)
(7)
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where the matrices Q ∈ Rn×n and R ∈ Rm×m are the
prespecified symmetric and positive definite matrices, and
N ∈ N+ is the prediction horizon. In addition, we constrain
the varying speed of green signal duration explicitly∣∣1uk+i−1

∣∣c ⪯ 1umax, i = 1, . . . , N (8)

where |1uk+i−1
|
c is the componentwise absolute value of

1uk+i−1, and constant 1umax ∈ Nm
+

denotes the upper bounds
for the green signal duration change.

Considering the constraints of minimum green time for
pedestrians and the maximum green time based on the cycle
length (summation of all phases’ duration time equals cycle
length), we impose the following constraints:

umin ⪯ uk+i−1
⪯ umax, i = 1, . . . , N (9)

where umin, umax ∈ Nm
+

denote the lower and upper bounds of
the green time duration, respectively.

Combining (6)–(9), we define the VMPC problem as

min
uk ,...,uk+N−1

Jk (10a)

s.t.
[

xk+i

1xk+i

]
=

[
I Ak−1
0 Ak−1

][
xk+i−1

1xk+i−1

]
+

[
Bk−1
Bk−1

]
1uk+i−1, i = 1, . . . , N

(10b)∣∣1uk+i−1
∣∣c ⪯ 1umax, i = 1, . . . , N (10c)

umin ⪯ uk+i−1
⪯ umax, i = 1, . . . , N . (10d)

Indeed, the MPC controller (10a)–(10d) can be viewed
as a linear controller designed to control the traffic system
linearized at the last operating point. Note that since the traffic
system is slowly varying and the traffic signals generated by
our MPC controller are also slowly varying, the linearized
system (6) is a good approximation of the original nonlinear
traffic system (1).

III. TRAFFIC SIGNAL CONTROLLER DESIGN

A. DL for Traffic System Prediction
The dataset D = {((xk, δuk), xk+1)}d

k=1 is sampled every
cycle length subjected to a set of random control inputs
{δuk

= ⌊δûk
+ (1/2)⌋|δûk

= 0.1 × w ⊙ u, w ∈ Rm, wp ∼

U [−0.5, 0.5] i.i.d. for p = 1, . . . , m}
d
k=1, where d ∈ N+ is the

size of dataset D and U stands for uniform distribution.
In the system identification step, we designed an MLP

model (see Fig. 3) to identify the dynamics in (1). The MLP
model comprises five layers: one input layer, three hidden
layers, and one output layer. The number of vehicles at each
link at a certain time step together with the difference in green
time between the signals at that time step and the fixed time
controller are fed into the deep neural network. The output
of the neural network is the predicted number of vehicles
on each link at the next time step. During the experiments,
we found that the activation function combination of Relu,
ELU, and Relu produced better prediction results than only
using the Relu activation function. We conjecture that this
is because the ELU activation function can push mean unit
activations closer to zero, which speeds up the learning [30].

Hence, the activation functions for the hidden layers are Relu,
ELU, and Relu, successively. The output layer is a linear layer
without any activation function. All the outputs are rounded
to an integer.

The neural network is denoted as fNN : Rn
× Rm

→ Rn , and
the prediction for step k + 1 generated by the neural network
is denoted as x̂k+1

x̂k+1
= fNN

(
xk, δuk). (11)

The error ek+1 is defined as

ek+1
= xk+1

− x̂k+1. (12)

For the τ th iteration, batch Bτ randomly samples bτ
:= |Bτ

|

instances from D, denoted as Bτ
= {((xki , δuki ), xki +1)}bτ

i=1.
Then, the qth component of errors’ PDF for this batch can be
estimated using kernel distribution estimation [31]

γ̂ eq (y, θ τ ,Bτ ) =
1

h × bτ

bτ∑
i=1

φ

(
y − eki +1

q

h

)
(13)

where φ is the standard normal distribution kernel, and 0 <

h < 1 is the bandwidth of the kernel distribution estimation.
1y := (b − a)/p, where p ∈ N+ represents the number

of sampling points in the integration interval for computing
integral. The modeling error entropy loss in (3) is computed
as

LEntropy(θ
τ ,Bτ )

=
c
n

n∑
q=1

p∑
j=0

γ̂ eq (a + j1y, θ τ ,Bτ )

× log

{
γ̂ eq (a + j1y, θ τ ,Bτ )

g(a + j1y) + ϵ
+ ϵ

}
1y

+
1
bτ

bτ∑
i=1

∥e[i]
∥2 (14)

where ϵ > 0 is a small constant to prevent numerical problems.
Note that since g(y) is always positive, the denominator g(a+

j1y) + ϵ will never be zero.
By performing backpropagation to the loss function LEntropy,

we can update the neural network’s parameters to bring fNN
close to f . This model fNN is referred to as the “DL model”
for convenience.

B. DL-VMPC

Once we obtain a trained DL model, we can identify the
underlying dynamics of the traffic system (1) as fNN. Then,
we can use VL on the identified nonlinear system and apply
VMPC to this linearized system, similar to (10a)–(10d)

min
uk ,...,uk+N−1

Jk (15a)

s.t.
[

xk+i

1xk+i

]
=

[
I ANN

k−1
0 ANN

k−1

][
xk+i−1

1xk+i−1

]
+

[
BNN

k−1

BNN
k−1

]
1uk+i−1, i = 1, . . . , N

(15b)
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Fig. 3. DL for traffic system prediction.

Fig. 4. Design procedure of DL-VMPC.

∣∣1uk+i−1
∣∣c ⪯ 1umax, i = 1, . . . , N (15c)

umin ⪯ uk+i−1
⪯ umax, i = 1, . . . , N (15d)

where ANN
k−1 := (∂ fNN)/(∂x)| x=xk−1 ,

u=δuk−1
, and BNN

k−1 :=

(∂ fNN)/(∂u)| x=xk−1 ,

u=δuk−1
.

C. Control Scheme Summary
The design procedure can be found in Fig. 4. Essentially,

the control scheme consists of three steps.
1) Model the traffic system as a nonlinear system using a

deep neural network.
2) Linearize the nonlinear system by applying VL along

the operating trajectory.
3) Apply MPC to the linearized system.
From the viewpoint of gain-scheduling, step 2 can be

considered as a step for computing scheduling variables, and
step 3 can be viewed as selecting a corresponding linear
controller based on the described scheduling variables.

Remark 2: Since VL adopts 1uk
:= δuk

− δuk−1
= uk

−

uk−1 as the control inputs, the constant term u will not be a
feedforward part of our proposed control strategy.

IV. BASELINE METHODS AND ABLATION STUDY

A. Baseline Methods
1) Max-Pressure Algorithm: Unlike our setting, the max-

pressure traffic signal control method does not have a fixed
cycle length [24]. Instead, this algorithm updates the phase
duration of each traffic light at a fixed time interval (35 s in this
study) between the two phases. If the new phase duration is
different from the current one, then a yellow phase is enforced
for a predefined duration (4 s in this study).

Inspired by the max-pressure algorithm in the field of
wireless networks [32], the max-pressure traffic signal control
method updates the phases according to the “pressure” of each
traffic signal phase ϕ, defined as

Pressure(ϕ) =

∑
l∈Lϕ,up

|ql | −

∑
l∈Lϕ,down

|ql | (16)

where l is a traffic lane; ql is the average vehicle queue length
in lane l during the last updating interval; Lϕ,up is the set of
upstream lanes controlled by phase ϕ, and Lϕ,down is the set of
downstream lanes controlled by phase ϕ. The phase with the
greatest pressure is selected as the next phase. Intuitively, the
pressure measures the nonuniformity of vehicle distribution
by the difference between the upstream and downstream
queue lengths. To effectively mitigate such nonuniformity, the
max-pressure algorithm aims to release the phase that has the
highest pressure.

2) Independent Deep Q-Network: Like the max-pressure
algorithm, this method updates the phase of each traffic light
once every 35 s, and a 4-s yellow phase is enforced if the new
phase is different from the current enabled one. The algorithm
we implemented is based on one from the work of Ault
and Sharon [33], in which each intersection has a local deep
Q-network agent, whose input is the current enabled phase
and the current state, and whose output is the next phase. The
state, action, reward, and Q-network architecture are defined
as follows.

1) State: 1) Number of approaching vehicles; 2) stopped
vehicles’ accumulated waiting time; 3) number of
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stopped vehicles; and 4) average speed of approaching
vehicles.

2) Action: The phase to be enabled.
3) Reward: Minus stopped vehicles accumulated waiting

time.
4) Q-Network: Input is resized as a 3-D tensor. The dimen-

sions of each dimension are 1, the number of coming
lanes connected to the intersection is 5, respectively,
in which four components of the last dimension store
the state information, and the other component stores
the current phase information as a one-hot vector. The
input layer is a 2-D convolution layer whose kernel
size is (2, 2), stride is 1, and the number of output
channels is 64. After being flattened, the output of the
input layer is transmitted to two hidden layers, each
with 64 dimensions. The output layer’s dimension is the
number of intersection’s phases. The activation function
of the input and hidden layers is Relu.

B. Ablation Study

To further assess the performance of the proposed control
scheme, an ablation study was conducted. Two variations were
considered in this study: replacing the deep neural network
with a linear model identified by offline LS [34] and replacing
the VL method with the linearization along a nominal system
trajectory. These two variants are conducted for step 1 and
step 2 in Section III-C, respectively.

1) Offline LS Model: According to Diakaki et al. [22], the
traffic system can be identified as a linear time-invariant
system

xk+1
= Axk

+ Bδuk (17)

where the system matrices A and B can be estimated using the
well-known LS from historical data offline. Equation (17) is
referred to as the “LS model” for convenience. Two controllers
can be designed based on this model.

1) Set the cost function as

J =

∞∑
k=1

(
xk)T

Qxk
+
(
δuk)T

Rδuk (18)

where the matrices Q ∈ Rn×n and R ∈ Rm×m are the
prespecified symmetric and positive definite matrices.
The following LQR controller can be designed for this
linear model if (17) is stabilizable

δuk = −K xk (19)

where K = (BT P B + R)−1 BT P A, and matrix P is
obtained by solving the following Riccati equation:

AT P A − P − AT P B
(
BT P B + R

)−1
BT P A + Q = 0.

(20)

This controller is referred to as “LS-LQR” for
convenience.

2) Adopt VL to (17)[
xk+1

1xk+1

]
=

[
I A
0 A

][
xk

1xk

]
+

[
B
B

]
1uk . (21)

Then, a VMPC controller can be formulated for the
given linear time-invariant system. This controller is
referred to as “LS-VMPC” for convenience.

2) Linearization Along the Nominal System Trajectory:
This linearization method is motivated by the observation
that there is a natural equilibrium point for the traffic system
f (0, 0) = 0. This equilibrium point suggests that if there are
no vehicles in the area at time step k and we adopt fixed-time
controller u, then in the next time step k + 1, the number of
vehicles in this area should be 0 [22]. Thus, using the definition
of the Fréchet derivative, we can see that

f (0, 0) = f
(
xk, δuk)

+ D f
(
xk, δuk){0 −

[(
xk)T

,
(
δuk)T

]T
}

+ o
(∥∥∥[(xk)T

,
(
δuk)T

]∥∥∥
2

)
(22)

where D f (xk, δuk) denotes the Fréchet derivative of f at
(xk, δuk). Using [29, Th. 1.2], it can be shown that

f (0, 0) = f
(
xk, δuk)

+

[
∂ f
∂x

∣∣∣∣ x=xk ,

u=δuk

(
0 − xk)]

+

[
∂ f
∂u

∣∣∣∣ x=xk ,

u=δuk

(
0 − δuk)]

+ o
(∥∥∥[(xk)T

,
(
δuk)T

]∥∥∥
2

)
.

(23)

We can rearrange (23) to further obtain the following:

f
(
xk, δuk)

=
∂ f
∂x

∣∣∣∣ x=xk ,

u=δuk

xk
+

∂ f
∂u

∣∣∣∣ x=xk ,

u=δuk

δuk

+ o
(∥∥∥[(xk)T

,
(
δuk)T

]∥∥∥
2

)
. (24)

For easy reference, this linearization method is referred to as
“nominal linearization (NL).”

The linearized LS model via NL is the same as the LS
model itself. Thus, we only consider NL for the DL model.
Since the first-order derivatives of f are locally bounded,
we can replace (∂ fNN)/(∂x)| x=xk ,

u=δuk
and (∂ fNN)/(∂u)| x=xk ,

u=δuk
with

(∂ fNN)/(∂x)| x=xk ,

u=0
and (∂ fNN)/(∂u)| x=xk ,

u=0
, respectively, if δuk is

small. The prediction obtained by NL of the DL model can
be defined as

x̂k+1
NL :=

∂ fNN

∂x

∣∣∣∣
x=xk ,

u=0

xk
+

∂ fNN

∂u

∣∣∣∣
x=xk ,

u=0

δuk . (25)

An MPC controller can be designed for the linear time-
varying system

xk+1
=

∂ fNN

∂x

∣∣∣∣
x=xk ,

u=0

xk
+

∂ fNN

∂u

∣∣∣∣
x=xk ,

u=0

δuk . (26)

We formulate such an MPC controller as

min
uk ,...,uk+N−1

N∑
i=1

((
xk+i)T

Qxk+i
+
(
δuk+i−1)T

Rδuk+i−1
)
(27a)

s.t. xk+i
=

∂ fNN

∂x

∣∣∣∣
x=xk+i−1 ,

u=0

xk

+
∂ fNN

∂u

∣∣∣∣
x=xk+i−1 ,

u=0

δuk, i = 1, . . . , N (27b)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: New York University. Downloaded on December 13,2023 at 04:30:51 UTC from IEEE Xplore.  Restrictions apply. 



YIN et al.: REDUCING URBAN TRAFFIC CONGESTION USING DL AND MPC 7

∣∣1uk+i−1
∣∣c ⪯ 1umax, i = 1, . . . , N (27c)

umin ⪯ uk+i−1
⪯ umax, i = 1, . . . , N . (27d)

This controller is referred to as “DL-NMPC.”
Remark 3: It can be seen that the proposed algorithm

does not use a tractable adaptive fuzzy classifier since it is
based on the neural network and the task is prediction rather
than classification. In summary, the logical procedures of the
proposed algorithm are as follows.

1) Step 1: Generate the dataset by applying the real-world
traffic demands and random traffic signals to a simula-
tion platform and sampling the number of vehicles on
each link at each time step.

2) Step 2: For system identification, identify the traffic
system via DL by minimizing the neural network’s
prediction error for the number of vehicles on each link
at the next time step. The inputs of the neural network
are the current number of vehicles on each link and the
current traffic signals. The trained neural network model
is stored for control signal calculation.

3) Step 3: For control, at each time step, linearize the
trained neural network around the operating point at
the previous time step, which can be regarded as the
scheduling variable for the current time step.

4) Step 4: At each time step, design the MPC controller for
the linearized system to generate the optimal variants of
the traffic signals subjected to constraints and apply them
to the controlled traffic system. Save the applied control
signals and current number of vehicles on each link as
the scheduling variable for the next time step.

V. NUMERICAL EXPERIMENT

A. Simulation of Urban Mobility Simulation

Simulation of urban mobility (SUMO) [35] is an open-
source, space-continuous, and time-discrete traffic flow sim-
ulation platform developed in 2001. In the past two decades,
SUMO has been developed into a simulation platform mainly
used in large-scale traffic network simulation, which integrates
network generation, demand generation, and simulation.

1) Network Generation: SUMO uses graphs to represent
real-world traffic networks, where nodes represent intersec-
tions and edges represent links. The traffic lights are contained
in the nodes to set right-of-way rules. An edge connecting
two different nodes consists of a fixed number of lanes that
contain information about the vehicle classes and maximum
speeds allowed.

The graph based on a specific real-world network can
be generated by the road importer netconvert, which can
convert networks from other traffic simulators. As shown
in Fig. 5, we converted a part of the traffic network
in downtown Chattanooga, Tennessee, from OpenStreetMap
[36] into SUMO using netconvert. This network contains
38 links and 11 intersections, which consist of a total of
15 controlled phases at 140-s cycle length. The predeter-
mined control inputs for the fixed-timed controller are u =

[98, 107, 28, 55, 34, 99, 102, 28, 96, 115, 36, 57, 15, 47, 36].
2) Demand Generation: Typically, the traffic demands in

SUMO can be generated using one of the three embedded

Fig. 5. Downtown Chattanooga model from (left) OpenStreetMap and
(right) SUMO simulation network generated using the netconvert module.

functions: od2trips, jtrrouter, and dfrouter. Among these func-
tions, jtrrouter is often adopted for a part of a city’s road
network with a few intersections, which defines the turn
percentages at each intersection to compute the routes for
vehicles based on the traffic flow data. Therefore, we adopted
this function to generate routes based on real-world traffic
flow data for this region from 1 October to 15 October and
from 23 October to 31 October 2020. The data were collected
from 7 A.M. to 7 P.M. each day.

3) Simulation: The SUMO simulation is discrete-time, and
we set the step length to be 1 s. The simulation model is space-
continuous, and the positions of vehicles are determined by
SUMO’s built-in car-following models [37]. Such models are
designed to compute the speed of each vehicle by investigating
a vehicle’s own speed, the leading vehicle’s speed, and the
distance between the two vehicles.

B. Training Process
According to Fig. 5, the dimension of the input layer is 53,

and the dimension of the output layer is 38. We set the
dimensions of the three hidden layers as 54, 60, and 100,
respectively. A total of 5200 instances were sampled from
SUMO as a dataset with the sampling interval being 140 s,
using the random control inputs described in Section III-A.
We divided the dataset into a training set (4800 instances),
a validation set (200 instances), and a test set (200 instances).
The optimizer was Adam. We adopted a multistep learning
rate: 0.005, 0.0025, and 0.0005 each for 16, 8, and 8 epochs,
and a multistep batch size: 32, 48, and 64 each for 16, 8,
and 8 epochs. For the experiments, we have used Alienware-
17-R4 with an Intel i9-8950HK CPU at 2.90 GHz, 32-GB
memory, and a single GeForce GTX1080 GPU. The training
took approximately 90 min, and the computation was mainly
conducted on the GPU.

For kernel distribution estimation, we set h = 0.3, and
φ(y) = 1/((2π)1/2)e−(1/2)y2

. For entropy loss, we set g(y) =

1/(0.01 × (2π)1/2)e−(1/2)(y/0.01)2
, −a = b = 20, 1y = 0.05,

and c = 1.9.
Fig. 6 shows the training loss and validation loss curves

during the training process. The training losses are plotted
once every five iterations, and the validation loss are plotted
after every epoch, with the green (yellow) line representing
the varying of the l2 loss [the second term on the right-hand
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Fig. 6. Training process of the neural network. The training losses are plotted
every five iterations, and the validation losses are plotted after every epoch.

Fig. 7. Varying PDF of e4.

side of (14)], the purple (brown) line representing the varying
of the entropy of the error [the first term on the right-hand
side of (14)], and the red (blue) line representing the varying
of the entropy loss [the left-hand side of (14)] on the train-
ing (validation) set, respectively.

Fig. 7 shows that the error’s PDF becomes more and more
similar to the target distribution g(y) as the training process
progresses.

C. Comparison With Baseline
Fig. 8 presents the control performance of the pro-

posed method against the max-pressure and IDQN methods.
We tested the algorithms on the real-world traffic flow data
collected from 7 A.M. to 7 P.M., 1 October to 5 October
2020. It can be seen that the proposed method outperformed
both the baseline algorithms by reducing the mean value of
the number of vehicles in the area by 19.8% when compared
with the max-pressure algorithm, and by 35.5% when com-
pared with the IDQN algorithm. Furthermore, the proposed
DL-VMPC algorithm performed better than both the baseline
methods especially when the traffic demands are high, which
is desirable for traffic signal control.

D. Ablation Study
The prediction error generated by the LS and DL models

on the test set was compared. Fig. 9 and Table I show that

Fig. 8. Control performance comparison with the max-pressure algorithm
and IDQN.

Fig. 9. Prediction error for test set.

TABLE I
PREDICTION ERROR FOR TEST SET

in the test set, the DL model provides better prediction than
the LS model. Although LS can be performed within 1 s
on the same device as the DL model was trained on, those
training processes can be realized offline using historical data
according to Fig. 4, for which the much longer training time of
the DL model will not affect the application of our proposed
method.

However, the control input difference δuk of the test set
(see Section III-A) is much smaller than real-world controllers’
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Fig. 10. (Top) Prediction error for real-scale input dataset using (4). (Bottom)
Linearization error comparison between (4) and NL.

TABLE II
PREDICTION ERROR FOR REAL-SCALE INPUTS

control input differences. Thus, we further tested the prediction
error on the dataset generated by “real-scale” inputs {δuk

=

⌊δûk
+ (1/2)⌋|δûk

= 0.1u × U + 0.4 sin((πk)/100), U ∼

Uniform[−0.5, 0.5]}
120
k=1. The prediction was obtained from

the LS and DL models, and from the other four models
derived by linearizing the given two models with two different
linearization methods, NL (see Section IV-B) and VL (see
Section II-C).

For the real-scale input dataset, as shown in Fig. 10, it can be
seen that the DL methods provided the best prediction, which
reflects the advantage of using the nonlinear model to predict
the traffic. Compared with NL, velocity-based linearization
using (4) approximated the DL model better, which reflects
the advantage of this method being able to linearize nonlinear
system models at any operating point. Furthermore, the DL
model provides better prediction than that of the LS model
for the models themselves and their velocity-based linearized
models.

The comparison shown in Fig. 10 is only given to demon-
strate the advantage of using a nonlinear model and VL for
traffic systems. For the controller design, we can use (6),
which replaces f (xk−1, δuk−1) with xk . As shown in Fig. 11
and Table II, we can conclude that using this equation, we can
further improve the prediction of the VL of the DL model at
some operating points.

Next, we compared the proposed controller with the other
three model-based controllers introduced in Section IV-B. All

Fig. 11. Prediction error for real-scale input dataset using (6).

Fig. 12. (Top) Control performance, and (bottom) 13th component of control
signals.

the control signals were rounded to an integer before being
applied to the SUMO simulation, and the parameters were set
to achieve their best performance.

Fig. 12 indicates that even though LS-LQR has the best
control effectiveness, its control signals vary rapidly, which is
not desirable in real-world applications. To achieve effective
control, the control signals of LS-LQR significantly surpass
the explicit constraints of model predictive controllers, which
is unrealistic. LS-VMPC has slowly varying control signals,
but the control effectiveness is worse than the proposed
DL-VMPC controller especially when the traffic demands are
high. DL-NMPC has neither slowly varying control signals nor
good control effectiveness. However, the proposed controller
can achieve almost as effective of control as LS-LQR with
much smaller control signal variation, and at the same time
the control signals strictly satisfy the predefined constraints.

Remark 4: The proposed controller requires full observ-
ability of the data. However, data from some traffic system
intersections may not be available because those intersections
do not have enough sensors in the real-world environment.
Indeed, how to deal with the data’s partial observability could
be one direction of our future research.
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VI. STABILITY ANALYSIS

For the closed-loop system, to show a desired property that
the change in the number of vehicles on each link will be
bounded by the varying speed of the traffic signals, the BIBO
stability property of the velocity-based system introduced in
Section III-B is analyzed

1xk+1
= ANN

k 1xk
+ BNN

k 1uk . (28)

First, we recall a few basic results from the past literature,
especially from Desoer [38].

Assumption 1: The sequence of matrices {ANN
k }k∈N+

is uni-
formly bounded

sup
k∈N+

∥∥ANN
k

∥∥
2 = aM < ∞ (29)

and ∃ε > 0 such that

max
j

{∣∣λ j
(

ANN
k

)∣∣} ≤ 1 − 2ε (30)

for all k ∈ N+, where λ j (ANN
k ) represents the j th eigenvalue

of ANN
k .

Lemma 1 [38]: If Assumption 1 holds, then∥∥∥(ANN
k

)p
∥∥∥

2
≤ (1 − ε)p+1 (1 − ε) + (aM)n−1

εn
(31)

for all k, p ∈ N+.
Lemma 2 [38]: Under Assumption 1, define matrix

Pk+1 = I +

∞∑
p=1

[(
ANN

k

)T
]p(

ANN
k

)p (32)

and define function V : N+ × Rn
→ R+ as

V (k, x) = xT Pk x . (33)

Then, we have(
ANN

k

)T
Pk+1 ANN

k − Pk+1 = −I ∀k ∈ N+ (34)

and

1 ≤ ∥Pk∥ ≤ M ∀k ∈ N+ (35)

where M = 1/(1 − (1 − ε)2) max{1, ((1 − ε)2
+ (1 −

ε)(aM)n−1)/εn
}

2.
Thus,

∥x∥
2

≤ V (k, x) ≤ M∥x∥
2

∀k ∈ N+. (36)

Lemma 3 [38]: If Assumption 1 holds, and

sup
k∈N+

∥∥ANN
k+1 − ANN

k

∥∥
2 ≤

1 − η

2M2aM
(37)

for some η ∈ (0, 1), then(
1xk)T

[(
ANN

k

)T
Pk+1 ANN

k − Pk

]
1xk

≤ −η
∥∥1xk

∥∥2
(38)

for all k ∈ N+.
Assumption 2: The sequence of matrices {BNN

k }k∈N+
is uni-

formly bounded

sup
k∈N+

∥∥BNN
k

∥∥
2 = bM < ∞ (39)

and ∃β > 0 such that

sup
k∈N+

∥∥1uk
∥∥ ≤ β. (40)

Proposition 1: If Assumption 1, Assumption 2, and (37)
hold for some η ∈ (0, 1), then there exist ρ ∈ (0, 1), λ > 0,
and a K-function α such that∥∥1xk+1

∥∥ ≤ ρk
√

M
∥∥1x1

∥∥+ α(β) ∀k ∈ N+ (41)

provided that ∥1x1
∥ < ∞.

Proof: Direct computation yields

V
(
k + 1, 1xk+1)

− V
(
k, 1xk)

=
(
1xk)T

[(
ANN

k

)T
Pk+1 ANN

k − Pk

]
1xk

+ 2
(
1uk)T(

BNN
k

)T
Pk+1 ANN

k 1xk

+
(
1uk)T(

BNN
k

)T
Pk+1 BNN

k 1uk . (42)

By Assumptions 1 and 2, Lemma 3, and (35), we have

V
(
k + 1, 1xk+1)

− V
(
k, 1xk)

≤ −η
∥∥1xk

∥∥2
+ 2aM bM Mβ

∥∥1xk
∥∥+ b2

M Mβ2. (43)

Letting Wk := (V (k, 1xk))1/2, with (36), we have

W 2
k+1 ≤

(
1 −

η

M

)
W 2

k + 2aM bM MβWk + b2
M Mβ2. (44)

Because the right-hand side of (44) monotonically increases
with respect to Wk ∈ R+, we can deduce that if ∃λ > 0 such
that

λ2
=

(
1 −

η

M

)
λ2

+ 2aM bM Mβλ + b2
M Mβ2 (45)

then Wk+1 ≤ λ, provided Wk ≤ λ. Such a λ can be obtained
by solving (45)

λ =
MbMβ

η

(
MaM +

√
MaM + η

)
> 0. (46)

Thus, according to (44), we have

W 2
k+1 ≤ ρ2W 2

k + α′

1(β)2 (47)

provided that Wk ≤ λ, where ρ := (1 − (η/M))1/2 and
α′

1(β) := (2aM bM Mβλ + b2
M Mβ2)1/2. Thus,

Wk+1 ≤ ρWk + α′

1(β) (48)

for all k ∈ N+ such that Wk ≤ λ.
Also

W 2
k+1 ≤

(
1 −

η

M

)
W 2

k + 2aM bM MβWk + b2
M Mβ2

≤ W 2
k (49)

provided that Wk ≥ λ. Such Wk ≥ λ exists if and only if
W1 ≥ λ. By (49), if Wk ≥ λ, then Wk ≤ W1. Thus, according
to (44), we can derive

Wk+1 ≤ ρWk + α′

2(β) (50)

where α′

2(β) := (2aM bM M (3/2)β∥1x1
∥ + b2

M Mβ2)1/2, pro-
vided that Wk ≥ λ.

Using (48) and (50), we have

Wk+1 ≤ ρWk + α′(β) (51)

where α′(β) := max{α′

1(β), α′

2(β)}.
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As a consequence∥∥1xk+1
∥∥ ≤ Wk+1 ≤ ρk W1 +

(
1 + ρ + · · · + ρk−1)α′(β)

< ρk W1 +
1

1 − ρ
α′(β)

≤ ρk
√

M
∥∥1x1

∥∥+ α(β) (52)

where α(β) := 1/(1 − ρ)α′(β).
The given proposition states that if the demands are slowly

varying and the duration’s variation in every traffic light
phase between each successive two cycle length is bounded,
then the varying number of vehicles on each link will
be bounded. The same conclusion can also be derived by
constructing the ISS-Lyapunov function discussed by Jiang
and Wang [39].

VII. CONCLUSION

In this article, a new approach to reducing traffic congestion
is proposed based on DL and dynamical system techniques.
The proposed algorithm first models the traffic system via
DL as a nonlinear system and then applies a gain-scheduling
method, DL-VMPC, to design an appropriate controller to
solve the control task. Besides, a modeling error entropy
loss inspired by the SDC theory was proposed for the train-
ing process. Tested on real-world traffic data, the SUMO
simulation showed that the proposed controller can achieve
favorable control effectiveness with slowly varying traffic
signals. Furthermore, robustness in the sense of BIBO stability
was assessed for the closed-loop traffic control system. The
desired results have been obtained.

For future work, one can: 1) use a higher order approxima-
tion to system (1) and 2) apply PDF shaping-based learning to
train the neural network, where weight tuning is performed by
making the modeling error PDF follow the narrowest Gaussian
PDF centered at zero.
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