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43 12 from a constrained multivariate model in terms of bias and efficiency. To further improve
13 efficiency, we propose a novel envelope estimator based on a constrained multivariate model.
48 14 We show the advantage of our proposals by simulations and by studying the probiotic capacity

50 15 to reduced Salmonella infection.

*R. Dennis Cook is Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
(E-mail: dennis@stat.umn.edu).

TLiliana Forzani is Professor, Facultad de Ingenieria Quimica, UNL. Researcher of CONICET, Santa Fe,
Argentina (E-mail: liliana.forzani@gmail.com).

#Lan Liu is Associate Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
(E-mail: liul815@gmail.com).



oNOYTULT D WN =

7

20

21

22

23

24

25

26

27

28

29

30

31

32

Scandinavian Journal of Statistics

Key Words: Growth curves, envelope models, repeated measures

1 Introduction

Consider the multivariate linear regression model

Yi:ﬁ0+ﬁxi+€i7i:17"'7n7 (1)

with stochastic response Y; € R", non-stochastic predictors X; € R?, 3, € R", 8 € R"™*? and
error vectors &; independent copies of € ~ N(0,3). The predictors are naturally non-stochastic
when they are selected by design. When the predictors are sampled, we condition on them at the
outset and so treating them as non-stochastic because they are ancillary under model (1). Model
(1) is unconstrained in the sense that each response is allowed a separate linear regression: the
maximum likelihood estimator (MLE) of the j-th row of (3, 3) is the same as the estimator of the
coefficients from the linear regression of the j-th response on X. In many applications, particularly
analyses of growth curves and longitudinal data, we may have information that span(3,, 3) is
contained in a known subspace U with basis matrix U € R"**. The classic dental data (Potthoff

and Roy, 1964; Lee and Geisser, 1975; Rao, 1987; Lee, 1988) is an example of such a case.

Example 1 A study of dental growth measurements of the distance (mm) from the center of the
pituitary gland to the pteryomaxillary fissure were obtained on 11 girls and 16 boys at ages 8, 10,
12, and 14. The goal was to study the growth measurement as a function of time and sex. We

revisited this example using the methodology presented in this paper in Supplement Section 5.
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Let Yj; denote the continuous measure of distance for child 7 at age ¢, for ¢, = 8, 10, 12, 14,
and let X,; denote the gender indicator for child 7 (1 for boy and O for girl). After graphical
inspection, many researchers treated the population means for distance as linear in time for each
gender. Following that, a mixed effects repeated measure model is Y, = agg + bo; + a1 X; +

oy + 01 + a1 X))ty + €55, where € = (&5,...,¢ HiS- ,2"), by; and by; denote the
b X))ty + <%, where & 5 VT HS N (0, 5%), by; and by, d h

y “ar

random intercept and slope, (bo;, b1;) N (0,D), where D € S?*2. We rewrite this model as

Y, = Uag+ UaX,; + ¢ 2)

with U := (1, t) witht = (8, 10, ]_2, 14)T, oy = (Oé()(), 0610) o = (0[01, 0411), E; = €:+b0i17‘x1+b1it
and g; % N (0,%). Applying the same ideas to just 3 in (1), so span(8) C U without requiring

that span(3,) C U, leads to the model

Yi:,@0+UaXi+si,i:1,...,n. (3)

Let B = span(3). If we set U = 1,, so in model (3) a is a row vector of length p, then the mean
functions for the individual responses are parallel. Although motivated in the context of the dental
data, we use models (2) and (3) as general forms that can be adapted to different applications by
varying the choice of U, referring to them as constrained multivariate linear models. Cooper and
Evans (2002) used a version of model (2) with U reflecting charge balance constraints on chemical
constituents of water samples.

Constrained models occur in various areas including growth curve and longitudinal studies

where the elements of Y; are repeated observations on the i-th experimental unit over time. It is
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common in such settings to model the rows of U as a user-specified vector-valued function u(t) €
R* of time t, the i-th row of U then being u” (¢;). Polynomial bases u® () = (1,¢,¢2,...,t*71) are
prevalent, particularly in the foundational work of Potthoff and Roy (1964), Rao (1965), Grizzle
and Allen (1969) and others, but splines (Nummi and Koskela, 2008) or other basis constructions
(Izenman and Williams, 1989) could be used as well. In longitudinal studies, model (2) might be
used when modeling profiles, while model (3) could be used when modeling just profile differ-
ences. For instance, if X = 0,1 is a population indicator then under model (2) the mean profiles
are modeled as Uayy and U(ap+ ), while under model (3) the profile means are 3, and 3,+ Uc.
It is known in the literature that constrained models gain efficiency in the estimators compared with
model (1), provided that U is correctly specified. However, it may be very difficult to correctly

specify U in some applications, as in the following study:

Example 2 Kenward (1987). An experiment was carried out to compare two treatments for the
control of gut worm in cattle. Each treatments was randomly assigned to 30 cows whose weights
were measured at 2, 4, 6, ..., 18 and 19 weeks after treatment. The goal of the experiment was to
see if a differential treatment effect could be detected and, if so, the time point when the difference

was first manifested.

The constrained models (2) and (3) require that we select /. Lacking prior knowledge, it is natural
to inspect plots of the average weight by time, as shown in Figure 1. It seems clear from the figure
that it would be difficult to model the treatment profiles, particularly their two crossing points,
without running into problems of over fitting. Envelopes provide a way to model data like this
without specifying a subspace U.

Envelope methodology is based on a relatively new paradigm for dimension reduction that,
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Average weight

260 280 300 320 340
\
\

240

220

Week

Figure 1: Cattle data: Average weight by treatment and time.

when applied in the context of model (1), has some similarity with constrained multivariate models.
Briefly, envelopes produce a re-parameterization of model (1) in terms of a basis I' € R"*" for the
smallest reducing subspace of X that contains B. Like the constrained model, envelopes produce
an upper bound for B, B C span(I), but unlike the constrained model, the bound is unknown
and must be estimated. Also, unlike the constrained model, I'"Y contains the totality of Y that is
affected by changing X. Since B C span(I'), we have 8 = I'n for some 7 € R**P. Model (1)

can be re-paremeterized to give its envelope counterpart. Fori =1,...,n,

Y, =08,+TnX; +e;, T =TQr" +T,QI}7, 4)

where (T',Ty) € R"™", orthogonal, @ = T'"ST' > 0 and 2y = T¢I, > 0. Envelopes are
reviewed in more detail in Section 2.2.

Comparing (2)—(3) with (4), both express 3 as a basis times a coordinate matrix: 3 = U« in
(2)-(3) and B8 = I'n in (4). However, as mentioned previously, I' is estimated but U is assumed

known. Envelopes were first proposed by Cook et al. (2007) to facilitate dimension reduction and
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later were shown by Cook et al. (2010) to have the potential massive efficiency gains relative to
the standard MLE of 3, and for these gains to be passed on to other tasks such as prediction.
There are now a number of extensions and applications of this basic envelope methodology, each
demonstrating the potential for substantial efficiency gains (Su and Cook, 2011; Cook and Zhang,
2015a,b; Forzani and Su, 2021; Su et al., 2016; Li and Zhang, 2017; Rekabdarkolaee et al., 2020).
Studies over the past several years have demonstrated repeatedly that sometimes the efficiency
gains of the envelope methods relative to standard methods amount to increasing the sample size
many times over. See Cook (2018) for a review and additional extensions of envelope methodology.

The choice between a constrained model, (2) or (3), and the envelope model (4) hinges on the
ability to correctly specify an upper bound U for span(3,,3) or B. In Section 2 we obtain the
MLE estimators and the asymptotic variances for the parameters of model (2) and show that if we
have a correct parsimonious basis U then the constrained models are more efficient. But if bias
is present or if we use a correct but excessive U, then the envelope model (4) can be much more
efficient. To the best of our knowledge, no such a comparison has been investigated theoretically
or empirically in the literature despite the similarity between both models. Although considerable
methodology has been developed for the envelope version (4) of the unconstrained model (1), there
are apparently no envelope counterparts available for the class of models represented by (2) and (3)
when a correct parsimonious U is available. In Section 3 we adapt the present envelope paradigm
to model versions for (2) and (3) to achieve efficiency gains over those models. Simulations to
support our finding are given in Section 4 and in Section 5 we compare our methodology with
others in an example. We conclude the paper with a discussion section. Proofs for all propositions,
two extra data set comparison and discussions of related issues are available in a Supplement to

this article.
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Notational conventions. Given a sample (a;,b;),7 = 1,...,n, let Tap = n 'Y " a;b! de-
note the matrix of raw second moments, and let T, = n~*> "  a;al. For raw second moments
involving Ys and Y defined bellow we use S and D as subscripts. We use a subscript 1 in
residuals computed from a model containing a vector of intercepts. The absence of a 1 indicates
no intercept was included. For instance, Ra, means the residuals from the regression of a on b
without an intercept vector, a; = 3b; + e, while R,(1,) means those with an intercept vector,
a; = B, + Bb; + e;. Similarly, R p|s means a residual from the regression of Y p and Y ¢ without
an intercept, and Rp)(;,5) with an intercept.

Sample variances are written as S, = n~ 'Y . (a, — a)(a; — &) and sample covariance
matrices are written as S, = n~! > (a;—a)(b;—b)T. For variances and covariances involving
Y p and Y we again use D and S as subscripts, e.g. Sp =n"' > (Ypi — Yp)(Ypi — Yp)~.
Sajb denotes the covariance matrix of the residuals from fit of the model a; = 3+ 3b; +e;, which

always includes an intercept. That is, Sy, = n™' > 1, Ra\(lﬁb),iRgu b) Similarly, Sp|g =

Z?:I RD\(LS),iRgKLS),i-

We use span(A) to denote the subspace spanned by the columns of the matrix A. The pro-
jection onto S = span(A) will be denoted using either the subspace itself Ps or its basis P4.
Projections onto an orthogonal complement will be denoted similarly using Q) = I — P(,. Fora
subspace S and conformable matrix B, BS = {BS | S € S§}. If an estimator a € R" of &« € R”

has the property that \/n(a — «) is asymptotically normal with mean 0 and variance A, we write

avar(y/na) = A to denote its asymptotic variance.
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2 Comparison of the envelope and constrained estimators

Models (2)—(3) and (4) are similar in the sense that 3 is represented as a basis times a coordinate
matrix, 3 = Ua in (2)-(3) and 8 = I'n in (4). It might be thought that (2) and (3) would
yield better estimators because U is known while I' is not, but that turns out not to be true in
general. This is in part because we may have B ¢ U, which raises the issue of bias as discussed
in Section 2.3, and in part because the envelope model capitalizes automatically on the structure
in 3, which can improve efficiency as discussed in Section 2.4. Our general conclusion is that,
in practice, it may be necessary to compare their fits before selecting an estimator and that the
envelope estimator may have a clear advantage when there is uncertainty in the choice of U, as
illustrated in Figure 1.

Developments under models (2) and (3) are very similar since they differ only on how the
intercept is handled. In the remainder of this article we focus on model (2) and comment from

time to time on modifications necessary for model (3).

2.1 Maximum likelihood estimators for constrained models

Our treatment of maximum likelithood estimation from (2) is based on linearly transforming Y.
Let Ug be a semi-orthogonal basis matrix for -+, and let W = (U(UTU)"! Uy) := (W, W,).
Then the transformed model becomes

YDi (UTU)_IUTYi o + aXl
Wy, = = = +Wle,, i=1,....n, (5

Y, uly; 0
where Yp; € R* and Yg; € R"* with k the number of columns of U. The transformed variance
can be represented block-wise as Xy := var(W'e) = (WI'EXW;), i,j = 1,2, where X is as

8
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defined for model (2). The mean E(Yp | X) depends non-trivially on X and thus, as indicated
by the subscript D, we think of Y as providing direct information about the regression. On the
other hand, £(Ys | X) = 0 and thus Y g provides no direct information but may provide useful
subordinate information by virtue of its association with Y p.

To find the MLEs from model (5), we write the full log likelihood as the sum of the log likeli-

hoods for the marginal model for Ys | X and the conditional model for Y, | (X, Ys):

Ysi | X = eg (6)

Ypi| (Xi,Ysi) = ao+aX;+dpsYsi+epsi (7)

where ¢ps = (UTU)'UTSUWUJEUg) ! € RFUM, epg = Wle, eg = Wie. The
variances of the errors are Xg := var(eg) = Ul'EUj and T ps := var(eps) = (UTE'U)~L
The number of free real parameters in this conditional model is Ny, (k) = k(p+ 1) +r(r +1)/2.
The subscript ‘cm’ is used to indicate estimators arising from the conditional model (7). The MLE

and its asymptotic variance for (2) are

-~

Qe = SDRxu.s S)_qlg = (Spx — SD7SS§155,X)S;§|15 ®)
Bem = Ublew = USp Ry, . Sxls = USpx — SpsS5'Ssx)Sxls (9
avar(y/nvec(Qen)) = Xx ® 3pis (10)

avar(yv/nvec(B.,)) = Y% @ UZpsU”, (11)

The estimation for model (3) requires just a few modifications of the procedure for model

(2). All modifications stem from the presence of an intercept vector in model (6), which becomes
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Yq = W2T,30 + eg. The variance X g is estimated as f]g = Sg with corresponding changes in
the estimator of X, and the estimator of the intercept W2 3, is just Y. The intercept in (7) is
redefined as ag = W13, — ¢ D| sWZ3,. The MLE of 3, in model (3) can be constructed in a
straightforward way from the estimators of ag, W2 3, and ¢ p|s- The number of real parameters
in (6) becomes N, + r — k. The estimators of the parameters in (7) are unchanged. In particular,
Q. and ch along with their asymptotic variances are the same under models (2) and (3), although

different U’s might be used in their construction.

2.2 Envelope estimator stemming from Model (1)

Consider a subspace S C R” that satisfies the two conditions (i) X Il QsY and (ii)) PsY 1L QsY |
X. Condition (i) insures that the marginal distribution of QgY does not depend on X, while
statement (ii) insures that, given X, QsY cannot provide material information via an association
with PsY. Together these conditions imply that the impact of X on the distribution of Y is
concentrated solely in PsY. One motivation underlying envelopes is then to characterize linear
combinations QgY that are unaffected by changes in X and that produce gains in estimative and
predictive efficiency.

In terms of model (1), condition (i) holds if and only if B C S and condition (ii) holds if and
only if § is a reducing subspace of X; that is, S must decompose ¥ = PsXPs + Qs> Qs. The
intersection of all subspaces with these properties is by construction the smallest reducing subspace
of 3 that contains B3, which is called the 3-envelope of 3 and is represented as Es(5) (Cook et al.,
2010). These consequences of conditions (i) and (ii) can be incorporated into model (1) by using
a basis, leading to model (4). Let u € {0, 1,...,r} denote the dimension of Ex(B). The number

of free real parameters iS N, = 7 + pu + r(r + 1)/2. The subscript ‘em’ is used to indicate

10
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selected quantities arising from this envelope model. The goal here is still to estimate 3 = I'n
and 3. Cook et al. (2010) derived the maximum likelihood envelope estimators of 3 and ¥ along
with their asymptotic variances. They showed that substantial efficiency gains in estimation of 3
are possible under this model, particularly when a norm of Var(I‘gY) = () is considerably larger
than the same norm of var(T7Y) = Q.

Given the envelope dimension u, Cook et al. (2010) proved that the maximum likelhood esti-

mator Bem of 3 = I'n from envelope model (4) has asymptotic variance given by

avar(\/ﬁvec(gem)) =3 @ TOr" + (" @ Ty) M'(Ex)(n & T§), (12)

where for a C € RP*?, M(C) := nCn” @ Q;' + Q@ Q' + Q7' ® Qy — 21 and 1t denotes the
Moore-Penrose inverse. Cook et al. (2010) showed that avar(\/ﬁvec(,@em)) < avar(\/ﬁvec(ﬁum)),
where Bum is the MLE under the uncontrained model (1). In consequence, estimators from the en-
velope model (4) are always superior to those from the unconstrained multivariate model (1). Cook
et al. (2010) also showed that the envelope estimator is +/n-consistent even when the normality

assumption is violated as long as the data has finite fourth moments.

2.3 Potential bias in ch

Assuming that B C U, Q. and ch are unbiased estimators of o and 3. However, if B ¢
U then both a, and ch are biased, which could materially affect the estimators: F(Qn) =
(UTU)-'U”B and E(B,,) = PuB. Consequently, the bias in 3, is 8 — Py = QuB. A
nonzero bias must necessarily dominate the mean squared error asymptotically and so could limit

the utility of Ecm. Simulation results that illustrate the potential bias effects are discussed in Section

11
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4.2. We assume that B C U/ for the remainder of this article except for where otherwise indicated.

2.4 Comparison of asymptotic variances of Eem and ch

We now compare the asymptotic variances of the envelope and constrained estimators of 3, (12)
and (11). Depending on the dimensions involved, the relationship between U/ and the envelope
Es:(B) and other factors, the difference between the asymptotic covariance matrices for the esti-
mators ch and ch from these two models can be positive definite, negative definite or indefinite.
Since all comparisons are in terms of 3’s, we assume without loss of generality that U is a semi-
orthogonal matrix. Also, since ch is the same under models (2) and (3) we do not distinguish

between these two models in this section.

241 BCUCEs(B)
Assuming that I/ is correct so that B C U and U C Ex(B) can simplify the variance comparison:
Proposition 2.1 If B C U C Ex(B), then avar(y/nvec(B.,,)) < avar(y/nvec(B,.,)).

In consequence, under this hypothesis, the constrained estimator ch is superior to the envelope
estimator Bem. However, this comparison may be seen as loaded in favor of ch since the con-
strained estimator uses the additional knowledge that B C U/ and the envelope estimator does not.
Additionally, neither estimator makes use of the proposition’s hypothesis. The next proposition
provides help in assessing the impact of the hypothesis on the underlying structure by connecting

it with (U, the X-envelope of U.

Proposition 2.2  Assume that B C U. Then

1. &x(B) € &s(U),

12
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2. U C Ex(B) ifand only if E5(B) = Es(U),
3. Ifrank(ax) = k then B =U and Ex(B) = Ex(U).

This proposition says essentially that if B C U/ C Ex(B) we can start with model (1) and param-
eterize in terms of Ex(U) rather than Ex(B). A key distinction here is that I/ is known while B
is not. In consequence, we expect less estimative variation when parameterizing (1) in terms of
Es(U) instead of Ex(B). Since U C Ex(U) we can construct a semi-orthogonal basis for Ex (U)

asT' = (U, T'y) with Uy = (T'5, T'y) and, recognizing that 3 = Ua = I'n, we get a new model

Yz’ = Uao—i-UaXi—l—si,i:l,...,n (13)

¥ = ror’ +1r,Qrt.

Consider estimating o from this model using the steps sketched in Section 2.1, and partition
Q = (£2;;) to conform to the partition of I' = (U, I'y). The envelope structure of (13) induces a
special structure on the reduced model that corresponds to (6)—(7): Xg = bdiag(€2s2, ) is block
diagonal, ¥p|g = €1 — Q15025 Q1 and Ppis = (91295, 0). It can now be shown that the esti-
mators of a from the constrained model (6)—(7) and from (13) have the same asymptotic variance.
In other words, if we neglect the hypothesized condition that &/ C Ex(B) then the constrained
estimator is better, but if we formulate the envelope model making use of that condition then the
constrained and envelope estimators are asymptotically equivalent.

Rao (1967) posited a simple structure for the analysis of balanced growth curve data (See also
Geisser, 1970; Lee and Geisser, 1975; Geisser, 1981; Lee, 1988; Pan and Fang, 2002). In our

context, Rao’s structure is obtained by assuming that £s(U/) = U, which corresponds to model

13
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(13) with I' = U, which seems too specialized to warrant further attention. Additional discussion

of Rao’s structure is available in Supplement Section 10.

242 U D Ex(B)

Assuming that i O Ex(B) is another way to simplify the variance comparison. Let I' € R"™*" be a
semi-orthogonal basis matrix for Ex(B) and let (I, T'y) be an orthogonal matrix. Since i/ O Ex(B),
we can construct semi-orthogonal bases U = (I', I'g;) and I'g = (I'g1, I'¢2). Partition 2y = (€20,;;)

to correspond to the partitioning of I'y. Then

Proposition 2.3 Assume that U O Ex(B) and let c € R". Then
1. Ifc € Ex(B) then avar(y/nc? B.,,) = avar(y/nc’ B,,,)-

2. Ifc € span(Tg2) then avar(y/ncTB,,,) < avar(y/nc’ B, ).

Page 14 of 69

3. Ifc € span(Tyy), rank(M(Zx)) = rank(nZxn’ @€ ") and Q5 = 0 then avar(/nc? B,,,) >

The main takeaway of this lemma is that the difference between the asymptotic covariance matrices
for the estimators 3em and 3cm can be positive semi-definite or negative semi-definite, depending
on the characteristics of the problem.

Although the above derivation is under two simple cases where ¢/ and the envelope space are
nested, the conclusion actually holds for the general case: if we have a correct parsimoniously
parameterized constrained model then the envelope model (4) is less efficient, but if the basis U
in the constrained model is incorrect or excessively parameterized, then envelopes can be much
more efficient. This motivated us to incorporate envelopes into the constrained model so that we
can further improve efficiency if constraints are reasonably well modeled for the data

14
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3 Envelopes in constrained models

In this section, we consider two different ways of imposing envelopes in a constrained model when
B C U. As previously dane, we focus on envelope estimators in the constrained model (2) and
later describe the modifications necessary for model (3). In Section 3.1 we describe the envelope
estimation of a when there is an application-grounded basis U that is key to interpretation and
inference. In Section 3.2 we address envelope estimation of 3 = Ua«. Here the choice of basis
U has no effect on the MLE of 3 under the constrained models (2), but it does affect the envelope

estimator of 3. Basis selection is also addressed in Section 3.2.

3.1 Enveloping o
Estimation of a will be of interest when it is desirable to interpret 3 = Uq in terms of its coor-
dinates « relative to the known application-grounded basis U. Let A = span(a). The envelope
estimator of a in model (5) can be found by first transforming (5) into (6)—(7) and then parameter-
izing (7) in terms of a semi-orthogonal basis matrix ¢ € R¥** for 5, Dls (A), the 3 p|s-envelope of
A with dimension u < k. Since avar(y/nvec(@m)) = Ex' ® X pjs is in the form of a Kronecker
product that allows separation of row and column effects of v, this structure follows also from the
theory of Cook and Zhang (2015a,b) for matrix-valued envelope estimators based on envelopes of
the form R? © &, ((A), where © denotes the direct sum.

Let n € R“*P be an unconstrained matrix giving the coordinates of « in terms of a semi-

orthogonal basis matrix ¢, so & = ¢n, and let (¢, ¢,) € R*** be an orthogonal matrix. Then the
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envelope version of model (6)—(7) is

Ysi = eg;
Yoi | (Xi,Ysi) = oo+ ¢nX;+ ¢dpsYsi + epsi, (14)

Sps = dP" + dQooy

where Q € R*** and 2, € RE~*(k~v) are positive definite matrices. Part of this model can be
seen as a version of the partial envelope model (Su and Cook, 2011)

The total real parameters in model (14) is Neew (1) = k + pu + r(r + 1) /2, which reduces to
that given previously for model (6)—(7) when u = k. The subscript ecm is used to indicate selected
key quantities that arise from enveloping A in the constrained model (2). A basis &\b for the MLE

é\ngS (A) of £, (A) is constructed as
¢ = argminlog|GSp x5 G| +1og |G"S,[sG, (15)

where the minimum is computed over all semi-orthogonal matrices G € R**% with u < k. The

fully maximized log likelihood is

E n ~T -~ ~T ~
Fu=c— " {log Ty| 108 (S + 10218 S @l + oz |d'Spdl} . (16)

where ¢ = nlog |[W| — (nr/2)(1 4 log(27)) with the log |[W/| term corresponding to the Jacobian
transformation back to the scale of Y.

Once g?) is obtained we get the following envelope estimators for constrained model (2). Specif-

16
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Qe = @n,and ap = Yp — GeemX — PpisYs.

~ ~ -~ 1 ~ 1 3 ~
*N=0¢ O, ¢D|S =8Sp,sSg — CeemSx,555 ", and B, = Uteem

~T

~ ~ -~ ~T o~
e () = Qb SD|(X,S)¢ and Q(] = ¢0 SD|S¢()’

AN~ A~

Yipis = QP+ Pflop, and Lig = Ts.

The variances Yy and X can be estimated as indicated in Section 2.1. The variances Yy and X2

can be estimated as indicated in Section 2.1. The asymptotic variances for Qe and B

deduced from recognizing that in our application Y g is random, X is fixed, and the distribution of

ecm

Y s|X is the same as that of the marginal of Yg:

avar(yv/nvec(Qeem)) =

avar(v/nvec(Bee,)) =

% © 0Q¢" + (" @ ¢)M'(Ex)(n ® ¢y)

Yx' @ U [¢Q2¢" + (n" @ ¢g)M'(Zx)(n® ¢f)] U”

can be

7)

(18)

We have avar(y/nivec(Qieem)) < avar(y/nvec(iem)) and avar(y/nvec(B,., ) < avar(y/nvec(B,,,))

being equal when u = k, so using an envelope in the constrained model always improves estima-

tion asymptotically.

Because £y, (A) C R¥, Ex(B) € R"and k < 7, it is reasonable to expect that dim{&x,, , (A)}

dim{&x(B)}, as we have estimated in many examples. However, this relationship between the

envelope dimension is not guaranteed in general. The following proposition gives sufficient con-

ditions to bound dim{&x,, ,(A)}.
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Proposition 3.1 Assume that U = (I'G,T'yGy), where the I'’s are as defined for model (4), and
that G € R**" gnd Gy € RU—WxE=uw) pborh have full column rank, so that uy < u. Then

dim{€s, (A} <u < dim{&=(B)}.

We can assess the model fitting of (14) using BIC, assuming that the error terms follows a
normal distribution. That is, we can compare the constrained envelope model with alternative
models by inspecting whether —2L,, + N.cn(u)log(n) is small. By comparing the BICs of the
constrained model with different dimensions u, we can also select the dimension that has the best

fit. More about estimating the envelope dimension is given in Supplement 9.

3.2 Enveloping 3
Estimation of 3 = U« will be of interest in applications where prediction is important or where
U is selected based on convenience, say, rather than on criteria that facilitate understanding and
inference. For instance, if X serves to indicate different treatments then plots of the columns of
B versus time give a visual comparisons of the treatment profiles. The choice of I/ is of course
relevant to estimation of 3, but a basis U is not uniquely determined. While this flexibility has no
effect on the MLE of 3 under the constrained model (2), it does affect the envelope estimator of
3. This raises the issue of selecting a good basis for the purpose of estimating 3 via envelopes.
Consider re-parameterizing U as UV ™! and a as V« for some positive definite matrix V €
R¥*, giving 8 = Ua = (UV™')(Va). We could use either &, (A) or Evspsvr(VA)

to estimate 3 as 3,.,, = UQeem Or, in terms of re-parameterized coordinates Va, as (3

ecm ecm,V.

—

UV H(Va)eem- In general B # Becm,V and we cannot tell which estimator is better. In this sec-

ecm
tion, we show that the envelope estimator of 3 is invariant under orthogonal re-parameterization,

so that we only need to consider diagonal re-parameterization: 3 = Ua = (UA™')(Acx), where

18
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a8 A is a diagonal matrix with positive diagonal elements. In growth curve or longitudinal analyses,

a0 the columns of U may correspond to different powers of time, and then it seems natural to consider

oNOYTULT D WN =

a0 rescaling to bring the columns of U closer to the same scale.
11 331 In Supplement Section 3.1 we provided technical tools for demonstrating that the maximum

13 a2 likelihood envelope estimator of 3 = Uca, when U is semi-orthogonal, is simply B = UQeem-

333 Thus, to consider the constrained model envelope under a linear transformation of U, it suffices
18 s34 to consider a re-scaling transformation. That is, we consider 3 = Ua = (UA ')(Aa), where
20 ss A = diag(1, \g, ..., \g). The first diagonal element of A is 1 to ensure identifiability. We follow
23 ass  the general logic of Cook and Su (2013) in their development of a scaled version of model (2).

25 337 Without loss of generality, we cast our discussion of scaling in the context of the condi-
a8 tional model (7). We assume that there is a scaling of the response Y p so that the scaled re-
30 ss  sponse AY p follows an envelope model in A with the envelope Exx IS A(AA) having dimen-
a0 sion v and semi-orthogonal basis matrix @ € R**". Let (©, ©,) denote an orthogonal matrix.
35 st Then we can parametrize Ao = ©n and AXp A = 0N0” + 0,Q0!; equivalently, this
37 s setup can also be viewed as a rescaling U + UA ™! of U, since AYp = A(UTU)"'UTY =

ss (ATTUTUA D 'AT'UTY. Since AY ) is unobserved, we now transform back to the original

42 aas  scale for analysis, leading to the marginal model Yg; | X = eg; and conditional model

46 Ypi | (Xi,Ysi) = ag+A7'OnX; + ®pisYsi+ epsi, (19)

49 Sps = ATH(ONOT + 0,02,07)A "

us  The total real parameters in this scaled envelope model is Nyeern(v) = 2k — 1+ pv +r(r +1)/2,

56 as  where the subscript secm is used to indicate quantities arising from the scaled envelope version of

59 19
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the conditional model. For identifiability we typically need Ngeem (v) < Ney or p(k —v) > k — 1.
The goal now is to estimate o, the coefficient matrix 3 = UA"'®n and & pl|s» Which requires
the estimation of several constituent parameters. We presented in Supplement Section 3.2 the
maximum likelihood estimators under this model and prove that the asymptotic variance of the
estimator 3., of 3 is avar(\/ﬁvec(gsecm)) = (I, ® U)Veeem(I, ® UT) and therefore it is never

less efficient than ch.

3.3 Estimation under model (3)

The modifications necessary to adapt the results in Sections 3.1-3.2 for model (3) all stem from
the new model for the subordinate response, Ys = W23, + eg, and the new definitions of
ag = W{B; — ¢psW;3 B, for models (14) and (19). This implies that T is replaced by Sg
throughout, including log likelihoods (16) and (13) and that the estimator of 3, can be constructed
as indicated near the end of Section 2.1. There is no change in the objective functions (15) and

(12), and consequently no change in the envelope estimators of a and 3.

4 Simulations

4.1 Efficiency Comparison

We first evaluate the efficiency of the envelope estimator ,CA"I the constrained estimator ch and

em?

the constrained envelope estimator 3., using simulations in two scenarios. We also include the

ecm

unconstrained estimator 3, as a reference. In the first scenario considered the eigenvalue cor-

um

responding to the material part is small relative to the immaterial part and the dimension of U is

large; therefore the envelope estimator Bem is expected to have substantial efficiency gain. In the
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second scenario the eigenvalue of the immaterial part is small relative to the one of the material

part and the envelope estimator is not expected to have substantial efficiency gain.

4.1.1 Scenario 1

The simulation for Scenario 1 is carried out in the following steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

We first generated a sample of size n = 200. For each individual 7, we generated p = 8
predictors X; from a multivariate normal distribution with mean 0 and variance CCT,
where each element in C is identically and independently distributed with a standard nor-

mal distribution N (0, 1).

Setr =20, u =6,q=15,¢ =4and ¢ = ¢ — ¢;. Set Q = bdiag(0.5I,_,,,1.51,,) and
Qq =50I,_,. Set (I',T) = O andlet ¥ = ror? + FOQOFOT, where O is an orthogonal
matrix obtained by singular value decomposition of a randomly generated matrix. Set ) =
KK, where K; € R“*" K, € R%*P and each element in K; and K is identically and
independently generated from N (0,1). Let U = (T, Ty )¢, where ¢ = bdiag{ MY MV},
MY = K; and M§ = (L,,0p,x(r—u—g))" > given U € R™ %, Set 3 = I'n; notice that it

also satisfies 3 = Ua with a = (KZ,0,x,,)".

For each individual 7, generated Y; identically and independently from a normal distribu-

tion N(B8X;, X).

Calculate B Bem, ch and Becm, where U is correctly specified when calculating ch

um?

and 3

ecm*

Repeat Steps 3—4 1000 times.
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We also carried out simulations with a smaller sample size of n = 80, with results similar to
those presented below. They are presented in Supplement Section 4.1

From the choice of 7 in Step 2 we have colrank(n) = ¢, and span(3) is strictly contained
in both span(I") and span(U) since the dimension of span(3) is ¢ = 4 which is smaller than
min(u,q) = 6. Specifically, we have span(3) = span(I'¥) = span(T") N span(U). As men-
tioned before, « = (KI',0,x4,)7 in this example. Therefore, we also have a non-trivial con-
strained envelope of dimension 4: Under the conditions of Scenario 1, we have that EB‘IS =
¢ bdiag(Q ' Q;')¢ = bdiag(KT'Q 'K;,507'I,,). As a consequence, the envelope of a with
respect t0 Xpys 15 (K2, 0gyx(r—u_g0))” With Ky € R%*% such that Ky = K,J with J € Rux?
and f(2 orthogonal. Such a decomposition of K is possible since K, as rank ¢;. In the 1000
simulations repetitions, the envelope dimension was always correctly estimated as 6 using BIC.
The dimension of the constrained envelope estimator was correctly estimated as 4 for 989 times
and 5 for 11 times. The empirical results for Eum -3, 3em -3, ch — B3 and Beem — 3 are shown
in Figure 2a, where all the elements of 3 are plotted in the same boxplot as if they are from the
same population and the outliers are suppressed for a cleaner representation. Since U is correctly

specified, 3., and 3., are asymptotically unbiased estimators, as are 3,,, and 3,,,. Hence, the

ecm
boxplots of the four estimators are all centered at 0. In Step 2, the larger eigenvalues of X are
contained in €2 rather than €2. That is, the variability of the immaterial part is bigger than that of
the material part. Additionally, the column space of U is very conservatively specified as ¢ = 15,
which is much bigger than the dimension of ¢; = colrank(3) = 4, and the span(U) contains 11
eigenvectors corresponds to large eigenvalues (i.e., 50 in this simulation). Hence, this scenario
favors of the envelope estimator in terms of the efficiency: the envelope estimator is the most ef-

ficient estimator among the three estimators, while 3, is also more efficient than the saturated
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estimator Bum.

The average estimated asymptotic variances were close to the theoretical asymptotic variances
calculated using the true parameter values for all three estimators. The mean of the empirical
asymptotic variances across all the elements in four estimators are 51.66 for \/ﬁBum and 39.48 for
VnB.. butis only 1.12 for \/nf3,,, and 0.37 for \/nB,.,,. That is, in this setting, the envelope
estimator is about 40 times more efficient that the saturated estimator and the unconstrained esti-
mator and the constrained envelope estimator is about 100 times more efficient than those two. A
comparison between the envelope and constrained envelope estimator demonstrates the advantage

of leveraging prior information in terms of achieving better efficiency.

Figure 2: Box plot of Bum - 3, ,@em - 3, ch — B and Becm — B in two scenarios in 1000
simulations.

<
I — sl T —
] 1 S _
17— C——1 o | | T
of | R JRS S
1 — <
| — ol —— —
A A A A | A A A A
ﬁum Bem ﬁcm Becm Bum Bem ch Becm
(a) Scenario 1 (b) Scenario 2

4.1.2 Scenario 2

To carry out simulations in Scenario 2, we modify some of the parameters in Step 2. In the new
Scenario 2, ¢ = 6 and we redefine the eigenvalues of 3 by setting Q = bdiag(50I,_,,,0.51,,)
and €y = 0.5I,_,. In this scenario, the larger eigenvalues of 3 are associated with €2. Now the
dimension of U is 6 and therefore is only 2 dimension larger than the dimension of 3.

Since the envelope is also of dimension 6 and needs to be estimated, the envelope method is at
a disadvantage in terms of the efficiency as compared with ch. We have o = (KT, 0,,,)" and
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Ypjs = bdiag(KTQ 'Ky, (0.5)7'I,,) and the dimension of the constraint envelope is still 4. In
the 1000 simulations repetitions, the envelope dimension and the constrained envelope dimension
are always correctly estimated as 6 and 4, respectively. The empirical biases of the estimators are
shown in Figure 2b. Again, all four estimators are centered around 0, indicating the asymptotic

unbiasedness. As expected, the estimator 3., and 3., are the most efficient among the four

ecm
estimators, while the envelope estimator ,@em is still more efficient than ,@um.

The average estimated asymptotic variance of the three estimators were all close to their the-
oretical values. The average empirical variances of all the elements in three estimators are 8.26
for /nByy, 7.87 for \/nB,,,, 1.50 for \/nB,,, and 1.55 for \/n3..,,. That is, in this setting, the
estimators using a correctly specified U are on average about 4 times of more efficient that the
saturated estimator and the envelope estimator, but the envelope constraint estimator does not pro-
vide additional advantages over the constrained estimator. We also carried out simulations with

a smaller sample size of n = 80, with results similar to those presented here. The details are

presented in Supplement Section 4.2

4.2 Potential Bias of the constrained estimator

We conducted a small simulation generating data from envelope model (4), to further illustrate
potential bias effects. The sample size is again n = 200, and the parameters to generate the data
are chosen as in Scenario 1, only changing the definition of U, which now is U = (T, T'y) A with
Ay = 1,007, k=1,...,r. For k < u, B € U and so both ch and [Ai' are biased. But for

ecm

k > u, B C U and there is no bias in ch and B Again, the dimension of the constrained

ecm*

envelope remains at 4 when k£ > u.
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1.5

1.0

MSE

0.5

0.0

Figure 3: Illustration of potential bias in the constrained estimator (3) under Scenario 1, where
k = dim(U), U = span{(T,T)(Ix,0)"} and MSE denotes the average element-wise squared
error for the indicated estimators.

We generated response vectors according to model (4) using normal errors, and fitted the result-
ing data to obtain the envelope estimator 3,,,,. We used the same data to construct the unconstrained

estimator B the constrained estimator ,@m and the constrained envelope B with different se-

um? ecm

lections for U = (T, Ty) A}, where Ay, = (I,,0)7, k = 1,...,r. For k < u, B € U and so both

ch and ,@ecm are biased, but for k > wu, B C U and there is no bias in ch and ,@ . Actually, the

ecm
dimension of the constrained envelope remains at 4 when k£ > u. We summarized the bias by com-
puting the mean squared error over all elements 3;; of 3: MSE = (rp) ™' Y_i_, ;’:1(3(_)’@-}» —Bi;)?
for the three four estimators B‘um, ,[Aicm, Eem and ﬁecm. Shown in Figure 3 are plots of the MSE
averaged over 1000 replications of this scheme for Scenario 1, each replication starting with the
generation of the response vectors. The constant MSE for Bem was 7.4 x 1072 and that for uncon-
strained model was about 36 times greater at 0.27. The MSE for both the constrained estimator
and the constrained envelope estimator decreased monotonically from its maximum value of about
1.75 at k = 1 to around 2.5 x 1073, at k = u = 6, the constrained estimator increased monotoni-

cally to 0.25 at k = 20, while the constrained envelope estimator remains about the same. This is

because the constraint envelope is adapted to the data and does not loose much efficiency even if
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U is large as it was shown in Section 4. This suggests that it may be a good practice to specify a
conservative U and apply the constrained envelope to gain more efficiency so that we can enjoy the
benefit of prior information but do not suffer from large bias. The corresponding plot for Scenario
2 is similar and therefore is not presented here. It seems clear that the bias in the constrained and

constrained envelope estimators can be substantial until we achieve B C U.

4.3 A more general case

The previous simulations were conducted so that both the constrained model and the envelope
model can hold under the data generating mechanism. Here, we consider a general case where U
is arbitrarily generated but correctly specified. Because U is correctly specified but the envelope
model no longer holds, we only compare the constrained model and the constrained envelope

model. We carried out the simulations similar to those in Section 4.1, replacing Steps 2—4 with:

Step 2*. Set r = 20, u* = 3, ¢ = 15. Set Q" = 0.5L,- and €y = 50I,_,-. Set (I'",T'j) = I and
let var(eps) = Zpjs = DT + T, . Generate n* € R**? and U, where
each element in 17* and U is identically and independently generated from N (0, 1). Set

a* =T"n*and 8" = Ua*.

Generate ¢ € R9<("~9) where each element is generated identically and independently

from standard normal. Generate Y p; from the distribution N(a*Z; + ¢Ys;, ED‘S)

Step 4*. Calculate ch and B where U is correctly specified for both estimators.

ecm?*?

The average MSE of ch and B was 0.12 and 0.03. The Monte Carlo mean variances over

ecm
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all the elements were 24.86 and 6.81 for \/ﬁ,@cm and \/ﬁ,@ demonstrating the efficiency of the

ecm?

additional envelope structure over the 3, estimator.

S Application: Postbiotics study

The aim of the posbiotics study (Dunand et al., 2019) was to determine the protective capacity
against Salmonella infection in mice of the cell-free fraction (postbiotic) of fermented milk, pro-
duced at laboratory and industrial level. The capacity of the postbiotics produced by pH-controlled
fermentation to stimulate the production of secretory IgA in feces and to protect mice against
Salmonella infection was evaluated. There were 3 study groups with seven mice per group: (i) a
control group (C) where mice received the unfermented milk supernatant, (ii) a F36 group (F36)
where mice received the cell-free supernatant obtained by DSM-100H fermentation in 10% (w/v)
skim milk produced in the laboratory, and (iii) a F36D group (F36D) where mice received the
product F36 diluted 1/10 in tap water. Feces samples (approximately 50 mg per mouse) were col-
lected once a week for 6 weeks and the concentration of secretory IgA (S-IgA) was determinate
by ELISA. The response was the IgA measures over the 6 weeks period and the predictors the
group indicators. The research question was whether there were differences in the IgA measures
among the treatment groups. We present the average response by group over the weeks in Figure
4. We set the control group as the baseline and therefore 3 € R*2. We calculate all estimators
based on various envelopes on model (3) because we were interested in profile contrasts rather than
modeling profiles. We use UT(t) = (1,t/6, (t/6)?, cos(27t/6),sin(27t/6)), where t = 1,....6
are the weeks where the measures were taking. The unconstrained estimator Eum was considered

in Dunand et al. (2019) and it did not show a difference between treatment groups even when
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0.20 0.25 0.30
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Figure 4: Average of IgA by group over time in the Posbiotics Study data

exploratory differences can be seen (Figure 4).

Table 1 shows the BIC, envelope dimension and MSE of the estimators. We listed the maximum

envelope dimension for the two non-envelope methods as their estimated envelope dimensions.

The unconstrained estimator performs the worst and the scaled constrained envelope estimator

performs the best in terms of both the BIC and the efficiency.

Table 1: Envelope dimension, BIC, BIC order, and MSE for the Postbiotics Study

Estimator Dimension BIC BIC order MSE
B 6 -133.90 6 0.15
B, 1 -163.52 2 0.13
B, 2 -144.37 5 0.15
B 1 -160.76 3 0.14
Bowen, 1 -251.48 1 0.13

To answer the researcher question, we look the p-values of the B components. From Table 2

we can see that the unconstrained estimator does not reveal any difference, which aligns with the

findings in Dunand et al. (2019). None of the estimators demonstrate any evidence of difference

between F36D group and the control group at any time. On the other hand, ,@

28

reveals a signifi-
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cance difference between the control and F36 groups in all followup weeks. The p-values for such
a comparison of Bem are only significant in week 3. Other estimators also fail to find all followup
weeks significant between F36 and control groups, e.g., the scaled envelope is not significant in
week 5 and 6, and constrained envelope is significant only in week 2. The variance gains for the

Table 2: The p-values for coefficients for Bum, Bem and ,@

secm

week F36 vs control F36 D vs control

~ ~ ~ ~ ~ -~

IBUm IBGIH IBSGCIH /Bum /Bem IBSGCm
091 007 0.3 077 027 030

0.09 0.10 0.01 0.83 0.28 0.21
0.83 0.01 0.01 048 020 0.22
0.26 0.06 0.02 090 023 0.22
0.55 0.05 0.00 0.16 0.20 0.20
0.57 0.63 0.01 0.59 0.64 0.21

AN N W~

scale version of the constrained envelope model over the unconstrained model (and therefore the
p-values) are reflected by the eigenvalue 1 x 10~4 of Q and the four eigenvalues of ﬁo which are
23.06, 13.67, 0.41 and 0.22. The reason for the envelope estimator to be not as significant when
comparing F36 and control groups is that there is not as big a discrepancy between the eigenvalues

of Q (2 x 1073) and those of (AZO (0.02, 0.04, 0.03, 0.01,4 x 1073).

6 Discussion

In this paper, we first compared the envelope model with the commonly used linear constraint
model in terms of both the potential bias and efficiency. We then proposed a constrained envelope
model for studying growth curve and longitudinal data when a well-grounded linear constraint is
available. We recommend using the constrained envelope model with a relatively conservative U

so that it is likely to contain the space of interest and to achieve efficiency gain. Extensions to
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unbalanced data and random effects models are designated for future research.

The primary computational step for all of the envelope methods described herein involves find-
ing G = arg mingeg log |GTM, G| + log |GTM,G/| over a class G of semi-orthogonal matrices,
where the inner product matrices M; and My depend on the application. The R package Renvlp
by M. Lee and Z. Su contains a routine for minimizing objective functions of this form. Compu-
tations are straightforward once G has been found. Renvlp also implements specialized method-
ology for data analysis under envelope model (4) and the partial envelope model. The associated
routines can be modified for the models described herein. The codes to reproduce the exam-
ples and simulations from this paper can be found at https://github.com/lanliul815/

constrained_env.

7 Supplementary Material

Discussion of certain well-established aspects of envelope methodology is available in Supplement
Section 1-3. We include an additional simulation with smaller sample size in Section 4. We
revisited the Dental data using the methodology presented in this paper in Section 5, and we studied
the China Health and Nutrition Survey data set in Section 6. Enveloping for (v, ) jointly is
discuss in Section 7. Non-normality and the bootstrap are discussed in Section 8 and methods
for selecting the envelope dimension are reviewed in Section 9. Finally a brief discussions of

envelopes and Rao’s simple structure is in Section 10.
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Supplement to “Envelopes for multivariate linear

regression with linearly constrained coefficients”

R. Dennis Cook,* Liliana Forzani” and Lan Liu*

November 14, 2022

1 Supplementary material for Section 2.1

We will derive here the formula for X p|g, the maximum likelihood estimator for a..,, and X pys,
the asymptotic variance for .., and the estimator of X from the constraint model.

Derivation of X 5. Direct calculation gives

Yps = (UTU) H(UTEU - U'SU(Uf =U) 'ui=u)(Uu'u) .
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The result follows by multiplying the identity
].:'2—1/2\;\,1 + P21/2W2 =1,

on left and right by W?Zl/ 2 and XY?W, and then rearranging terms. (See also Cook and
Forzani, 2008, eq. (Al)).
Derivation of ... First construct a version of (7) is construct so that its predictors are orthogonal:

Let af = ag + X + ¢psYs and ¢ ¢ = dpjs + Sx sSg". Then
Ypi| (X5, Ysi) = of+ aRxja,s) + Dpis(Ysi — Ys) +epsi, (H

where for clarity Rx(1,5); = X; — X — Sx.s Sgl (Ysi — Ygs). The three addends on the right side
are orthogonal and so the three terms can be fitted separately. The starred parameters are not of
direct interest, but « is the same as in the original model.

Derivation of X 5. It can be express as

S _ _ -1 QT -1QT
ED\S - SDI(X,S) =Sp - SD,RX|(1,S>SX\SSD,RXKLS) - SD,SSS SD,S

~ ~T
= SD|S - acmSX\Sacm-
Derivation of var(vec(..,)). First, suppressing notation for the conditioning on X,

var(vec(Qem)) = E{var(vec(@cm) | Ys1,--., Yon)} + var{E(vec(@em) | Ysi1,---, Ysn)}
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The second addend on the right side is O since E(cm) = «. For notational convenience, let
R; = Rx|a1,s); and recall that Z?:l R, = 0 and that the X’s are non-stochastic. To evaluate the

first term we have from (9),

Gem = 'Y (Ypi—Yp)R{Sxjs =n"' > YnR/Sxs
=1 i=

vec(Qem) = n7! (SX|SR @ Ii)Yp,
i=1

V&I’(VGC(acm) ’ YSla . o ,st) = _2 Z X|SR & Ik; ED‘S(R SX|S (%9 Ik)

n

= n2 Z(SXTSR RTSX|S) X 2D|S

=1

= n"'Sxis® Zpys

Taking the expectation with respect to Yg | X gives the finite sample result. The asymptotic
variance follows by direct calculation from the Fisher information, recalling that the distribution

of Y5 does not depend on X. It can be similarly computed from the finite sample variance.

Estimator of X from the constrained model Starting from the main paper,we have

_ Xp Zps
YSem =W ISyWit=WT7 W (2)
Ysp s

2 Proofs from Section 2.4

Proof of Proposition 2.1 Comparing (12) and (11), it is sufficient to show that

UUuTs'u)luT <rar?,

3
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where I' is a semi-orthogonal basis matrices for € (B) and without loss of generality we take U
to be a semi-orthogonal basis matrix for &. Since by hypothesis U C Ex(B) there is a semi-
orthogonal matrix H € RP** so that U = I'H. Let (H, Hy) be an orthognal matrix and recall that

I'"S7'T'= Q' Then

UUus'u)'u? =THHTQ'H)'H'T? <TQr’,

where the inequality follows from the identity P -1/25 + P2y = L. a

Proof of Proposition 2.2 Recall that 3 = Ua. (1) follows immediately since span(Ua)) C
span(U).

For (2) assume that span(U) C Ex(span(Ua)). Then Ex(span(Ua)) is a reducing subspace
of ¥ that contains span(U). Using (1) and the fact that Ex(span(U)) is the intersection of all
reducing subspaces of X that contains span(U), it follows that Es(span(Ua)) = Ex(span(U)).

The reverse implication is immediate. Part (3) is also immediate. O

Preparatory lemma The following lemma, which follows immediately from Milliken and Ak-

deniz (1977), will be used in the justification of Proposition 2.3.

Lemma 2.1 Let U and V be two real positive semi-definite r X r matrices with U > V and
rank(U) = rank(V). Then (a) {a € R" | Ua = 0} = {a € R" | Va = 0}, (b) span(U) =

span(V) and (c) Ut < VT, where 1 denotes the Moore-Penrose inverse.
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Proof of Proposition 2.3 Let

D(c) = avar(vnc'B,,) — avar(yv/nc’ B,,)

= S e (UUTsU)IUT T e - (0" @ 'Ty)M/(Ex)(n @ Thc)

We first simplify terms in D(c). Let Qo2 = Qo1 — 90,12955290121, and recall that ¥ =

rOr” + Ty . Then

UTS'U = bdiag(Q ", ("))

UUTS'U)UT = 1T + Ty Q0T%

Consequently,

D(c) = 2%' ® ¢'Tp1Q12Thc — (" @ ¢'To) M (Zx)(n @ T c).

It follows that D(c) = 0 for all ¢ € Ex(B) and D(c) < 0 for all ¢ € span(I'yy). This established
parts 1 and 2 of the lemma.

Since Q12 = 0 by hypothesis, we justify part 3 by first replacing €2 12 with €211 in D(c) to
get

D(c) = 2 @ ' T30 11 Thc — (0" @ ' To)M' (Zx)(n @ Tie).

Next, since M(Zx) > nXxn? @€, " and by hypothesis rank(M(Xx)) = rank(nXxn’ @Q;"),
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s we have from Lemma 2.1 that MT(Zx) < (nXxn?)" ® €. Substituting into D(c) we get

D(c) > %' ®@c'Tpuljc— (n" @ c'To){(nZxn") @ Q}(n e Tic)

= (Zx' —n"(m=xn")'n) ® ' T Q11T c > 0.

s 3 Proofs from Section 3

s7  Derivation of the MLE for model (14). In this case estimation of a corresponds to the partial
ss envelope model and so the estimators for most of the parameters can be taken directly from Su
ss and Cook. (2011). To be self-inclusive, we give a sketch of the derivation here. The likelihood

e function for model (14) is

n

n 1 - &
L = —§log 1Xs| — 5 Z tr(Ys, 25" Ysi) — 5109? P

=1

1 n
—3 Z[(Ym — oy — X — dpisYsi) 5 (Ypi — g — dnXi — dp s Ysi)] (3)
=1

st The MLE of X5 is by s = Tg. To get the estimators of all other quantities we can always write

Ypi — oo — ¢nX; — ppsYsi
= Ypi—{a+ ¢psYs + onX} — ¢n(X; — X) — ¢ps(Ysi — Ys)

= Ypi— e — ¢n(Xi — X) — ¢pis(Ysi — Ysg),

2 Where aoc = g + @p sYs + ¢nX denotes the intercept in the model with centered predictors.

es The predictors X; — X and Yg; — Yy in this model are now centered although their coefficients
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s« are the same as those in the uncentered version. The intercept vector has changed but this is of
65 NO consequence since we are not estimating oy. Consequently, we can use the centered version to
es derive the estimators of interest.

67 The centered model leading immediately to &, = Y p. Holding all other parameters fixed, the

es  value of ¢ ¢ that maximizes L is

®pis = SpsSs' — pNSxsSy'. 4)

69 Let Rpj1.s) = Yp — Yp — SpsSg' (Ys — Ys) denote a typical residual vector from the

o regression of Y p on Y including an intercept, and let Rx1,5) = X — X — SXSS§1(YS — YS)

]

1 denote a typical residual from the regression of X on Y g including an intercept.

~

72 Then, evaluating at (4) we have

Yp, — YD _ ¢77Xz — ¢D\SYSi = RD|(1,S) - ¢"7RX\(LS)

s and the first partially maximized log likelihood becomes

]

n np n
Li=—"10g|Ts| = 22— Miog |5
1= og |Ts| 5 5 og |Xps|

1 < _
) Z[(RD\(LS) - ¢77RXI(1,S))T2D|15(RD|(1,5) — ¢nRx|(1,9))]
=1
S

n - np
L Pl S L
5 loglZsl -5 =5

n
g 92|~ log| 2|

1 _ -
—3 D Ropjas) — dnRx.s) (92707 + 602 ' 0 ) (Roj.s) — dnRxj.s))], (5)
=1

7+ where the ¢ subscripts on Rpj(1,5) and Rx(1,5) have been suppressed. The value of 7 that maxi-

Page 40 of 69



Page 41 of 69 Scandinavian Journal of Statistics

oNOYTULT D WN =

75 mizes L 1S

T -1 T
n=¢e SRDl(LS)’Rx\(LS)SRX|(1,S) =¢ BRD\(I,S)lRXI(LS)’

76 where BRD‘ (.5 Rxq € RPP is the OLS coefficient vector from the regression of Rp,5) on

1,5)

7 Rx(1,5). These coefficients can also be interpreted as the OLS coefficients of X from the regres-
s sion of Yp on (X, Yy) including an intercept. That is, Br,, , 5 Rx 1.5y = @ Substituting this

79 into L, we get the following partially maximized log likelihood

n ~ n n n
Ly, = —510g|23| ¥ 7}9 — 5108“ |Q|—§10g|ﬂo|

1 < \ _ .
—3 Z[(RD\(I,S) — aRx|1,5) 92 '¢" (Rpj,s) — aRx|(1,9))]
=1

1 < \
_5 Z(R;FJ|(1,S)¢0Q0 1¢5RD\(1,S))- (6)
i=1

2o But Rpj1,5) — aRx|a,s) = Rpj1,x,9), the residual vectors from the regression of Y p on (X, Yg)

st including an intercept. We have

n np n n
Ly, = —5108; |Ts| — 7]) — 5108“ |Q|—§10gmo|

1< B
9 Z[Rg|(l,X,S)¢Q 1¢TRD\(1,X,S)]
i=1

1 B
5 > (RE1,5 802 '3 Roj1.s)). (7)
=1

s2 Taking ¢ fixed,

Q = ¢"Spxs¢

Q = ¢ Snisdy
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and, letting u denote the dimension of the envelope, the following partially maximized log likeli-

hood becomes

n np n n
Ly = —3 log |Ts| — 5 3 log !¢TSD\(X,S)¢\—§ log |6 Spiseo| ®)

From what ot follows that the MLE of ¢ can be found as

¢ =arg minlog 6" Spx.5¢| + log |¢" S, )

where for clarity Sp|g is the sample residual covariance matrix of the regression of Yp on Yg
with an intercept, and Sp(x s is the sample residual covariance matrix of the regression of Y p on
(X, Ys) with an intercept.

Once we get ¢, we get the estimators for the rest of the parameters.

o~

Proof of the Asymptotic distribution of vec(a..,) and vec(3 Let us call the parameters

ecm )

of model (2) as h = (g, vech(atem), @pys, vech(Xp)s), vech(Xs)), the asymptitic distribution

of the MLE estimator / is the inverse of its Fisher information matrix that can be obtained using
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o3 straightforward computing of the second derivative of the log-likelihood as

oNOYTULT D WN =

ol 0 0 0 0
10 0 ZgeI 0 0 0
12 J = 0 0 DI 0 0

D|S

15 0 0 0 3Bk (Bpjs © Tpi) B 0

17 0 0 0 0 LB (5" 0 X5 E,
19 (10)

21 o« where F, is the expansion matrix that satisfy vec(X) = E, vech(X) for ¥ a symmetric matrix of
s dimension 7.

26 9 Since the envelope model (14) is over-parameterized, we will apply Proposition 4.1 from
28 o7 Shapiro (1986) to prove the asymptotic distribution (17) as in Cook et al. (2015) and Cook et al.
ss (2010). To apply Proposition 4.1 of Shapiro (1986), we will check the assumptions first. Along the
33 o discussion, we will match Shapiro’s notations in our context. Let us call F(h) = Ly(h) — L,(h)

o where L is the likelihood function (16). Then I’ satisfies the four conditions for F' in Section 3 in

38 101 Shapiro (1986). The function g defined by Shapiro in (2.1) is the function

ph vec(ay) vec(ay)
44 vee(a) vec(¢n)
46 h=g(y)= VGC(¢D|S) - VeC(¢D\S)

2 vech(Spys) vech(¢Qp” + ¢ Qo)

o1 vech(Xg) vech(Xg)
55 with 7 = (vec! (), vec” (), vect (), vec” (¢ ps), vech’ (Ep)s), vech” (g)) denote the pa-

59 10
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rameters in the envelope model (14). It is obvious that g is twice continuous differentiable. There-

fore all the assumptions of Shapiro’s Proposition 4.1 are satisfied, and we can get the asymptotic

distribution of the estimators (1)) from model (14) as

H(H"JH) H",

102 where J is the Fisher information under model (2), and H is the gradient matrix, which equals to

10s Oh/0%+). Computing H we have

104

105

106

107

109

I 0
0 ¢

H:
00

0 0

0

0

0

0

0 0 20,(¢QRI—~d®dS¢y) 0 Ci(@@P)E, Cildg @ o) Ep— 0

I

(1)

where C,. is the contraction matrix that satisfy vech(X) = C,vec(X) for ¥ a symmetric matrix of

dimension r.

Following similar calculations than in Su and Cook (2011, Prop. 1) we get (17) and since

H(HTJH)THT < J~' we get the efficiency of the estimator vec(Qecr,)) under model (14) com-

pare with the estimator of vec(@.,) under model (2) when u < k being the same when u = k.

The asymptotic distribution of vec(3,.,,)) follows since 3

o~

11

ecm

= Ua,y and as a consequence the
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o~ -~

1o asymptotic efficiency of vec(3,.,,)) compare with vec(3..,))

111 Proof of Proposition 3.1 The proof consists of showing that (1) a = (UTU)"'U'Tn, (2)

oNOYTULT D WN =

10 12 Tank(UTT) = wy, (3) span(UTT) = span((UTU)~'UTT), and (4) span(UTT) is a reducing
12 113 subspace of Xps that contains A = span(a). It follows from these statements that &, ((A) C
1a span(U'T). Since dim(span(U”T')) = uy, the conclusion will follow: dim{€s, ,(A)} < u; <
17 15 u = dim{Ex(span(B3))}. It remains then to show (1)—(4).

19 116 (1) Since U has full column rank and 'y = Ua it follows immediately that « = (UTU) U Tn.
2 17 (2) Direct multiplication gives UTT' = (G, 0)”. The conclusion follows since GT € R“1**

24 11 has rank u;.

19 (3) Since (UTU) is full rank, rank(U’T) = rank((UTU)"'U’T). It is then sufficient to

29 120 show that span(U’T) C span((U?U)~'U’T). For an arbitrary v € R%, let g = (U'T)~ and

31 21 h = GG”~. Then by direct multiplication we have g = (U7U)~1U”Th. Consequently we have

34 122 that every vector g € span(UTT) is also in span((UTU)~1UTT)).

36 123 (4) That span(UTT') contains A follows immediately from (1) and (3). It remains to show that

39 12« span(UTT) reduces X p|s or, equivalently, that it reduces

43 ¥, = U'ZT'U

= v'ro 'r"u+u'r,Q'riu.

50 s Since UTTy = (0, Gy)?, we have immediately that U'T and U’T| are orthogonal. Let C be

126 a semi-orthogonal basis matrix for span(U’T') and let Cy be a semi-orthogonal basis matrix for

59 12
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span(UTTy). Then there exists matrices A and A, so that
2,sC = UTQ'TTUC = CA

355Co = U 'TEUC, = CoA,.

The conclusion follows from Cook (2018, Lemma A.1). O

3.1 Maximum likelihood estimator when U is semi-orthogonal

The following two propositions provide technical tools for demonstrating that the maximum like-

lihood envelope estimator of 3 = Ucx is simply B = U@cem When U is semi-orthogonal.

ecm

Proposition 3.1 (a) Let S C R* be a reducing subspace of the symmetric matrix M € R*** and
let V. € RP** be a semi-orthogonal matrix. Then VS is a reducing subspace of VMV, (b) Let

D € R be a reducing subspace of VMV™. Then VID is a reducing subspace of M.

Proof of Proposition 3.1 Since M is symmetric it is sufficient to show for conclusion (a) that VS
is an invariant subspace of VMV That s, by definition we must show that VM VT (VS) C VS.
But this follows immediately from the condition that S reduces M: MS C S. Conclusion (b)
follows similarly since VMV?D C D and multiplying both sides by V7 gives the desired con-

clusion. |

Proposition 3.2 Let Eyi(S) C RF be the smallest reducing subspace of the symmetric matrix
M € R*** that contains S C R*, and let V € RP** be a semi-orthogonal matrix. Then VEy(S)

13
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is the smallest reducing subspace of VMV that contains VS; that is, VEm(S) = Evmvr (VS).

Proof of Proposition 3.2 We need to show that (a) V& (S) is a reducing subspace of VMV7T,
(b) that V&M (S) contains VS and (c) that VE(S) is minimal. It follows immediately from
Proposition 3.1 that V& (S) is a reducing subspace of VMV, so (a) is satisfied. Since S C
Em(S) it follows immediately that VS C VE\(S), so (b) holds.

To show (c) we use the fact that the smallest reducing subspace of VMV that contains VS
is the intersection of all such subspaces. Consequently, if VEy(S) is not minimal then there is a
subspace D that satisfies (a) and (b) while being a proper subset of VE\(S), D C VEM(S). But
we know from Proposition 3.1 that VZ'D is a reducing subspace of M and from part (b) it contains

S. However, VI'D C &y (S) which contradicts the minimality of En(S). O

These two propositions show that the results of Section 3.1 can be used directly to get the en-
velope estimator of Ua when U is semi-orthognonal. The standard MLE of U is just Uy,
with asymptotic covariance matrix UX D‘SUT. In consequence, following the rationale at the
beginning of Section 3.1, we seek the MLE of Eysx,, ;ur(UA), which by Proposition 3.2 is
equal to U, (A). From Proposition 3.2, the MLE of Eus, ;ur(UA) is Ués s (A), which

implies that the envelope estimator of 3 = U« is ,CAS' = U@, With asymptotic variance

Uavar(y/n@eem ) U . Propositions 3.1 and 3.2 also suggest how to proceed when re-prameterizing
as 3 = Ua = (UOT)(Oa), where O is an orthognal matrix and U is not necessarily orthogonal.

In that case the envelope estimator of Ocx is simply O, and so the envelope estimator of 3 is

invariant under orthogonal re-paramterization of the kind used here.
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3.2 Maximum likelihood estimators and asymptotic distribution under Model

(19)

Given the envelope dimension u, the log likelihood based on Y p is

n
L, = —(nk/2)log(27r)—Elog]ZlDw\

1 n
9 Z(YDi —ap— AT'ONX; — ¢D|SYSZ')TEB|IS(YD1' —ay— AT'OnX; — ¢D|5Ysz’)>
i=1

where

oy

n n
5 og|Xpis| = nlog|A|— §log Q| — §log\ﬂo\

Shs = AOQ0T +0,0;'05)A.
Let v = A and v = A . Substituting these various quantities we get

L, = — (nk/2)log(27) + nlog |A| — glog Q[ - glog 12|

1 n
— 5 Z(AYD’L — Vo — @’l’]}(Z — VYSi)T(GgileT + @098195) (AYDz — Vo — @’I’]Xz — VYSi);

=1

Aside from the addend n log | A|, this log likelihood has the same form as that associated with

model (14) after replacing the response Y p with the transformed response AY p. This enables us

to adapt the log likelihood and estimators listed in Section 3.1 for the present setting.

After maximizing the log likelihood over all parameters except (A, ©) we have

(A, ©) = argminlog |G"ASpyx,5)AG| +log |GTAT'S ;| ;AT G,

15
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where the minimum is computed over all semi-orthogonal matrices G € R**¥ and diagonal matri-

-1

DIs this is the

ces A = diag(1,as,...,a;). Aside from the inner product matrices Spx,s) and S
same as the objective function that Cook and Su (2013) derived for response scaling prior to using

model (4), which allowed us to adapt their optimization algorithm to handle (12).

Having determined the MLEs A and ©, the remaining parameter estimators are

* Buew = UN PgR@im, & = A PgAm @ = Y1 — BeeenX — bpis Vs

~ T~ - ~ -1
* 1 =0 AQcn, ¢ps = (Sps — aSx,5)Sg
« =0 ASpx.5A0, O = O, ASp A,
= ~—=1 A~ AT ~ ~ AT ~—-1 =~
« Sps=A (OO0 +0y0,)A ', Sg = Ty

The variances Yy and X can be estimated as indicated in Section 2.1.

This representation of the scaled envelope estimator 3 shows the construction process. First

secm
the direct-information response is transformed to AY p. The constrained estimator K&Cm and the
envelope estimator P@Kam are then determined in the transformed scale. Next, the estimator is
transformed back to the original scale by multiplying by ./Afl to get KﬁlPéK&m, which is the
estimator of « in the original scale. Finally, the estimator in the original scale is multiplied by U
to give the scaled envelope estimator of 3. In effect, Ais a similarity transformation to represent
P g in the original coordinate system as KilP@fX.
The fully maximized log likelihood is

- n AT~ ~ A AT ~—1 ~—1
Lu:c—§{log|TS\+log|SD‘S|+log|® ASpixs)AO| +10g|® A 'S, A0}, (13)

16



oNOYTULT D WN =

191

192

193

194

195

196

197

198

199

200

201

202

203

204

207

208

209

210

Scandinavian Journal of Statistics

where ¢ = nlog [W| — (nr/2)(1 + log(27)). To describe the asymptotic variance of 3 let

Veem denote the upper pk x pk diagonal block of the asymptotic variance V given by Proposition
2 from Cook and Su (2013) with X replaced by Xp|g, I' by © and I'; by ®, and A with AL
Additionally, €2 and €2 in the Cook-Su notation are the same as the corresponding quantities in
the decomposition of X5 for model (19). For the asymptotic variance of the estimators, we
need to recognize that the log-likelihood function (12) correspond to the log-likelihood function

from Su and Cook (2013) where Spg correspond to their 3, Then avar(y/nvec(Byoy ) = (I, ®

U)Veem(I, ® UT) is an estimator that is never less efficient than Ecm.

4 Additional simulations

We carry out an additional set of simulations under the settings described in Section 4.1 with a
small sample size n = 80. The overall performance of the four estimators are similar to that with

a larger sample size shown in the main text.

4.1 Scenario 1

In the 1000 simulations repetitions, the envelope dimension was correctly estimated as 6 for 329
times, under estimated as 4 for 132 times and 5 for 398 times, overly estimated as 7 for 131 times
and 8 for 10 times using BIC. The dimension of the constrained envelope estimator was correctly
estimated as 4 for 787 times, overly estimated as 5 for 207 times, and 6 for 6 times. The empirical
results for Bum -8, Bem -8, ch — B and Becm — 3 are shown in Figure 1a, where all the elements
of 3 are plotted in the same boxplot as if they are from the same population and the outliers are

suppressed for a cleaner representation.
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The average estimated asymptotic variances were close to the theoretical asymptotic variances
calculated using the true parameter values for all three estimators. The mean of the empirical
asymptotic variances across all the elements in four estimators are 54.94 for \/ﬁaum and 40.07
for \/nfB,, but is only 1.59 for \/n8,,, and 1.16 for \/nf,.,. That is, in this setting, the enve-
lope estimator and the constrained envelope estimator are about 40 times more efficient that the
saturated estimator and the unconstrained estimator. A comparison between the envelope and con-
strained envelope estimator demonstrates the advantage of leveraging prior information in terms
of achieving better efficiency.

Figure 1: Box plot of Bum -0, Bem -3, ch — 3 and Becm — 3 in two scenarios with a relatively
small sample size n = 80 in 1000 simulations.

N — © - —
o
P 1 — o | |1 | ;% e
o PR S— R
L — — L — -—
A A A A ! A A A A
laum Bem ch Becm Bum Bem ch Becm
(a) Scenario 1 (b) Scenario 2

4.2 Scenario 2

In the 1000 simulations repetitions, the envelope dimension is correctly estimated as 6 for 675
times, and overly estimated as 7 for 281 times and 8 for 44 times. The constrained envelope
dimension is correctly estimated as 4 for 994 times and overly estimated as 5 for 6 times. The
empirical biases of the estimators are shown in Figure 2b. Again, all four estimators are centered
around 0, indicating the asymptotic unbiasedness. As expected, the estimator ch and B are the

ecm

most efficient among the four estimators, while the envelope estimator 3,,, is still more efficient
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than ,@um.

The average estimated asymptotic variance of the three estimators were all close to their the-
oretical values. The average empirical variances of all the elements in three estimators are 8.76
for /1B, 8.36 for \/nB,,,, 1.37 for \/nB,,, and 1.60 for \/n3,.,,. That is, in this setting, the
estimators using a correctly specified U are on average about 4 times of more efficient that the sat-
urated estimator and the envelope estimator, but the envelope constraint estimator does not provide

additional advantages over the constrained estimator.

5 Dental data revisited

The dental data consists of measurements of the distance (mm) from the center of the pituitary
to the pterygomaxillary fissure for each of 11 girls and 16 boys at ages 8, 10, 12, and 14 years
(t). Since their introduction by Potthoff and Roy (1964), these data have been used frequently to
illustrate the analysis of longitudinal data. We respect that tradition in this section. We removed
the outlying and influential male case described by Pan and Fang (2002) prior to application of
the methods discussed herein. We set as a goal to characterize the differences between boys and
girls rather than to profile modeling and so we contrasted the behavior of estimators from the
unconstrained model (1), the envelope model (4), the constrained model (3), and the envelope
version of model (3) discussed in Section 3.1.

Consistent with the literature, we fitted constrained model (3) and its envelope counterpart with
the rows of U being U7 (t) = (1,t). The estimated dimension of the envelope for model (4) was
u = 2, and thus it was inferred that only two linear combinations of the response vectors are

needed to fully characterize the differences between boys and girls. The estimated dimension of
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the envelope for the constrained envelope model (14) was v = 1. Table 1 shows the estimated

-~ -~

asymptotic variances, determined by the plug-in method, for the four estimators Bum, Bems Bem

and E The unconstrained model has the worst estimated performance, followed by the regular

ecm*

envelope model and the constrained model. The enveloping in the constrained model has the best
estimated performance. We would need to increase the sample size by about 2.5 times for the

constrained estimator ,CA'icm to have the performance estimated for the enveloped version Becm with

the current sample size. The relatively bad performance of the envelope estimator Bem can be

Table 1: Estimated asymptotic variances avar(\/ﬁB(_)) of the four elements of Bum from the un-

constrained model (1), Bem from the envelope model (4), 3,,, from the constrained model (3) and
Beer, from the envelope version of constrained model (3).

Age
B 8 10 12 14
1553 16.41 25.42 18.95
15.29 13.56 2279 18.73
13.97 13.57 15.00 18.27
5.88 9.16 13.16 17.89

um

em

cm

DD DD

ecm

traced back to the estimated eigen-structure of 3. The eigenvalues of Q and ﬁo were (14.61,1.10)
and (2.20, 0.70). Envelopes offer relatively little gain when most of the variation in the response is
associated material information, as is the case here. On the other hand, the eigenvalues of Q and
(AZO arising from enveloping in the constrained model were 0.02 and 8.31. In this case most of the
variation in the direct response Y p is associated with immaterial information, the general setting
when envelopes perform well. Figure 2a gives a profile plot of the fitted vectors from envelope
model (4). The implied fit is quite good and close to the profile plot of the raw mean vectors shown
in Supplement Figure 3a (profile plots of residuals are also shown in Figure 3). Under envelope

theory, the distribution of QrY should be independent of the predictor values, in this case, sex.
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Figure 2: Prgﬁle plots by sex of (a) the fitted vectors from envelope model (4), (b) means projected
onto spanL(I‘), (c) the fitted vectors from the constrained model (3) and (d) means projected onto
U™, The vertical axis for each plot is the distance for the plotted vectors.

The profile plot of QfY by sex shown in Figure 2b reflects this property. Figures 2cd show the
corresponding plots from the fit of the constrained model (3). The fit of the constrained model

altered the shape of the profile for girls so that it more closely matches that for boys, which was
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not done by the fit of the envelope model. This type of conformity is an intrinsic property of
constrained model (3).

If there is uncertainty about the containment 3 C I/ needed for the constrained model then it
may be desirable to base an analysis on the envelope model (4). Otherwise, the results in the last
two rows of Table 1 indicate that enveloping in the constrained model (3) is the best option from
among those considered.

We also applied the scaled envelope estimator discussed in Section 3.2. The asymptotic vari-
ances of the elements of the corresponding estimator of 3 did not differ materially from those
shown in Table 1 for Bum and Bem: Scaling offered no gains in this example. This was as expected

since good scale estimation generally requires large sample size.

5.1 Additional plots for the dental data

Figure 3 gives additional plots for the dental data. Figure 3a is a profile plot of the raw mean
vectors by sex, where there is a slight upward bend in the line for girls at age 10. This bend
accounts for the residual pattern from the fit of constrained model (3) shown in Figure 3c. The
bend is reduced in the plot of the residual vectors Y — ?em from envelope model (3) shown in
Figure 3b. A comparison of the residual plots in Figures 3bc indicates that the envelope model fits
the raw means noticeably better than the constrained model. For contrast, Figure 2d is a plot of
the fitted vectors from model (2). In that model we have span(3,,3) C U and consequently the

profile plots of the fitted vectors are linear.
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Figure 3: Dental data: Profile plots by sex of (a) the raw mean vectors, (b) Residual vectors from
the fit of envelope model (4),(c) Residual vectors from the fit of constrained model (2) and (d)
Fitted vectors Y, from the fit of constrained model (3).

» 60 'The China Health and Nutrition Survey

286 The China Health and Nutrition Survey (CHNS) was designed to evaluate the effects of the health,

267 nutrition and family planning policies on the health and nutritional status of its population (Popkin
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et al., 2009). The survey used a multistage, random cluster process to draw samples of households
in 15 provinces and municipal cities that vary substantially in geography, economic development,
public resources, and health indicators. In total, 9 surveys were carried out between 1989 and 2011.
We included in our analysis only the 1209 individuals that participated in all of the 9 surveys, giving
a total of 9 x 1209 = 10, 881 records. Five individuals were deleted for having unreasonable
changes in weight or height. For instance, one individual had a height of 65 cm in the seventh
survey but a height of 160 cm in all other surveys. The baseline predictors we considered include
age at the first survey, binary indicators for gender and region (urban or rural), and a six-level
indicator for highest education levels obtained at the first survey. About 98.2% of the individuals
in the analysis were over 21 years old. Age at first survey, gender and region were fully observed
but there were 28 individuals with missing education levels at baseline. We imputed the missing
values with the education level collected at the next available visit. The response was the change in
BMI from baseline at the 8 followup surveys. In the 10, 881 records, there was a total of 371 values
of either missing height or weight information needed to calculate BMI. We assumed that height
and weight were missing at random and imputed them by carrying the last observation forward.

We compared the estimated asymptotic variances of the unconstrained estimator 3, , the enve-

um?

lope estimator Bem and the constrained estimator ch from model (3) using UT = (1,¢, %), where
t is the time in years from baseline. We also included the envelope version of the constrained

estimator B the scaled envelope estimator B from Cook and Su (2013) and its constrained

ecm? sem

version B corresponding to model (3). We used version (3) of the constrained model because

secm
we were interested in profile contrasts rather than modeling profiles per se.

Since B(,) € 88, we first report in columns 4-9 of Table 2 various location statistics com-

puted over the estimated variances of the individual elements in 3. Using these summary statis-
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tics as the basis for comparison, we see that the estimators fall into two clear groups. The uncon-
strained estimator does the worst, followed closely by the envelope estimator and the constrained
estimator. Our assessment based on just the variance summary statistics and taking computational

difficulty into account leads us to prefer the envelope constrained estimator B The model order

determined by BIC given in the third column of Table 2 tells a similar story. Based on the actual
BIC values, the unconstrained estimator in the first row appears clearly inferior to the others, while

the scaled constrained envelope model in the last row is clearly the best. The remaining models

are relatively difficult to distinguish. We next give a few additional details.

Table 2: BIC order, minimum, maximum, mean and quartiles ¢);—Q)3 of the estimated asymptotic
variances of the elements in 3,y for the CHNS study

Estimator Dimension BIC order Min (); (@2 Mean (@3 Max

B 8 6 003 007 012 0.2 0.5 020
B, 2 5 002 005 0.11 0.11 0.15 021
B 3 4 0.03 0.05 0.10 0.10 0.13 0.19
Bour 1 3 0.00 0.00 0.02 005 006 0.17
Bon 1 2 0.00 0.03 003 0.04 004 008
B 1 1 0.00 0.00 0.02 0.05 006 0.17

The estimated dimensions of the various envelopes based using BIC are listed in the second
column of Table 2. We listed the maximum envelope dimension for the two non-envelope methods.
The variance gains for the envelope model over the unconstrained model shown in Table 2 are
reflected by the two eigenvalues (17.44,15.90) of 0 and the six eigenvalues of €2, which ranged
between 1.11 and 1.62. Turning to the envelope version of the constrained model (3), the estimated
dimension of &x, (A) using BIC was 1. The variance gain over the unconstrained model shown
in Table 2 is again reflected by the value of € = 3 x 10~? and the two eigenvalues of ﬁo, 0.16 and
2.74. As with the regular envelope model, most of the variability lies in the immaterial part of the
response.
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The point estimates and standard errors of the considered estimators are given in Tables 3-8.

em?

secm

find all 64 variables significant.

the constrained estimator 3, and the scaled envelope estimator 3

um?

sem

ecm

Table 3: Point estimates ( x 10), standard error in backets (x 10) of Eum for CHNS study, where the
rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S Gender edulb edu2b edu3b edudb edu5b Urban ageb

1 0.09[0.05] 0.22[0.05] 0.25[0.05] 0.21[0.05] 0.17[0.05] 0.07[0.05] 0.21[0.05]  0.16[0.04]
2 0.15[0.07] 0.17[0.06] 0.25[0.07] 0.09[0.07] 0.14[0.07] 0.06[0.07]  0.19[0.07]  0.15[0.05]
3 -0.16[0.08] -0.04[0.08] -0.09[0.08] -0.01[0.08] -0.04[0.08] -0.21[0.08] -0.10[0.08] -0.09[0.06]
4 -0.27[0.10] -0.26[0.09] -0.21[0.10] -0.23[0.10] -0.28[0.10] -0.49[0.10] -0.31[0.10] -0.30[0.07]
5 -0.51[0.11] -0.37[0.10] -0.42[0.11] -0.44[0.11] -0.50[0.11] -0.60[0.11] -0.44[0.11] -0.48[0.08]
6 -0.64[0.11] -0.61[0.11] -0.58[0.11] -0.71[0.11] -0.69[0.11] -0.81[0.11] -0.63[0.11] -0.68[0.08]
7 -091[0.13] -0.73[0.12] -0.77[0.13] -0.92[0.12] -0.80[0.12] -0.99[0.12] -0.91[0.12] -0.88[0.09]
8 -1.00[0.13] -0.87[0.12] -0.86[0.13] -1.10[0.13] -0.94[0.13] -1.11[0.13] -1.07[0.13] -0.99[0.10]

Table 4: Point estimates (x 10), standard error in backets (x 10) of Bem for CHNS study, where the
rows correspond to surveys, columns are predictors

S Gender edulb edu2b edu3b edu4b edu5Sb Urban ageb

1 0.09[0.05] 0.13[0.05] 0.14[0.05] 0.15[0.05] 0.11[0.05] 0.03[0.05] 0.14[0.05] 0.09[0.04]
2 0.05[0.07] 0.10[0.06] 0.12[0.07] 0.12[0.07] 0.07[0.07] -0.03[0.07] 0.10[0.07]  0.04[0.05]
3 -0.04[0.08] 0.04[0.08] 0.06[0.08]  0.04[0.08] 0.00[0.08] -0.14[0.08] 0.02[0.08] -0.04[0.06]
4 -0.20[0.10] -0.11[0.09] -0.09[0.10] -0.13[0.10] -0.16[0.10] -0.32[0.10] -0.15[0.10] -0.21[0.07]
5 -0.51[0.11] -0.40[0.10] -0.40[0.11] -0.49[0.11] -0.47[0.11] -0.64[0.11] -0.49[0.11] -0.52[0.08]
6 -0.63[0.11] -0.52[0.11] -0.52[0.11] -0.64[0.11] -0.59[0.11] -0.75[0.11] -0.63[0.11] -0.65[0.08]
7 -0.85[0.13] -0.73[0.12] -0.74[0.13] -0.89[0.12] -0.81[0.12] -0.97[0.12] -0.87[0.12] -0.87[0.09]
8 -1.01[0.13] -0.89[0.12] -0.91[0.13] -1.09[0.13] -0.97[0.13] -1.12[0.13] -1.06[0.13] -1.03[0.10]
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Table 5: Point estimates (x 10), standard error in backets (x 10) of 3cm for CHNS study, where the

rows correspond to surveys, columns are predictors
S Gender edulb edu2b edu3b edudb edu5b Urban ageb
1 0.12[0.06] 0.23[0.06] 0.27[0.06] 0.20[0.06] 0.19[0.06] 0.09[0.06] 0.22[0.06] 0.18[0.05]
2 0.05[0.06] 0.14[0.06] 0.17[0.06] 0.13[0.06] 0.10[0.06] -0.01[0.06] 0.13[0.06] 0.09[0.05]
3 -0.11[0.08] -0.06[0.07] -0.04[0.08] -0.05[0.08] -0.10[0.08] -0.23[0.08] -0.07[0.08] -0.10[0.06]
4 -0.27[0.09] -0.22[0.08] -0.21[0.09] -0.22[0.09] -0.26[0.09] -0.41[0.09] -0.25[0.09] -0.27[0.07]
5 -0.51[0.10] -0.45[0.09] -0.45[0.10] -0.50[0.10] -0.49[0.10] -0.66[0.10] -0.52[0.10] -0.52[0.08]
6 -0.65[0.11] -0.57[0.10] -0.58[0.10] -0.65[0.10] -0.62[0.10] -0.79[0.10] -0.67[0.10] -0.65[0.08]
7 -0.88[0.11] -0.76[0.11] -0.77[0.11] -0.92[0.11] -0.82[0.11] -1.00[0.11] -0.91[0.11] -0.87[0.09]
8 -1.05[0.13] -0.90[0.12] -0.90[0.13] -1.12[0.12] -0.96[0.12] -1.15[0.12] -1.09[0.12] -1.03[0.10]

Table 6: Point estimates (x10), standard error in backets (x10) of Becm for CHNS study, where

the rows correspond to surveys, columns are predictors and 0.00 means < 0.01
S Gender edulb edu2b edu3b edudb edu5b Urban ageb
1 -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01{0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00]
2 -0.04[0.00] -0.03[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00]
3 -0.15[0.02] -0.14[0.01] -0.14[0.02] -0.17[0.02] -0.14[0.02] -0.15[0.02] -0.16[0.02] -0.15[0.01]
4 -0.28[0.03] -0.26[0.03] -0.27[0.03] -0.32[0.03] -0.27[0.03] -0.29[0.03] -0.31[0.03] -0.28[0.02]
5 -0.52[0.06] -0.48[0.05] -0.50[0.06] -0.59[0.05] -0.50[0.05] -0.54[0.05] -0.57[0.05] -0.52[0.04]
6 -0.67[0.07] -0.62[0.07] -0.64[0.07] -0.76[0.07] -0.64[0.07] -0.69[0.07] -0.74[0.07] -0.67[0.05]
7 -0.93[0.10] -0.86[0.09] -0.88[0.10] -1.05[0.10] -0.89[0.10] -0.96[0.10] -1.02[0.10] -0.93[0.07]
8 -1.13[0.12] -1.04[0.11] -1.07[0.12] -1.27[0.12] -1.07[0.12] -1.16[0.12] -1.23[0.12] -1.13[0.09]

Table 7: Point estimates (x 10), standard error in backets (x 10) of Bsem for CHNS study, where

the rows correspond to surveys, columns are predictors
S Gender edulb edu2b edu3b edudb eduSb Urban ageb
1 0.32[0.05] 0.34[0.05] 0.35[0.05] 0.39[0.05] 0.33[0.05] 0.33[0.05] 0.39[0.05] 0.32[0.04]
2 0.30[0.05] 0.32[0.05] 0.33[0.06] 0.37[0.06] 0.31[0.05] 0.31[0.05] 0.37[0.06] 0.31[0.05]
3 0.20[0.05] 0.21[0.06] 0.22[0.06] 0.24[0.06] 0.20[0.05] 0.20[0.05] 0.24[0.06] 0.20[0.05]
4 0.09[0.05] 0.10[0.06] 0.10[0.06] 0.11[0.06] 0.09[0.05] 0.09[0.05] 0.11[0.06] 0.09[0.05]
5 0.06[0.02] 0.06[0.02] 0.07[0.02] 0.07[0.02] 0.06[0.02] 0.06[0.02] 0.07[0.02] 0.06[0.02]
6 -0.19[0.04] -0.20[0.04] -0.21[0.05] -0.23[0.05] -0.20[0.04] -0.20[0.04] -0.23[0.05] -0.19[0.04]
7 -0.37[0.06] -0.39[0.06] -0.40[0.06] -0.45[0.07] -0.37[0.06] -0.37[0.06] -0.44[0.07] -0.37[0.05]
8 -0.52[0.08] -0.56[0.08] -0.57[0.08] -0.64[0.08] -0.53[0.08] -0.53[0.08] -0.63[0.08] -0.53[0.07]
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secm

the rows correspond to surveys, columns are predictors and 0.00 means < 0.01

for CHNS study, where

S Gender edulb edu2b edu3b edudb edu5b Urban ageb

1 -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00]
2 -0.04[0.00] -0.03[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00]
3 -0.15[0.02] -0.14[0.01] -0.14[0.02] -0.17[0.02] -0.14[0.02] -0.15[0.02] -0.16[0.02] -0.15[0.01]
4 -0.28[0.03] -0.26[0.03] -0.27[0.03] -0.32[0.03] -0.27[0.03] -0.29[0.03] -0.31[0.03] -0.28[0.02]
5 -0.52[0.06] -0.48[0.05] -0.50[0.06] -0.59[0.05] -0.50[0.05] -0.54[0.05] -0.57[0.05] -0.52[0.04]
6 -0.67[0.07] -0.62[0.07] -0.64[0.07] -0.76[0.07] -0.64[0.07] -0.69[0.07] -0.74[0.07] -0.67[0.05]
7 -0.93[0.10] -0.86[0.09] -0.88[0.10] -1.05[0.10] -0.89[0.10] -0.96[0.10] -1.02[0.10] -0.93[0.07]
8 -1.13[0.12] -1.04[0.11] -1.07[0.12] -1.27[0.12] -1.07[0.12] -1.16[0.12] -1.23[0.12] -1.13[0.09]

7 Enveloping (o, @)

Our focus has so far been on estimation of (3, either in the unconstrained model (1), the constrained

model with 3 = Uaq, the envelope model (4) with 3 = I'n), the envelope constrained model with

B = U¢n or in one of the scaled version. This emphasis on 3 reflects an interest in profile

contrasts rather than on the profiles themselves. When U is selected to model profiles rather than

profile contrasts, as in model (2), the intercept vector ap may be of interest because it represents

coordinates of the profile when X = 0. In this section we again consider the model (2), but now we

pursue envelop estimation of oy and o simultaneously, which may be appropriate when profiles

are important.

The model decomposition (6)—(7) still holds so only (7) is required to estimate (v, ), al-

though both are again required for the full likelihood function and asymptotic variances. The stan-

dard estimator (& cm, Ctem) is asymptotically normal with variance avar(y/nvec(Qg cm, Oem)) =
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345 T)_(l ® Xp|s where

1 X7
Tx = lim
n—oo

X Tx

a5 Turning to envelopes and writing Z = (1, X7)7, model (7) can be rewritten as

Ypi|Ysi = (a0, )Z;+ ®pisYsi + epsi
= I'mZ;+ ¢pisYsi+ epsi (14)

Sps = LOT" +TQry,

a7 where I is a semi-orthogonal basis matrix for &, ; (span (e, e)). The number of real parameters
s in this model is u(p + 1) 4+ r(r 4+ 1)/2. Since we are enveloping only on (v, c) this is again in
a9 the form of a partial envelope, but now there is no intercept term. The likelihood function for

a0 parameters (I, €2, Qo, 1, |5, Xs) is

n 1 — _ n
Ly = —nr(l+log(2m)/2 — S log[Bs| - 5 ;Y;leYSi — 5108 [Spys|

1 ¢ _
) Z[(Ym —I'nZ; — ¢D\SYS1')TED|15(YDZ' —I'nZ; — ¢D\SYSZ‘)]

i=1

351 The maximum likelihood estimator of Xg is T'g, which is the same as for the other models we

sz have considered. Holding all other parameters fixed, the value of ¢ that maximizes L is
¢pis = TpsTg' =TTy sTy'.

s Substituting this into the log likelihood we find its maximized over 17 by I' times the coefficient
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matrix from the ordinary least squares regression of Y, on (Z,Ys), n = r’s D7(Z7S)S(_Z17 ) Con-
tinuing to maximize the resulting partially maximized log likelihoods, we have 2 = I'"'S p|z,5)T
and Qy = I‘OTTRD| sI'0, which results in the log likelihood maximized over all parameters except

I':
Lo(T) = —g {r(l +1log(2)) + log |Ss| + log [T Spyz.5T| + log |r0TTRD‘Sr0|} .
The maximum likelihood estimator of an envelope basis can thus be represented as
T = arg mGirn log |GTSD‘(Z75)G| + log |GTTI_{;‘SG|,

where the minimum is computed over all semi-orthogonal matrices G € R**%, The fully maxi-

mized log likelihood is then
Lu=c— 2 Llog|Ss| +log | T log [T Spyz.s L] +log|T Tzl T
w=2=C 5 og|Xs| + log | RD‘S“" og| D|(%,5) |+ log | Rp|s I

where ¢ = nlog |[W| — (nr/2)(1 + log(27)).

Finally, the maximum likelihood estimator of a basis for &x, . (span(cy, @) can be repre-
sented as T’ = arg ming log |G"Sp)(z,9)G| + log |GTT;{;‘SG], where the minimum is computed
over all semi-orthogonal matrices G € R**%. The envelope estimator of (o, o) is then (a, &) =
Py (v, &) where (¢, &) is the ordinary least squares estimators for the coefficient of the predic-
tor (1, X) in the regression of Y p onto (1, X, Yg). The estimators of ¢ g, 1, §2, €29 and X p |5 can
then be constructed by substituting T into previously given expressions for them. The asymptotic
variance of vec(Q, @) is avar(y/nvec(g, @)) = 7,' @ TOTT + (n” @ To)M~Y(12)(n @ Ty).
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8 Non-normality and the bootstrap

The methods presented herein are all based on maximum likelihood estimators, assuming normal
errors. When the errors are non-normal with finite fourth moments, all estimators are still root-n
consistent and asymptotically normal (see, for example, Cook and Zhang, 2015, Section 5.1), but
the asymptotic variances based on the Fisher information under normality may no longer be accu-
rate. In such cases the residual bootstrap can be used for variances and inference. For illustration,
we next describe how to use the bootstrap to estimate var(vec(a)), the variance of the envelope
estimator of o as described in Section 3.1. The procedure is similar for other settings.

Let R = {Ry,...,R,} denote the collection of residual vectors R; from the standard fit of
model (2) and recall that the estimators for the corresponding envelope model are denoted with
“hats”, as described in Section 3.1. Then a bootstrap sample {R},... R’} from R is used to

generate a bootstrap sample {Y} of the responses as follows,

The resulting bootstrap data {Y?,X;, i = 1,...,n} are then used to construct the first bootstrap
estimator a; of a, employing the value of u used in the construction of & along with methods de-
scribed in Section 3.1. Repeating this process B times gives bootstrap estimates 64;, j=1,...,B.
The sample variance Svec(a*) is then a bootstrap estimator of var(vec(ax)). Background on using

the residual bootstrap with envelope models is available from Cook (2018, Section 11.1).
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9 Estimating the envelope dimension

Methods for estimating the envelope dimension w include likelihood ratio testing, an information
criterion or cross validation (Cook et al., 2010). A review and expanded discussion of estimation
of w is available from Cook (2018).

The likelihood ratio for testing an envelope model with dimension v < k against the model
with u = k can be cast as a test of the hypothesis ©u = wug versus the alternative u = k. The
likelihood ratio statistic for this hypothesis is A(ug) = 2(Lj — Ly, ), where L, is the maximized
envelope log likelihood for the envelope model in question with 4 = a. Under the null hypothesis
this statistic is distributed asymptotically as a chi-squared random variable with (k — u) degrees
of freedom, the number of real parameters for the standard model (v = k) minus that for the
envelope model with © = ug, The likelihood ratio test statistic A(ug) can be used sequentially to
estimate u: Starting with uy = 0, test the hypothesis © = wu, against u = k at a selected level
a. If the hypothesis is rejected, increment 1 by 1 and test again. The estimate « of w is the first
hypothesized value that is not rejected.

The envelope dimension can also be selected by using an information criterion:
0 = argmin{—2L, + h(n)N(u)}, (15)

where N (u) is the number of real parameters in the envelope model with envelope dimension
u, and h(n) = logn for BIC and h(n) = 2 for AIC. Theoretical results (Su and Cook, 2013,
Prop. 4) supported by simulations indicate that AIC tends to overestimate . BIC will select the

correct u with probability tending to 1 as n — oo (Yang, 2005), but it can be slow to respond in
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small samples. Selection by likelihood ratio testing can perform well depending on the sample
size, but asymptotically it makes an error with rate «. It may be useful to use all three methods
in applications, giving a preference to BIC and LRT if there is disagreement, or using the largest
estimate of u in cases where it is desirable to be conservative. It is also possible to avoid the
selection of u by using model averaging to combine the envelope estimators over all possible

values of u (Eck and Cook, 2017).

10 Envelopes and Rao’s simple structure

In this section we contrast envelopes and Rao’s structure. Since Rao’s structure is typically em-
ployed the context of prediction we assume that U is semi-orthogonal to ease exposition. In the

context of model (2), Rao’s simple structure is

> = UAU” + UyA U, (16)

where A € R¥* and A, € RU—F*("=*) are positive definite and (U, Uy) is orthogonal, as defined
previously. It follows from this structure that the eigenvectors of X must be in either &/ or U/, and
that £x(U) = U. This simplifies the analysis considerably since it implies that U7X U, = 0 and
thus that Yg 1L Yp | X, ¢D|S = 0,X¥ps = A, X5 = Ag and that analysis can be based on the
unconstrained model Yp; | X; = ap + aX; + e p|si>» Which becomes the basis for an analysis
based on the envelope £a (.A), recalling that A = span(a).

In an envelope analysis based on a model like (14), the envelope dimension u is in effect a

model-selection parameter that typically needs to be inferred from the data (see Section 9). As-

33

Page 66 of 69



Page 67 of 69

423

424

oNOYTULT D WN =

425

11 426

13 427

428

18 429

430

23 431

25 432

35 433

45 434

435

50 436

52 437

Scandinavian Journal of Statistics

suming that an originating model like (2) holds, the only remaining model selection issue is the
choice of u. If it is concluded that u = k, so the model defaults to the original growth curve model,
then envelopes offer no gain. If it is concluded that © < k then there is a proper envelope model
and some perhaps substantial efficiency gains can be expected. In this sense an envelope analysis
is adaptive through the choice of u. In contrast, Rao’s simple structure is non-adaptive because it
relies on the strong assumption that Es;(U) = U. One possible generalization of Rao’s structure is
to base analysis on s (U) without requiring that it equal U.

Rao’s approach was to impose a structure on 32 via (16), while in the envelope approach we
use an adaptive structure on Xp|s. It seems most informative to compare these structures on the

W scale via the precision matrix, E;\}. Under Rao’s structure,

A0
Sw = :
0 A,'
while under the envelope model (14)
P = pjsbpis

—¢FIF7|SEB|15 )Pl +¢:LF)\SEB|15¢D|S

It seems clear from these representations that the envelope structure is much less restrictive, which
is reflected also by the parameter counts in the 3w ’s. The number of free real parameters in Rao’s
Ywisr(r+1)/2 —k(r — k), while that for the envelope model is r(r + 1) /2, the difference being

reflected by the absence of ¢ |4 in Rao’s structure.
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