

Envelopes for multivariate linear regression with linearly constrained coefficients

Journal:	<i>Scandinavian Journal of Statistics</i>
Manuscript ID	SJS-22-011.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Cook, Dennis; University of Minnesota Twin Cities, School of Statistics Forzani, Liliana; IMAL, Liu, Lan; University of Minnesota at Twin Cities, Statistics

SCHOLARONE™
Manuscripts

Envelopes for multivariate linear regression with linearly constrained coefficients

R. Dennis Cook,* Liliana Forzani[†] and Lan Liu[‡]

November 14, 2022

Abstract

A constrained multivariate linear model is a multivariate linear model with the columns of its coefficient matrix constrained to lie in a known subspace. This class of models includes those typically used to study growth curves and longitudinal data. Envelope methods have been proposed to improve the estimation efficiency in unconstrained multivariate linear models, but have not yet been developed for constrained models. We pursue that development in this article. We first compare the standard envelope estimator with the standard estimator arising from a constrained multivariate model in terms of bias and efficiency. To further improve efficiency, we propose a novel envelope estimator based on a constrained multivariate model. We show the advantage of our proposals by simulations and by studying the probiotic capacity to reduced *Salmonella* infection.

*R. Dennis Cook is Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455 (E-mail: dennis@stat.umn.edu).

[†]Liliana Forzani is Professor, Facultad de Ingeniería Química, UNL. Researcher of CONICET, Santa Fe, Argentina (E-mail: liliana.forzani@gmail.com).

[‡]Lan Liu is Associate Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455 (E-mail: liu1815@gmail.com).

1
2
3 16 **Key Words:** Growth curves, envelope models, repeated measures
4
5
6
7
8
9
10
11
12
13
14

17 1 Introduction

18 Consider the multivariate linear regression model
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

$$\mathbf{Y}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta} \mathbf{X}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, n, \quad (1)$$

19 with stochastic response $\mathbf{Y}_i \in \mathbb{R}^r$, non-stochastic predictors $\mathbf{X}_i \in \mathbb{R}^p$, $\boldsymbol{\beta}_0 \in \mathbb{R}^r$, $\boldsymbol{\beta} \in \mathbb{R}^{r \times p}$ and
20 error vectors $\boldsymbol{\varepsilon}_i$ independent copies of $\boldsymbol{\varepsilon} \sim N(0, \boldsymbol{\Sigma})$. The predictors are naturally non-stochastic
21 when they are selected by design. When the predictors are sampled, we condition on them at the
22 outset and so treating them as non-stochastic because they are ancillary under model (1). Model
23 (1) is unconstrained in the sense that each response is allowed a separate linear regression: the
24 maximum likelihood estimator (MLE) of the j -th row of $(\boldsymbol{\beta}_0, \boldsymbol{\beta})$ is the same as the estimator of the
25 coefficients from the linear regression of the j -th response on \mathbf{X} . In many applications, particularly
26 analyses of growth curves and longitudinal data, we may have information that $\text{span}(\boldsymbol{\beta}_0, \boldsymbol{\beta})$ is
27 contained in a known subspace \mathcal{U} with basis matrix $\mathbf{U} \in \mathbb{R}^{r \times k}$. The classic dental data (Potthoff
28 and Roy, 1964; Lee and Geisser, 1975; Rao, 1987; Lee, 1988) is an example of such a case.

29 **Example 1** A study of dental growth measurements of the distance (mm) from the center of the
30 pituitary gland to the pterygomaxillary fissure were obtained on 11 girls and 16 boys at ages 8, 10,
31 12, and 14. The goal was to study the growth measurement as a function of time and sex. We
32 revisited this example using the methodology presented in this paper in Supplement Section 5.

1
 2
 3 Let Y_{ik} denote the continuous measure of distance for child i at age t_k , for $t_k = 8, 10, 12, 14$,
 4 and let \mathbf{X}_i denote the gender indicator for child i (1 for boy and 0 for girl). After graphical
 5 inspection, many researchers treated the population means for distance as linear in time for each
 6 gender. Following that, a mixed effects repeated measure model is $Y_{ik} = \alpha_{00} + b_{0i} + \alpha_{01}\mathbf{X}_i +$
 7 $(\alpha_{10} + b_{1i} + \alpha_{11}\mathbf{X}_i)t_k + \varepsilon_{ik}^*$, where $\varepsilon_i^* = (\varepsilon_{i1}^*, \dots, \varepsilon_{ir}^*)^T \stackrel{\text{i.i.d.}}{\sim} N(0, \Sigma^*)$, b_{0i} and b_{1i} denote the
 8 random intercept and slope, $(b_{0i}, b_{1i}) \stackrel{\text{i.i.d.}}{\sim} N(0, \mathbf{D})$, where $\mathbf{D} \in \mathbb{S}^{2 \times 2}$. We rewrite this model as
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19

$$\mathbf{Y}_i = \mathbf{U}\boldsymbol{\alpha}_0 + \mathbf{U}\boldsymbol{\alpha}\mathbf{X}_i + \varepsilon_i \quad (2)$$

20
 21
 22
 23
 24 with $\mathbf{U} := (\mathbf{1}, \mathbf{t})$ with $\mathbf{t} = (8, 10, 12, 14)^T$, $\boldsymbol{\alpha}_0 = (\alpha_{00}, \alpha_{10})$, $\boldsymbol{\alpha} = (\alpha_{01}, \alpha_{11})$, $\varepsilon_i = \varepsilon_i^* + b_{0i}\mathbf{1}_{r \times 1} + b_{1i}\mathbf{t}$
 25 and $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} N(0, \Sigma)$. Applying the same ideas to just $\boldsymbol{\beta}$ in (1), so $\text{span}(\boldsymbol{\beta}) \subseteq \mathcal{U}$ without requiring
 26
 27
 28 that $\text{span}(\boldsymbol{\beta}_0) \subseteq \mathcal{U}$, leads to the model
 29
 30
 31
 32

$$\mathbf{Y}_i = \boldsymbol{\beta}_0 + \mathbf{U}\boldsymbol{\alpha}\mathbf{X}_i + \varepsilon_i, \quad i = 1, \dots, n. \quad (3)$$

33
 34
 35
 36
 37
 38 Let $\mathcal{B} = \text{span}(\boldsymbol{\beta})$. If we set $\mathbf{U} = \mathbf{1}_r$, so in model (3) $\boldsymbol{\alpha}$ is a row vector of length p , then the mean
 39 functions for the individual responses are parallel. Although motivated in the context of the dental
 40 data, we use models (2) and (3) as general forms that can be adapted to different applications by
 41 varying the choice of \mathbf{U} , referring to them as constrained multivariate linear models. Cooper and
 42
 43
 44
 45
 46 Evans (2002) used a version of model (2) with \mathbf{U} reflecting charge balance constraints on chemical
 47
 48 constituents of water samples.

49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60 Constrained models occur in various areas including growth curve and longitudinal studies
 where the elements of \mathbf{Y}_i are repeated observations on the i -th experimental unit over time. It is

1
2
3 common in such settings to model the rows of \mathbf{U} as a user-specified vector-valued function $\mathbf{u}(t) \in$
4
5 \mathbb{R}^k of time t , the i -th row of \mathbf{U} then being $\mathbf{u}^T(t_i)$. Polynomial bases $\mathbf{u}^T(t) = (1, t, t^2, \dots, t^{k-1})$ are
6
7 prevalent, particularly in the foundational work of Potthoff and Roy (1964), Rao (1965), Grizzle
8
9 and Allen (1969) and others, but splines (Nummi and Koskela, 2008) or other basis constructions
10
11 (Izenman and Williams, 1989) could be used as well. In longitudinal studies, model (2) might be
12
13 used when modeling profiles, while model (3) could be used when modeling just profile differ-
14
15 ences. For instance, if $\mathbf{X} = 0, 1$ is a population indicator then under model (2) the mean profiles
16
17 are modeled as $\mathbf{U}\boldsymbol{\alpha}_0$ and $\mathbf{U}(\boldsymbol{\alpha}_0 + \boldsymbol{\alpha})$, while under model (3) the profile means are $\boldsymbol{\beta}_0$ and $\boldsymbol{\beta}_0 + \mathbf{U}\boldsymbol{\alpha}$.
18
19
20
21
22 It is known in the literature that constrained models gain efficiency in the estimators compared with
23
24 model (1), provided that \mathbf{U} is correctly specified. However, it may be very difficult to correctly
25
26 specify \mathbf{U} in some applications, as in the following study:
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61 Example 2 Kenward (1987). *An experiment was carried out to compare two treatments for the*
62 *control of gut worm in cattle. Each treatments was randomly assigned to 30 cows whose weights*
63 *were measured at 2, 4, 6, . . . , 18 and 19 weeks after treatment. The goal of the experiment was to*
64 *see if a differential treatment effect could be detected and, if so, the time point when the difference*
65 *was first manifested.*

66 The constrained models (2) and (3) require that we select \mathcal{U} . Lacking prior knowledge, it is natural
67 to inspect plots of the average weight by time, as shown in Figure 1. It seems clear from the figure
68 that it would be difficult to model the treatment profiles, particularly their two crossing points,
69 without running into problems of over fitting. Envelopes provide a way to model data like this
70 without specifying a subspace \mathcal{U} .

71 Envelope methodology is based on a relatively new paradigm for dimension reduction that,

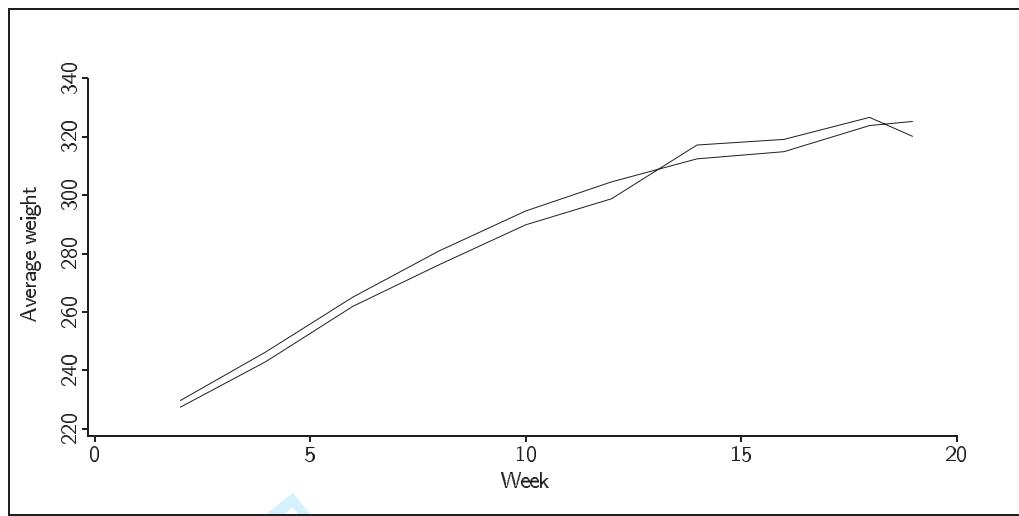


Figure 1: Cattle data: Average weight by treatment and time.

when applied in the context of model (1), has some similarity with constrained multivariate models. Briefly, envelopes produce a re-parameterization of model (1) in terms of a basis $\Gamma \in \mathbb{R}^{r \times u}$ for the smallest reducing subspace of Σ that contains \mathcal{B} . Like the constrained model, envelopes produce an upper bound for \mathcal{B} , $\mathcal{B} \subseteq \text{span}(\Gamma)$, but unlike the constrained model, the bound is unknown and must be estimated. Also, unlike the constrained model, $\Gamma^T \mathbf{Y}$ contains the totality of \mathbf{Y} that is affected by changing \mathbf{X} . Since $\mathcal{B} \subseteq \text{span}(\Gamma)$, we have $\beta = \Gamma \eta$ for some $\eta \in \mathbb{R}^{u \times p}$. Model (1) can be re-parameterized to give its envelope counterpart. For $i = 1, \dots, n$,

$$\mathbf{Y}_i = \beta_0 + \Gamma \eta \mathbf{X}_i + \varepsilon_i, \quad \Sigma = \Gamma \Omega \Gamma^T + \Gamma_0 \Omega_0 \Gamma_0^T, \quad (4)$$

where $(\Gamma, \Gamma_0) \in \mathbb{R}^{r \times r}$, orthogonal, $\Omega = \Gamma^T \Sigma \Gamma > 0$ and $\Omega_0 = \Gamma_0^T \Sigma \Gamma_0 > 0$. Envelopes are reviewed in more detail in Section 2.2.

Comparing (2)–(3) with (4), both express β as a basis times a coordinate matrix: $\beta = \mathbf{U} \alpha$ in (2)–(3) and $\beta = \Gamma \eta$ in (4). However, as mentioned previously, Γ is estimated but \mathbf{U} is assumed known. Envelopes were first proposed by Cook et al. (2007) to facilitate dimension reduction and

1
2
3 84 later were shown by Cook et al. (2010) to have the potential massive efficiency gains relative to
4
5 85 the standard MLE of β , and for these gains to be passed on to other tasks such as prediction.
6
7 86 There are now a number of extensions and applications of this basic envelope methodology, each
8
9 87 demonstrating the potential for substantial efficiency gains (Su and Cook, 2011; Cook and Zhang,
10
11 88 2015a,b; Forzani and Su, 2021; Su et al., 2016; Li and Zhang, 2017; Rekabdarkolaee et al., 2020).
12
13 89 Studies over the past several years have demonstrated repeatedly that sometimes the efficiency
14
15 90 gains of the envelope methods relative to standard methods amount to increasing the sample size
16
17 91 many times over. See Cook (2018) for a review and additional extensions of envelope methodology.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

92 The choice between a constrained model, (2) or (3), and the envelope model (4) hinges on the
93 ability to correctly specify an upper bound \mathcal{U} for $\text{span}(\beta_0, \beta)$ or \mathcal{B} . In Section 2 we obtain the
94 MLE estimators and the asymptotic variances for the parameters of model (2) and show that if we
95 have a correct parsimonious basis \mathbf{U} then the constrained models are more efficient. But if bias
96 is present or if we use a correct but excessive \mathbf{U} , then the envelope model (4) can be much more
97 efficient. To the best of our knowledge, no such a comparison has been investigated theoretically
98 or empirically in the literature despite the similarity between both models. Although considerable
99 methodology has been developed for the envelope version (4) of the unconstrained model (1), there
100 are apparently no envelope counterparts available for the class of models represented by (2) and (3)
101 when a correct parsimonious \mathbf{U} is available. In Section 3 we adapt the present envelope paradigm
102 to model versions for (2) and (3) to achieve efficiency gains over those models. Simulations to
103 support our finding are given in Section 4 and in Section 5 we compare our methodology with
104 others in an example. We conclude the paper with a discussion section. Proofs for all propositions,
105 two extra data set comparison and discussions of related issues are available in a Supplement to
106 this article.

1
 2
 3 107 **Notational conventions.** Given a sample $(\mathbf{a}_i, \mathbf{b}_i), i = 1, \dots, n$, let $\mathbf{T}_{\mathbf{a}, \mathbf{b}} = n^{-1} \sum_{i=1}^n \mathbf{a}_i \mathbf{b}_i^T$ de-
 4
 5 108 note the matrix of raw second moments, and let $\mathbf{T}_{\mathbf{a}} = n^{-1} \sum_{i=1}^n \mathbf{a}_i \mathbf{a}_i^T$. For raw second moments
 6
 7 109 involving \mathbf{Y}_S and \mathbf{Y}_D defined below we use S and D as subscripts. We use a subscript 1 in
 8
 9 110 residuals computed from a model containing a vector of intercepts. The absence of a 1 indicates
 10
 11 111 no intercept was included. For instance, $\mathbf{R}_{\mathbf{a}|\mathbf{b}}$ means the residuals from the regression of \mathbf{a} on \mathbf{b}
 12
 13 112 without an intercept vector, $\mathbf{a}_i = \boldsymbol{\beta} \mathbf{b}_i + \mathbf{e}$, while $\mathbf{R}_{\mathbf{a}|(1,\mathbf{b})}$ means those with an intercept vector,
 14
 15 113 $\mathbf{a}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta} \mathbf{b}_i + \mathbf{e}_i$. Similarly, $\mathbf{R}_{D|S}$ means a residual from the regression of \mathbf{Y}_D and \mathbf{Y}_S without
 16
 17 114 an intercept, and $\mathbf{R}_{D|(1,S)}$ with an intercept.
 18
 19
 20
 21

22 115 Sample variances are written as $\mathbf{S}_{\mathbf{a}} = n^{-1} \sum_{i=1}^n (\mathbf{a}_i - \bar{\mathbf{a}})(\mathbf{a}_i - \bar{\mathbf{a}})^T$ and sample covariance
 23
 24 116 matrices are written as $\mathbf{S}_{\mathbf{a}, \mathbf{b}} = n^{-1} \sum_{i=1}^n (\mathbf{a}_i - \bar{\mathbf{a}})(\mathbf{b}_i - \bar{\mathbf{b}})^T$. For variances and covariances involving
 25
 26 117 \mathbf{Y}_D and \mathbf{Y}_S we again use D and S as subscripts, e.g. $\mathbf{S}_D = n^{-1} \sum_{i=1}^n (\mathbf{Y}_{Di} - \bar{\mathbf{Y}}_D)(\mathbf{Y}_{Di} - \bar{\mathbf{Y}}_D)^T$.
 27
 28 118 $\mathbf{S}_{\mathbf{a}|\mathbf{b}}$ denotes the covariance matrix of the residuals from fit of the model $\mathbf{a}_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta} \mathbf{b}_i + \mathbf{e}_i$, which
 29
 30 119 always includes an intercept. That is, $\mathbf{S}_{\mathbf{a}|\mathbf{b}} = n^{-1} \sum_{i=1}^n \mathbf{R}_{\mathbf{a}|(1,\mathbf{b}),i} \mathbf{R}_{\mathbf{a}|(1,\mathbf{b}),i}^T$. Similarly, $\mathbf{S}_{D|S} =$
 31
 32 120 $\sum_{i=1}^n \mathbf{R}_{D|(1,S),i} \mathbf{R}_{D|(1,S),i}^T$.
 33
 34
 35

36 121 We use $\text{span}(\mathbf{A})$ to denote the subspace spanned by the columns of the matrix \mathbf{A} . The pro-
 37
 38 122 jection onto $\mathcal{S} = \text{span}(\mathbf{A})$ will be denoted using either the subspace itself $\mathbf{P}_{\mathcal{S}}$ or its basis $\mathbf{P}_{\mathbf{A}}$.
 39
 40 123 Projections onto an orthogonal complement will be denoted similarly using $\mathbf{Q}_{(\cdot)} = \mathbf{I} - \mathbf{P}_{(\cdot)}$. For a
 41
 42 124 subspace \mathcal{S} and conformable matrix \mathbf{B} , $\mathbf{B}\mathcal{S} = \{\mathbf{B}S \mid S \in \mathcal{S}\}$. If an estimator $\mathbf{a} \in \mathbb{R}^r$ of $\boldsymbol{\alpha} \in \mathbb{R}^r$
 43
 44 125 has the property that $\sqrt{n}(\mathbf{a} - \boldsymbol{\alpha})$ is asymptotically normal with mean 0 and variance \mathbf{A} , we write
 45
 46 126 $\text{avar}(\sqrt{n}\mathbf{a}) = \mathbf{A}$ to denote its asymptotic variance.
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

2 Comparison of the envelope and constrained estimators

Models (2)–(3) and (4) are similar in the sense that β is represented as a basis times a coordinate matrix, $\beta = \mathbf{U}\alpha$ in (2)–(3) and $\beta = \Gamma\eta$ in (4). It might be thought that (2) and (3) would yield better estimators because \mathbf{U} is known while Γ is not, but that turns out not to be true in general. This is in part because we may have $\mathcal{B} \not\subseteq \mathcal{U}$, which raises the issue of bias as discussed in Section 2.3, and in part because the envelope model capitalizes automatically on the structure in Σ , which can improve efficiency as discussed in Section 2.4. Our general conclusion is that, in practice, it may be necessary to compare their fits before selecting an estimator and that the envelope estimator may have a clear advantage when there is uncertainty in the choice of \mathcal{U} , as illustrated in Figure 1.

Developments under models (2) and (3) are very similar since they differ only on how the intercept is handled. In the remainder of this article we focus on model (2) and comment from time to time on modifications necessary for model (3).

2.1 Maximum likelihood estimators for constrained models

Our treatment of maximum likelihood estimation from (2) is based on linearly transforming \mathbf{Y} . Let \mathbf{U}_0 be a semi-orthogonal basis matrix for \mathcal{U}^\perp , and let $\mathbf{W} = (\mathbf{U}(\mathbf{U}^T\mathbf{U})^{-1}, \mathbf{U}_0) := (\mathbf{W}_1, \mathbf{W}_2)$. Then the transformed model becomes

$$\mathbf{W}^T \mathbf{Y}_i := \begin{pmatrix} \mathbf{Y}_{Di} \\ \mathbf{Y}_{Si} \end{pmatrix} = \begin{pmatrix} (\mathbf{U}^T\mathbf{U})^{-1}\mathbf{U}^T \mathbf{Y}_i \\ \mathbf{U}_0^T \mathbf{Y}_i \end{pmatrix} = \begin{pmatrix} \alpha_0 + \alpha \mathbf{X}_i \\ 0 \end{pmatrix} + \mathbf{W}^T \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, n, \quad (5)$$

where $\mathbf{Y}_{Di} \in \mathbb{R}^k$ and $\mathbf{Y}_{Si} \in \mathbb{R}^{r-k}$ with k the number of columns of \mathbf{U} . The transformed variance can be represented block-wise as $\Sigma_{\mathbf{W}} := \text{var}(\mathbf{W}^T \boldsymbol{\varepsilon}) = (\mathbf{W}_i^T \Sigma \mathbf{W}_j)$, $i, j = 1, 2$, where Σ is as

1
2
3 146 defined for model (2). The mean $E(\mathbf{Y}_D \mid \mathbf{X})$ depends non-trivially on \mathbf{X} and thus, as indicated
4
5 147 by the subscript D , we think of \mathbf{Y}_D as providing direct information about the regression. On the
6
7 148 other hand, $E(\mathbf{Y}_S \mid \mathbf{X}) = 0$ and thus \mathbf{Y}_S provides no direct information but may provide useful
8
9 149 subordinate information by virtue of its association with \mathbf{Y}_D .

10
11
12 150 To find the MLEs from model (5), we write the full log likelihood as the sum of the log likeli-
13
14 151 hoods for the marginal model for $\mathbf{Y}_S \mid \mathbf{X}$ and the conditional model for $\mathbf{Y}_D \mid (\mathbf{X}, \mathbf{Y}_S)$:

$$\mathbf{Y}_{Si} \mid \mathbf{X} = \mathbf{e}_{Si} \quad (6)$$

$$\mathbf{Y}_{Di} \mid (\mathbf{X}_i, \mathbf{Y}_{Si}) = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}\mathbf{X}_i + \boldsymbol{\phi}_{D|S}\mathbf{Y}_{Si} + \mathbf{e}_{D|Si}, \quad (7)$$

22
23
24
25
26 152 where $\boldsymbol{\phi}_{D|S} = (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Sigma} \mathbf{U}_0 (\mathbf{U}_0^T \boldsymbol{\Sigma} \mathbf{U}_0)^{-1} \in \mathbb{R}^{k \times (r-k)}$, $\mathbf{e}_{D|S} = \mathbf{W}_1^T \boldsymbol{\varepsilon}$, $\mathbf{e}_S = \mathbf{W}_2^T \boldsymbol{\varepsilon}$. The
27
28 153 variances of the errors are $\boldsymbol{\Sigma}_S := \text{var}(\mathbf{e}_S) = \mathbf{U}_0^T \boldsymbol{\Sigma} \mathbf{U}_0$ and $\boldsymbol{\Sigma}_{D|S} := \text{var}(\mathbf{e}_{D|S}) = (\mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U})^{-1}$.
29
30
31 154 The number of free real parameters in this conditional model is $N_{\text{cm}}(k) = k(p+1) + r(r+1)/2$.
32
33
34 155 The subscript ‘cm’ is used to indicate estimators arising from the conditional model (7). The MLE
35
36 156 and its asymptotic variance for (2) are

$$\hat{\boldsymbol{\alpha}}_{\text{cm}} = \mathbf{S}_{D, \mathbf{R}_{\mathbf{X}|(1,S)}} \mathbf{S}_{\mathbf{X}|S}^{-1} = (\mathbf{S}_{D, \mathbf{X}} - \mathbf{S}_{D, S} \mathbf{S}_S^{-1} \mathbf{S}_{S, \mathbf{X}}) \mathbf{S}_{\mathbf{X}|S}^{-1} \quad (8)$$

$$\hat{\boldsymbol{\beta}}_{\text{cm}} = \mathbf{U} \hat{\boldsymbol{\alpha}}_{\text{cm}} = \mathbf{U} \mathbf{S}_{D, \mathbf{R}_{\mathbf{X}|(1,S)}} \mathbf{S}_{\mathbf{X}|S}^{-1} = \mathbf{U} (\mathbf{S}_{D, \mathbf{X}} - \mathbf{S}_{D, S} \mathbf{S}_S^{-1} \mathbf{S}_{S, \mathbf{X}}) \mathbf{S}_{\mathbf{X}|S}^{-1} \quad (9)$$

$$\text{avar}(\sqrt{n} \text{vec}(\hat{\boldsymbol{\alpha}}_{\text{cm}})) = \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \otimes \boldsymbol{\Sigma}_{D|S} \quad (10)$$

$$\text{avar}(\sqrt{n} \text{vec}(\hat{\boldsymbol{\beta}}_{\text{cm}})) = \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \otimes \mathbf{U} \boldsymbol{\Sigma}_{D|S} \mathbf{U}^T, \quad (11)$$

53
54 157 The estimation for model (3) requires just a few modifications of the procedure for model
55
56 158 (2). All modifications stem from the presence of an intercept vector in model (6), which becomes

1
 2
 3 159 $\mathbf{Y}_S = \mathbf{W}_2^T \boldsymbol{\beta}_0 + \mathbf{e}_S$. The variance Σ_S is estimated as $\widehat{\Sigma}_S = \mathbf{S}_S$ with corresponding changes in
 4 the estimator of Σ , and the estimator of the intercept $\mathbf{W}_2^T \boldsymbol{\beta}_0$ is just $\bar{\mathbf{Y}}_S$. The intercept in (7) is
 5
 6 160 redefined as $\boldsymbol{\alpha}_0 = \mathbf{W}_1^T \boldsymbol{\beta}_0 - \phi_{D|S} \mathbf{W}_2^T \boldsymbol{\beta}_0$. The MLE of $\boldsymbol{\beta}_0$ in model (3) can be constructed in a
 7 straightforward way from the estimators of $\boldsymbol{\alpha}_0$, $\mathbf{W}_2^T \boldsymbol{\beta}_0$ and $\phi_{D|S}$. The number of real parameters
 8 in (6) becomes $N_{cm} + r - k$. The estimators of the parameters in (7) are unchanged. In particular,
 9
 10 161 $\widehat{\boldsymbol{\alpha}}_{cm}$ and $\widehat{\boldsymbol{\beta}}_{cm}$ along with their asymptotic variances are the same under models (2) and (3), although
 11
 12 162 different \mathbf{U} 's might be used in their construction.
 13
 14
 15
 16
 17
 18
 19
 20
 21

166 2.2 Envelope estimator stemming from Model (1)

22
 23
 24 167 Consider a subspace $\mathcal{S} \subseteq \mathbb{R}^r$ that satisfies the two conditions (i) $\mathbf{X} \perp\!\!\!\perp \mathbf{Q}_S \mathbf{Y}$ and (ii) $\mathbf{P}_S \mathbf{Y} \perp\!\!\!\perp \mathbf{Q}_S \mathbf{Y} \mid$
 25
 26
 27 168 \mathbf{X} . Condition (i) insures that the marginal distribution of $\mathbf{Q}_S \mathbf{Y}$ does not depend on \mathbf{X} , while
 28
 29 169 statement (ii) insures that, given \mathbf{X} , $\mathbf{Q}_S \mathbf{Y}$ cannot provide material information via an association
 30
 31 170 with $\mathbf{P}_S \mathbf{Y}$. Together these conditions imply that the impact of \mathbf{X} on the distribution of \mathbf{Y} is
 32
 33 171 concentrated solely in $\mathbf{P}_S \mathbf{Y}$. One motivation underlying envelopes is then to characterize linear
 34
 35 172 combinations $\mathbf{Q}_S \mathbf{Y}$ that are unaffected by changes in \mathbf{X} and that produce gains in estimative and
 36
 37 173 predictive efficiency.
 38
 39
 40

41
 42 174 In terms of model (1), condition (i) holds if and only if $\mathcal{B} \subseteq \mathcal{S}$ and condition (ii) holds if and
 43
 44 175 only if \mathcal{S} is a reducing subspace of Σ ; that is, \mathcal{S} must decompose $\Sigma = \mathbf{P}_S \Sigma \mathbf{P}_S + \mathbf{Q}_S \Sigma \mathbf{Q}_S$. The
 45
 46 176 intersection of all subspaces with these properties is by construction the smallest reducing subspace
 47
 48 177 of Σ that contains \mathcal{B} , which is called the Σ -envelope of \mathcal{B} and is represented as $\mathcal{E}_\Sigma(\mathcal{B})$ (Cook et al.,
 49
 50 178 2010). These consequences of conditions (i) and (ii) can be incorporated into model (1) by using
 51
 52 179 a basis, leading to model (4). Let $u \in \{0, 1, \dots, r\}$ denote the dimension of $\mathcal{E}_\Sigma(\mathcal{B})$. The number
 53
 54 180 of free real parameters is $N_{em} = r + pu + r(r + 1)/2$. The subscript 'em' is used to indicate
 55
 56
 57
 58
 59
 60

1
2
3 selected quantities arising from this envelope model. The goal here is still to estimate $\beta = \Gamma\eta$
4
5 and Σ . Cook et al. (2010) derived the maximum likelihood envelope estimators of β and Σ along
6
7 with their asymptotic variances. They showed that substantial efficiency gains in estimation of β
8 are possible under this model, particularly when a norm of $\text{var}(\Gamma_0^T \mathbf{Y}) = \Omega_0$ is considerably larger
9
10 than the same norm of $\text{var}(\Gamma^T \mathbf{Y}) = \Omega$.
11
12
13

14
15 Given the envelope dimension u , Cook et al. (2010) proved that the maximum likelihood esti-
16
17 mator $\widehat{\beta}_{\text{em}}$ of $\beta = \Gamma\eta$ from envelope model (4) has asymptotic variance given by
18
19
20
21
22
23

$$\text{avar}(\sqrt{n}\text{vec}(\widehat{\beta}_{\text{em}})) = \Sigma_{\mathbf{X}}^{-1} \otimes \Gamma \Omega \Gamma^T + (\eta^T \otimes \Gamma_0) \mathbf{M}^\dagger(\Sigma_{\mathbf{X}}) (\eta \otimes \Gamma_0^T), \quad (12)$$

24
25
26 where for a $\mathbf{C} \in \mathbb{R}^{p \times p}$, $\mathbf{M}(\mathbf{C}) := \eta \mathbf{C} \eta^T \otimes \Omega_0^{-1} + \Omega \otimes \Omega_0^{-1} + \Omega^{-1} \otimes \Omega_0 - 2\mathbf{I}$ and \dagger denotes the
27
28 Moore-Penrose inverse. Cook et al. (2010) showed that $\text{avar}(\sqrt{n}\text{vec}(\widehat{\beta}_{\text{em}})) \leq \text{avar}(\sqrt{n}\text{vec}(\widehat{\beta}_{\text{um}}))$,
29
30 where $\widehat{\beta}_{\text{um}}$ is the MLE under the unconstrained model (1). In consequence, estimators from the en-
31
32 velope model (4) are always superior to those from the unconstrained multivariate model (1). Cook
33
34 et al. (2010) also showed that the envelope estimator is \sqrt{n} -consistent even when the normality
35
36 assumption is violated as long as the data has finite fourth moments.
37
38
39

40
41
42
43 **2.3 Potential bias in $\widehat{\beta}_{\text{cm}}$**
44

45 Assuming that $\mathcal{B} \subseteq \mathcal{U}$, $\widehat{\alpha}_{\text{cm}}$ and $\widehat{\beta}_{\text{cm}}$ are unbiased estimators of α and β . However, if $\mathcal{B} \not\subseteq$
46
47 \mathcal{U} then both $\widehat{\alpha}_{\text{cm}}$ and $\widehat{\beta}_{\text{cm}}$ are biased, which could materially affect the estimators: $E(\widehat{\alpha}_{\text{cm}}) =$
48
49 $(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \beta$ and $E(\widehat{\beta}_{\text{cm}}) = \mathbf{P}_{\mathbf{U}} \beta$. Consequently, the bias in $\widehat{\beta}_{\text{cm}}$ is $\beta - \mathbf{P}_{\mathbf{U}} \beta = \mathbf{Q}_{\mathbf{U}} \beta$. A
50
51 nonzero bias must necessarily dominate the mean squared error asymptotically and so could limit
52
53 the utility of $\widehat{\beta}_{\text{cm}}$. Simulation results that illustrate the potential bias effects are discussed in Section
54
55
56

1
2
3 200 4.2. We assume that $\mathcal{B} \subseteq \mathcal{U}$ for the remainder of this article except for where otherwise indicated.
4
5
6

7 201 **2.4 Comparison of asymptotic variances of $\hat{\beta}_{\text{em}}$ and $\hat{\beta}_{\text{cm}}$**
8
9

10 202 We now compare the asymptotic variances of the envelope and constrained estimators of β , (12)
11

12 203 and (11). Depending on the dimensions involved, the relationship between \mathcal{U} and the envelope
13

14 204 $\mathcal{E}_\Sigma(\mathcal{B})$ and other factors, the difference between the asymptotic covariance matrices for the esti-
15

16 205 mators $\hat{\beta}_{\text{em}}$ and $\hat{\beta}_{\text{cm}}$ from these two models can be positive definite, negative definite or indefinite.
17

18 206 Since all comparisons are in terms of β 's, we assume without loss of generality that \mathbf{U} is a semi-
19

20 207 orthogonal matrix. Also, since $\hat{\beta}_{\text{cm}}$ is the same under models (2) and (3) we do not distinguish
21

22 208 between these two models in this section.
23

24 209 **2.4.1 $\mathcal{B} \subseteq \mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$**
25

26 210 Assuming that \mathcal{U} is correct so that $\mathcal{B} \subseteq \mathcal{U}$ and $\mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$ can simplify the variance comparison:
27

28 211 **Proposition 2.1** *If $\mathcal{B} \subseteq \mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$, then $\text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{cm}})) \leq \text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{em}}))$.*
29

30 212 In consequence, under this hypothesis, the constrained estimator $\hat{\beta}_{\text{cm}}$ is superior to the envelope
31

32 213 estimator $\hat{\beta}_{\text{em}}$. However, this comparison may be seen as loaded in favor of $\hat{\beta}_{\text{cm}}$ since the con-
33

34 214 strained estimator uses the additional knowledge that $\mathcal{B} \subseteq \mathcal{U}$ and the envelope estimator does not.
35

36 215 Additionally, neither estimator makes use of the proposition's hypothesis. The next proposition
37

38 216 provides help in assessing the impact of the hypothesis on the underlying structure by connecting
39

40 217 it with $\mathcal{E}_\Sigma(\mathcal{U})$, the Σ -envelope of \mathcal{U} .
41

42 218 **Proposition 2.2** *Assume that $\mathcal{B} \subseteq \mathcal{U}$. Then*
43

44 219 1. $\mathcal{E}_\Sigma(\mathcal{B}) \subseteq \mathcal{E}_\Sigma(\mathcal{U})$,
45

1
2
3 220 2. $\mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$ if and only if $\mathcal{E}_\Sigma(\mathcal{B}) = \mathcal{E}_\Sigma(\mathcal{U})$,
4
5
6 221 3. If $\text{rank}(\boldsymbol{\alpha}) = k$ then $\mathcal{B} = \mathcal{U}$ and $\mathcal{E}_\Sigma(\mathcal{B}) = \mathcal{E}_\Sigma(\mathcal{U})$.
7
8
9

10 222 This proposition says essentially that if $\mathcal{B} \subseteq \mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$ we can start with model (1) and param-
11 eterize in terms of $\mathcal{E}_\Sigma(\mathcal{U})$ rather than $\mathcal{E}_\Sigma(\mathcal{B})$. A key distinction here is that \mathcal{U} is known while \mathcal{B}
12 13 223 is not. In consequence, we expect less estimative variation when parameterizing (1) in terms of
14 224 $\mathcal{E}_\Sigma(\mathcal{U})$ instead of $\mathcal{E}_\Sigma(\mathcal{B})$. Since $\mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{U})$ we can construct a semi-orthogonal basis for $\mathcal{E}_\Sigma(\mathcal{U})$
15 225 as $\boldsymbol{\Gamma} = (\mathbf{U}, \boldsymbol{\Gamma}_2)$ with $\mathbf{U}_0 = (\boldsymbol{\Gamma}_2, \boldsymbol{\Gamma}_0)$ and, recognizing that $\boldsymbol{\beta} = \mathbf{U}\boldsymbol{\alpha} = \boldsymbol{\Gamma}\boldsymbol{\eta}$, we get a new model
16 226
17
18
19
20
21
22
23

$$24 \quad 227 \quad \mathbf{Y}_i = \mathbf{U}\boldsymbol{\alpha}_0 + \mathbf{U}\boldsymbol{\alpha}\mathbf{X}_i + \boldsymbol{\varepsilon}_i, \quad i = 1, \dots, n \quad (13)$$

$$26 \quad 228 \quad \boldsymbol{\Sigma} = \boldsymbol{\Gamma}\boldsymbol{\Omega}\boldsymbol{\Gamma}^T + \boldsymbol{\Gamma}_0\boldsymbol{\Omega}_0\boldsymbol{\Gamma}_0^T.$$

31 227 Consider estimating $\boldsymbol{\alpha}$ from this model using the steps sketched in Section 2.1, and partition
32
33 228 $\boldsymbol{\Omega} = (\boldsymbol{\Omega}_{ij})$ to conform to the partition of $\boldsymbol{\Gamma} = (\mathbf{U}, \boldsymbol{\Gamma}_2)$. The envelope structure of (13) induces a
34
35 229 special structure on the reduced model that corresponds to (6)–(7): $\boldsymbol{\Sigma}_S = \text{bdiag}(\boldsymbol{\Omega}_{22}, \boldsymbol{\Omega}_0)$ is block
36 230 diagonal, $\boldsymbol{\Sigma}_{D|S} = \boldsymbol{\Omega}_{11} - \boldsymbol{\Omega}_{12}\boldsymbol{\Omega}_{22}^{-1}\boldsymbol{\Omega}_{21}$ and $\boldsymbol{\phi}_{D|S} = (\boldsymbol{\Omega}_{12}\boldsymbol{\Omega}_{22}^{-1}, 0)$. It can now be shown that the esti-
37
38 231 mates of $\boldsymbol{\alpha}$ from the constrained model (6)–(7) and from (13) have the same asymptotic variance.
39
40
41 232 In other words, if we neglect the hypothesized condition that $\mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$ then the constrained
42
43 233 estimator is better, but if we formulate the envelope model making use of that condition then the
44
45 234 constrained and envelope estimators are asymptotically equivalent.
46
47
48
49

50 235 Rao (1967) posited a simple structure for the analysis of balanced growth curve data (See also
51
52 236 Geisser, 1970; Lee and Geisser, 1975; Geisser, 1981; Lee, 1988; Pan and Fang, 2002). In our
53
54 237 context, Rao's structure is obtained by assuming that $\mathcal{E}_\Sigma(\mathcal{U}) = \mathcal{U}$, which corresponds to model
55
56
57
58
59
60

1
2
3 (13) with $\Gamma = \mathbf{U}$, which seems too specialized to warrant further attention. Additional discussion
4
5 of Rao's structure is available in Supplement Section 10.
6
7
8

9 240 **2.4.2** $\mathcal{U} \supseteq \mathcal{E}_\Sigma(\mathcal{B})$
10
11

12 241 Assuming that $\mathcal{U} \supseteq \mathcal{E}_\Sigma(\mathcal{B})$ is another way to simplify the variance comparison. Let $\Gamma \in \mathbb{R}^{r \times u}$ be a
13
14 semi-orthogonal basis matrix for $\mathcal{E}_\Sigma(\mathcal{B})$ and let (Γ, Γ_0) be an orthogonal matrix. Since $\mathcal{U} \supseteq \mathcal{E}_\Sigma(\mathcal{B})$,
15
16 we can construct semi-orthogonal bases $\mathbf{U} = (\Gamma, \Gamma_{01})$ and $\Gamma_0 = (\Gamma_{01}, \Gamma_{02})$. Partition $\Omega_0 = (\Omega_{0,ij})$
17
18 to correspond to the partitioning of Γ_0 . Then
19
20

21 245 **Proposition 2.3** *Assume that $\mathcal{U} \supseteq \mathcal{E}_\Sigma(\mathcal{B})$ and let $\mathbf{c} \in \mathbb{R}^r$. Then*
22
23

24 246 1. *If $\mathbf{c} \in \mathcal{E}_\Sigma(\mathcal{B})$ then $\text{avar}(\sqrt{n}\mathbf{c}^T \widehat{\boldsymbol{\beta}}_{\text{cm}}) = \text{avar}(\sqrt{n}\mathbf{c}^T \widehat{\boldsymbol{\beta}}_{\text{em}})$.*
25
26

27 247 2. *If $\mathbf{c} \in \text{span}(\Gamma_{02})$ then $\text{avar}(\sqrt{n}\mathbf{c}^T \widehat{\boldsymbol{\beta}}_{\text{cm}}) \leq \text{avar}(\sqrt{n}\mathbf{c}^T \widehat{\boldsymbol{\beta}}_{\text{em}})$.*
28
29

30 248 3. *If $\mathbf{c} \in \text{span}(\Gamma_{01})$, $\text{rank}(\mathbf{M}(\Sigma_{\mathbf{X}})) = \text{rank}(\boldsymbol{\eta} \Sigma_{\mathbf{X}} \boldsymbol{\eta}^T \otimes \Omega_0^{-1})$ and $\Omega_{12} = 0$ then $\text{avar}(\sqrt{n}\mathbf{c}^T \widehat{\boldsymbol{\beta}}_{\text{cm}}) \geq$*
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

50 250 The main takeaway of this lemma is that the difference between the asymptotic covariance matrices
51
52 for the estimators $\widehat{\boldsymbol{\beta}}_{\text{em}}$ and $\widehat{\boldsymbol{\beta}}_{\text{cm}}$ can be positive semi-definite or negative semi-definite, depending
53
54 on the characteristics of the problem.

55 253 Although the above derivation is under two simple cases where \mathcal{U} and the envelope space are
56
57 nested, the conclusion actually holds for the general case: if we have a correct parsimoniously
58
59 parameterized constrained model then the envelope model (4) is less efficient, but if the basis \mathbf{U}
60
61 in the constrained model is incorrect or excessively parameterized, then envelopes can be much
62
63 more efficient. This motivated us to incorporate envelopes into the constrained model so that we
64
65 can further improve efficiency if constraints are reasonably well modeled for the data
66
67

259 3 Envelopes in constrained models

260 In this section, we consider two different ways of imposing envelopes in a constrained model when
261 $\mathcal{B} \subseteq \mathcal{U}$. As previously done, we focus on envelope estimators in the constrained model (2) and
262 later describe the modifications necessary for model (3). In Section 3.1 we describe the envelope
263 estimation of α when there is an application-grounded basis \mathbf{U} that is key to interpretation and
264 inference. In Section 3.2 we address envelope estimation of $\beta = \mathbf{U}\alpha$. Here the choice of basis
265 \mathbf{U} has no effect on the MLE of β under the constrained models (2), but it does affect the envelope
266 estimator of β . Basis selection is also addressed in Section 3.2.

267 3.1 Enveloping α

268 Estimation of α will be of interest when it is desirable to interpret $\beta = \mathbf{U}\alpha$ in terms of its coor-
269 dinates α relative to the known application-grounded basis \mathbf{U} . Let $\mathcal{A} = \text{span}(\alpha)$. The envelope
270 estimator of α in model (5) can be found by first transforming (5) into (6)–(7) and then parameter-
271 izing (7) in terms of a semi-orthogonal basis matrix $\phi \in \mathbb{R}^{k \times u}$ for $\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})$, the $\Sigma_{D|S}$ -envelope of
272 \mathcal{A} with dimension $u \leq k$. Since $\text{avar}(\sqrt{n}\text{vec}(\hat{\alpha}_{\text{cm}})) = \Sigma_{\mathbf{X}}^{-1} \otimes \Sigma_{D|S}$ is in the form of a Kronecker
273 product that allows separation of row and column effects of α , this structure follows also from the
274 theory of Cook and Zhang (2015a,b) for matrix-valued envelope estimators based on envelopes of
275 the form $\mathbb{R}^p \oplus \mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})$, where \oplus denotes the direct sum.

276 Let $\eta \in \mathbb{R}^{u \times p}$ be an unconstrained matrix giving the coordinates of α in terms of a semi-
277 orthogonal basis matrix ϕ , so $\alpha = \phi\eta$, and let $(\phi, \phi_0) \in \mathbb{R}^{k \times k}$ be an orthogonal matrix. Then the

1
2
3 278 envelope version of model (6)–(7) is
4
5
6
7
8
9

$$\begin{aligned} \mathbf{Y}_{Si} &= \mathbf{e}_{Si} \\ \mathbf{Y}_{Di} | (\mathbf{X}_i, \mathbf{Y}_{Si}) &= \boldsymbol{\alpha}_0 + \boldsymbol{\phi}\boldsymbol{\eta}\mathbf{X}_i + \boldsymbol{\phi}_{D|S}\mathbf{Y}_{Si} + \mathbf{e}_{D|Si}, \\ \boldsymbol{\Sigma}_{D|S} &= \boldsymbol{\phi}\boldsymbol{\Omega}\boldsymbol{\phi}^T + \boldsymbol{\phi}_0\boldsymbol{\Omega}_0\boldsymbol{\phi}_0^T, \end{aligned} \quad (14)$$

10
11
12
13
14
15
16
17 279 where $\boldsymbol{\Omega} \in \mathbb{R}^{u \times u}$ and $\boldsymbol{\Omega}_0 \in \mathbb{R}^{(k-u) \times (k-u)}$ are positive definite matrices. Part of this model can be
18
19
20
21

22 280 seen as a version of the partial envelope model (Su and Cook, 2011)

23
24
25
26
27
28
29
30 The total real parameters in model (14) is $N_{\text{ecm}}(u) = k + pu + r(r + 1)/2$, which reduces to
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
that given previously for model (6)–(7) when $u = k$. The subscript ecm is used to indicate selected
key quantities that arise from enveloping \mathcal{A} in the constrained model (2). A basis $\hat{\boldsymbol{\phi}}$ for the MLE
of $\hat{\mathcal{E}}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A})$ of $\mathcal{E}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A})$ is constructed as

$$\hat{\boldsymbol{\phi}} = \arg \min_{\mathbf{G}} \log |\mathbf{G}^T \mathbf{S}_{D|(\mathbf{X}, S)} \mathbf{G}| + \log |\mathbf{G}^T \mathbf{S}_{D|S}^{-1} \mathbf{G}|, \quad (15)$$

where the minimum is computed over all semi-orthogonal matrices $\mathbf{G} \in \mathbb{R}^{k \times u}$ with $u \leq k$. The
fully maximized log likelihood is

$$\hat{L}_u = c - \frac{n}{2} \left\{ \log |\mathbf{T}_S| + \log |\mathbf{S}_{D|S}| + \log |\hat{\boldsymbol{\phi}}^T \mathbf{S}_{D|(\mathbf{X}, S)} \hat{\boldsymbol{\phi}}| + \log |\hat{\boldsymbol{\phi}}^T \mathbf{S}_{D|S}^{-1} \hat{\boldsymbol{\phi}}| \right\}. \quad (16)$$

where $c = n \log |\mathbf{W}| - (nr/2)(1 + \log(2\pi))$ with the $\log |\mathbf{W}|$ term corresponding to the Jacobian
transformation back to the scale of \mathbf{Y} .

Once $\hat{\boldsymbol{\phi}}$ is obtained we get the following envelope estimators for constrained model (2). Specif-

1
2
3 290 ically, we have
4
5

6 291 • $\hat{\beta}_{\text{ecm}} = \mathbf{U}\hat{\alpha}_{\text{ecm}}$, $\hat{\alpha}_{\text{ecm}} = \mathbf{P}_{\hat{\Phi}}\hat{\alpha}_{\text{cm}} = \hat{\phi}\hat{\eta}$, and $\hat{\alpha}_0 = \bar{\mathbf{Y}}_D - \hat{\alpha}_{\text{ecm}}\bar{\mathbf{X}} - \hat{\phi}_{D|S}\bar{\mathbf{Y}}_S$.
7
8 292 • $\hat{\eta} = \hat{\phi}^T\hat{\alpha}_{\text{cm}}$, $\hat{\phi}_{D|S} = \mathbf{S}_{D,S}\mathbf{S}_S^{-1} - \hat{\alpha}_{\text{ecm}}\mathbf{S}_{X,S}\mathbf{S}_S^{-1}$, and $\hat{\beta}_{\text{ecm}} = \mathbf{U}\hat{\alpha}_{\text{ecm}}$
9
10 293 • $\hat{\Omega} = \hat{\phi}^T\mathbf{S}_{D|(\mathbf{X},S)}\hat{\phi}$ and $\hat{\Omega}_0 = \hat{\phi}_0^T\mathbf{S}_{D|S}\hat{\phi}_0$,
11
12 294 • $\hat{\Sigma}_{D|S} = \hat{\phi}\hat{\Omega}\hat{\phi}^T + \hat{\phi}_0\hat{\Omega}_0\hat{\phi}_0^T$ and $\hat{\Sigma}_S = \mathbf{T}_S$.
13
14
15

16 295 The variances $\Sigma_{\mathbf{W}}$ and Σ can be estimated as indicated in Section 2.1. The variances $\Sigma_{\mathbf{W}}$ and Σ
17
18 296 can be estimated as indicated in Section 2.1. The asymptotic variances for $\hat{\alpha}_{\text{ecm}}$ and $\hat{\beta}_{\text{ecm}}$ can be
19
20 297 deduced from recognizing that in our application \mathbf{Y}_S is random, \mathbf{X} is fixed, and the distribution of
21
22 298 $\mathbf{Y}_S|\mathbf{X}$ is the same as that of the marginal of \mathbf{Y}_S :
23
24
25
26
27
28
29
30

31 299 $\text{avar}(\sqrt{n}\text{vec}(\hat{\alpha}_{\text{ecm}})) = \Sigma_{\mathbf{X}}^{-1} \otimes \phi\Omega\phi^T + (\eta^T \otimes \phi_0)\mathbf{M}^\dagger(\Sigma_{\mathbf{X}})(\eta \otimes \phi_0^T)$ (17)

32 300 $\text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{ecm}})) = \Sigma_{\mathbf{X}}^{-1} \otimes \mathbf{U} [\phi\Omega\phi^T + (\eta^T \otimes \phi_0)\mathbf{M}^\dagger(\Sigma_{\mathbf{X}})(\eta \otimes \phi_0^T)] \mathbf{U}^T$ (18)

33
34 301 We have $\text{avar}(\sqrt{n}\text{vec}(\hat{\alpha}_{\text{ecm}})) \leq \text{avar}(\sqrt{n}\text{vec}(\hat{\alpha}_{\text{cm}}))$ and $\text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{ecm}})) \leq \text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{cm}}))$
35
36
37
38 302 being equal when $u = k$, so using an envelope in the constrained model always improves estima-
39
40 303 tion asymptotically.
41
42
43
44

45 304 Because $\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A}) \subseteq \mathbb{R}^k$, $\mathcal{E}_{\Sigma}(\mathcal{B}) \subseteq \mathbb{R}^r$ and $k \leq r$, it is reasonable to expect that $\dim\{\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})\} \leq$
46
47 305 $\dim\{\mathcal{E}_{\Sigma}(\mathcal{B})\}$, as we have estimated in many examples. However, this relationship between the
48
49 306 envelope dimension is not guaranteed in general. The following proposition gives sufficient con-
50
51 307 ditions to bound $\dim\{\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})\}$.
52
53
54
55
56
57
58
59
60

1
2
3 306 **Proposition 3.1** Assume that $\mathbf{U} = (\mathbf{\Gamma}\mathbf{G}, \mathbf{\Gamma}_0\mathbf{G}_0)$, where the $\mathbf{\Gamma}$'s are as defined for model (4), and
4
5 307 that $\mathbf{G} \in \mathbb{R}^{u \times u_1}$ and $\mathbf{G}_0 \in \mathbb{R}^{(r-u) \times (k-u_1)}$ both have full column rank, so that $u_1 \leq u$. Then
6
7 308 $\dim\{\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})\} \leq u_1 \leq \dim\{\mathcal{E}_{\Sigma}(\mathcal{B})\}$.
8
9

10
11 309 We can assess the model fitting of (14) using BIC, assuming that the error terms follows a
12
13 310 normal distribution. That is, we can compare the constrained envelope model with alternative
14
15 311 models by inspecting whether $-2\hat{L}_u + N_{ecm}(u)\log(n)$ is small. By comparing the BICs of the
16
17 312 constrained model with different dimensions u , we can also select the dimension that has the best
18
19 313 fit. More about estimating the envelope dimension is given in Supplement 9.
20
21
22
23
24

25 314 **3.2 Enveloping β**
26
27
28 315 Estimation of $\beta = \mathbf{U}\alpha$ will be of interest in applications where prediction is important or where
29
30 316 \mathbf{U} is selected based on convenience, say, rather than on criteria that facilitate understanding and
31
32 317 inference. For instance, if \mathbf{X} serves to indicate different treatments then plots of the columns of
33
34 318 β versus time give a visual comparisons of the treatment profiles. The choice of \mathcal{U} is of course
35
36 319 relevant to estimation of β , but a basis \mathbf{U} is not uniquely determined. While this flexibility has no
37
38 320 effect on the MLE of β under the constrained model (2), it does affect the envelope estimator of
39
40 321 β . This raises the issue of selecting a good basis for the purpose of estimating β via envelopes.
41
42
43

44 322 Consider re-parameterizing \mathbf{U} as $\mathbf{U}\mathbf{V}^{-1}$ and α as $\mathbf{V}\alpha$ for some positive definite matrix $\mathbf{V} \in$
45
46 323 $\mathbb{R}^{k \times k}$, giving $\beta = \mathbf{U}\alpha = (\mathbf{U}\mathbf{V}^{-1})(\mathbf{V}\alpha)$. We could use either $\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})$ or $\mathcal{E}_{\mathbf{V}\Sigma_{D|S}\mathbf{V}^T}(\mathbf{V}\mathcal{A})$
47
48 324 to estimate β as $\hat{\beta}_{ecm} = \mathbf{U}\hat{\alpha}_{ecm}$ or, in terms of re-parameterized coordinates $\mathbf{V}\alpha$, as $\hat{\beta}_{ecm,\mathbf{V}} =$
49
50 325 $\mathbf{U}\mathbf{V}^{-1}(\widehat{\mathbf{V}\alpha})_{ecm}$. In general $\hat{\beta}_{ecm} \neq \hat{\beta}_{ecm,\mathbf{V}}$ and we cannot tell which estimator is better. In this sec-
51
52 326 tion, we show that the envelope estimator of β is invariant under orthogonal re-parameterization,
53
54 327 so that we only need to consider diagonal re-parameterization: $\beta = \mathbf{U}\alpha = (\mathbf{U}\Lambda^{-1})(\Lambda\alpha)$, where
55
56
57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

328 Λ is a diagonal matrix with positive diagonal elements. In growth curve or longitudinal analyses,
 329 the columns of \mathbf{U} may correspond to different powers of time, and then it seems natural to consider
 330 rescaling to bring the columns of \mathbf{U} closer to the same scale.

331 In Supplement Section 3.1 we provided technical tools for demonstrating that the maximum
 332 likelihood envelope estimator of $\beta = \mathbf{U}\alpha$, when \mathbf{U} is semi-orthogonal, is simply $\widehat{\beta}_{\text{ecm}} = \mathbf{U}\widehat{\alpha}_{\text{ecm}}$.

333 Thus, to consider the constrained model envelope under a linear transformation of \mathbf{U} , it suffices
 334 to consider a re-scaling transformation. That is, we consider $\beta = \mathbf{U}\alpha = (\mathbf{U}\Lambda^{-1})(\Lambda\alpha)$, where
 335 $\Lambda = \text{diag}(1, \lambda_2, \dots, \lambda_k)$. The first diagonal element of Λ is 1 to ensure identifiability. We follow
 336 the general logic of Cook and Su (2013) in their development of a scaled version of model (2).

337 Without loss of generality, we cast our discussion of scaling in the context of the condi-
 338 tional model (7). We assume that there is a scaling of the response \mathbf{Y}_D so that the scaled re-
 339 sponse $\Lambda\mathbf{Y}_D$ follows an envelope model in $\Lambda\alpha$ with the envelope $\mathcal{E}_{\Lambda\Sigma_{D|S}\Lambda}(\Lambda\mathcal{A})$ having dimen-
 340 sion v and semi-orthogonal basis matrix $\Theta \in \mathbb{R}^{k \times v}$. Let (Θ, Θ_0) denote an orthogonal matrix.
 341 Then we can parametrize $\Lambda\alpha = \Theta\eta$ and $\Lambda\Sigma_{D|S}\Lambda = \Theta\Omega\Theta^T + \Theta_0\Omega_0\Theta_0^T$; equivalently, this
 342 setup can also be viewed as a rescaling $\mathbf{U} \mapsto \mathbf{U}\Lambda^{-1}$ of \mathbf{U} , since $\Lambda\mathbf{Y}_D = \Lambda(\mathbf{U}^T\mathbf{U})^{-1}\mathbf{U}^T\mathbf{Y} =$
 343 $(\Lambda^{-1}\mathbf{U}^T\mathbf{U}\Lambda^{-1})^{-1}\Lambda^{-1}\mathbf{U}^T\mathbf{Y}$. Since $\Lambda\mathbf{Y}_D$ is unobserved, we now transform back to the original
 344 scale for analysis, leading to the marginal model $\mathbf{Y}_{Si} \mid \mathbf{X} = \mathbf{e}_{Si}$ and conditional model

$$\mathbf{Y}_{Di} \mid (\mathbf{X}_i, \mathbf{Y}_{Si}) = \alpha_0 + \Lambda^{-1}\Theta\eta\mathbf{X}_i + \phi_{D|S}\mathbf{Y}_{Si} + \mathbf{e}_{D|Si}, \quad (19)$$

$$\Sigma_{D|S} = \Lambda^{-1}(\Theta\Omega\Theta^T + \Theta_0\Omega_0\Theta_0^T)\Lambda^{-1}.$$

345 The total real parameters in this scaled envelope model is $N_{\text{secm}}(v) = 2k - 1 + pv + r(r + 1)/2$,
 346 where the subscript secm is used to indicate quantities arising from the scaled envelope version of

1
2
3 347 the conditional model. For identifiability we typically need $N_{\text{secm}}(v) \leq N_{\text{cm}}$ or $p(k - v) \geq k - 1$.
4
5 348 The goal now is to estimate α_0 , the coefficient matrix $\beta = \mathbf{U}\Lambda^{-1}\Theta\eta$ and $\Sigma_{D|S}$, which requires
6
7 349 the estimation of several constituent parameters. We presented in Supplement Section 3.2 the
8
9 350 maximum likelihood estimators under this model and prove that the asymptotic variance of the
10
11 351 estimator β_{secm} of β is $\text{avar}(\sqrt{n}\text{vec}(\widehat{\beta}_{\text{secm}})) = (\mathbf{I}_p \otimes \mathbf{U})\mathbf{V}_{\text{secm}}(\mathbf{I}_p \otimes \mathbf{U}^T)$ and therefore it is never
12
13 352 less efficient than $\widehat{\beta}_{\text{cm}}$.
14
15
16
17
18
19
20 353 **3.3 Estimation under model (3)**
21
22
23 354 The modifications necessary to adapt the results in Sections 3.1–3.2 for model (3) all stem from
24
25
26 355 the new model for the subordinate response, $\mathbf{Y}_S = \mathbf{W}_2^T\beta_0 + \mathbf{e}_S$, and the new definitions of
27
28 356 $\alpha_0 = \mathbf{W}_1^T\beta_0 - \phi_{D|S}\mathbf{W}_2^T\beta_0$ for models (14) and (19). This implies that \mathbf{T}_S is replaced by \mathbf{S}_S
29
30 357 throughout, including log likelihoods (16) and (13) and that the estimator of β_0 can be constructed
31
32 358 as indicated near the end of Section 2.1. There is no change in the objective functions (15) and
33
34 359 (12), and consequently no change in the envelope estimators of α and β .
35
36
37
38
39
40 360 **4 Simulations**
41
42
43 361 **4.1 Efficiency Comparison**
44
45
46 362 We first evaluate the efficiency of the envelope estimator $\widehat{\beta}_{\text{em}}$, the constrained estimator $\widehat{\beta}_{\text{cm}}$ and
47
48 363 the constrained envelope estimator $\widehat{\beta}_{\text{ecm}}$ using simulations in two scenarios. We also include the
49
50 364 unconstrained estimator $\widehat{\beta}_{\text{um}}$ as a reference. In the first scenario considered the eigenvalue cor-
51
52 365 responding to the material part is small relative to the immaterial part and the dimension of \mathbf{U} is
53
54 366 large; therefore the envelope estimator $\widehat{\beta}_{\text{em}}$ is expected to have substantial efficiency gain. In the
55
56
57
58
59
60

1
2
3 367 second scenario the eigenvalue of the immaterial part is small relative to the one of the material
4 368 part and the envelope estimator is not expected to have substantial efficiency gain.
5
6
7
8
9 369 **4.1.1 Scenario 1**
10
11
12 370 The simulation for Scenario 1 is carried out in the following steps:
13
14
15 371 Step 1. We first generated a sample of size $n = 200$. For each individual i , we generated $p = 8$
16 372 predictors \mathbf{X}_i from a multivariate normal distribution with mean 0 and variance \mathbf{CC}^T ,
17
18 373 where each element in \mathbf{C} is identically and independently distributed with a standard nor-
19
20 374 mal distribution $N(0, 1)$.
21
22
23
24
25
26 375 Step 2. Set $r = 20$, $u = 6$, $q = 15$, $q_1 = 4$ and $q_2 = q - q_1$. Set $\boldsymbol{\Omega} = \text{bdiag}(0.5\mathbf{I}_{u-q_1}, 1.5\mathbf{I}_{q_1})$ and
27
28 376 $\boldsymbol{\Omega}_0 = 50\mathbf{I}_{r-u}$. Set $(\boldsymbol{\Gamma}, \boldsymbol{\Gamma}_0) = \mathbf{O}$ and let $\boldsymbol{\Sigma} = \boldsymbol{\Gamma}\boldsymbol{\Omega}\boldsymbol{\Gamma}^T + \boldsymbol{\Gamma}_0\boldsymbol{\Omega}_0\boldsymbol{\Gamma}_0^T$, where \mathbf{O} is an orthogonal
29
30 377 matrix obtained by singular value decomposition of a randomly generated matrix. Set $\boldsymbol{\eta} =$
31
32 378 $\mathbf{K}_1\mathbf{K}_2$, where $\mathbf{K}_1 \in \mathbb{R}^{u \times q_1}$, $\mathbf{K}_2 \in \mathbb{R}^{q_1 \times p}$ and each element in \mathbf{K}_1 and \mathbf{K}_2 is identically and
33
34 379 independently generated from $N(0, 1)$. Let $\mathbf{U} = (\boldsymbol{\Gamma}, \boldsymbol{\Gamma}_0)\boldsymbol{\phi}$, where $\boldsymbol{\phi} = \text{bdiag}\{\mathbf{M}^{\mathbf{U}}, \mathbf{M}_0^{\mathbf{U}}\}$,
35
36 380 $\mathbf{M}^{\mathbf{U}} = \mathbf{K}_1$ and $\mathbf{M}_0^{\mathbf{U}} = (\mathbf{I}_{q_2}, \mathbf{0}_{q_2 \times (r-u-q_2)})^T$, given $\mathbf{U} \in \mathbb{R}^{r \times q}$. Set $\boldsymbol{\beta} = \boldsymbol{\Gamma}\boldsymbol{\eta}$; notice that it
37
38 381 also satisfies $\boldsymbol{\beta} = \mathbf{U}\boldsymbol{\alpha}$ with $\boldsymbol{\alpha} = (\mathbf{K}_2^T, \mathbf{0}_{p \times q_2})^T$.
39
40
41
42
43
44 382 Step 3. For each individual i , generated \mathbf{Y}_i identically and independently from a normal distribu-
45
46 383 tion $N(\boldsymbol{\beta}\mathbf{X}_i, \boldsymbol{\Sigma})$.
47
48
49 384 Step 4. Calculate $\hat{\boldsymbol{\beta}}_{\text{um}}$, $\hat{\boldsymbol{\beta}}_{\text{em}}$, $\hat{\boldsymbol{\beta}}_{\text{cm}}$ and $\hat{\boldsymbol{\beta}}_{\text{ecm}}$, where \mathbf{U} is correctly specified when calculating $\hat{\boldsymbol{\beta}}_{\text{cm}}$
50
51 385 and $\hat{\boldsymbol{\beta}}_{\text{ecm}}$.
52
53
54
55 386 Step 5. Repeat Steps 3–4 1000 times.
56
57
58
59
60

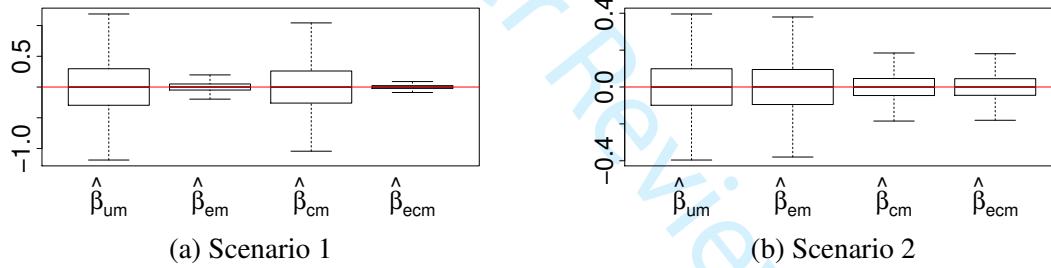
1
2
3 387 We also carried out simulations with a smaller sample size of $n = 80$, with results similar to
4
5 388 those presented below. They are presented in Supplement Section 4.1
6
7

8 389 From the choice of η in Step 2 we have $\text{colrank}(\eta) = q_1$, and $\text{span}(\beta)$ is strictly contained
9
10 390 in both $\text{span}(\Gamma)$ and $\text{span}(U)$ since the dimension of $\text{span}(\beta)$ is $q_1 = 4$ which is smaller than
11
12 391 $\min(u, q) = 6$. Specifically, we have $\text{span}(\beta) = \text{span}(\Gamma^U) = \text{span}(\Gamma) \cap \text{span}(U)$. As men-
13
14 392 tioned before, $\alpha = (K_2^T, 0_{p \times q_2})^T$ in this example. Therefore, we also have a non-trivial con-
15
16 393 strained envelope of dimension 4: Under the conditions of Scenario 1, we have that $\Sigma_{D|S}^{-1} =$
17
18 394 $\phi^T \text{bdiag}(\Omega^{-1}, \Omega_0^{-1}) \phi = \text{bdiag}(K_1^T \Omega^{-1} K_1, 50^{-1} I_{q_2})$. As a consequence, the envelope of α with
19
20 395 respect to $\Sigma_{D|S}$ is $(\tilde{K}_2^T, 0_{q_2 \times (r-u-q_2)})^T$ with $\tilde{K}_2 \in \mathbb{R}^{q_1 \times q_1}$ such that $K_2 = \tilde{K}_2 J$ with $J \in \mathbb{R}^{q_1 \times p}$
21
22 396 and \tilde{K}_2 orthogonal. Such a decomposition of K_2 is possible since K_2 has rank q_1 . In the 1000
23
24 397 simulations repetitions, the envelope dimension was always correctly estimated as 6 using BIC.
25
26
27 398 The dimension of the constrained envelope estimator was correctly estimated as 4 for 989 times
28
29 399 and 5 for 11 times. The empirical results for $\hat{\beta}_{\text{um}} - \beta$, $\hat{\beta}_{\text{em}} - \beta$, $\hat{\beta}_{\text{cm}} - \beta$ and $\hat{\beta}_{\text{ecm}} - \beta$ are shown
30
31 400 in Figure 2a, where all the elements of β are plotted in the same boxplot as if they are from the
32
33 401 same population and the outliers are suppressed for a cleaner representation. Since U is correctly
34
35 402 specified, $\hat{\beta}_{\text{cm}}$ and $\hat{\beta}_{\text{ecm}}$ are asymptotically unbiased estimators, as are $\hat{\beta}_{\text{um}}$ and $\hat{\beta}_{\text{em}}$. Hence, the
36
37 403 boxplots of the four estimators are all centered at 0. In Step 2, the larger eigenvalues of Σ are
38
39 404 contained in Ω_0 rather than Ω . That is, the variability of the immaterial part is bigger than that of
40
41 405 the material part. Additionally, the column space of U is very conservatively specified as $q = 15$,
42
43 406 which is much bigger than the dimension of $q_1 = \text{colrank}(\beta) = 4$, and the $\text{span}(U)$ contains 11
44
45 407 eigenvectors corresponding to large eigenvalues (i.e., 50 in this simulation). Hence, this scenario
46
47 408 favors of the envelope estimator in terms of the efficiency: the envelope estimator is the most ef-
48
49 409 ficient estimator among the three estimators, while $\hat{\beta}_{\text{cm}}$ is also more efficient than the saturated
50
51
52
53
54
55
56
57
58
59
60

1
2
3 410 estimator $\hat{\beta}_{\text{um}}$.
4
5

6 The average estimated asymptotic variances were close to the theoretical asymptotic variances
7
8 calculated using the true parameter values for all three estimators. The mean of the empirical
9
10 asymptotic variances across all the elements in four estimators are 51.66 for $\sqrt{n}\hat{\beta}_{\text{um}}$ and 39.48 for
11
12 $\sqrt{n}\hat{\beta}_{\text{cm}}$ but is only 1.12 for $\sqrt{n}\hat{\beta}_{\text{em}}$ and 0.37 for $\sqrt{n}\hat{\beta}_{\text{ecm}}$. That is, in this setting, the envelope
13
14 estimator is about 40 times more efficient than the saturated estimator and the unconstrained esti-
15
16 mator and the constrained envelope estimator is about 100 times more efficient than those two. A
17
18 comparison between the envelope and constrained envelope estimator demonstrates the advantage
19
20 of leveraging prior information in terms of achieving better efficiency.
21
22
23

24 Figure 2: Box plot of $\hat{\beta}_{\text{um}} - \beta$, $\hat{\beta}_{\text{em}} - \beta$, $\hat{\beta}_{\text{cm}} - \beta$ and $\hat{\beta}_{\text{ecm}} - \beta$ in two scenarios in 1000
25 simulations.
26



419 4.1.2 Scenario 2

420 To carry out simulations in Scenario 2, we modify some of the parameters in Step 2. In the new
421 Scenario 2, $q = 6$ and we redefine the eigenvalues of Σ by setting $\Omega = \text{bdiag}(50\mathbf{I}_{u-q_1}, 0.5\mathbf{I}_{q_1})$
422 and $\Omega_0 = 0.5\mathbf{I}_{r-u}$. In this scenario, the larger eigenvalues of Σ are associated with Ω . Now the
423 dimension of \mathbf{U} is 6 and therefore is only 2 dimension larger than the dimension of β .

424 Since the envelope is also of dimension 6 and needs to be estimated, the envelope method is at
425 a disadvantage in terms of the efficiency as compared with $\hat{\beta}_{\text{cm}}$. We have $\alpha = (\mathbf{K}_2^T, \mathbf{0}_{p \times q_2})^T$ and

1
 2
 3 426 $\Sigma_{D|S} = \text{bdiag}(\mathbf{K}_1^T \boldsymbol{\Omega}^{-1} \mathbf{K}_1, (0.5)^{-1} \mathbf{I}_{q_2})$ and the dimension of the constraint envelope is still 4. In
 4
 5 427 the 1000 simulations repetitions, the envelope dimension and the constrained envelope dimension
 6
 7 428 are always correctly estimated as 6 and 4, respectively. The empirical biases of the estimators are
 8
 9
 10 429 shown in Figure 2b. Again, all four estimators are centered around 0, indicating the asymptotic
 11
 12 430 unbiasedness. As expected, the estimator $\hat{\boldsymbol{\beta}}_{cm}$ and $\hat{\boldsymbol{\beta}}_{ecm}$ are the most efficient among the four
 13
 14 431 estimators, while the envelope estimator $\hat{\boldsymbol{\beta}}_{em}$ is still more efficient than $\hat{\boldsymbol{\beta}}_{um}$.
 15
 16

17
 18 432 The average estimated asymptotic variance of the three estimators were all close to their the-
 19
 20 433 oretical values. The average empirical variances of all the elements in three estimators are 8.26
 21
 22 434 for $\sqrt{n}\hat{\boldsymbol{\beta}}_{um}$, 7.87 for $\sqrt{n}\hat{\boldsymbol{\beta}}_{em}$, 1.50 for $\sqrt{n}\hat{\boldsymbol{\beta}}_{cm}$ and 1.55 for $\sqrt{n}\hat{\boldsymbol{\beta}}_{ecm}$. That is, in this setting, the
 23
 24 435 estimators using a correctly specified \mathbf{U} are on average about 4 times of more efficient than the
 25
 26 436 saturated estimator and the envelope estimator, but the envelope constraint estimator does not pro-
 27
 28 437 vide additional advantages over the constrained estimator. We also carried out simulations with
 29
 30 438 a smaller sample size of $n = 80$, with results similar to those presented here. The details are
 31
 32 439 presented in Supplement Section 4.2
 33
 34
 35
 36
 37
 38

440 4.2 Potential Bias of the constrained estimator

41
 42 441 We conducted a small simulation generating data from envelope model (4), to further illustrate
 43
 44 442 potential bias effects. The sample size is again $n = 200$, and the parameters to generate the data
 45
 46 443 are chosen as in Scenario 1, only changing the definition of \mathbf{U} , which now is $\mathbf{U} = (\boldsymbol{\Gamma}, \boldsymbol{\Gamma}_0) \mathbf{A}_k$ with
 47
 48 444 $\mathbf{A}_k = (\mathbf{I}_k, 0)^T$, $k = 1, \dots, r$. For $k < u$, $\mathcal{B} \not\subseteq \mathcal{U}$ and so both $\hat{\boldsymbol{\beta}}_{cm}$ and $\hat{\boldsymbol{\beta}}_{ecm}$ are biased. But for
 49
 50 445 $k \geq u$, $\mathcal{B} \subseteq \mathcal{U}$ and there is no bias in $\hat{\boldsymbol{\beta}}_{cm}$ and $\hat{\boldsymbol{\beta}}_{ecm}$. Again, the dimension of the constrained
 51
 52 446 envelope remains at 4 when $k \geq u$.
 53
 54
 55
 56
 57
 58
 59
 60

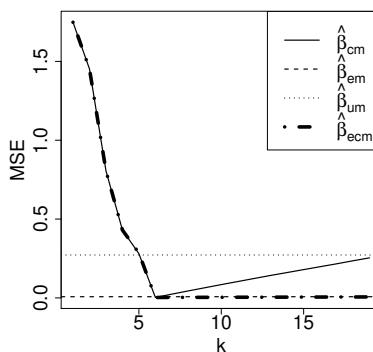


Figure 3: Illustration of potential bias in the constrained estimator (3) under Scenario 1, where $k = \dim(\mathcal{U})$, $\mathcal{U} = \text{span}\{(\boldsymbol{\Gamma}, \boldsymbol{\Gamma}_0)(\mathbf{I}_k, 0)^T\}$ and MSE denotes the average element-wise squared error for the indicated estimators.

We generated response vectors according to model (4) using normal errors, and fitted the result-

ing data to obtain the envelope estimator $\hat{\beta}_{em}$. We used the same data to construct the unconstrained

estimator $\hat{\beta}_{um}$, the constrained estimator $\hat{\beta}_{cm}$ and the constrained envelope $\hat{\beta}_{ecm}$ with different se-

lections for $\mathbf{U} = (\boldsymbol{\Gamma}, \boldsymbol{\Gamma}_0)\mathbf{A}_k$ where $\mathbf{A}_k = (\mathbf{I}_k, 0)^T$, $k = 1, \dots, r$. For $k < u$, $\mathcal{B} \not\subseteq \mathcal{U}$ and so both

$\hat{\beta}_{cm}$ and $\hat{\beta}_{ecm}$ are biased, but for $k \geq u$, $\mathcal{B} \subseteq \mathcal{U}$ and there is no bias in $\hat{\beta}_{cm}$ and $\hat{\beta}_{ecm}$. Actually, the

dimension of the constrained envelope remains at 4 when $k \geq u$. We summarized the bias by com-

puting the mean squared error over all elements β_{ij} of $\boldsymbol{\beta}$: $\text{MSE} = (rp)^{-1} \sum_{i=1}^r \sum_{j=1}^p (\hat{\boldsymbol{\beta}}_{(\cdot),ij} - \beta_{ij})^2$

for the three four estimators $\hat{\beta}_{um}$, $\hat{\beta}_{cm}$, $\hat{\beta}_{em}$ and $\hat{\beta}_{ecm}$. Shown in Figure 3 are plots of the MSE

averaged over 1000 replications of this scheme for Scenario 1, each replication starting with the

generation of the response vectors. The constant MSE for $\hat{\beta}_{em}$ was 7.4×10^{-2} and that for uncon-

strained model was about 36 times greater at 0.27. The MSE for both the constrained estimator

and the constrained envelope estimator decreased monotonically from its maximum value of about

1.75 at $k = 1$ to around 2.5×10^{-3} , at $k = u = 6$, the constrained estimator increased monoton-

ically to 0.25 at $k = 20$, while the constrained envelope estimator remains about the same. This is

because the constraint envelope is adapted to the data and does not lose much efficiency even if

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

462 \mathbf{U} is large as it was shown in Section 4. This suggests that it may be a good practice to specify a
 463 conservative \mathbf{U} and apply the constrained envelope to gain more efficiency so that we can enjoy the
 464 benefit of prior information but do not suffer from large bias. The corresponding plot for Scenario
 465 2 is similar and therefore is not presented here. It seems clear that the bias in the constrained and
 466 constrained envelope estimators can be substantial until we achieve $\mathcal{B} \subseteq \mathcal{U}$.

467 4.3 A more general case

468 The previous simulations were conducted so that both the constrained model and the envelope
 469 model can hold under the data generating mechanism. Here, we consider a general case where \mathbf{U}
 470 is arbitrarily generated but correctly specified. Because \mathbf{U} is correctly specified but the envelope
 471 model no longer holds, we only compare the constrained model and the constrained envelope
 472 model. We carried out the simulations similar to those in Section 4.1, replacing Steps 2–4 with:

473 Step 2*. Set $r = 20$, $u^* = 3$, $q = 15$. Set $\Omega^* = 0.5\mathbf{I}_{u^*}$ and $\Omega_0 = 50\mathbf{I}_{q-u^*}$. Set $(\Gamma^*, \Gamma_0^*) = \mathbf{I}$ and
 474 let $\text{var}(\boldsymbol{\varepsilon}_{\mathbf{D}|\mathbf{S}}) = \boldsymbol{\Sigma}_{\mathbf{D}|\mathbf{S}} = \boldsymbol{\Gamma}^* \boldsymbol{\Omega}^* \boldsymbol{\Gamma}^{*T} + \boldsymbol{\Gamma}_0^* \boldsymbol{\Omega}_0^* \boldsymbol{\Gamma}_0^{*T}$. Generate $\boldsymbol{\eta}^* \in \mathbb{R}^{u^* \times p}$ and \mathbf{U} , where
 475 each element in $\boldsymbol{\eta}^*$ and \mathbf{U} is identically and independently generated from $N(0, 1)$. Set
 476 $\boldsymbol{\alpha}^* = \boldsymbol{\Gamma}^* \boldsymbol{\eta}^*$ and $\boldsymbol{\beta}^* = \mathbf{U} \boldsymbol{\alpha}^*$.

477 Step 3*. For each i , generate $\mathbf{Y}_{\mathbf{S}i}$ identically and independently from normal distribution $N(0, \mathbf{I}_{r-q})$.
 478 Generate $\boldsymbol{\phi} \in \mathbb{R}^{q \times (r-q)}$, where each element is generated identically and independently
 479 from standard normal. Generate $\mathbf{Y}_{\mathbf{D}i}$ from the distribution $N(\boldsymbol{\alpha}^* \mathbf{Z}_i + \boldsymbol{\phi} \mathbf{Y}_{\mathbf{S}i}, \boldsymbol{\Sigma}_{\mathbf{D}|\mathbf{S}})$

480 Step 4*. Calculate $\widehat{\boldsymbol{\beta}}_{\text{cm}}$ and $\widehat{\boldsymbol{\beta}}_{\text{ecm}}$, where \mathbf{U} is correctly specified for both estimators.

481 The average MSE of $\widehat{\boldsymbol{\beta}}_{\text{cm}}$ and $\widehat{\boldsymbol{\beta}}_{\text{ecm}}$ was 0.12 and 0.03. The Monte Carlo mean variances over

1
2
3 482 all the elements were 24.86 and 6.81 for $\sqrt{n}\hat{\beta}_{cm}$ and $\sqrt{n}\hat{\beta}_{ecm}$, demonstrating the efficiency of the
4
5 483 additional envelope structure over the $\hat{\beta}_{cm}$ estimator.
6
7
8
9
10

11 484 5 Application: Postbiotics study 12 13

14 485 The aim of the posbiotics study (Dunand et al., 2019) was to determine the protective capacity
15
16 486 against Salmonella infection in mice of the cell-free fraction (postbiotic) of fermented milk, pro-
17
18 487 duced at laboratory and industrial level. The capacity of the postbiotics produced by pH-controlled
19
20 488 fermentation to stimulate the production of secretory IgA in feces and to protect mice against
21
22 489 Salmonella infection was evaluated. There were 3 study groups with seven mice per group: (i) a
23
24 490 control group (C) where mice received the unfermented milk supernatant, (ii) a F36 group (F36)
25
26 491 where mice received the cell-free supernatant obtained by DSM-100H fermentation in 10% (w/v)
27
28 492 skim milk produced in the laboratory, and (iii) a F36D group (F36D) where mice received the
29
30 493 product F36 diluted 1/10 in tap water. Feces samples (approximately 50 mg per mouse) were col-
31
32 494 lected once a week for 6 weeks and the concentration of secretory IgA (S-IgA) was determinate
33
34 495 by ELISA. The response was the IgA measures over the 6 weeks period and the predictors the
35
36 496 group indicators. The research question was whether there were differences in the IgA measures
37
38 497 among the treatment groups. We present the average response by group over the weeks in Figure
39
40 498 4. We set the control group as the baseline and therefore $\beta \in \mathbb{R}^{6 \times 2}$. We calculate all estimators
41
42 499 based on various envelopes on model (3) because we were interested in profile contrasts rather than
43
44 500 modeling profiles. We use $\mathbf{U}^T(t) = (1, t/6, (t/6)^2, \cos(2\pi t/6), \sin(2\pi t/6))$, where $t = 1, \dots, 6$
45
46 501 are the weeks where the measures were taking. The unconstrained estimator $\hat{\beta}_{um}$ was considered
47
48 502 in Dunand et al. (2019) and it did not show a difference between treatment groups even when
49
50
51
52
53
54
55
56
57
58
59
60

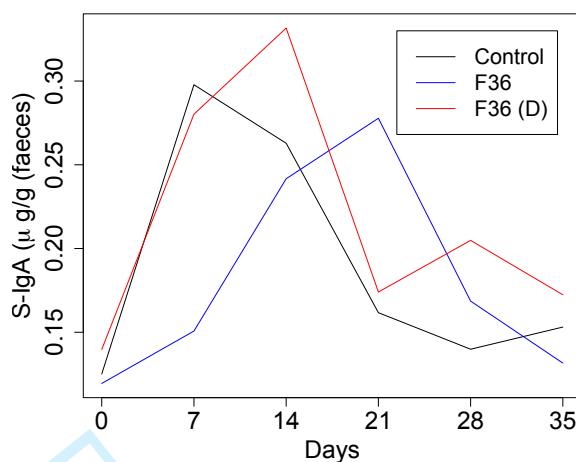


Figure 4: Average of IgA by group over time in the Posbiotics Study data

503 exploratory differences can be seen (Figure 4).

504 Table 1 shows the BIC, envelope dimension and MSE of the estimators. We listed the maximum
 26 envelope dimension for the two non-envelope methods as their estimated envelope dimensions.
 27
 28
 29
 30
 31
 32
 33
 34

505 The unconstrained estimator performs the worst and the scaled constrained envelope estimator
 35 performs the best in terms of both the BIC and the efficiency.

36 Table 1: Envelope dimension, BIC, BIC order, and MSE for the Postbiotics Study

Estimator	Dimension	BIC	BIC order	MSE
$\hat{\beta}_{\text{um}}$	6	-133.90	6	0.15
$\hat{\beta}_{\text{em}}$	1	-163.52	2	0.13
$\hat{\beta}_{\text{cm}}$	2	-144.37	5	0.15
$\hat{\beta}_{\text{ecm}}$	1	-160.76	3	0.14
$\hat{\beta}_{\text{secm}}$	1	-251.48	1	0.13

507
 48 To answer the researcher question, we look the p -values of the $\hat{\beta}$ components. From Table 2
 49
 50 we can see that the unconstrained estimator does not reveal any difference, which aligns with the
 51 findings in Dunand et al. (2019). None of the estimators demonstrate any evidence of difference
 52
 53 between F36D group and the control group at any time. On the other hand, $\hat{\beta}_{\text{secm}}$ reveals a signifi-
 54
 55
 56
 57
 58

1
2
3 512 cance difference between the control and F36 groups in all followup weeks. The p -values for such
4
5 513 a comparison of $\hat{\beta}_{\text{em}}$ are only significant in week 3. Other estimators also fail to find all followup
6
7 514 weeks significant between F36 and control groups, e.g., the scaled envelope is not significant in
8
9 week 5 and 6, and constrained envelope is significant only in week 2. The variance gains for the
10
11
12
13 Table 2: The p -values for coefficients for $\hat{\beta}_{\text{um}}$, $\hat{\beta}_{\text{em}}$ and $\hat{\beta}_{\text{secm}}$
14

week	F36 vs control			F36 D vs control		
	$\hat{\beta}_{\text{um}}$	$\hat{\beta}_{\text{em}}$	$\hat{\beta}_{\text{secm}}$	$\hat{\beta}_{\text{um}}$	$\hat{\beta}_{\text{em}}$	$\hat{\beta}_{\text{secm}}$
1	0.91	0.07	0.13	0.77	0.27	0.30
2	0.09	0.10	0.01	0.83	0.28	0.21
3	0.83	0.01	0.01	0.48	0.20	0.22
4	0.26	0.06	0.02	0.90	0.23	0.22
5	0.55	0.05	0.00	0.16	0.20	0.20
6	0.57	0.63	0.01	0.59	0.64	0.21

25
26 515
27
28 516 scale version of the constrained envelope model over the unconstrained model (and therefore the
29
30 517 p -values) are reflected by the eigenvalue 1×10^{-4} of $\hat{\Omega}$ and the four eigenvalues of $\hat{\Omega}_0$ which are
31
32 518 23.06, 13.67, 0.41 and 0.22. The reason for the envelope estimator to be not as significant when
33
34 519 comparing F36 and control groups is that there is not as big a discrepancy between the eigenvalues
35
36 520 of $\hat{\Omega}$ (2×10^{-3}) and those of $\hat{\Omega}_0$ (0.02, 0.04, 0.03, 0.01, 4×10^{-3}).
37
38
39
40
41
42
43 521 **6 Discussion**
44
45
46
47 522 In this paper, we first compared the envelope model with the commonly used linear constraint
48
49 523 model in terms of both the potential bias and efficiency. We then proposed a constrained envelope
50
51 524 model for studying growth curve and longitudinal data when a well-grounded linear constraint is
52
53 525 available. We recommend using the constrained envelope model with a relatively conservative \mathbf{U}
54
55 526 so that it is likely to contain the space of interest and to achieve efficiency gain. Extensions to
56
57
58
59
60

1
2
3 527 unbalanced data and random effects models are designated for future research.
4

5 528 The primary computational step for all of the envelope methods described herein involves find-
6
7 529 ing $\widehat{\mathbf{G}} = \arg \min_{\mathbf{G} \in \mathcal{G}} \log |\mathbf{G}^T \mathbf{M}_1 \mathbf{G}| + \log |\mathbf{G}^T \mathbf{M}_2 \mathbf{G}|$ over a class \mathcal{G} of semi-orthogonal matrices,
8
9 530 where the inner product matrices \mathbf{M}_1 and \mathbf{M}_2 depend on the application. The R package Renvlp
10
11 531 by M. Lee and Z. Su contains a routine for minimizing objective functions of this form. Compu-
12
13 532 tations are straightforward once $\widehat{\mathbf{G}}$ has been found. Renvlp also implements specialized method-
14
15 533 ology for data analysis under envelope model (4) and the partial envelope model. The associated
16
17 534 routines can be modified for the models described herein. The codes to reproduce the exam-
18
19 535 ples and simulations from this paper can be found at [https://github.com/lanliu1815/](https://github.com/lanliu1815/constrained_env)
20
21 536 constrained_env.
22
23
24
25
26
27
28
29

30 537 7 Supplementary Material 31

32
33 538 Discussion of certain well-established aspects of envelope methodology is available in Supplement
34
35 539 Section 1–3. We include an additional simulation with smaller sample size in Section 4. We
36
37 540 revisited the Dental data using the methodology presented in this paper in Section 5, and we studied
38
39 541 the China Health and Nutrition Survey data set in Section 6. Enveloping for (α_0, α) jointly is
40
41 542 discuss in Section 7. Non-normality and the bootstrap are discussed in Section 8 and methods
42
43 543 for selecting the envelope dimension are reviewed in Section 9. Finally a brief discussions of
44
45 544 envelopes and Rao’s simple structure is in Section 10.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

545 References

546 Cook, R. D. (2018). An Introduction to Envelopes. Wiley, Hoboken, NJ.

547 Cook, R. D., Li, B., and Chiaromonte, F. (2007). Dimension reduction in regression without matrix
548 inversion. Biometrika, 94(3):569–584.

549 Cook, R. D., Li, B., and Chiaromonte, F. (2010). Envelope models for parsimonious and efficient
550 multivariate linear regression. Statistica Sinica, 20(3):927–960.

551 Cook, R. D. and Su, Z. (2013). Scaled envelopes: scale-invariant and efficient estimation in mul-
552 tivariate linear regression. Biometrika, 100(4):939–954.

553 Cook, R. D. and Zhang, X. (2015a). Foundations for envelope models and methods. Journal of the
554 American Statistical Association, 110(510):599–611.

555 Cook, R. D. and Zhang, X. (2015b). Simultaneous envelopes for multivariate linear regression.
556 Technometrics, 57(1):11–25.

557 Cooper, D. M. and Evans, C. D. (2002). Constrained multivariate trend analysis applied to water
558 quality variables. Environmentrics, 13:42–53.

559 Dunand, E., Burns, P., Binetti, A., Bergamini, C., Peralta, G., Forzani, L., Reinheimer, J., and
560 Vinderola, G. (2019). Postbiotics produced at laboratory and industrial level as potential func-
561 tional food ingredients with the capacity to protect mice against salmonella infection. J Appl
562 Microbiol., to appear, 127(1):219–229.

563 Forzani, L. and Su, Z. (2021). Envelopes for elliptical multivariate linear regression. Statistica
564 Sinica, 31:301–332.

1
2
3 565 Geisser, S. (1970). Bayesian analysis of growth curves. *Sankhya, Ser. A*, 32(1):53–64.
4
5 566 Geisser, S. (1981). Sample reuse procedures for prediction of the unobserved portion of a partially
6 observed vector. *Biometrika*, 68(1):243–250.
7
8 567
9
10 568 Grizzle, J. E. and Allen, D. M. (1969). Analysis of growth and dose response curves. *Biometrics*,
11
12 569 25(2):357–381.
13
14
15 570 Izenman, A. J. and Williams, J. S. (1989). A class of linear spectral models and analysis for the
16
17 study of longitudinal data. *Biometrics*, 45(3):831–849.
18
19
20 571
21
22 572 Kenward, M. G. (1987). A method for comparing profiles of repeated measurements. *Journal of*
23
24 573 *the Royal Statistical Society C*, 36(3):296–308.
25
26
27 574 Lee, J. C. (1988). Prediction and estimation of growth curves with special covariance structures.
28
29 575 *Journal of the American Statistical Association*, 83(402):432–440.
30
31
32 576 Lee, J. C. and Geisser, S. (1975). Applications of growth curve prediction. *Sankhyā: The Indian*
33
34 577 *Journal of Statistics, Series A*, 37(2):239–256.
35
36
37 578 Li, L. and Zhang, X. (2017). Parsimonious tensor response regression. *Journal of the American*
38
39 579 *Statistical Association*, 112(519):1131–1146.
40
41
42 580 Nummi, T. and Koskela, L. (2008). Analysis of growth curve data by using cubic smoothing
43
44 581 splines. *Journal of Applied Statistics*, 35(6):681–691.
45
46
47 582 Pan, J.-X. and Fang, K.-T. (2002). *Growth Curve Models and Statistical Diagnostics*. Springer,
48
49 583 New York.

1
2
3 584 Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful
4
5 585 especially for growth curve problems. *Biometrika*, 51(3):313–326.
6
7
8 586 Rao, C. R. (1965). The theory of least squares when the parameters are stochastic and its applica-
9
10 587 tion to the analysis of growth curves. *Biometrika*, 52(3):447–458.
11
12
13 588 Rao, C. R. (1967). Least squares theory using an estimated dispersion matrix and its application
14
15 589 to measurement of signals. In LeCam, L. M. and Neyman, J., editors, *Proceedings of the Fifth*
16
17 590 *Berkeley Symposium on Mathematical Statistics and Probability*, volume 1, pages 355–372.
18
19
20 591 Berkeley: University of California Press.
21
22
23
24
25 592 Rao, C. R. (1987). Prediction of future observations in growth curve models. *Statistical Science*,
26
27 593 2(4):434–441.
28
29
30 594 Rekabdarkolaee, H. M., Wang, Q., Naji, Z., and Fluentes, M. (2020). New parsimo-
31
32 595 nious multivariate spatial model: Spatial envelope. *Statistica Sinica*, 30:1583–1604.
33
34 596 <http://www3.stat.sinica.edu.tw/statistica/j30n3/j30n320/j30n320.html>.
35
36
37
38 597 Su, Z. and Cook, R. D. (2011). Partial envelopes for efficient estimation in multivariate linear
39
40 598 regression. *Biometrika*, 98(1):133–146.
41
42
43
44 599 Su, Z., Zhu, G., Chen, X., and Yang, Y. (2016). Sparse envelope model: estimation and response
45
46 600 variable selection in multivariate linear regression. *Biometrika*, 103(3):579–593.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9 Supplement to “Envelopes for multivariate linear
10
11
12 regression with linearly constrained coefficients”
13
14

15
16
17
18 R. Dennis Cook,* Liliana Forzani[†] and Lan Liu[‡]
19
20

21 November 14, 2022
22
23
24
25
26
27
28
29 **1 Supplementary material for Section 2.1**
30
31
32
33 We will derive here the formula for $\Sigma_{D|S}$, the maximum likelihood estimator for α_{cm} and $\Sigma_{D|S}$,
34
35 the asymptotic variance for $\hat{\alpha}_{cm}$ and the estimator of Σ from the constraint model.
36
37
38 **Derivation of $\Sigma_{D|S}$.** Direct calculation gives
39
40
41
42
$$\Sigma_{D|S} = (\mathbf{U}^T \mathbf{U})^{-1} (\mathbf{U}^T \Sigma \mathbf{U} - \mathbf{U}^T \Sigma \mathbf{U}_0 (\mathbf{U}_0^T \Sigma \mathbf{U}_0)^{-1} \mathbf{U}_0^T \Sigma \mathbf{U}) (\mathbf{U}^T \mathbf{U})^{-1}.$$

43

44 *R. Dennis Cook is Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
45 (E-mail: dennis@stat.umn.edu).

46 [†]Liliana Forzani is Professor, Facultad de Ingeniería Química, UNL. Researcher of CONICET, Santa Fe,
47 Argentina (Email: liliana.forzani@gmail.com).

48 [‡]Lan Liu is Assistant Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
49 (E-mail: liu1815@gmail.com).

1
2
3 9 The result follows by multiplying the identity
4
5
6
7
8 $\mathbf{P}_{\Sigma^{-1/2}\mathbf{W}_1} + \mathbf{P}_{\Sigma^{1/2}\mathbf{W}_2} = \mathbf{I}_r$
9
10
11
12
13
14
15

16
17 10 on left and right by $\mathbf{W}_1^T \Sigma^{1/2}$ and $\Sigma^{1/2} \mathbf{W}_1$, and then rearranging terms. (See also Cook and
18
19 11 Forzani, 2008, eq. (A1)).
20
21
22
23
24
25
26
27

28 12 **Derivation of $\hat{\boldsymbol{\alpha}}_{cm}$.** First construct a version of (7) is construct so that its predictors are orthogonal:
29
30 13 Let $\boldsymbol{\alpha}_0^* = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}\bar{\mathbf{X}} + \boldsymbol{\phi}_{D|S}^*\bar{\mathbf{Y}}_S$ and $\boldsymbol{\phi}_{D|S}^* = \boldsymbol{\phi}_{D|S} + \boldsymbol{\alpha}\mathbf{S}_{X,S}\mathbf{S}_S^{-1}$. Then
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

$$\mathbf{Y}_{Di} \mid (\mathbf{X}_i, \mathbf{Y}_{Si}) = \boldsymbol{\alpha}_0^* + \boldsymbol{\alpha}\mathbf{R}_{\mathbf{X}|(1,S)i} + \boldsymbol{\phi}_{D|S}^*(\mathbf{Y}_{Si} - \bar{\mathbf{Y}}_S) + \mathbf{e}_{D|Si}, \quad (1)$$

28 14 where for clarity $\mathbf{R}_{\mathbf{X}|(1,S)i} = \mathbf{X}_i - \bar{\mathbf{X}} - \mathbf{S}_{X,S}\mathbf{S}_S^{-1}(\mathbf{Y}_{Si} - \bar{\mathbf{Y}}_S)$. The three addends on the right side
29
30 15 are orthogonal and so the three terms can be fitted separately. The starred parameters are not of
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

17 17 **Derivation of $\hat{\Sigma}_{D|S}$.** It can be express as

$$\begin{aligned} \hat{\Sigma}_{D|S} &= \mathbf{S}_{D|(\mathbf{X}, S)} = \mathbf{S}_D - \mathbf{S}_{D, \mathbf{R}_{\mathbf{X}|(1,S)}} \mathbf{S}_{\mathbf{X}|S}^{-1} \mathbf{S}_{D, \mathbf{R}_{\mathbf{X}|(1,S)}}^T - \mathbf{S}_{D,S} \mathbf{S}_S^{-1} \mathbf{S}_{D,S}^T \\ &= \mathbf{S}_{D|S} - \hat{\boldsymbol{\alpha}}_{cm} \mathbf{S}_{\mathbf{X}|S} \hat{\boldsymbol{\alpha}}_{cm}^T. \end{aligned}$$

47 18 **Derivation of $\text{var}(\text{vec}(\hat{\boldsymbol{\alpha}}_{cm}))$.** First, suppressing notation for the conditioning on \mathbf{X} ,

$$\text{var}(\text{vec}(\hat{\boldsymbol{\alpha}}_{cm})) = E\{\text{var}(\text{vec}(\hat{\boldsymbol{\alpha}}_{cm}) \mid \mathbf{Y}_{S1}, \dots, \mathbf{Y}_{Sn})\} + \text{var}\{E(\text{vec}(\hat{\boldsymbol{\alpha}}_{cm}) \mid \mathbf{Y}_{S1}, \dots, \mathbf{Y}_{Sn})\}$$

1
2
3 19 The second addend on the right side is 0 since $E(\boldsymbol{\alpha}_{cm}) = \boldsymbol{\alpha}$. For notational convenience, let
4
5 20 $\mathbf{R}_i = \mathbf{R}_{\mathbf{X}|(1,S)i}$ and recall that $\sum_{i=1}^n \mathbf{R}_i = 0$ and that the \mathbf{X} 's are non-stochastic. To evaluate the
6
7 21 first term we have from (9),
8
9

$$\begin{aligned}\widehat{\boldsymbol{\alpha}}_{cm} &= n^{-1} \sum_{i=1}^n (\mathbf{Y}_{Di} - \bar{\mathbf{Y}}_D) \mathbf{R}_i^T \mathbf{S}_{\mathbf{X}|S}^{-1} = n^{-1} \sum_{i=1}^n \mathbf{Y}_{Di} \mathbf{R}_i^T \mathbf{S}_{\mathbf{X}|S}^{-1} \\ \text{vec}(\widehat{\boldsymbol{\alpha}}_{cm}) &= n^{-1} \sum_{i=1}^n (\mathbf{S}_{\mathbf{X}|S}^{-1} \mathbf{R}_i \otimes \mathbf{I}_k) \mathbf{Y}_{Di} \\ \text{var}(\text{vec}(\widehat{\boldsymbol{\alpha}}_{cm}) \mid \mathbf{Y}_{S1}, \dots, \mathbf{Y}_{Sn}) &= n^{-2} \sum_{i=1}^n (\mathbf{S}_{\mathbf{X}|S}^{-1} \mathbf{R}_i \otimes \mathbf{I}_k) \boldsymbol{\Sigma}_{D|S} (\mathbf{R}_i^T \mathbf{S}_{\mathbf{X}|S}^{-1} \otimes \mathbf{I}_k) \\ &= n^{-2} \sum_{i=1}^n (\mathbf{S}_{\mathbf{X}|S}^{-1} \mathbf{R}_i \mathbf{R}_i^T \mathbf{S}_{\mathbf{X}|S}^{-1}) \otimes \boldsymbol{\Sigma}_{D|S} \\ &= n^{-1} \mathbf{S}_{\mathbf{X}|S}^{-1} \otimes \boldsymbol{\Sigma}_{D|S}\end{aligned}$$

22 Taking the expectation with respect to $\mathbf{Y}_S \mid \mathbf{X}$ gives the finite sample result. The asymptotic
23 variance follows by direct calculation from the Fisher information, recalling that the distribution
24 of \mathbf{Y}_S does not depend on \mathbf{X} . It can be similarly computed from the finite sample variance.
25
26

37 25 **Estimator of $\boldsymbol{\Sigma}$ from the constrained model** Starting from the main paper, we have
38
39

$$\widehat{\boldsymbol{\Sigma}}_{cm} = \mathbf{W}^{-T} \widehat{\boldsymbol{\Sigma}}_{\mathbf{W}} \mathbf{W}^{-1} = \mathbf{W}^{-T} \begin{pmatrix} \widehat{\boldsymbol{\Sigma}}_D & \widehat{\boldsymbol{\Sigma}}_{D,S} \\ \widehat{\boldsymbol{\Sigma}}_{S,D} & \widehat{\boldsymbol{\Sigma}}_S \end{pmatrix} \mathbf{W}^{-1}, \quad (2)$$

48 26 **Proofs from Section 2.4**

52 27 **Proof of Proposition 2.1** Comparing (12) and (11), it is sufficient to show that
53
54

$$56 57 \mathbf{U} (\mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U})^{-1} \mathbf{U}^T \leq \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T, \\ 58 59 60$$

1
 2
 3 28 where Γ is a semi-orthogonal basis matrices for $\mathcal{E}_\Sigma(\mathcal{B})$ and without loss of generality we take \mathbf{U}
 4
 5 29 to be a semi-orthogonal basis matrix for \mathcal{U} . Since by hypothesis $\mathcal{U} \subseteq \mathcal{E}_\Sigma(\mathcal{B})$ there is a semi-
 6
 7 30 orthogonal matrix $\mathbf{H} \in \mathbb{R}^{p \times k}$ so that $\mathbf{U} = \Gamma \mathbf{H}$. Let $(\mathbf{H}, \mathbf{H}_0)$ be an orthogonal matrix and recall that
 8
 9 31 $\Gamma^T \Sigma^{-1} \Gamma = \Omega^{-1}$. Then

$$12 \quad 13 \quad 14 \quad 15 \quad \mathbf{U}(\mathbf{U}^T \Sigma^{-1} \mathbf{U})^{-1} \mathbf{U}^T = \Gamma \mathbf{H}(\mathbf{H}^T \Omega^{-1} \mathbf{H})^{-1} \mathbf{H}^T \Gamma^T \leq \Gamma \Omega \Gamma^T,$$

16
 17
 18 32 where the inequality follows from the identity $\mathbf{P}_{\Omega^{-1/2} \mathbf{H}} + \mathbf{P}_{\Omega^{1/2} \mathbf{H}_0} = \mathbf{I}_u$. \square

21
 22 33
 23
 24
 25 34 **Proof of Proposition 2.2** Recall that $\beta = \mathbf{U}\alpha$. (1) follows immediately since $\text{span}(\mathbf{U}\alpha) \subseteq$
 26
 27 35 $\text{span}(\mathbf{U})$.

30
 31 36 For (2) assume that $\text{span}(\mathbf{U}) \subseteq \mathcal{E}_\Sigma(\text{span}(\mathbf{U}\alpha))$. Then $\mathcal{E}_\Sigma(\text{span}(\mathbf{U}\alpha))$ is a reducing subspace
 32
 33 37 of Σ that contains $\text{span}(\mathbf{U})$. Using (1) and the fact that $\mathcal{E}_\Sigma(\text{span}(\mathbf{U}))$ is the intersection of all
 34
 35 38 reducing subspaces of Σ that contains $\text{span}(\mathbf{U})$, it follows that $\mathcal{E}_\Sigma(\text{span}(\mathbf{U}\alpha)) = \mathcal{E}_\Sigma(\text{span}(\mathbf{U}))$.
 39
 40 39 The reverse implication is immediate. Part (3) is also immediate. \square

43
 44 41 **Preparatory lemma** The following lemma, which follows immediately from Milliken and Ak-
 45
 46 42 deniz (1977), will be used in the justification of Proposition 2.3.

48
 49
 50 43 **Lemma 2.1** Let \mathbf{U} and \mathbf{V} be two real positive semi-definite $r \times r$ matrices with $\mathbf{U} \geq \mathbf{V}$ and
 51
 52 44 $\text{rank}(\mathbf{U}) = \text{rank}(\mathbf{V})$. Then (a) $\{\mathbf{a} \in \mathbb{R}^r \mid \mathbf{U}\mathbf{a} = 0\} = \{\mathbf{a} \in \mathbb{R}^r \mid \mathbf{V}\mathbf{a} = 0\}$, (b) $\text{span}(\mathbf{U}) =$
 53
 54 45 $\text{span}(\mathbf{V})$ and (c) $\mathbf{U}^\dagger \leq \mathbf{V}^\dagger$, where \dagger denotes the Moore-Penrose inverse.

1
2
3 46 **Proof of Proposition 2.3** Let
4
5
6

$$\begin{aligned} \mathbf{D}(\mathbf{c}) &= \text{avar}(\sqrt{n}\mathbf{c}^T\widehat{\boldsymbol{\beta}}_{\text{cm}}) - \text{avar}(\sqrt{n}\mathbf{c}^T\widehat{\boldsymbol{\beta}}_{\text{em}}) \\ &= \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \otimes \mathbf{c}^T (\mathbf{U}(\mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U})^{-1} \mathbf{U}^T - \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T) \mathbf{c} - (\boldsymbol{\eta}^T \otimes \mathbf{c}^T \boldsymbol{\Gamma}_0) \mathbf{M}^\dagger(\boldsymbol{\Sigma}_{\mathbf{X}}) (\boldsymbol{\eta} \otimes \boldsymbol{\Gamma}_0^T \mathbf{c}) \end{aligned}$$

14
15 47 We first simplify terms in $\mathbf{D}(\mathbf{c})$. Let $\boldsymbol{\Omega}_{0,1|2} = \boldsymbol{\Omega}_{0,11} - \boldsymbol{\Omega}_{0,12} \boldsymbol{\Omega}_{0,22}^{-1} \boldsymbol{\Omega}_{0,21}$, and recall that $\boldsymbol{\Sigma} =$
16
17 48 $\boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T + \boldsymbol{\Gamma}_0 \boldsymbol{\Omega}_0 \boldsymbol{\Gamma}_0^T$. Then

$$\begin{aligned} \mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U} &= \text{bdiag}(\boldsymbol{\Omega}^{-1}, (\boldsymbol{\Omega}_0^{-1})_{11}) \\ \mathbf{U}(\mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U})^{-1} \mathbf{U}^T &= \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T + \boldsymbol{\Gamma}_{01} \boldsymbol{\Omega}_{0,1|2} \boldsymbol{\Gamma}_{01}^T. \end{aligned}$$

28
29 49 Consequently,

$$\mathbf{D}(\mathbf{c}) = \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \otimes \mathbf{c}^T \boldsymbol{\Gamma}_{01} \boldsymbol{\Omega}_{0,1|2} \boldsymbol{\Gamma}_{01}^T \mathbf{c} - (\boldsymbol{\eta}^T \otimes \mathbf{c}^T \boldsymbol{\Gamma}_0) \mathbf{M}^\dagger(\boldsymbol{\Sigma}_{\mathbf{X}}) (\boldsymbol{\eta} \otimes \boldsymbol{\Gamma}_0^T \mathbf{c}).$$

32
33 50 It follows that $\mathbf{D}(\mathbf{c}) = 0$ for all $\mathbf{c} \in \mathcal{E}_{\boldsymbol{\Sigma}}(\mathcal{B})$ and $\mathbf{D}(\mathbf{c}) \leq 0$ for all $\mathbf{c} \in \text{span}(\boldsymbol{\Gamma}_{02})$. This established
34
35 parts 1 and 2 of the lemma.

36
37 51 Since $\boldsymbol{\Omega}_{0,12} = 0$ by hypothesis, we justify part 3 by first replacing $\boldsymbol{\Omega}_{0,1|2}$ with $\boldsymbol{\Omega}_{0,11}$ in $\mathbf{D}(\mathbf{c})$ to
38
39 52 get

$$\mathbf{D}(\mathbf{c}) = \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} \otimes \mathbf{c}^T \boldsymbol{\Gamma}_{01} \boldsymbol{\Omega}_{0,11} \boldsymbol{\Gamma}_{01}^T \mathbf{c} - (\boldsymbol{\eta}^T \otimes \mathbf{c}^T \boldsymbol{\Gamma}_0) \mathbf{M}^\dagger(\boldsymbol{\Sigma}_{\mathbf{X}}) (\boldsymbol{\eta} \otimes \boldsymbol{\Gamma}_0^T \mathbf{c}).$$

54 55 56 57 58 59 60 54 Next, since $\mathbf{M}(\boldsymbol{\Sigma}_{\mathbf{X}}) \geq \boldsymbol{\eta} \boldsymbol{\Sigma}_{\mathbf{X}} \boldsymbol{\eta}^T \otimes \boldsymbol{\Omega}_0^{-1}$ and by hypothesis $\text{rank}(\mathbf{M}(\boldsymbol{\Sigma}_{\mathbf{X}})) = \text{rank}(\boldsymbol{\eta} \boldsymbol{\Sigma}_{\mathbf{X}} \boldsymbol{\eta}^T \otimes \boldsymbol{\Omega}_0^{-1})$,

1
2
3 55 we have from Lemma 2.1 that $\mathbf{M}^\dagger(\Sigma_{\mathbf{X}}) \leq (\boldsymbol{\eta}\Sigma_{\mathbf{X}}\boldsymbol{\eta}^T)^\dagger \otimes \boldsymbol{\Omega}_0$. Substituting into $\mathbf{D}(\mathbf{c})$ we get
4
5
6

$$7 \mathbf{D}(\mathbf{c}) \geq \Sigma_{\mathbf{X}}^{-1} \otimes \mathbf{c}^T \boldsymbol{\Gamma}_{01} \boldsymbol{\Omega}_{0,11} \boldsymbol{\Gamma}_{01}^T \mathbf{c} - (\boldsymbol{\eta}^T \otimes \mathbf{c}^T \boldsymbol{\Gamma}_0) \{(\boldsymbol{\eta}\Sigma_{\mathbf{X}}\boldsymbol{\eta}^T)^\dagger \otimes \boldsymbol{\Omega}_0\} (\boldsymbol{\eta} \otimes \boldsymbol{\Gamma}_0^T \mathbf{c})
8 = (\Sigma_{\mathbf{X}}^{-1} - \boldsymbol{\eta}^T (\boldsymbol{\eta}\Sigma_{\mathbf{X}}\boldsymbol{\eta}^T)^\dagger \boldsymbol{\eta}) \otimes \mathbf{c}^T \boldsymbol{\Gamma}_{01} \boldsymbol{\Omega}_{0,11} \boldsymbol{\Gamma}_{01}^T \mathbf{c} \geq 0.
9
10
11
12
13
14
15$$

16 56 3 Proofs from Section 3

17
18
19 57 **Derivation of the MLE for model (14).** In this case estimation of $\boldsymbol{\alpha}$ corresponds to the partial
20
21 envelope model and so the estimators for most of the parameters can be taken directly from Su
22
23 and Cook. (2011). To be self-inclusive, we give a sketch of the derivation here. The likelihood
24
25
26 60 function for model (14) is
27
28
29

$$30 L = -\frac{n}{2} \log |\Sigma_S| - \frac{1}{2} \sum_{i=1}^n \text{tr}(\mathbf{Y}_{Si}^T \Sigma_S^{-1} \mathbf{Y}_{Si}) - \frac{n}{2} \log |\Sigma_{D|S}|
31 - \frac{1}{2} \sum_{i=1}^n [(\mathbf{Y}_{Di} - \boldsymbol{\alpha}_0 - \boldsymbol{\phi}\boldsymbol{\eta}\mathbf{X}_i - \boldsymbol{\phi}_{D|S}\mathbf{Y}_{Si})^T \Sigma_{D|S}^{-1} (\mathbf{Y}_{Di} - \boldsymbol{\alpha}_0 - \boldsymbol{\phi}\boldsymbol{\eta}\mathbf{X}_i - \boldsymbol{\phi}_{D|S}\mathbf{Y}_{Si})] \quad (3)
32
33
34
35
36$$

37
38 61 The MLE of Σ_S is $\hat{\Sigma}_S = \mathbf{T}_S$. To get the estimators of all other quantities we can always write
39
40
41

$$42 \mathbf{Y}_{Di} - \boldsymbol{\alpha}_0 - \boldsymbol{\phi}\boldsymbol{\eta}\mathbf{X}_i - \boldsymbol{\phi}_{D|S}\mathbf{Y}_{Si}
43 = \mathbf{Y}_{Di} - \{\boldsymbol{\alpha}_0 + \boldsymbol{\phi}_{D|S}\bar{\mathbf{Y}}_S + \boldsymbol{\phi}\boldsymbol{\eta}\bar{\mathbf{X}}\} - \boldsymbol{\phi}\boldsymbol{\eta}(\mathbf{X}_i - \bar{\mathbf{X}}) - \boldsymbol{\phi}_{D|S}(\mathbf{Y}_{Si} - \bar{\mathbf{Y}}_S)
44
45
46
47
48 62 where $\boldsymbol{\alpha}_{0c} = \boldsymbol{\alpha}_0 + \boldsymbol{\phi}_{D|S}\bar{\mathbf{Y}}_S + \boldsymbol{\phi}\boldsymbol{\eta}\bar{\mathbf{X}}$ denotes the intercept in the model with centered predictors.
49
50
51
52
53
54
55 63 The predictors $\mathbf{X}_i - \bar{\mathbf{X}}$ and $\mathbf{Y}_{Si} - \bar{\mathbf{Y}}_S$ in this model are now centered although their coefficients
56
57
58
59
60$$

1
2
3 64 are the same as those in the uncentered version. The intercept vector has changed but this is of
4
5 65 no consequence since we are not estimating α_0 . Consequently, we can use the centered version to
6
7 66 derive the estimators of interest.
8
9

10 67 The centered model leading immediately to $\hat{\alpha}_{0c} = \bar{\mathbf{Y}}_D$. Holding all other parameters fixed, the
11
12 68 value of $\phi_{D|S}$ that maximizes L is
13
14

$$17 \quad 18 \quad \phi_{D|S} = \mathbf{S}_{DS} \mathbf{S}_S^{-1} - \phi \boldsymbol{\eta} \mathbf{S}_{XS} \mathbf{S}_S^{-1}. \quad (4)$$

19
20
21 69 Let $\mathbf{R}_{D|(1,S)} = \mathbf{Y}_D - \bar{\mathbf{Y}}_D - \mathbf{S}_{DS} \mathbf{S}_S^{-1} (\mathbf{Y}_S - \bar{\mathbf{Y}}_S)$ denote a typical residual vector from the
22
23 regression of \mathbf{Y}_D on \mathbf{Y}_S including an intercept, and let $\mathbf{R}_{X|(1,S)} = \mathbf{X} - \bar{\mathbf{X}} - \mathbf{S}_{XS} \mathbf{S}_S^{-1} (\mathbf{Y}_S - \bar{\mathbf{Y}}_S)$
24
25
26 71 denote a typical residual from the regression of \mathbf{X} on \mathbf{Y}_S including an intercept.
27
28

29 72 Then, evaluating at (4) we have
30
31
32

$$33 \quad 34 \quad \mathbf{Y}_{Di} - \bar{\mathbf{Y}}_D - \phi \boldsymbol{\eta} \mathbf{X}_i - \phi_{D|S} \mathbf{Y}_{Si} = \mathbf{R}_{D|(1,S)} - \phi \boldsymbol{\eta} \mathbf{R}_{X|(1,S)}$$

35
36
37 73 and the first partially maximized log likelihood becomes
38
39
40

$$41 \quad 42 \quad L_1 = -\frac{n}{2} \log |\mathbf{T}_S| - \frac{np}{2} - \frac{n}{2} \log |\boldsymbol{\Sigma}_{D|S}| \\ 43 \quad 44 \quad -\frac{1}{2} \sum_{i=1}^n [(\mathbf{R}_{D|(1,S)} - \phi \boldsymbol{\eta} \mathbf{R}_{X|(1,S)})^T \boldsymbol{\Sigma}_{D|S}^{-1} (\mathbf{R}_{D|(1,S)} - \phi \boldsymbol{\eta} \mathbf{R}_{X|(1,S)})] \\ 45 \quad 46 \quad = -\frac{n}{2} \log |\hat{\boldsymbol{\Sigma}}_S| - \frac{np}{2} - \frac{n}{2} \log |\boldsymbol{\Omega}| - \frac{n}{2} \log |\boldsymbol{\Omega}_0| \\ 47 \quad 48 \quad -\frac{1}{2} \sum_{i=1}^n [\mathbf{R}_{D|(1,S)} - \phi \boldsymbol{\eta} \mathbf{R}_{X|(1,S)}]^T (\boldsymbol{\phi} \boldsymbol{\Omega}^{-1} \boldsymbol{\phi}^T + \boldsymbol{\phi}_0 \boldsymbol{\Omega}_0^{-1} \boldsymbol{\phi}_0^T) (\mathbf{R}_{D|(1,S)} - \phi \boldsymbol{\eta} \mathbf{R}_{X|(1,S)}), \quad (5)$$

54 74 where the i subscripts on $\mathbf{R}_{D|(1,S)}$ and $\mathbf{R}_{X|(1,S)}$ have been suppressed. The value of $\boldsymbol{\eta}$ that maxi-
55
56
57
58
59
60

75 mizes L_1 is

$$\eta = \phi^T \mathbf{S}_{\mathbf{R}_{D|(1,S)}, \mathbf{R}_{X|(1,S)}} \mathbf{S}_{\mathbf{R}_{X|(1,S)}}^{-1} = \phi^T \mathbf{B}_{\mathbf{R}_{D|(1,S)} | \mathbf{R}_{X|(1,S)}},$$

76 where $\mathbf{B}_{\mathbf{R}_{D|(1,S)} | \mathbf{R}_{X|(1,S)}} \in \mathbb{R}^{p_D}$ is the OLS coefficient vector from the regression of $\mathbf{R}_{D|(1,S)}$ on
 77 $\mathbf{R}_{X|(1,S)}$. These coefficients can also be interpreted as the OLS coefficients of \mathbf{X} from the regression of \mathbf{Y}_D on $(\mathbf{X}, \mathbf{Y}_S)$ including an intercept. That is, $\mathbf{B}_{\mathbf{R}_{D|(1,S)} | \mathbf{R}_{X|(1,S)}} = \tilde{\alpha}$. Substituting this
 78 into L_1 we get the following partially maximized log likelihood

$$\begin{aligned} L_2 &= -\frac{n}{2} \log |\widehat{\Sigma}_S| - \frac{np}{2} - \frac{n}{2} \log |\Omega| - \frac{n}{2} \log |\Omega_0| \\ &\quad - \frac{1}{2} \sum_{i=1}^n [(\mathbf{R}_{D|(1,S)} - \tilde{\alpha} \mathbf{R}_{X|(1,S)})^T \phi \Omega^{-1} \phi^T (\mathbf{R}_{D|(1,S)} - \tilde{\alpha} \mathbf{R}_{X|(1,S)})] \\ &\quad - \frac{1}{2} \sum_{i=1}^n (\mathbf{R}_{D|(1,S)}^T \phi_0 \Omega_0^{-1} \phi_0^T \mathbf{R}_{D|(1,S)}). \end{aligned} \quad (6)$$

31 But $\mathbf{R}_{D|(1,S)} - \tilde{\alpha} \mathbf{R}_{X|(1,S)} = \mathbf{R}_{D|(1,X,S)}$, the residual vectors from the regression of \mathbf{Y}_D on $(\mathbf{X}, \mathbf{Y}_S)$
 32 including an intercept. We have

$$\begin{aligned} L_2 &= -\frac{n}{2} \log |\mathbf{T}_S| - \frac{np}{2} - \frac{n}{2} \log |\Omega| - \frac{n}{2} \log |\Omega_0| \\ &\quad - \frac{1}{2} \sum_{i=1}^n [\mathbf{R}_{D|(1,X,S)}^T \phi \Omega^{-1} \phi^T \mathbf{R}_{D|(1,X,S)}] \\ &\quad - \frac{1}{2} \sum_{i=1}^n (\mathbf{R}_{D|(1,S)}^T \phi_0 \Omega_0^{-1} \phi_0^T \mathbf{R}_{D|(1,S)}). \end{aligned} \quad (7)$$

48 Taking ϕ fixed,

$$\Omega = \phi^T \mathbf{S}_{D|(\mathbf{X}, S)} \phi$$

$$\Omega_0 = \phi_0^T \mathbf{S}_{D|S} \phi_0$$

1
2
3 and, letting u denote the dimension of the envelope, the following partially maximized log likeli-
4
5 hood becomes
6
7
8

9

$$10 \quad L_3 = -\frac{n}{2} \log |\mathbf{T}_S| - \frac{np}{2} - \frac{n}{2} \log |\boldsymbol{\phi}^T \mathbf{S}_{D|(\mathbf{X}, S)} \boldsymbol{\phi}| - \frac{n}{2} \log |\boldsymbol{\phi}_0^T \mathbf{S}_{D|S} \boldsymbol{\phi}_0| \quad (8)$$

11
12
13
14

15 From what follows that the MLE of $\boldsymbol{\phi}$ can be found as
16
17

18

$$19 \quad \hat{\boldsymbol{\phi}} = \arg \min_{\boldsymbol{\phi}} \log |\boldsymbol{\phi}^T \mathbf{S}_{D|(\mathbf{X}, S)} \boldsymbol{\phi}| + \log |\boldsymbol{\phi}^T \mathbf{S}_{D|S}^{-1} \boldsymbol{\phi}|, \quad (9)$$

20
21
22

23 where for clarity $\mathbf{S}_{D|S}$ is the sample residual covariance matrix of the regression of \mathbf{Y}_D on \mathbf{Y}_S
24
25 with an intercept, and $\mathbf{S}_{D|(\mathbf{X}, S)}$ is the sample residual covariance matrix of the regression of \mathbf{Y}_D on
26
27 $(\mathbf{X}, \mathbf{Y}_S)$ with an intercept.
28
29

30 Once we get $\hat{\boldsymbol{\phi}}$, we get the estimators for the rest of the parameters.
31
32

33
34 **Proof of the Asymptotic distribution of $\text{vec}(\hat{\boldsymbol{\alpha}}_{\text{ecm}})$ and $\text{vec}(\hat{\boldsymbol{\beta}}_{\text{ecm}})$** Let us call the parameters
35
36 of model (2) as $h = (\boldsymbol{\alpha}_0, \text{vech}(\boldsymbol{\alpha}_{\text{cm}}), \boldsymbol{\phi}_{D|S}, \text{vech}(\boldsymbol{\Sigma}_{D|S}), \text{vech}(\boldsymbol{\Sigma}_S))$, the asymptotic distribution
37
38 of the MLE estimator \hat{h} is the inverse of its Fisher information matrix that can be obtained using
39
40

93 straightforward computing of the second derivative of the log-likelihood as

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18 \quad 19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30 \quad 31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36 \quad 37 \quad 38 \quad 39 \quad 40 \quad 41 \quad 42 \quad 43 \quad 44 \quad 45 \quad 46 \quad 47 \quad 48 \quad 49 \quad 50 \quad 51 \quad 52 \quad 53 \quad 54 \quad 55 \quad 56 \quad 57 \quad 58 \quad 59 \quad 60$$

$$J = \begin{pmatrix} \Sigma_{D|S}^{-1} & 0 & 0 & 0 & 0 \\ 0 & \Sigma_S \otimes \Sigma_{D|S}^{-1} & 0 & 0 & 0 \\ 0 & 0 & \Sigma_X \otimes \Sigma_{D|S}^{-1} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} E_k^T (\Sigma_{D|S}^{-1} \otimes \Sigma_{D|S}^{-1}) E_k & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} E_{r-k}^T (\Sigma_S^{-1} \otimes \Sigma_S^{-1}) E_{r-k} \end{pmatrix} \quad (10)$$

94 where E_r is the expansion matrix that satisfy $\text{vec}(\Sigma) = E_r \text{vech}(\Sigma)$ for Σ a symmetric matrix of
95 dimension r .

96 Since the envelope model (14) is over-parameterized, we will apply Proposition 4.1 from
97 Shapiro (1986) to prove the asymptotic distribution (17) as in Cook et al. (2015) and Cook et al.
98 (2010). To apply Proposition 4.1 of Shapiro (1986), we will check the assumptions first. Along the
99 discussion, we will match Shapiro's notations in our context. Let us call $F(\hat{h}) = \hat{L}_u(\hat{h}) - \hat{L}_u(h)$
100 where \hat{L} is the likelihood function (16). Then F satisfies the four conditions for F in Section 3 in
101 Shapiro (1986). The function g defined by Shapiro in (2.1) is the function

$$h = g(\psi) = \begin{pmatrix} \text{vec}(\alpha_0) \\ \text{vec}(\alpha) \\ \text{vec}(\phi_{D|S}) \\ \text{vech}(\Sigma_{D|S}) \\ \text{vech}(\Sigma_S) \end{pmatrix} = \begin{pmatrix} \text{vec}(\alpha_0) \\ \text{vec}(\phi\eta) \\ \text{vec}(\phi_{D|S}) \\ \text{vech}(\phi\Omega\phi^T + \phi_0\Omega_0\phi_0^T) \\ \text{vech}(\Sigma_S) \end{pmatrix}$$

54 with $\psi^T = (\text{vec}^T(\alpha_0), \text{vec}^T(\eta), \text{vec}^T(\phi), \text{vec}^T(\phi_{D|S}), \text{vech}^T(\Sigma_{D|S}), \text{vech}^T(\Sigma_S))$ denote the pa-

parameters in the envelope model (14). It is obvious that g is twice continuous differentiable. Therefore all the assumptions of Shapiro's Proposition 4.1 are satisfied, and we can get the asymptotic distribution of the estimators $\hat{h}(\hat{\psi})$ from model (14) as

$$H(H^T J H)^\dagger H^T,$$

where J is the Fisher information under model (2), and H is the gradient matrix, which equals to $\partial h / \partial^T \psi$. Computing H we have

$$H = \begin{pmatrix} I & 0 & & & & & 0 \\ 0 & \phi & (\boldsymbol{\eta}^T \otimes \mathbf{I}) & & & & 0 \\ 0 & 0 & 0 & \mathbf{I} & 0 & 0 & 0 \\ 0 & 0 & 2C_k(\boldsymbol{\phi}\boldsymbol{\Omega} \otimes \mathbf{I} - \boldsymbol{\phi} \otimes \boldsymbol{\phi}_0 \boldsymbol{\Omega}_0 \boldsymbol{\phi}_0^T) & 0 & C_k(\boldsymbol{\phi} \otimes \boldsymbol{\phi}) E_u & C_k(\boldsymbol{\phi}_0 \otimes \boldsymbol{\phi}_0) E_{k-u} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mathbf{I} \end{pmatrix}. \quad (11)$$

where C_r is the contraction matrix that satisfy $\text{vech}(\Sigma) = C_r \text{vec}(\Sigma)$ for Σ a symmetric matrix of dimension r .

Following similar calculations than in Su and Cook (2011, Prop. 1) we get (17) and since

$H(H^T J H)^\dagger H^T \leq J^{-1}$ we get the efficiency of the estimator $\text{vec}(\hat{\boldsymbol{\alpha}}_{\text{ecm}})$ under model (14) compare with the estimator of $\text{vec}(\hat{\boldsymbol{\alpha}}_{\text{cm}})$ under model (2) when $u < k$ being the same when $u = k$.

The asymptotic distribution of $\text{vec}(\hat{\boldsymbol{\beta}}_{\text{ecm}})$ follows since $\boldsymbol{\beta}_{\text{ecm}} = \mathbf{U} \boldsymbol{\alpha}_{\text{ecm}}$ and as a consequence the

1
2
3 110 asymptotic efficiency of $\text{vec}(\widehat{\boldsymbol{\beta}}_{\text{ecm}})$) compare with $\text{vec}(\widehat{\boldsymbol{\beta}}_{\text{cm}})$)
4
5
6

7 111 **Proof of Proposition 3.1** The proof consists of showing that (1) $\boldsymbol{\alpha} = (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma} \boldsymbol{\eta}$, (2)
8
9 112 $\text{rank}(\mathbf{U}^T \boldsymbol{\Gamma}) = u_1$, (3) $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma}) = \text{span}((\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma})$, and (4) $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$ is a reducing
10
11 113 subspace of $\boldsymbol{\Sigma}_{D|S}$ that contains $\mathcal{A} = \text{span}(\boldsymbol{\alpha})$. It follows from these statements that $\mathcal{E}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A}) \subseteq$
12
13 114 $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$. Since $\dim(\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})) = u_1$, the conclusion will follow: $\dim\{\mathcal{E}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A})\} \leq u_1 \leq$
14
15 115 $u = \dim\{\mathcal{E}_{\boldsymbol{\Sigma}}(\text{span}(\boldsymbol{\beta}))\}$. It remains then to show (1)–(4).

19 116 (1) Since \mathbf{U} has full column rank and $\boldsymbol{\Gamma} \boldsymbol{\eta} = \mathbf{U} \boldsymbol{\alpha}$ it follows immediately that $\boldsymbol{\alpha} = (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma} \boldsymbol{\eta}$.
20

21 117 (2) Direct multiplication gives $\mathbf{U}^T \boldsymbol{\Gamma} = (\mathbf{G}, 0)^T$. The conclusion follows since $\mathbf{G}^T \in \mathbb{R}^{u_1 \times u}$
22
23 118 has rank u_1 .

26 119 (3) Since $(\mathbf{U}^T \mathbf{U})$ is full rank, $\text{rank}(\mathbf{U}^T \boldsymbol{\Gamma}) = \text{rank}((\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma})$. It is then sufficient to
27
28 120 show that $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma}) \subseteq \text{span}((\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma})$. For an arbitrary $\boldsymbol{\gamma} \in \mathbb{R}^u$, let $\mathbf{g} = (\mathbf{U}^T \boldsymbol{\Gamma}) \boldsymbol{\gamma}$ and
29
30 121 $\mathbf{h} = \mathbf{G} \mathbf{G}^T \boldsymbol{\gamma}$. Then by direct multiplication we have $\mathbf{g} = (\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma} \mathbf{h}$. Consequently we have
31
32 122 that every vector $\mathbf{g} \in \text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$ is also in $\text{span}((\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T \boldsymbol{\Gamma})$.

36 123 (4) That $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$ contains \mathcal{A} follows immediately from (1) and (3). It remains to show that
37
38 124 $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$ reduces $\boldsymbol{\Sigma}_{D|S}$ or, equivalently, that it reduces

$$\begin{aligned} \boldsymbol{\Sigma}_{D|S}^{-1} &= \mathbf{U}^T \boldsymbol{\Sigma}^{-1} \mathbf{U} \\ &= \mathbf{U}^T \boldsymbol{\Gamma} \boldsymbol{\Omega}^{-1} \boldsymbol{\Gamma}^T \mathbf{U} + \mathbf{U}^T \boldsymbol{\Gamma}_0 \boldsymbol{\Omega}^{-1} \boldsymbol{\Gamma}_0^T \mathbf{U}. \end{aligned}$$

50 125 Since $\mathbf{U}^T \boldsymbol{\Gamma}_0 = (0, \mathbf{G}_0)^T$, we have immediately that $\mathbf{U}^T \boldsymbol{\Gamma}$ and $\mathbf{U}^T \boldsymbol{\Gamma}_0$ are orthogonal. Let \mathbf{C} be
51
52 126 a semi-orthogonal basis matrix for $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma})$ and let \mathbf{C}_0 be a semi-orthogonal basis matrix for

1
2
3 127 $\text{span}(\mathbf{U}^T \boldsymbol{\Gamma}_0)$. Then there exists matrices \mathbf{A} and \mathbf{A}_0 so that
4
5
6
7
8
9

$$\boldsymbol{\Sigma}_{D|S}^{-1} \mathbf{C} = \mathbf{U}^T \boldsymbol{\Gamma} \boldsymbol{\Omega}^{-1} \boldsymbol{\Gamma}^T \mathbf{U} \mathbf{C} = \mathbf{C} \mathbf{A}$$

$$\boldsymbol{\Sigma}_{D|S}^{-1} \mathbf{C}_0 = \mathbf{U}^T \boldsymbol{\Gamma}_0 \boldsymbol{\Omega}_0^{-1} \boldsymbol{\Gamma}_0^T \mathbf{U} \mathbf{C}_0 = \mathbf{C}_0 \mathbf{A}_0.$$

12
13
14 128 The conclusion follows from Cook (2018, Lemma A.1). \square
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

3.1 Maximum likelihood estimator when \mathbf{U} is semi-orthogonal

30
31 130 The following two propositions provide technical tools for demonstrating that the maximum like-
32
33 131 lihood envelope estimator of $\boldsymbol{\beta} = \mathbf{U} \boldsymbol{\alpha}$ is simply $\widehat{\boldsymbol{\beta}}_{\text{ecm}} = \mathbf{U} \widehat{\boldsymbol{\alpha}}_{\text{ecm}}$ when \mathbf{U} is semi-orthogonal.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

133 **Proposition 3.1** (a) Let $\mathcal{S} \subseteq \mathbb{R}^k$ be a reducing subspace of the symmetric matrix $\mathbf{M} \in \mathbb{R}^{k \times k}$, and
134 let $\mathbf{V} \in \mathbb{R}^{p \times k}$ be a semi-orthogonal matrix. Then $\mathbf{V}\mathcal{S}$ is a reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$. (b) Let
135 $\mathcal{D} \in \mathbb{R}^p$ be a reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$. Then $\mathbf{V}^T \mathcal{D}$ is a reducing subspace of \mathbf{M} .

136 **Proof of Proposition 3.1** Since \mathbf{M} is symmetric it is sufficient to show for conclusion (a) that $\mathbf{V}\mathcal{S}$
137 is an invariant subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$. That is, by definition we must show that $\mathbf{V}\mathbf{M}\mathbf{V}^T(\mathbf{V}\mathcal{S}) \subseteq \mathbf{V}\mathcal{S}$.
138 But this follows immediately from the condition that \mathcal{S} reduces \mathbf{M} : $\mathbf{M}\mathcal{S} \subseteq \mathcal{S}$. Conclusion (b)
139 follows similarly since $\mathbf{V}\mathbf{M}\mathbf{V}^T \mathcal{D} \subseteq \mathcal{D}$ and multiplying both sides by \mathbf{V}^T gives the desired con-
140 clusion. \square

141
142 142 **Proposition 3.2** Let $\mathcal{E}_M(\mathcal{S}) \subseteq \mathbb{R}^k$ be the smallest reducing subspace of the symmetric matrix
143 $\mathbf{M} \in \mathbb{R}^{k \times k}$ that contains $\mathcal{S} \subseteq \mathbb{R}^k$, and let $\mathbf{V} \in \mathbb{R}^{p \times k}$ be a semi-orthogonal matrix. Then $\mathbf{V}\mathcal{E}_M(\mathcal{S})$

1
2
3 144 is the smallest reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$ that contains $\mathbf{V}\mathcal{S}$; that is, $\mathbf{V}\mathcal{E}_M(\mathcal{S}) = \mathcal{E}_{\mathbf{V}\mathbf{M}\mathbf{V}^T}(\mathbf{V}\mathcal{S})$.
4
5
6

7 145 **Proof of Proposition 3.2** We need to show that (a) $\mathbf{V}\mathcal{E}_M(\mathcal{S})$ is a reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$,
8
9 146 (b) that $\mathbf{V}\mathcal{E}_M(\mathcal{S})$ contains $\mathbf{V}\mathcal{S}$ and (c) that $\mathbf{V}\mathcal{E}_M(\mathcal{S})$ is minimal. It follows immediately from
10
11 147 Proposition 3.1 that $\mathbf{V}\mathcal{E}_M(\mathcal{S})$ is a reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$, so (a) is satisfied. Since $\mathcal{S} \subseteq$
12
13 148 $\mathcal{E}_M(\mathcal{S})$ it follows immediately that $\mathbf{V}\mathcal{S} \subseteq \mathbf{V}\mathcal{E}_M(\mathcal{S})$, so (b) holds.
14
15

16
17 149 To show (c) we use the fact that the smallest reducing subspace of $\mathbf{V}\mathbf{M}\mathbf{V}^T$ that contains $\mathbf{V}\mathcal{S}$
18
19 150 is the intersection of all such subspaces. Consequently, if $\mathbf{V}\mathcal{E}_M(\mathcal{S})$ is not minimal then there is a
20
21 151 subspace \mathcal{D} that satisfies (a) and (b) while being a proper subset of $\mathbf{V}\mathcal{E}_M(\mathcal{S})$, $\mathcal{D} \subset \mathbf{V}\mathcal{E}_M(\mathcal{S})$. But
22
23 152 we know from Proposition 3.1 that $\mathbf{V}^T\mathcal{D}$ is a reducing subspace of \mathbf{M} and from part (b) it contains
24
25 153 \mathcal{S} . However, $\mathbf{V}^T\mathcal{D} \subset \mathcal{E}_M(\mathcal{S})$ which contradicts the minimality of $\mathcal{E}_M(\mathcal{S})$. \square
26
27
28
29
30 154

31
32 155 These two propositions show that the results of Section 3.1 can be used directly to get the en-
33
34 156 velope estimator of $\mathbf{U}\boldsymbol{\alpha}$ when \mathbf{U} is semi-orthognonal. The standard MLE of $\mathbf{U}\boldsymbol{\alpha}$ is just $\mathbf{U}\widehat{\boldsymbol{\alpha}}_{\text{cm}}$
35
36 157 with asymptotic covariance matrix $\mathbf{U}\boldsymbol{\Sigma}_{D|S}\mathbf{U}^T$. In consequence, following the rationale at the
37
38 158 beginning of Section 3.1, we seek the MLE of $\mathcal{E}_{\mathbf{U}\boldsymbol{\Sigma}_{D|S}\mathbf{U}^T}(\mathbf{U}\mathcal{A})$, which by Proposition 3.2 is
39
40 159 equal to $\mathbf{U}\mathcal{E}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A})$. From Proposition 3.2, the MLE of $\mathcal{E}_{\mathbf{U}\boldsymbol{\Sigma}_{D|S}\mathbf{U}^T}(\mathbf{U}\mathcal{A})$ is $\mathbf{U}\widehat{\mathcal{E}}_{\boldsymbol{\Sigma}_{D|S}}(\mathcal{A})$, which
41
42 160 implies that the envelope estimator of $\boldsymbol{\beta} = \mathbf{U}\boldsymbol{\alpha}$ is $\widehat{\boldsymbol{\beta}}_{\text{ecm}} = \mathbf{U}\widehat{\boldsymbol{\alpha}}_{\text{ecm}}$ with asymptotic variance
43
44 161 $\mathbf{U}\text{avar}(\sqrt{n}\widehat{\boldsymbol{\alpha}}_{\text{ecm}})\mathbf{U}^T$. Propositions 3.1 and 3.2 also suggest how to proceed when re-paramterizing
45
46 162 as $\boldsymbol{\beta} = \mathbf{U}\boldsymbol{\alpha} = (\mathbf{U}\mathbf{O}^T)(\mathbf{O}\boldsymbol{\alpha})$, where \mathbf{O} is an orthogonal matrix and \mathbf{U} is not necessarily orthogonal.
47
48 163 In that case the envelope estimator of $\mathbf{O}\boldsymbol{\alpha}$ is simply $\mathbf{O}\boldsymbol{\alpha}_{\text{ecm}}$, and so the envelope estimator of $\boldsymbol{\beta}$ is
49
50 164 invariant under orthogonal re-paramterization of the kind used here.
51
52
53
54
55
56
57
58
59
60

1
2
3 165 **3.2 Maximum likelihood estimators and asymptotic distribution under Model**
4
5

6 166 **(19)**
7
8

9 167 Given the envelope dimension u , the log likelihood based on \mathbf{Y}_D is
10
11

12
13
14
$$L_u = -(nk/2) \log(2\pi) - \frac{n}{2} \log |\Sigma_{D|S}|$$

15
16
$$- \frac{1}{2} \sum_{i=1}^n (\mathbf{Y}_{Di} - \boldsymbol{\alpha}_0 - \boldsymbol{\Lambda}^{-1} \boldsymbol{\Theta} \boldsymbol{\eta} \mathbf{X}_i - \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si})^T \boldsymbol{\Sigma}_{D|S}^{-1} (\mathbf{Y}_{Di} - \boldsymbol{\alpha}_0 - \boldsymbol{\Lambda}^{-1} \boldsymbol{\Theta} \boldsymbol{\eta} \mathbf{X}_i - \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si}),$$

17
18

19 218 where
20
21

22
23
24
25
$$- \frac{n}{2} \log |\Sigma_{D|S}| = n \log |\boldsymbol{\Lambda}| - \frac{n}{2} \log |\boldsymbol{\Omega}| - \frac{n}{2} \log |\boldsymbol{\Omega}_0|$$

26
27
28
$$\boldsymbol{\Sigma}_{D|S}^{-1} = \boldsymbol{\Lambda} (\boldsymbol{\Theta} \boldsymbol{\Omega}^{-1} \boldsymbol{\Theta}^T + \boldsymbol{\Theta}_0 \boldsymbol{\Omega}_0^{-1} \boldsymbol{\Theta}_0^T) \boldsymbol{\Lambda}.$$

29
30
31

32 Let $\boldsymbol{\nu}_0 = \boldsymbol{\Lambda} \boldsymbol{\alpha}_0$ and $\boldsymbol{\nu} = \boldsymbol{\Lambda} \boldsymbol{\phi}_{D|S}$. Substituting these various quantities we get
33

34
35
36
$$L_u = -(nk/2) \log(2\pi) + n \log |\boldsymbol{\Lambda}| - \frac{n}{2} \log |\boldsymbol{\Omega}| - \frac{n}{2} \log |\boldsymbol{\Omega}_0|$$

37
38
$$- \frac{1}{2} \sum_{i=1}^n (\boldsymbol{\Lambda} \mathbf{Y}_{Di} - \boldsymbol{\nu}_0 - \boldsymbol{\Theta} \boldsymbol{\eta} \mathbf{X}_i - \boldsymbol{\nu} \mathbf{Y}_{Si})^T (\boldsymbol{\Theta} \boldsymbol{\Omega}^{-1} \boldsymbol{\Theta}^T + \boldsymbol{\Theta}_0 \boldsymbol{\Omega}_0^{-1} \boldsymbol{\Theta}_0^T) (\boldsymbol{\Lambda} \mathbf{Y}_{Di} - \boldsymbol{\nu}_0 - \boldsymbol{\Theta} \boldsymbol{\eta} \mathbf{X}_i - \boldsymbol{\nu} \mathbf{Y}_{Si}),$$

39
40
41

42
43
44 169 Aside from the addend $n \log |\boldsymbol{\Lambda}|$, this log likelihood has the same form as that associated with
45
46 model (14) after replacing the response \mathbf{Y}_D with the transformed response $\boldsymbol{\Lambda} \mathbf{Y}_D$. This enables us
47
48 170 to adapt the log likelihood and estimators listed in Section 3.1 for the present setting.
49
50

51 172 After maximizing the log likelihood over all parameters except $(\boldsymbol{\Lambda}, \boldsymbol{\Theta})$ we have
52
53
54

55
$$(\hat{\boldsymbol{\Lambda}}, \hat{\boldsymbol{\Theta}}) = \arg \min_{\mathbf{A}, \mathbf{G}} \log |\mathbf{G}^T \mathbf{A} \mathbf{S}_{D|(\mathbf{X}, \mathbf{S})} \mathbf{A} \mathbf{G}| + \log |\mathbf{G}^T \mathbf{A}^{-1} \mathbf{S}_{D|S}^{-1} \mathbf{A}^{-1} \mathbf{G}|, \quad (12)$$

56
57
58
59
60

1
2
3 where the minimum is computed over all semi-orthogonal matrices $\mathbf{G} \in \mathbb{R}^{k \times v}$ and diagonal matri-
4
5 ces $\mathbf{A} = \text{diag}(1, a_2, \dots, a_k)$. Aside from the inner product matrices $\mathbf{S}_{D|(\mathbf{X}, S)}$ and $\mathbf{S}_{D|S}^{-1}$ this is the
6
7 same as the objective function that Cook and Su (2013) derived for response scaling prior to using
8
9 model (4), which allowed us to adapt their optimization algorithm to handle (12).

10
11 Having determined the MLEs $\widehat{\Lambda}$ and $\widehat{\Theta}$, the remaining parameter estimators are
12
13

$$14 \quad \begin{aligned} 15 \quad & \cdot \widehat{\beta}_{\text{secm}} = \mathbf{U} \widehat{\Lambda}^{-1} \mathbf{P}_{\widehat{\Theta}} \widehat{\Lambda} \widehat{\alpha}_{\text{cm}}, \widehat{\alpha} = \widehat{\Lambda}^{-1} \mathbf{P}_{\widehat{\Theta}} \widehat{\Lambda} \widehat{\alpha}_{\text{cm}}, \widehat{\alpha}_0 = \bar{\mathbf{Y}}_D - \widehat{\beta}_{\text{secm}} \bar{\mathbf{X}} - \widehat{\phi}_{D|S} \bar{\mathbf{Y}}_S \\ 16 \quad & \cdot \widehat{\eta} = \widehat{\Theta}^T \widehat{\Lambda} \widehat{\alpha}_{\text{cm}}, \widehat{\phi}_{D|S} = (\mathbf{S}_{D,S} - \widehat{\alpha} \mathbf{S}_{\mathbf{X},S}) \mathbf{S}_S^{-1} \\ 17 \quad & \cdot \widehat{\Omega} = \widehat{\Theta}^T \widehat{\Lambda} \mathbf{S}_{D|(\mathbf{X}, S)} \widehat{\Lambda} \widehat{\Theta}, \widehat{\Omega}_0 = \widehat{\Theta}_0^T \widehat{\Lambda} \mathbf{S}_{D|S} \widehat{\Lambda} \widehat{\Theta}_0 \\ 18 \quad & \cdot \widehat{\Sigma}_{D|S} = \widehat{\Lambda}^{-1} (\widehat{\Theta} \widehat{\Omega} \widehat{\Theta}^T + \widehat{\Theta}_0 \widehat{\Omega}_0 \widehat{\Theta}_0^T) \widehat{\Lambda}^{-1}, \widehat{\Sigma}_S = \mathbf{T}_S. \end{aligned}$$

19
20
21
22
23
24
25
26
27
28
29
30 The variances Σ_W and Σ can be estimated as indicated in Section 2.1.

31
32 This representation of the scaled envelope estimator $\widehat{\beta}_{\text{secm}}$ shows the construction process. First
33
34 the direct-information response is transformed to $\widehat{\Lambda} \mathbf{Y}_D$. The constrained estimator $\widehat{\Lambda} \widehat{\alpha}_{\text{cm}}$ and the
35
36 envelope estimator $\mathbf{P}_{\widehat{\Theta}} \widehat{\Lambda} \widehat{\alpha}_{\text{cm}}$ are then determined in the transformed scale. Next, the estimator is
37
38 transformed back to the original scale by multiplying by $\widehat{\Lambda}^{-1}$ to get $\widehat{\Lambda}^{-1} \mathbf{P}_{\widehat{\Theta}} \widehat{\Lambda} \widehat{\alpha}_{\text{cm}}$, which is the
39
40 estimator of α in the original scale. Finally, the estimator in the original scale is multiplied by \mathbf{U}
41
42 to give the scaled envelope estimator of β . In effect, $\widehat{\Lambda}$ is a similarity transformation to represent
43
44 $\mathbf{P}_{\widehat{\Theta}}$ in the original coordinate system as $\widehat{\Lambda}^{-1} \mathbf{P}_{\widehat{\Theta}} \widehat{\Lambda}$.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 The fully maximized log likelihood is

$$\hat{L}_u = c - \frac{n}{2} \left\{ \log |\mathbf{T}_S| + \log |\mathbf{S}_{D|S}| + \log |\widehat{\Theta}^T \widehat{\Lambda} \mathbf{S}_{D|(\mathbf{X}, S)} \widehat{\Lambda} \widehat{\Theta}| + \log |\widehat{\Theta}^T \widehat{\Lambda}^{-1} \mathbf{S}_{D|S}^{-1} \widehat{\Lambda}^{-1} \widehat{\Theta}| \right\}, \quad (13)$$

1
2
3 where $c = n \log |\mathbf{W}| - (nr/2)(1 + \log(2\pi))$. To describe the asymptotic variance of $\hat{\beta}_{\text{secm}}$, let
4
5 \mathbf{V}_{secm} denote the upper $pk \times pk$ diagonal block of the asymptotic variance \mathbf{V} given by Proposition
6
7 2 from Cook and Su (2013) with Σ replaced by $\Sigma_{D|S}$, Γ by Θ and Γ_0 by Θ_0 and Λ with Λ^{-1} .
8
9 Additionally, Ω and Ω_0 in the Cook-Su notation are the same as the corresponding quantities in
10
11 the decomposition of $\Sigma_{D|S}$ for model (19). For the asymptotic variance of the estimators, we
12
13 need to recognize that the log-likelihood function (12) correspond to the log-likelihood function
14
15 from Su and Cook (2013) where $\mathbf{S}_{D|S}$ correspond to their $\tilde{\Sigma}_y$. Then $\text{avar}(\sqrt{n}\text{vec}(\hat{\beta}_{\text{secm}})) = (\mathbf{I}_p \otimes$
16
17 $\mathbf{U})\mathbf{V}_{\text{secm}}(\mathbf{I}_p \otimes \mathbf{U}^T)$ is an estimator that is never less efficient than $\hat{\beta}_{\text{cm}}$.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4 Additional simulations

200 We carry out an additional set of simulations under the settings described in Section 4.1 with a
201 small sample size $n = 80$. The overall performance of the four estimators are similar to that with
202 a larger sample size shown in the main text.

4.1 Scenario 1

203 In the 1000 simulations repetitions, the envelope dimension was correctly estimated as 6 for 329
204 times, under estimated as 4 for 132 times and 5 for 398 times, overly estimated as 7 for 131 times
205 and 8 for 10 times using BIC. The dimension of the constrained envelope estimator was correctly
206 estimated as 4 for 787 times, overly estimated as 5 for 207 times, and 6 for 6 times. The empirical
207 results for $\hat{\beta}_{\text{um}} - \beta$, $\hat{\beta}_{\text{em}} - \beta$, $\hat{\beta}_{\text{cm}} - \beta$ and $\hat{\beta}_{\text{ecm}} - \beta$ are shown in Figure 1a, where all the elements
208 of β are plotted in the same boxplot as if they are from the same population and the outliers are
209 suppressed for a cleaner representation.

The average estimated asymptotic variances were close to the theoretical asymptotic variances

calculated using the true parameter values for all three estimators. The mean of the empirical

asymptotic variances across all the elements in four estimators are 54.94 for $\sqrt{n}\hat{\beta}_{\text{um}}$ and 40.07

214 for $\sqrt{n}\hat{\beta}_{\text{cm}}$ but is only 1.59 for $\sqrt{n}\hat{\beta}_{\text{em}}$ and 1.16 for $\sqrt{n}\hat{\beta}_{\text{ecm}}$. That is, in this setting, the enve-

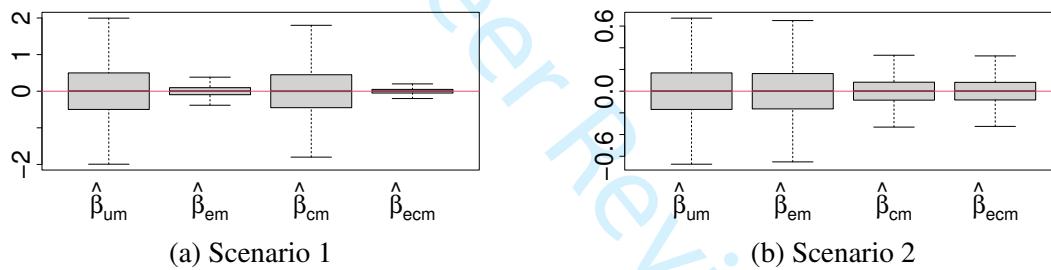
lope estimator and the constrained envelope estimator are about 40 times more efficient than the

²¹⁶ saturated estimator and the unconstrained estimator. A comparison between the envelope and con-

²¹⁷ strained envelope estimator demonstrates the advantage of leveraging prior information in terms

... of achieving better efficiency

Figure 1: Box plot of $\widehat{\beta}_{\text{um}} - \beta$, $\widehat{\beta}_{\text{em}} - \beta$, $\widehat{\beta}_{\text{cm}} - \beta$ and $\widehat{\beta}_{\text{ecm}} - \beta$ in two scenarios with a relatively small sample size $n = 80$ in 1000 simulations.



219 4.2 Scenario 2

220 In the 1000 simulations repetitions, the envelope dimension is correctly estimated as 6 for 675

221 times, and overly estimated as 7 for 281 times and 8 for 44 times. The constrained envelope

dimension is correctly estimated as 4 for 994 times and overly estimated as 5 for 6 times. The

²²³ empirical biases of the estimators are shown in Figure 2b. Again, all four estimators are centered

around 0, indicating the asymptotic unbiasedness. As expected, the estimator $\hat{\beta}_1$ and $\hat{\beta}_2$ are the

²⁵ most efficient among the four estimators, while the envelope estimator $\hat{\beta}_e$ is still more efficient.

1
2
3 226 than $\widehat{\beta}_{\text{um}}$.
4
5

6 227 The average estimated asymptotic variance of the three estimators were all close to their the-
7
8 228 oretical values. The average empirical variances of all the elements in three estimators are 8.76
9
10 229 for $\sqrt{n}\widehat{\beta}_{\text{um}}$, 8.36 for $\sqrt{n}\widehat{\beta}_{\text{em}}$, 1.37 for $\sqrt{n}\widehat{\beta}_{\text{cm}}$ and 1.60 for $\sqrt{n}\widehat{\beta}_{\text{ecm}}$. That is, in this setting, the
11
12 230 estimators using a correctly specified \mathbf{U} are on average about 4 times of more efficient than the sat-
13
14 231 urated estimator and the envelope estimator, but the envelope constraint estimator does not provide
15
16 232 additional advantages over the constrained estimator.
17
18
19
20
21
22

233 5 Dental data revisited

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

234 The dental data consists of measurements of the distance (mm) from the center of the pituitary
235 to the pterygomaxillary fissure for each of 11 girls and 16 boys at ages 8, 10, 12, and 14 years
236 (t). Since their introduction by Potthoff and Roy (1964), these data have been used frequently to
237 illustrate the analysis of longitudinal data. We respect that tradition in this section. We removed
238 the outlying and influential male case described by Pan and Fang (2002) prior to application of
239 the methods discussed herein. We set as a goal to characterize the differences between boys and
240 girls rather than to profile modeling and so we contrasted the behavior of estimators from the
241 unconstrained model (1), the envelope model (4), the constrained model (3), and the envelope
242 version of model (3) discussed in Section 3.1.

243 Consistent with the literature, we fitted constrained model (3) and its envelope counterpart with
244 the rows of \mathbf{U} being $\mathbf{U}^T(t) = (1, t)$. The estimated dimension of the envelope for model (4) was
245 $u = 2$, and thus it was inferred that only two linear combinations of the response vectors are
246 needed to fully characterize the differences between boys and girls. The estimated dimension of

1
2
3 the envelope for the constrained envelope model (14) was $u = 1$. Table 1 shows the estimated
4
5 asymptotic variances, determined by the plug-in method, for the four estimators $\widehat{\beta}_{\text{um}}$, $\widehat{\beta}_{\text{em}}$, $\widehat{\beta}_{\text{cm}}$
6
7 and $\widehat{\beta}_{\text{ecm}}$. The unconstrained model has the worst estimated performance, followed by the regular
8
9 envelope model and the constrained model. The enveloping in the constrained model has the best
10
11 estimated performance. We would need to increase the sample size by about 2.5 times for the
12
13 constrained estimator $\widehat{\beta}_{\text{cm}}$ to have the performance estimated for the enveloped version $\widehat{\beta}_{\text{ecm}}$ with
14
15 the current sample size. The relatively bad performance of the envelope estimator $\widehat{\beta}_{\text{em}}$ can be
16
17

20 Table 1: Estimated asymptotic variances $\text{avar}(\sqrt{n}\widehat{\beta}_{(\cdot)})$ of the four elements of $\widehat{\beta}_{\text{um}}$ from the un-
21 constrained model (1), $\widehat{\beta}_{\text{em}}$ from the envelope model (4), $\widehat{\beta}_{\text{cm}}$ from the constrained model (3) and
22 $\widehat{\beta}_{\text{ecm}}$ from the envelope version of constrained model (3).

$\widehat{\beta}_{(\cdot)}$	Age			
	8	10	12	14
$\widehat{\beta}_{\text{um}}$	15.53	16.41	25.42	18.95
$\widehat{\beta}_{\text{em}}$	15.29	13.56	22.79	18.73
$\widehat{\beta}_{\text{cm}}$	13.97	13.57	15.00	18.27
$\widehat{\beta}_{\text{ecm}}$	5.88	9.16	13.16	17.89

253

34
35 traced back to the estimated eigen-structure of Σ . The eigenvalues of $\widehat{\Omega}$ and $\widehat{\Omega}_0$ were (14.61, 1.10)
36
37 and (2.20, 0.70). Envelopes offer relatively little gain when most of the variation in the response is
38
39 associated material information, as is the case here. On the other hand, the eigenvalues of $\widehat{\Omega}$ and
40
41 $\widehat{\Omega}_0$ arising from enveloping in the constrained model were 0.02 and 8.31. In this case most of the
42
43 variation in the direct response \mathbf{Y}_D is associated with immaterial information, the general setting
44
45 when envelopes perform well. Figure 2a gives a profile plot of the fitted vectors from envelope
46
47 model (4). The implied fit is quite good and close to the profile plot of the raw mean vectors shown
48
49 in Supplement Figure 3a (profile plots of residuals are also shown in Figure 3). Under envelope
50
51 theory, the distribution of $\mathbf{Q}_T \mathbf{Y}$ should be independent of the predictor values, in this case, sex.
52
53
54
55
56
57
58
59
60

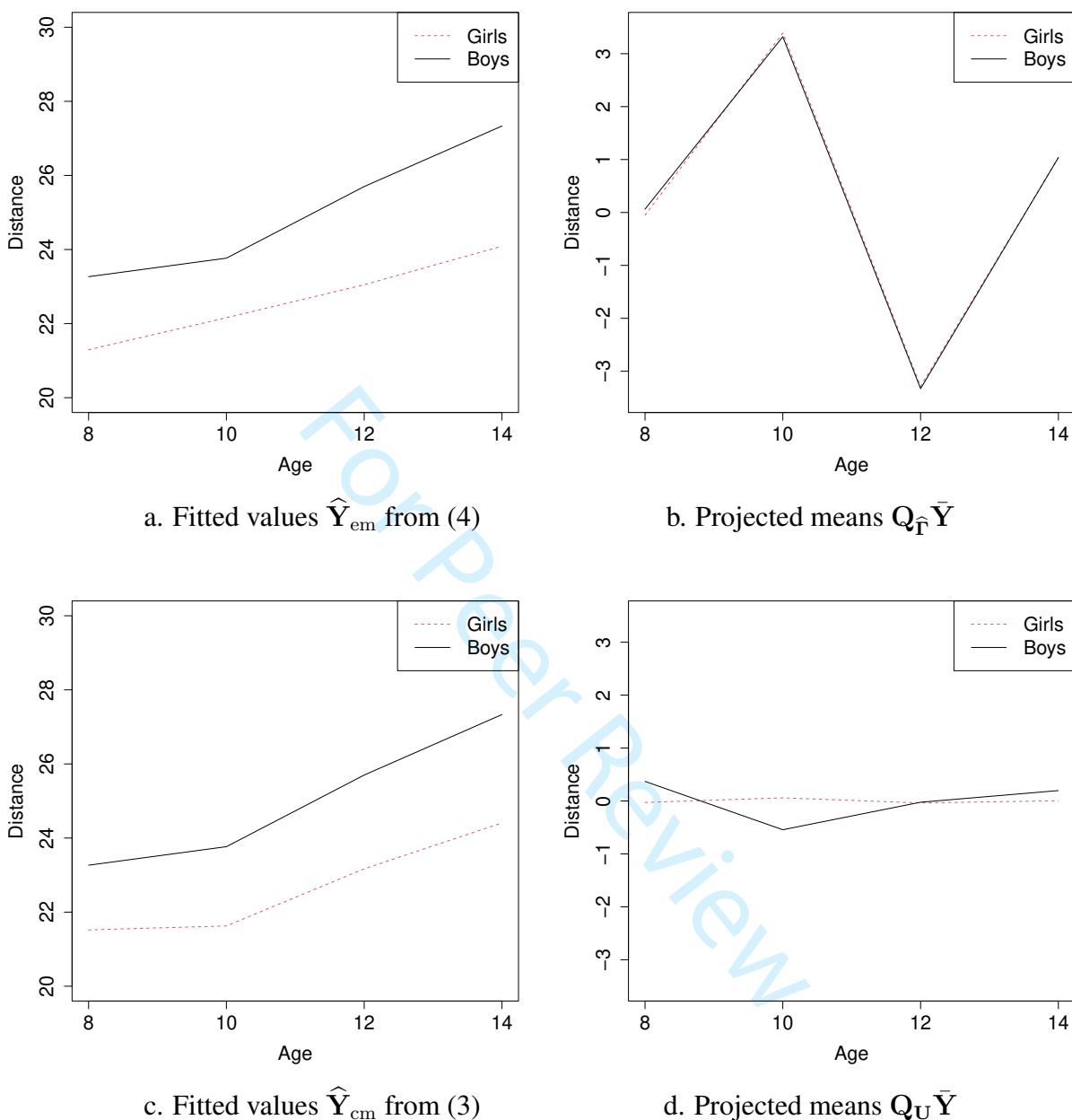


Figure 2: Profile plots by sex of (a) the fitted vectors from envelope model (4), (b) means projected onto $\text{span}^\perp(\hat{T})$, (c) the fitted vectors from the constrained model (3) and (d) means projected onto U^\perp . The vertical axis for each plot is the distance for the plotted vectors.

The profile plot of $Q_{\hat{T}} \bar{Y}$ by sex shown in Figure 2b reflects this property. Figures 2cd show the corresponding plots from the fit of the constrained model (3). The fit of the constrained model altered the shape of the profile for girls so that it more closely matches that for boys, which was

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

266 not done by the fit of the envelope model. This type of conformity is an intrinsic property of
267 constrained model (3).

268 If there is uncertainty about the containment $\mathcal{B} \subseteq \mathcal{U}$ needed for the constrained model then it
269 may be desirable to base an analysis on the envelope model (4). Otherwise, the results in the last
270 two rows of Table 1 indicate that enveloping in the constrained model (3) is the best option from
271 among those considered.

272 We also applied the scaled envelope estimator discussed in Section 3.2. The asymptotic vari-
273 ances of the elements of the corresponding estimator of β did not differ materially from those
274 shown in Table 1 for $\hat{\beta}_{\text{um}}$ and $\hat{\beta}_{\text{em}}$: Scaling offered no gains in this example. This was as expected
275 since good scale estimation generally requires large sample size.

276 5.1 Additional plots for the dental data

277 Figure 3 gives additional plots for the dental data. Figure 3a is a profile plot of the raw mean
278 vectors by sex, where there is a slight upward bend in the line for girls at age 10. This bend
279 accounts for the residual pattern from the fit of constrained model (3) shown in Figure 3c. The
280 bend is reduced in the plot of the residual vectors $\mathbf{Y} - \hat{\mathbf{Y}}_{\text{em}}$ from envelope model (3) shown in
281 Figure 3b. A comparison of the residual plots in Figures 3bc indicates that the envelope model fits
282 the raw means noticeably better than the constrained model. For contrast, Figure 2d is a plot of
283 the fitted vectors from model (2). In that model we have $\text{span}(\beta_0, \beta) \subseteq \mathcal{U}$ and consequently the
284 profile plots of the fitted vectors are linear.

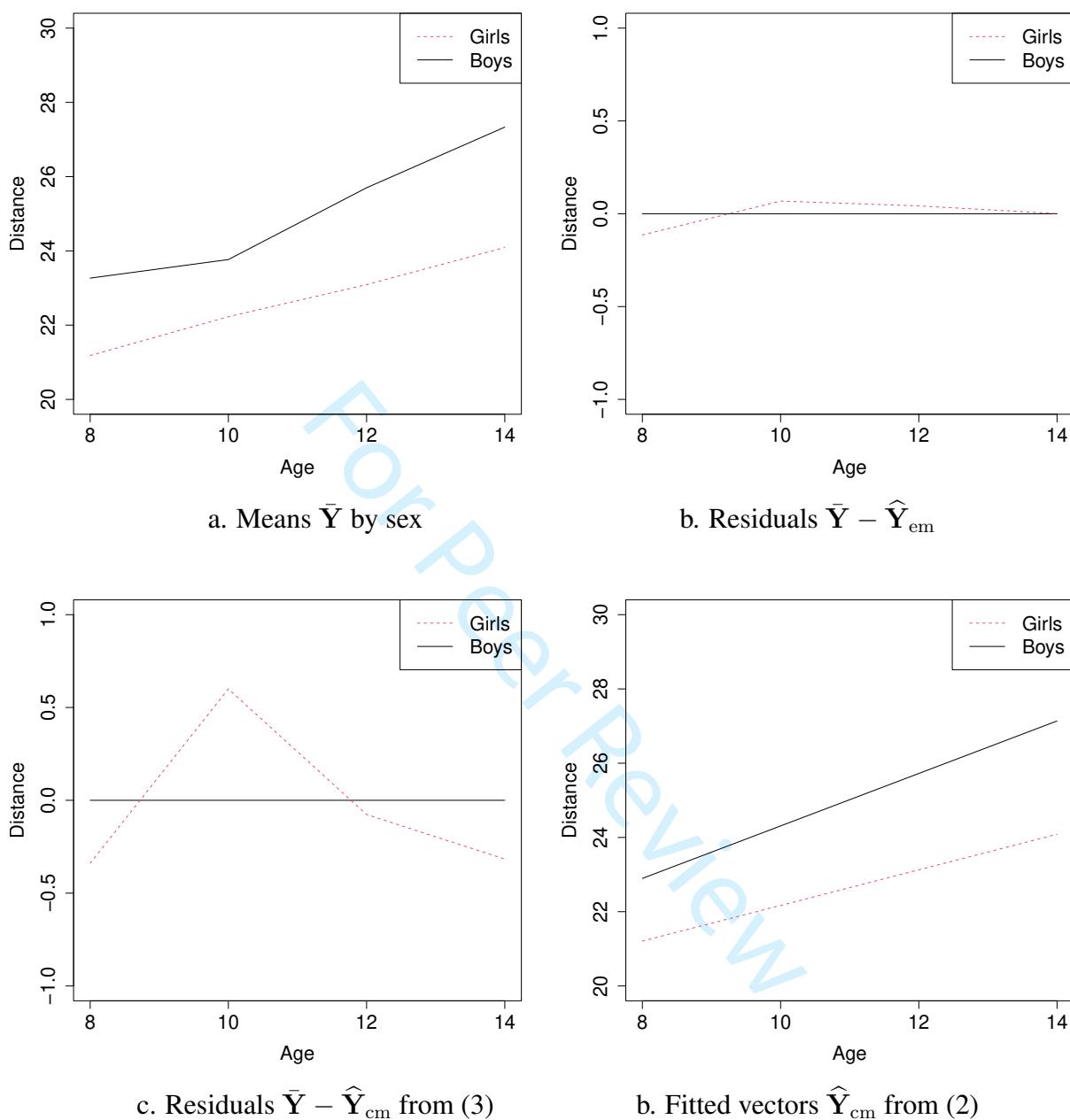


Figure 3: Dental data: Profile plots by sex of (a) the raw mean vectors, (b) Residual vectors from the fit of envelope model (4), (c) Residual vectors from the fit of constrained model (2) and (d) Fitted vectors \hat{Y}_{cm} from the fit of constrained model (3).

285 6 The China Health and Nutrition Survey

286 The China Health and Nutrition Survey (CHNS) was designed to evaluate the effects of the health,

287 nutrition and family planning policies on the health and nutritional status of its population (Popkin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

288 et al., 2009). The survey used a multistage, random cluster process to draw samples of households
289 in 15 provinces and municipal cities that vary substantially in geography, economic development,
290 public resources, and health indicators. In total, 9 surveys were carried out between 1989 and 2011.
291 We included in our analysis only the 1209 individuals that participated in all of the 9 surveys, giving
292 a total of $9 \times 1209 = 10,881$ records. Five individuals were deleted for having unreasonable
293 changes in weight or height. For instance, one individual had a height of 65 cm in the seventh
294 survey but a height of 160 cm in all other surveys. The baseline predictors we considered include
295 age at the first survey, binary indicators for gender and region (urban or rural), and a six-level
296 indicator for highest education levels obtained at the first survey. About 98.2% of the individuals
297 in the analysis were over 21 years old. Age at first survey, gender and region were fully observed
298 but there were 28 individuals with missing education levels at baseline. We imputed the missing
299 values with the education level collected at the next available visit. The response was the change in
300 BMI from baseline at the 8 followup surveys. In the 10,881 records, there was a total of 371 values
301 of either missing height or weight information needed to calculate BMI. We assumed that height
302 and weight were missing at random and imputed them by carrying the last observation forward.

303 We compared the estimated asymptotic variances of the unconstrained estimator $\hat{\beta}_{\text{um}}$, the envelope estimator $\hat{\beta}_{\text{em}}$ and the constrained estimator $\hat{\beta}_{\text{cm}}$ from model (3) using $\mathbf{U}^T = (1, t, t^2)$, where
304 t is the time in years from baseline. We also included the envelope version of the constrained
305 estimator $\hat{\beta}_{\text{ecm}}$, the scaled envelope estimator $\hat{\beta}_{\text{sem}}$ from Cook and Su (2013) and its constrained
306 version $\hat{\beta}_{\text{secm}}$ corresponding to model (3). We used version (3) of the constrained model because
307 we were interested in profile contrasts rather than modeling profiles per se.

308 Since $\hat{\beta}_{(\cdot)} \in \mathbb{R}^{8 \times 8}$, we first report in columns 4–9 of Table 2 various location statistics computed over the estimated variances of the individual elements in $\hat{\beta}_{(\cdot)}$. Using these summary statistics

1
2
3 tics as the basis for comparison, we see that the estimators fall into two clear groups. The uncon-
4 strained estimator does the worst, followed closely by the envelope estimator and the constrained
5
6 estimator. Our assessment based on just the variance summary statistics and taking computational
7
8 difficulty into account leads us to prefer the envelope constrained estimator $\hat{\beta}_{\text{ecm}}$. The model order
9
10 determined by BIC given in the third column of Table 2 tells a similar story. Based on the actual
11 BIC values, the unconstrained estimator in the first row appears clearly inferior to the others, while
12
13 the scaled constrained envelope model in the last row is clearly the best. The remaining models
14
15 are relatively difficult to distinguish. We next give a few additional details.
16
17
18
19
20
21

22 Table 2: BIC order, minimum, maximum, mean and quartiles Q_1 – Q_3 of the estimated asymptotic
23 variances of the elements in $\hat{\beta}_{(\cdot)}$ for the CHNS study

Estimator	Dimension	BIC order	Min	Q_1	Q_2	Mean	Q_3	Max
$\hat{\beta}_{\text{um}}$	8	6	0.03	0.07	0.12	0.12	0.15	0.20
$\hat{\beta}_{\text{em}}$	2	5	0.02	0.05	0.11	0.11	0.15	0.21
$\hat{\beta}_{\text{cm}}$	3	4	0.03	0.05	0.10	0.10	0.13	0.19
$\hat{\beta}_{\text{ecm}}$	1	3	0.00	0.00	0.02	0.05	0.06	0.17
$\hat{\beta}_{\text{sem}}$	1	2	0.00	0.03	0.03	0.04	0.04	0.08
$\hat{\beta}_{\text{secm}}$	1	1	0.00	0.00	0.02	0.05	0.06	0.17

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

318 The estimated dimensions of the various envelopes based using BIC are listed in the second
319 column of Table 2. We listed the maximum envelope dimension for the two non-envelope methods.
320
321 The variance gains for the envelope model over the unconstrained model shown in Table 2 are
322 reflected by the two eigenvalues (17.44, 15.90) of $\hat{\Omega}$ and the six eigenvalues of $\hat{\Omega}_0$ which ranged
323 between 1.11 and 1.62. Turning to the envelope version of the constrained model (3), the estimated
324 dimension of $\mathcal{E}_{\Sigma_{D|S}}(\mathcal{A})$ using BIC was 1. The variance gain over the unconstrained model shown
325 in Table 2 is again reflected by the value of $\hat{\Omega} = 3 \times 10^{-5}$ and the two eigenvalues of $\hat{\Omega}_0$, 0.16 and
326 2.74. As with the regular envelope model, most of the variability lies in the immaterial part of the
327 response.

1
2
3 328 The point estimates and standard errors of the considered estimators are given in Tables 3-8.
4
5
6 329 Out of 8 predictors across 8 time points (64 variables in total), the unconstrained estimator $\hat{\beta}_{um}$,
7
8 330 the envelope estimator $\hat{\beta}_{em}$, the constrained estimator $\hat{\beta}_{cm}$ and the scaled envelope estimator $\hat{\beta}_{sem}$
9
10 331 find 53, 41, 51, and 56 variables significant, while both the envelope constrained estimator $\hat{\beta}_{ecm}$
11
12 332 and the scaled version $\hat{\beta}_{secm}$ find all 64 variables significant.
13
14

15
16 Table 3: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{um}$ for CHNS study, where the
17 rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	0.09[0.05]	0.22[0.05]	0.25[0.05]	0.21[0.05]	0.17[0.05]	0.07[0.05]	0.21[0.05]	0.16[0.04]
2	0.15[0.07]	0.17[0.06]	0.25[0.07]	0.09[0.07]	0.14[0.07]	0.06[0.07]	0.19[0.07]	0.15[0.05]
3	-0.16[0.08]	-0.04[0.08]	-0.09[0.08]	-0.01[0.08]	-0.04[0.08]	-0.21[0.08]	-0.10[0.08]	-0.09[0.06]
4	-0.27[0.10]	-0.26[0.09]	-0.21[0.10]	-0.23[0.10]	-0.28[0.10]	-0.49[0.10]	-0.31[0.10]	-0.30[0.07]
5	-0.51[0.11]	-0.37[0.10]	-0.42[0.11]	-0.44[0.11]	-0.50[0.11]	-0.60[0.11]	-0.44[0.11]	-0.48[0.08]
6	-0.64[0.11]	-0.61[0.11]	-0.58[0.11]	-0.71[0.11]	-0.69[0.11]	-0.81[0.11]	-0.63[0.11]	-0.68[0.08]
7	-0.91[0.13]	-0.73[0.12]	-0.77[0.13]	-0.92[0.12]	-0.80[0.12]	-0.99[0.12]	-0.91[0.12]	-0.88[0.09]
8	-1.00[0.13]	-0.87[0.12]	-0.86[0.13]	-1.10[0.13]	-0.94[0.13]	-1.11[0.13]	-1.07[0.13]	-0.99[0.10]

31
32 Table 4: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{em}$ for CHNS study, where the
33 rows correspond to surveys, columns are predictors

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	0.09[0.05]	0.13[0.05]	0.14[0.05]	0.15[0.05]	0.11[0.05]	0.03[0.05]	0.14[0.05]	0.09[0.04]
2	0.05[0.07]	0.10[0.06]	0.12[0.07]	0.12[0.07]	0.07[0.07]	-0.03[0.07]	0.10[0.07]	0.04[0.05]
3	-0.04[0.08]	0.04[0.08]	0.06[0.08]	0.04[0.08]	0.00[0.08]	-0.14[0.08]	0.02[0.08]	-0.04[0.06]
4	-0.20[0.10]	-0.11[0.09]	-0.09[0.10]	-0.13[0.10]	-0.16[0.10]	-0.32[0.10]	-0.15[0.10]	-0.21[0.07]
5	-0.51[0.11]	-0.40[0.10]	-0.40[0.11]	-0.49[0.11]	-0.47[0.11]	-0.64[0.11]	-0.49[0.11]	-0.52[0.08]
6	-0.63[0.11]	-0.52[0.11]	-0.52[0.11]	-0.64[0.11]	-0.59[0.11]	-0.75[0.11]	-0.63[0.11]	-0.65[0.08]
7	-0.85[0.13]	-0.73[0.12]	-0.74[0.13]	-0.89[0.12]	-0.81[0.12]	-0.97[0.12]	-0.87[0.12]	-0.87[0.09]
8	-1.01[0.13]	-0.89[0.12]	-0.91[0.13]	-1.09[0.13]	-0.97[0.13]	-1.12[0.13]	-1.06[0.13]	-1.03[0.10]

Table 5: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{cm}$ for CHNS study, where the rows correspond to surveys, columns are predictors

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	0.12[0.06]	0.23[0.06]	0.27[0.06]	0.20[0.06]	0.19[0.06]	0.09[0.06]	0.22[0.06]	0.18[0.05]
2	0.05[0.06]	0.14[0.06]	0.17[0.06]	0.13[0.06]	0.10[0.06]	-0.01[0.06]	0.13[0.06]	0.09[0.05]
3	-0.11[0.08]	-0.06[0.07]	-0.04[0.08]	-0.05[0.08]	-0.10[0.08]	-0.23[0.08]	-0.07[0.08]	-0.10[0.06]
4	-0.27[0.09]	-0.22[0.08]	-0.21[0.09]	-0.22[0.09]	-0.26[0.09]	-0.41[0.09]	-0.25[0.09]	-0.27[0.07]
5	-0.51[0.10]	-0.45[0.09]	-0.45[0.10]	-0.50[0.10]	-0.49[0.10]	-0.66[0.10]	-0.52[0.10]	-0.52[0.08]
6	-0.65[0.11]	-0.57[0.10]	-0.58[0.10]	-0.65[0.10]	-0.62[0.10]	-0.79[0.10]	-0.67[0.10]	-0.65[0.08]
7	-0.88[0.11]	-0.76[0.11]	-0.77[0.11]	-0.92[0.11]	-0.82[0.11]	-1.00[0.11]	-0.91[0.11]	-0.87[0.09]
8	-1.05[0.13]	-0.90[0.12]	-0.90[0.13]	-1.12[0.12]	-0.96[0.12]	-1.15[0.12]	-1.09[0.12]	-1.03[0.10]

Table 6: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{ecm}$ for CHNS study, where the rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]
2	-0.04[0.00]	-0.03[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]
3	-0.15[0.02]	-0.14[0.01]	-0.14[0.02]	-0.17[0.02]	-0.14[0.02]	-0.15[0.02]	-0.16[0.02]	-0.15[0.01]
4	-0.28[0.03]	-0.26[0.03]	-0.27[0.03]	-0.32[0.03]	-0.27[0.03]	-0.29[0.03]	-0.31[0.03]	-0.28[0.02]
5	-0.52[0.06]	-0.48[0.05]	-0.50[0.06]	-0.59[0.05]	-0.50[0.05]	-0.54[0.05]	-0.57[0.05]	-0.52[0.04]
6	-0.67[0.07]	-0.62[0.07]	-0.64[0.07]	-0.76[0.07]	-0.64[0.07]	-0.69[0.07]	-0.74[0.07]	-0.67[0.05]
7	-0.93[0.10]	-0.86[0.09]	-0.88[0.10]	-1.05[0.10]	-0.89[0.10]	-0.96[0.10]	-1.02[0.10]	-0.93[0.07]
8	-1.13[0.12]	-1.04[0.11]	-1.07[0.12]	-1.27[0.12]	-1.07[0.12]	-1.16[0.12]	-1.23[0.12]	-1.13[0.09]

Table 7: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{sem}$ for CHNS study, where the rows correspond to surveys, columns are predictors

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	0.32[0.05]	0.34[0.05]	0.35[0.05]	0.39[0.05]	0.33[0.05]	0.33[0.05]	0.39[0.05]	0.32[0.04]
2	0.30[0.05]	0.32[0.05]	0.33[0.06]	0.37[0.06]	0.31[0.05]	0.31[0.05]	0.37[0.06]	0.31[0.05]
3	0.20[0.05]	0.21[0.06]	0.22[0.06]	0.24[0.06]	0.20[0.05]	0.20[0.05]	0.24[0.06]	0.20[0.05]
4	0.09[0.05]	0.10[0.06]	0.10[0.06]	0.11[0.06]	0.09[0.05]	0.09[0.05]	0.11[0.06]	0.09[0.05]
5	0.06[0.02]	0.06[0.02]	0.07[0.02]	0.07[0.02]	0.06[0.02]	0.06[0.02]	0.07[0.02]	0.06[0.02]
6	-0.19[0.04]	-0.20[0.04]	-0.21[0.05]	-0.23[0.05]	-0.20[0.04]	-0.20[0.04]	-0.23[0.05]	-0.19[0.04]
7	-0.37[0.06]	-0.39[0.06]	-0.40[0.06]	-0.45[0.07]	-0.37[0.06]	-0.37[0.06]	-0.44[0.07]	-0.37[0.05]
8	-0.52[0.08]	-0.56[0.08]	-0.57[0.08]	-0.64[0.08]	-0.53[0.08]	-0.53[0.08]	-0.63[0.08]	-0.53[0.07]

1
 2
 3 Table 8: Point estimates ($\times 10$), standard error in brackets ($\times 10$) of $\hat{\beta}_{\text{secm}}$ for CHNS study, where
 4 the rows correspond to surveys, columns are predictors and 0.00 means < 0.01
 5

S	Gender	edu1b	edu2b	edu3b	edu4b	edu5b	Urban	ageb
1	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]	-0.01[0.00]
2	-0.04[0.00]	-0.03[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]	-0.04[0.00]
3	-0.15[0.02]	-0.14[0.01]	-0.14[0.02]	-0.17[0.02]	-0.14[0.02]	-0.15[0.02]	-0.16[0.02]	-0.15[0.01]
4	-0.28[0.03]	-0.26[0.03]	-0.27[0.03]	-0.32[0.03]	-0.27[0.03]	-0.29[0.03]	-0.31[0.03]	-0.28[0.02]
5	-0.52[0.06]	-0.48[0.05]	-0.50[0.06]	-0.59[0.05]	-0.50[0.05]	-0.54[0.05]	-0.57[0.05]	-0.52[0.04]
6	-0.67[0.07]	-0.62[0.07]	-0.64[0.07]	-0.76[0.07]	-0.64[0.07]	-0.69[0.07]	-0.74[0.07]	-0.67[0.05]
7	-0.93[0.10]	-0.86[0.09]	-0.88[0.10]	-1.05[0.10]	-0.89[0.10]	-0.96[0.10]	-1.02[0.10]	-0.93[0.07]
8	-1.13[0.12]	-1.04[0.11]	-1.07[0.12]	-1.27[0.12]	-1.07[0.12]	-1.16[0.12]	-1.23[0.12]	-1.13[0.09]

17
 18
 19
 20
 21
 22 **7 Enveloping (α_0, α)**
 23
 24
 25

26 Our focus has so far been on estimation of β , either in the unconstrained model (1), the constrained
 27
 28 model with $\beta = \mathbf{U}\alpha$, the envelope model (4) with $\beta = \Gamma\eta$, the envelope constrained model with
 29
 30
 31 $\beta = \mathbf{U}\phi\eta$ or in one of the scaled version. This emphasis on β reflects an interest in profile
 32
 33 contrasts rather than on the profiles themselves. When \mathbf{U} is selected to model profiles rather than
 34
 35 profile contrasts, as in model (2), the intercept vector α_0 may be of interest because it represents
 36
 37 coordinates of the profile when $\mathbf{X} = 0$. In this section we again consider the model (2), but now we
 38
 39 pursue envelop estimation of α_0 and α simultaneously, which may be appropriate when profiles
 40
 41 are important.

42 The model decomposition (6)–(7) still holds so only (7) is required to estimate (α_0, α) , al-
 43 though both are again required for the full likelihood function and asymptotic variances. The stan-
 44 dard estimator $(\hat{\alpha}_{0,\text{cm}}, \hat{\alpha}_{\text{cm}})$ is asymptotically normal with variance $\text{avar}(\sqrt{n}\text{vec}(\hat{\alpha}_{0,\text{cm}}, \hat{\alpha}_{\text{cm}})) =$

1
2
3 345 $\tau_{\mathbf{X}}^{-1} \otimes \Sigma_{D|S}$ where
4
5
6
7
8
9

$$\tau_{\mathbf{X}} = \lim_{n \rightarrow \infty} \begin{pmatrix} 1 & \bar{\mathbf{X}}^T \\ \bar{\mathbf{X}} & \mathbf{T}_{\mathbf{X}} \end{pmatrix}.$$

10 346 Turning to envelopes and writing $\mathbf{Z} = (1, \mathbf{X}^T)^T$, model (7) can be rewritten as
11
12
13
14
15
16
17
18
19
20
21
22
23
24

$$\begin{aligned} \mathbf{Y}_{Di} \mid \mathbf{Y}_{Si} &= (\boldsymbol{\alpha}_0, \boldsymbol{\alpha}) \mathbf{Z}_i + \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si} + \mathbf{e}_{D|Si} \\ &= \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{Z}_i + \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si} + \mathbf{e}_{D|Si} \\ \Sigma_{D|S} &= \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T + \boldsymbol{\Gamma}_0 \boldsymbol{\Omega} \boldsymbol{\Gamma}_0^T, \end{aligned} \quad (14)$$

25 347 where $\boldsymbol{\Gamma}$ is a semi-orthogonal basis matrix for $\mathcal{E}_{\Sigma_{D|S}}(\text{span}(\boldsymbol{\alpha}_0, \boldsymbol{\alpha}))$. The number of real parameters
26
27 in this model is $u(p + 1) + r(r + 1)/2$. Since we are enveloping only on $(\boldsymbol{\alpha}_0, \boldsymbol{\alpha})$ this is again in
28
29 the form of a partial envelope, but now there is no intercept term. The likelihood function for
30
31 parameters $(\boldsymbol{\Gamma}, \boldsymbol{\Omega}, \boldsymbol{\Omega}_0, \boldsymbol{\eta}, \boldsymbol{\phi}_{D|S}, \Sigma_S)$ is
32
33
34

$$\begin{aligned} L_u &= -nr(1 + \log(2\pi))/2 - \frac{n}{2} \log |\Sigma_S| - \frac{1}{2} \sum_{i=1}^n \mathbf{Y}_{Si}^T \Sigma_S^{-1} \mathbf{Y}_{Si} - \frac{n}{2} \log |\Sigma_{D|S}| \\ &\quad - \frac{1}{2} \sum_{i=1}^n [(\mathbf{Y}_{Di} - \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{Z}_i - \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si})^T \Sigma_{D|S}^{-1} (\mathbf{Y}_{Di} - \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{Z}_i - \boldsymbol{\phi}_{D|S} \mathbf{Y}_{Si})] \end{aligned}$$

43
44 351 The maximum likelihood estimator of Σ_S is \mathbf{T}_S , which is the same as for the other models we
45
46 have considered. Holding all other parameters fixed, the value of $\boldsymbol{\phi}_{D|S}$ that maximizes L is
47
48
49
50
51
52
53
54

$$\boldsymbol{\phi}_{D|S} = \mathbf{T}_{D,S} \mathbf{T}_S^{-1} - \boldsymbol{\Gamma} \boldsymbol{\eta} \mathbf{T}_{Z,S} \mathbf{T}_S^{-1}.$$

55 353 Substituting this into the log likelihood we find its maximized over $\boldsymbol{\eta}$ by $\boldsymbol{\Gamma}^T$ times the coefficient
56
57
58
59
60

1
 2
 3 354 matrix from the ordinary least squares regression of \mathbf{Y}_D on $(\mathbf{Z}, \mathbf{Y}_S)$, $\boldsymbol{\eta} = \boldsymbol{\Gamma}^T \mathbf{S}_{D,(\mathbf{Z},S)} \mathbf{S}_{(\mathbf{Z},S)}^{-1}$ Con-
 4 tinuing to maximize the resulting partially maximized log likelihoods, we have $\boldsymbol{\Omega} = \boldsymbol{\Gamma}^T \mathbf{S}_{D|(\mathbf{Z},S)} \boldsymbol{\Gamma}$
 5
 6 355 and $\boldsymbol{\Omega}_0 = \boldsymbol{\Gamma}_0^T \mathbf{T}_{\mathbf{R}_{D|S}} \boldsymbol{\Gamma}_0$, which results in the log likelihood maximized over all parameters except
 7
 8 356 $\boldsymbol{\Gamma}$:
 9
 10
 11
 12
 13
 14
 15
$$L_u(\boldsymbol{\Gamma}) = -\frac{n}{2} \left\{ r(1 + \log(2\pi)) + \log |\widehat{\boldsymbol{\Sigma}}_S| + \log |\boldsymbol{\Gamma}^T \mathbf{S}_{D|(\mathbf{Z},S)} \boldsymbol{\Gamma}| + \log |\boldsymbol{\Gamma}_0^T \mathbf{T}_{\mathbf{R}_{D|S}} \boldsymbol{\Gamma}_0| \right\}.$$

 16
 17
 18
 19 358 The maximum likelihood estimator of an envelope basis can thus be represented as
 20
 21
 22
 23
 24
$$\widehat{\boldsymbol{\Gamma}} = \arg \min_{\mathbf{G}} \log |\mathbf{G}^T \mathbf{S}_{D|(\mathbf{Z},S)} \mathbf{G}| + \log |\mathbf{G}^T \mathbf{T}_{\mathbf{R}_{D|S}}^{-1} \mathbf{G}|,$$

 25
 26
 27
 28 359 where the minimum is computed over all semi-orthogonal matrices $\mathbf{G} \in \mathbb{R}^{k \times u}$. The fully maxi-
 29
 30 360 mized log likelihood is then
 31
 32
 33
 34
 35
$$\hat{L}_u = c - \frac{n}{2} \left\{ \log |\widehat{\boldsymbol{\Sigma}}_S| + \log |\mathbf{T}_{\mathbf{R}_{D|S}}| + \log |\widehat{\boldsymbol{\Gamma}}^T \mathbf{S}_{D|(\mathbf{Z},S)} \widehat{\boldsymbol{\Gamma}}| + \log |\widehat{\boldsymbol{\Gamma}}^T \mathbf{T}_{\mathbf{R}_{D|S}}^{-1} \widehat{\boldsymbol{\Gamma}}| \right\},$$

 36
 37
 38
 39 361 where $c = n \log |\mathbf{W}| - (nr/2)(1 + \log(2\pi))$.
 40
 41
 42 362 Finally, the maximum likelihood estimator of a basis for $\mathcal{E}_{\Sigma_{D|S}}(\text{span}(\boldsymbol{\alpha}_0, \boldsymbol{\alpha}))$ can be repre-
 43
 44 363 sented as $\widehat{\boldsymbol{\Gamma}} = \arg \min_{\mathbf{G}} \log |\mathbf{G}^T \mathbf{S}_{D|(\mathbf{Z},S)} \mathbf{G}| + \log |\mathbf{G}^T \mathbf{T}_{\mathbf{R}_{D|S}}^{-1} \mathbf{G}|$, where the minimum is computed
 45
 46 364 over all semi-orthogonal matrices $\mathbf{G} \in \mathbb{R}^{k \times u}$. The envelope estimator of $(\boldsymbol{\alpha}_0, \boldsymbol{\alpha})$ is then $(\widehat{\boldsymbol{\alpha}}_0, \widehat{\boldsymbol{\alpha}}) =$
 47
 48 365 $\mathbf{P}_{\widehat{\boldsymbol{\Gamma}}}(\tilde{\boldsymbol{\alpha}}_0, \tilde{\boldsymbol{\alpha}})$ where $(\tilde{\boldsymbol{\alpha}}_0, \tilde{\boldsymbol{\alpha}})$ is the ordinary least squares estimators for the coefficient of the predi-
 49
 50 366 tor $(1, \mathbf{X})$ in the regression of \mathbf{Y}_D onto $(1, \mathbf{X}, \mathbf{Y}_S)$. The estimators of $\boldsymbol{\phi}_{D|S}$, $\boldsymbol{\eta}$, $\boldsymbol{\Omega}$, $\boldsymbol{\Omega}_0$ and $\boldsymbol{\Sigma}_{D|S}$ can
 51
 52 367 then be constructed by substituting $\widehat{\boldsymbol{\Gamma}}$ into previously given expressions for them. The asymptotic
 53
 54 368 variance of $\text{vec}(\widehat{\boldsymbol{\alpha}}_0, \widehat{\boldsymbol{\alpha}})$ is $\text{avar}(\sqrt{n} \text{vec}(\widehat{\boldsymbol{\alpha}}_0, \widehat{\boldsymbol{\alpha}})) = \boldsymbol{\tau}_{\mathbf{Z}}^{-1} \otimes \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^T + (\boldsymbol{\eta}^T \otimes \boldsymbol{\Gamma}_0) \mathbf{M}^{-1}(\boldsymbol{\tau}_{\mathbf{Z}}) (\boldsymbol{\eta} \otimes \boldsymbol{\Gamma}_0)$.
 55
 56
 57
 58
 59
 60

369 8 Non-normality and the bootstrap

370 The methods presented herein are all based on maximum likelihood estimators, assuming normal
 371 errors. When the errors are non-normal with finite fourth moments, all estimators are still root- n
 372 consistent and asymptotically normal (see, for example, Cook and Zhang, 2015, Section 5.1), but
 373 the asymptotic variances based on the Fisher information under normality may no longer be accu-
 374 rate. In such cases the residual bootstrap can be used for variances and inference. For illustration,
 375 we next describe how to use the bootstrap to estimate $\text{var}(\text{vec}(\hat{\alpha}))$, the variance of the envelope
 376 estimator of α as described in Section 3.1. The procedure is similar for other settings.

377 Let $\mathcal{R} = \{\mathbf{R}_1, \dots, \mathbf{R}_n\}$ denote the collection of residual vectors \mathbf{R}_i from the standard fit of
 378 model (2) and recall that the estimators for the corresponding envelope model are denoted with
 379 “hats”, as described in Section 3.1. Then a bootstrap sample $\{\mathbf{R}_1^*, \dots, \mathbf{R}_n^*\}$ from \mathcal{R} is used to
 380 generate a bootstrap sample $\{\mathbf{Y}_i^*\}$ of the responses as follows,

$$35 \quad \mathbf{Y}_i^* = \mathbf{U}\hat{\alpha}_0 + \mathbf{U}\hat{\alpha}\mathbf{X}_i + \mathbf{R}_i^*, \quad i = 1, \dots, n.$$

381 The resulting bootstrap data $\{\mathbf{Y}_i^*, \mathbf{X}_i, i = 1, \dots, n\}$ are then used to construct the first bootstrap
 382 estimator $\hat{\alpha}_1^*$ of α , employing the value of u used in the construction of $\hat{\alpha}$ along with methods de-
 383 scribed in Section 3.1. Repeating this process B times gives bootstrap estimates $\hat{\alpha}_j^*, j = 1, \dots, B$.
 384 The sample variance $\mathbf{S}_{\text{vec}(\hat{\alpha}^*)}$ is then a bootstrap estimator of $\text{var}(\text{vec}(\hat{\alpha}))$. Background on using
 385 the residual bootstrap with envelope models is available from Cook (2018, Section 11.1).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

386 9 Estimating the envelope dimension

387 Methods for estimating the envelope dimension u include likelihood ratio testing, an information
388 criterion or cross validation (Cook et al., 2010). A review and expanded discussion of estimation
389 of u is available from Cook (2018).

390 The likelihood ratio for testing an envelope model with dimension $u < k$ against the model
391 with $u = k$ can be cast as a test of the hypothesis $u = u_0$ versus the alternative $u = k$. The
392 likelihood ratio statistic for this hypothesis is $\Lambda(u_0) = 2(\hat{L}_k - \hat{L}_{u_0})$, where \hat{L}_a is the maximized
393 envelope log likelihood for the envelope model in question with $u = a$. Under the null hypothesis
394 this statistic is distributed asymptotically as a chi-squared random variable with $(k - u_0)$ degrees
395 of freedom, the number of real parameters for the standard model ($u = k$) minus that for the
396 envelope model with $u = u_0$. The likelihood ratio test statistic $\Lambda(u_0)$ can be used sequentially to
397 estimate u : Starting with $u_0 = 0$, test the hypothesis $u = u_0$ against $u = k$ at a selected level
398 α . If the hypothesis is rejected, increment u_0 by 1 and test again. The estimate \hat{u} of u is the first
399 hypothesized value that is not rejected.

400 The envelope dimension can also be selected by using an information criterion:

$$\hat{u} = \arg \min_u \{-2\hat{L}_u + h(n)N(u)\}, \quad (15)$$

401 where $N(u)$ is the number of real parameters in the envelope model with envelope dimension
402 u , and $h(n) = \log n$ for BIC and $h(n) = 2$ for AIC. Theoretical results (Su and Cook, 2013,
403 Prop. 4) supported by simulations indicate that AIC tends to overestimate u . BIC will select the
404 correct u with probability tending to 1 as $n \rightarrow \infty$ (Yang, 2005), but it can be slow to respond in

1
2
3 405 small samples. Selection by likelihood ratio testing can perform well depending on the sample
4 406 size, but asymptotically it makes an error with rate α . It may be useful to use all three methods
5 407 in applications, giving a preference to BIC and LRT if there is disagreement, or using the largest
6 408 estimate of u in cases where it is desirable to be conservative. It is also possible to avoid the
7 409 selection of u by using model averaging to combine the envelope estimators over all possible
8 410 values of u (Eck and Cook, 2017).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

411 10 Envelopes and Rao's simple structure

412 In this section we contrast envelopes and Rao's structure. Since Rao's structure is typically em-
413 ployed the context of prediction we assume that \mathbf{U} is semi-orthogonal to ease exposition. In the
414 context of model (2), Rao's simple structure is

$$\Sigma = \mathbf{U}\Delta\mathbf{U}^T + \mathbf{U}_0\Delta_0\mathbf{U}_0^T, \quad (16)$$

415 where $\Delta \in \mathbb{R}^{k \times k}$ and $\Delta_0 \in \mathbb{R}^{(r-k) \times (r-k)}$ are positive definite and $(\mathbf{U}, \mathbf{U}_0)$ is orthogonal, as defined
416 previously. It follows from this structure that the eigenvectors of Σ must be in either \mathcal{U} or \mathcal{U}^\perp , and
417 that $\mathcal{E}_\Sigma(\mathcal{U}) = \mathcal{U}$. This simplifies the analysis considerably since it implies that $\mathbf{U}^T \Sigma \mathbf{U}_0 = 0$ and
418 thus that $\mathbf{Y}_S \perp\!\!\!\perp \mathbf{Y}_D \mid \mathbf{X}, \phi_{D|S} = 0, \Sigma_{D|S} = \Delta, \Sigma_S = \Delta_0$ and that analysis can be based on the
419 unconstrained model $\mathbf{Y}_{Di} \mid \mathbf{X}_i = \boldsymbol{\alpha}_0 + \boldsymbol{\alpha}\mathbf{X}_i + \mathbf{e}_{D|Si}$, which becomes the basis for an analysis
420 based on the envelope $\mathcal{E}_\Delta(\mathcal{A})$, recalling that $\mathcal{A} = \text{span}(\boldsymbol{\alpha})$.

421 In an envelope analysis based on a model like (14), the envelope dimension u is in effect a
422 model-selection parameter that typically needs to be inferred from the data (see Section 9). As-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

423 suming that an originating model like (2) holds, the only remaining model selection issue is the
 424 choice of u . If it is concluded that $u = k$, so the model defaults to the original growth curve model,
 425 then envelopes offer no gain. If it is concluded that $u < k$ then there is a proper envelope model
 426 and some perhaps substantial efficiency gains can be expected. In this sense an envelope analysis
 427 is adaptive through the choice of u . In contrast, Rao's simple structure is non-adaptive because it
 428 relies on the strong assumption that $\mathcal{E}_\Sigma(\mathcal{U}) = \mathcal{U}$. One possible generalization of Rao's structure is
 429 to base analysis on $\mathcal{E}_\Sigma(\mathcal{U})$ without requiring that it equal \mathcal{U} .

430 Rao's approach was to impose a structure on Σ via (16), while in the envelope approach we
 431 use an adaptive structure on $\Sigma_{D|S}$. It seems most informative to compare these structures on the
 432 \mathbf{W} scale via the precision matrix, $\Sigma_{\mathbf{W}}^{-1}$. Under Rao's structure,

$$\Sigma_{\mathbf{W}}^{-1} = \begin{pmatrix} \Delta^{-1} & 0 \\ 0 & \Delta_0^{-1} \end{pmatrix},$$

433 while under the envelope model (14)

$$\Sigma_{\mathbf{W}}^{-1} = \begin{pmatrix} \Sigma_{D|S}^{-1} & -\Sigma_{D|S}^{-1} \phi_{D|S} \\ -\phi_{D|S}^T \Sigma_{D|S}^{-1} & \Sigma_S^{-1} + \phi_{D|S}^T \Sigma_{D|S}^{-1} \phi_{D|S} \end{pmatrix}.$$

434 It seems clear from these representations that the envelope structure is much less restrictive, which
 435 is reflected also by the parameter counts in the $\Sigma_{\mathbf{W}}$'s. The number of free real parameters in Rao's
 436 $\Sigma_{\mathbf{W}}$ is $r(r+1)/2 - k(r-k)$, while that for the envelope model is $r(r+1)/2$, the difference being
 437 reflected by the absence of $\phi_{D|S}$ in Rao's structure.

438 References

439 Cook, R. D. (2018), *An Introduction to Envelopes*, Wiley, Hoboken, NJ.

440 Cook, R. D. and Forzani, L. (2008), 'Covariance reducing models: An alternative to spectral modelling of covariance
441 matrices', *Biometrika* **95**(4), 799–812.

442 **URL:** <https://doi.org/10.1093/biomet/asn052>

443 Cook, R. D., Forzani, L. and Zhang, X. (2015), 'Envelopes and reduced-rank regression', *Biometrika* **102**(2), 439–456.

444 **URL:** <https://doi.org/10.1093/biomet/asv001>

445 Cook, R. D., Li, B. and Chiaromonte, F. (2010), 'Envelope models for parsimonious and efficient multivariate linear
446 regression', *Statistica Sinica* **20**(3), 927–960.

447 Cook, R. D. and Su, Z. (2013), 'Scaled envelopes: scale-invariant and efficient estimation in multivariate linear regres-
448 sion', *Biometrika* **100**(4), 939–954.

449 Cook, R. D. and Zhang, X. (2015), 'Simultaneous envelopes for multivariate linear regression', *Technometrics*
450 **57**(1), 11–25.

451 Eck, D. J. and Cook, R. D. (2017), 'Weighted envelope estimation to handle variability in model selection.', *Biometrika*
452 **104**(3), 743–749.

453 **URL:** <https://doi.org/10.1093/biomet/asx035>

454 Milliken, G. A. and Akdeniz, F. (1977), 'A theorem on the difference of the generalized inverse of two nonnegative
455 matrices', *Communications in Statistics – Theory and Methods* **6**, 73–79.

456 Pan, J.-X. and Fang, K.-T. (2002), *Growth Curve Models and Statistical Diagnostics*, Springer, New York.

457 Popkin, B., Du, S., Zhai, F. and Zhang, B. (2009), 'Cohort profile: The china health and nutrition surveymonitoring
458 and understanding socio-economic and health change in china, 1989–2011', *International Journal of Epidemiology*
459 **39**, 1435–1440.

1
2
3 460 Potthoff, R. F. and Roy, S. N. (1964), 'A generalized multivariate analysis of variance model useful especially for
4
5 461 growth curve problems', *Biometrika* **51**(3), 313–326.
6
7 462 **URL:** <https://www.jstor.org/stable/2334137>
8
9
10 463 Shapiro, A. (1986), 'Asymptotic theory of overparameterized structural models', *J. Am. Statist. Assoc.* **81**, 142–149.
11
12
13 464 Su, Z. and Cook, R. D. (2011), 'Partial envelopes for efficient estimation in multivariate linear regression', *Biometrika*
14
15 465 **98**(1), 133–146.
16
17 466 **URL:** <http://dx.doi.org/10.1093/biomet/asq063>
18
19
20 467 Su, Z. and Cook, R. D. (2013), 'Estimation of multivariate means with heteroscedastic errors using envelope models',
21
22 468 *Statistica Sinica* **23**(1), 213–230.
23
24
25 469 Yang, Y. (2005), 'Can the strengths of aic and bic be shared? a conflict between model identification and regression
26
27 470 estimation', *Biometrika* **92**(4), 937–950.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60