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Abstract5

A constrained multivariate linear model is a multivariate linear model with the columns6

of its coefficient matrix constrained to lie in a known subspace. This class of models includes7

those typically used to study growth curves and longitudinal data. Envelope methods have been8

proposed to improve the estimation efficiency in unconstrained multivariate linear models, but9

have not yet been developed for constrained models. We pursue that development in this10

article. We first compare the standard envelope estimator with the standard estimator arising11

from a constrained multivariate model in terms of bias and efficiency. To further improve12

efficiency, we propose a novel envelope estimator based on a constrained multivariate model.13

We show the advantage of our proposals by simulations and by studying the probiotic capacity14

to reduced Salmonella infection.15
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1 Introduction17

Consider the multivariate linear regression model18

Yi = β0 + βXi + εi, i = 1, . . . , n, (1)

with stochastic response Yi ∈ Rr, non-stochastic predictors Xi ∈ Rp, β0 ∈ Rr, β ∈ Rr×p and19

error vectors εi independent copies of ε ∼ N(0,Σ). The predictors are naturally non-stochastic20

when they are selected by design. When the predictors are sampled, we condition on them at the21

outset and so treating them as non-stochastic because they are ancillary under model (1). Model22

(1) is unconstrained in the sense that each response is allowed a separate linear regression: the23

maximum likelihood estimator (MLE) of the j-th row of (β0,β) is the same as the estimator of the24

coefficients from the linear regression of the j-th response on X. In many applications, particularly25

analyses of growth curves and longitudinal data, we may have information that span(β0,β) is26

contained in a known subspace U with basis matrix U ∈ Rr×k. The classic dental data (Potthoff27

and Roy, 1964; Lee and Geisser, 1975; Rao, 1987; Lee, 1988) is an example of such a case.28

Example 1 A study of dental growth measurements of the distance (mm) from the center of the29

pituitary gland to the pteryomaxillary fissure were obtained on 11 girls and 16 boys at ages 8, 10,30

12, and 14. The goal was to study the growth measurement as a function of time and sex. We31

revisited this example using the methodology presented in this paper in Supplement Section 5.32
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Let Yik denote the continuous measure of distance for child i at age tk, for tk = 8, 10, 12, 14,33

and let Xi denote the gender indicator for child i (1 for boy and 0 for girl). After graphical34

inspection, many researchers treated the population means for distance as linear in time for each35

gender. Following that, a mixed effects repeated measure model is Yik = α00 + b0i + α01Xi +36

(α10 + b1i + α11Xi)tk + ε∗ik, where ε∗i = (ε∗i1, . . . , ε
∗
ir)

T i.i.d.∼ N(0,Σ∗), b0i and b1i denote the37

random intercept and slope, (b0i, b1i)
i.i.d.∼ N(0,D), where D ∈ S2×2. We rewrite this model as38

Yi = Uα0 +UαXi + ǫi (2)

with U := (1, t) with t = (8, 10, 12, 14)T , α0 = (α00, α10)α = (α01, α11), εi = ε∗i+b0i1r×1+b1it39

and εi
i.i.d.∼ N(0,Σ). Applying the same ideas to just β in (1), so span(β) ⊆ U without requiring40

that span(β0) ⊆ U , leads to the model41

Yi = β0 +UαXi + εi, i = 1, . . . , n. (3)

Let B = span(β). If we set U = 1r, so in model (3) α is a row vector of length p, then the mean42

functions for the individual responses are parallel. Although motivated in the context of the dental43

data, we use models (2) and (3) as general forms that can be adapted to different applications by44

varying the choice of U, referring to them as constrained multivariate linear models. Cooper and45

Evans (2002) used a version of model (2) with U reflecting charge balance constraints on chemical46

constituents of water samples.47

Constrained models occur in various areas including growth curve and longitudinal studies48

where the elements of Yi are repeated observations on the i-th experimental unit over time. It is49
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common in such settings to model the rows of U as a user-specified vector-valued function u(t) ∈50

Rk of time t, the i-th row of U then being uT (ti). Polynomial bases uT (t) = (1, t, t2, . . . , tk−1) are51

prevalent, particularly in the foundational work of Potthoff and Roy (1964), Rao (1965), Grizzle52

and Allen (1969) and others, but splines (Nummi and Koskela, 2008) or other basis constructions53

(Izenman and Williams, 1989) could be used as well. In longitudinal studies, model (2) might be54

used when modeling profiles, while model (3) could be used when modeling just profile differ-55

ences. For instance, if X = 0, 1 is a population indicator then under model (2) the mean profiles56

are modeled as Uα0 and U(α0+α), while under model (3) the profile means are β0 and β0+Uα.57

It is known in the literature that constrained models gain efficiency in the estimators compared with58

model (1), provided that U is correctly specified. However, it may be very difficult to correctly59

specify U in some applications, as in the following study:60

Example 2 Kenward (1987). An experiment was carried out to compare two treatments for the61

control of gut worm in cattle. Each treatments was randomly assigned to 30 cows whose weights62

were measured at 2, 4, 6, . . . , 18 and 19 weeks after treatment. The goal of the experiment was to63

see if a differential treatment effect could be detected and, if so, the time point when the difference64

was first manifested.65

The constrained models (2) and (3) require that we select U . Lacking prior knowledge, it is natural66

to inspect plots of the average weight by time, as shown in Figure 1. It seems clear from the figure67

that it would be difficult to model the treatment profiles, particularly their two crossing points,68

without running into problems of over fitting. Envelopes provide a way to model data like this69

without specifying a subspace U .70

Envelope methodology is based on a relatively new paradigm for dimension reduction that,71
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Figure 1: Cattle data: Average weight by treatment and time.

when applied in the context of model (1), has some similarity with constrained multivariate models.72

Briefly, envelopes produce a re-parameterization of model (1) in terms of a basis Γ ∈ Rr×u for the73

smallest reducing subspace of Σ that contains B. Like the constrained model, envelopes produce74

an upper bound for B, B ⊆ span(Γ), but unlike the constrained model, the bound is unknown75

and must be estimated. Also, unlike the constrained model, ΓTY contains the totality of Y that is76

affected by changing X. Since B ⊆ span(Γ), we have β = Γη for some η ∈ Ru×p. Model (1)77

can be re-paremeterized to give its envelope counterpart. For i = 1, . . . , n,78

Yi = β0 + ΓηXi + εi, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (4)

where (Γ,Γ0) ∈ Rr×r, orthogonal, Ω = ΓTΣΓ > 0 and Ω0 = ΓT
0ΣΓ0 > 0. Envelopes are79

reviewed in more detail in Section 2.2.80

Comparing (2)–(3) with (4), both express β as a basis times a coordinate matrix: β = Uα in81

(2)–(3) and β = Γη in (4). However, as mentioned previously, Γ is estimated but U is assumed82

known. Envelopes were first proposed by Cook et al. (2007) to facilitate dimension reduction and83
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later were shown by Cook et al. (2010) to have the potential massive efficiency gains relative to84

the standard MLE of β, and for these gains to be passed on to other tasks such as prediction.85

There are now a number of extensions and applications of this basic envelope methodology, each86

demonstrating the potential for substantial efficiency gains (Su and Cook, 2011; Cook and Zhang,87

2015a,b; Forzani and Su, 2021; Su et al., 2016; Li and Zhang, 2017; Rekabdarkolaee et al., 2020).88

Studies over the past several years have demonstrated repeatedly that sometimes the efficiency89

gains of the envelope methods relative to standard methods amount to increasing the sample size90

many times over. See Cook (2018) for a review and additional extensions of envelope methodology.91

The choice between a constrained model, (2) or (3), and the envelope model (4) hinges on the92

ability to correctly specify an upper bound U for span(β0,β) or B. In Section 2 we obtain the93

MLE estimators and the asymptotic variances for the parameters of model (2) and show that if we94

have a correct parsimonious basis U then the constrained models are more efficient. But if bias95

is present or if we use a correct but excessive U, then the envelope model (4) can be much more96

efficient. To the best of our knowledge, no such a comparison has been investigated theoretically97

or empirically in the literature despite the similarity between both models. Although considerable98

methodology has been developed for the envelope version (4) of the unconstrained model (1), there99

are apparently no envelope counterparts available for the class of models represented by (2) and (3)100

when a correct parsimonious U is available. In Section 3 we adapt the present envelope paradigm101

to model versions for (2) and (3) to achieve efficiency gains over those models. Simulations to102

support our finding are given in Section 4 and in Section 5 we compare our methodology with103

others in an example. We conclude the paper with a discussion section. Proofs for all propositions,104

two extra data set comparison and discussions of related issues are available in a Supplement to105

this article.106
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Notational conventions. Given a sample (ai,bi), i = 1, . . . , n, let Ta,b = n−1
∑n

i=1 aib
T
i de-107

note the matrix of raw second moments, and let Ta = n−1
∑n

i=1 aia
T
i . For raw second moments108

involving YS and YD defined bellow we use S and D as subscripts. We use a subscript 1 in109

residuals computed from a model containing a vector of intercepts. The absence of a 1 indicates110

no intercept was included. For instance, Ra|b means the residuals from the regression of a on b111

without an intercept vector, ai = βbi + e, while Ra|(1,b) means those with an intercept vector,112

ai = β0 + βbi + ei. Similarly, RD|S means a residual from the regression of YD and YS without113

an intercept, and RD|(1,S) with an intercept.114

Sample variances are written as Sa = n−1
∑n

i=1(ai − ā)(ai − ā)T and sample covariance115

matrices are written as Sa,b = n−1
∑n

i=1(ai−ā)(bi−b̄)T . For variances and covariances involving116

YD and YS we again use D and S as subscripts, e.g. SD = n−1
∑n

i=1(YDi − ȲD)(YDi − ȲD)
T .117

Sa|b denotes the covariance matrix of the residuals from fit of the model ai = β0+βbi+ei, which118

always includes an intercept. That is, Sa|b = n−1
∑n

i=1 Ra|(1,b),iR
T
a|(1,b),i. Similarly, SD|S =119

∑n

i=1 RD|(1,S),iR
T
D|(1,S),i.120

We use span(A) to denote the subspace spanned by the columns of the matrix A. The pro-121

jection onto S = span(A) will be denoted using either the subspace itself PS or its basis PA.122

Projections onto an orthogonal complement will be denoted similarly using Q(·) = I−P(·). For a123

subspace S and conformable matrix B, BS = {BS | S ∈ S}. If an estimator a ∈ Rr of α ∈ Rr
124

has the property that
√
n(a − α) is asymptotically normal with mean 0 and variance A, we write125

avar(
√
na) = A to denote its asymptotic variance.126
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2 Comparison of the envelope and constrained estimators127

Models (2)–(3) and (4) are similar in the sense that β is represented as a basis times a coordinate128

matrix, β = Uα in (2)–(3) and β = Γη in (4). It might be thought that (2) and (3) would129

yield better estimators because U is known while Γ is not, but that turns out not to be true in130

general. This is in part because we may have B 6⊆ U , which raises the issue of bias as discussed131

in Section 2.3, and in part because the envelope model capitalizes automatically on the structure132

in Σ, which can improve efficiency as discussed in Section 2.4. Our general conclusion is that,133

in practice, it may be necessary to compare their fits before selecting an estimator and that the134

envelope estimator may have a clear advantage when there is uncertainty in the choice of U , as135

illustrated in Figure 1.136

Developments under models (2) and (3) are very similar since they differ only on how the137

intercept is handled. In the remainder of this article we focus on model (2) and comment from138

time to time on modifications necessary for model (3).139

2.1 Maximum likelihood estimators for constrained models140

Our treatment of maximum likelihood estimation from (2) is based on linearly transforming Y.141

Let U0 be a semi-orthogonal basis matrix for U⊥, and let W = (U(UTU)−1,U0) := (W1,W2).142

Then the transformed model becomes143

WTYi :=




YDi

YSi


 =




(UTU)−1UTYi

UT
0Yi


 =




α0 +αXi

0


+WTεi, i = 1, . . . , n, (5)

where YDi ∈ Rk and YSi ∈ Rr−k with k the number of columns of U. The transformed variance144

can be represented block-wise as ΣW := var(WTε) = (WT
i ΣWj), i, j = 1, 2, where Σ is as145

8
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defined for model (2). The mean E(YD | X) depends non-trivially on X and thus, as indicated146

by the subscript D, we think of YD as providing direct information about the regression. On the147

other hand, E(YS | X) = 0 and thus YS provides no direct information but may provide useful148

subordinate information by virtue of its association with YD.149

To find the MLEs from model (5), we write the full log likelihood as the sum of the log likeli-150

hoods for the marginal model for YS | X and the conditional model for YD | (X,YS):151

YSi | X = eSi (6)

YDi | (Xi,YSi) = α0 +αXi + φD|SYSi + eD|Si, (7)

where φD|S = (UTU)−1UTΣU0(U
T
0ΣU0)

−1 ∈ Rk×(r−k), eD|S = WT
1 ε, eS = WT

2 ε. The152

variances of the errors are ΣS := var(eS) = UT
0ΣU0 and ΣD|S := var(eD|S) = (UTΣ−1U)−1.153

The number of free real parameters in this conditional model is Ncm(k) = k(p+ 1) + r(r + 1)/2.154

The subscript ‘cm’ is used to indicate estimators arising from the conditional model (7). The MLE155

and its asymptotic variance for (2) are156

α̂cm = SD,RX|(1,S)
S−1
X|S = (SD,X − SD,SS

−1
S SS,X)S

−1
X|S (8)

β̂cm = Uα̂cm = USD,RX|(1,S)
S−1
X|S = U(SD,X − SD,SS

−1
S SS,X)S

−1
X|S (9)

avar(
√
nvec(α̂cm)) = Σ−1

X
⊗ΣD|S (10)

avar(
√
nvec(β̂cm)) = Σ−1

X
⊗UΣD|SU

T , (11)

The estimation for model (3) requires just a few modifications of the procedure for model157

(2). All modifications stem from the presence of an intercept vector in model (6), which becomes158

9
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YS = WT
2 β0 + eS . The variance ΣS is estimated as Σ̂S = SS with corresponding changes in159

the estimator of Σ, and the estimator of the intercept WT
2 β0 is just ȲS . The intercept in (7) is160

redefined as α0 = WT
1 β0 − φD|SW

T
2 β0. The MLE of β0 in model (3) can be constructed in a161

straightforward way from the estimators of α0, W
T
2 β0 and φD|S . The number of real parameters162

in (6) becomes Ncm + r − k. The estimators of the parameters in (7) are unchanged. In particular,163

α̂cm and β̂cm along with their asymptotic variances are the same under models (2) and (3), although164

different U’s might be used in their construction.165

2.2 Envelope estimator stemming from Model (1)166

Consider a subspace S ⊆ Rr that satisfies the two conditions (i) X QSY and (ii) PSY QSY |167

X. Condition (i) insures that the marginal distribution of QSY does not depend on X, while168

statement (ii) insures that, given X, QSY cannot provide material information via an association169

with PSY. Together these conditions imply that the impact of X on the distribution of Y is170

concentrated solely in PSY. One motivation underlying envelopes is then to characterize linear171

combinations QSY that are unaffected by changes in X and that produce gains in estimative and172

predictive efficiency.173

In terms of model (1), condition (i) holds if and only if B ⊆ S and condition (ii) holds if and174

only if S is a reducing subspace of Σ; that is, S must decompose Σ = PSΣPS +QSΣQS . The175

intersection of all subspaces with these properties is by construction the smallest reducing subspace176

of Σ that contains B, which is called the Σ-envelope of B and is represented as EΣ(B) (Cook et al.,177

2010). These consequences of conditions (i) and (ii) can be incorporated into model (1) by using178

a basis, leading to model (4). Let u ∈ {0, 1, . . . , r} denote the dimension of EΣ(B). The number179

of free real parameters is Nem = r + pu + r(r + 1)/2. The subscript ‘em’ is used to indicate180

10
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selected quantities arising from this envelope model. The goal here is still to estimate β = Γη181

and Σ. Cook et al. (2010) derived the maximum likelihood envelope estimators of β and Σ along182

with their asymptotic variances. They showed that substantial efficiency gains in estimation of β183

are possible under this model, particularly when a norm of var(ΓT
0Y) = Ω0 is considerably larger184

than the same norm of var(ΓTY) = Ω.185

Given the envelope dimension u, Cook et al. (2010) proved that the maximum likelhood esti-186

mator β̂em of β = Γη from envelope model (4) has asymptotic variance given by187

avar(
√
nvec(β̂em)) = Σ−1

X
⊗ ΓΩΓT + (ηT ⊗ Γ0)M

†(ΣX)(η ⊗ ΓT
0 ), (12)

where for a C ∈ Rp×p, M(C) := ηCηT ⊗Ω−1
0 +Ω⊗Ω−1

0 +Ω−1 ⊗Ω0 − 2I and † denotes the188

Moore-Penrose inverse. Cook et al. (2010) showed that avar(
√
nvec(β̂em)) ≤ avar(

√
nvec(β̂um)),189

where β̂um is the MLE under the uncontrained model (1). In consequence, estimators from the en-190

velope model (4) are always superior to those from the unconstrained multivariate model (1). Cook191

et al. (2010) also showed that the envelope estimator is
√
n-consistent even when the normality192

assumption is violated as long as the data has finite fourth moments.193

2.3 Potential bias in β̂
cm

194

Assuming that B ⊆ U , α̂cm and β̂cm are unbiased estimators of α and β. However, if B 6⊆195

U then both α̂cm and β̂cm are biased, which could materially affect the estimators: E(α̂cm) =196

(UTU)−1UTβ and E(β̂cm) = PUβ. Consequently, the bias in β̂cm is β − PUβ = QUβ. A197

nonzero bias must necessarily dominate the mean squared error asymptotically and so could limit198

the utility of β̂cm. Simulation results that illustrate the potential bias effects are discussed in Section199
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4.2. We assume that B ⊆ U for the remainder of this article except for where otherwise indicated.200

2.4 Comparison of asymptotic variances of β̂
em

and β̂
cm

201

We now compare the asymptotic variances of the envelope and constrained estimators of β, (12)202

and (11). Depending on the dimensions involved, the relationship between U and the envelope203

EΣ(B) and other factors, the difference between the asymptotic covariance matrices for the esti-204

mators β̂em and β̂cm from these two models can be positive definite, negative definite or indefinite.205

Since all comparisons are in terms of β’s, we assume without loss of generality that U is a semi-206

orthogonal matrix. Also, since β̂cm is the same under models (2) and (3) we do not distinguish207

between these two models in this section.208

2.4.1 B ⊆ U ⊆ EΣ(B)209

Assuming that U is correct so that B ⊆ U and U ⊆ EΣ(B) can simplify the variance comparison:210

Proposition 2.1 If B ⊆ U ⊆ EΣ(B), then avar(
√
nvec(β̂cm)) ≤ avar(

√
nvec(β̂em)).211

In consequence, under this hypothesis, the constrained estimator β̂cm is superior to the envelope212

estimator β̂em. However, this comparison may be seen as loaded in favor of β̂cm since the con-213

strained estimator uses the additional knowledge that B ⊆ U and the envelope estimator does not.214

Additionally, neither estimator makes use of the proposition’s hypothesis. The next proposition215

provides help in assessing the impact of the hypothesis on the underlying structure by connecting216

it with EΣ(U), the Σ-envelope of U .217

Proposition 2.2 Assume that B ⊆ U . Then218

1. EΣ(B) ⊆ EΣ(U),219
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2. U ⊆ EΣ(B) if and only if EΣ(B) = EΣ(U),220

3. If rank(α) = k then B = U and EΣ(B) = EΣ(U).221

This proposition says essentially that if B ⊆ U ⊆ EΣ(B) we can start with model (1) and param-222

eterize in terms of EΣ(U) rather than EΣ(B). A key distinction here is that U is known while B223

is not. In consequence, we expect less estimative variation when parameterizing (1) in terms of224

EΣ(U) instead of EΣ(B). Since U ⊆ EΣ(U) we can construct a semi-orthogonal basis for EΣ(U)225

as Γ = (U,Γ2) with U0 = (Γ2,Γ0) and, recognizing that β = Uα = Γη, we get a new model226

Yi = Uα0 +UαXi + εi, i = 1, . . . , n (13)

Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

Consider estimating α from this model using the steps sketched in Section 2.1, and partition227

Ω = (Ωij) to conform to the partition of Γ = (U,Γ2). The envelope structure of (13) induces a228

special structure on the reduced model that corresponds to (6)–(7): ΣS = bdiag(Ω22,Ω0) is block229

diagonal, ΣD|S = Ω11 −Ω12Ω
−1
22 Ω21 and φD|S = (Ω12Ω

−1
22 , 0). It can now be shown that the esti-230

mators of α from the constrained model (6)–(7) and from (13) have the same asymptotic variance.231

In other words, if we neglect the hypothesized condition that U ⊆ EΣ(B) then the constrained232

estimator is better, but if we formulate the envelope model making use of that condition then the233

constrained and envelope estimators are asymptotically equivalent.234

Rao (1967) posited a simple structure for the analysis of balanced growth curve data (See also235

Geisser, 1970; Lee and Geisser, 1975; Geisser, 1981; Lee, 1988; Pan and Fang, 2002). In our236

context, Rao’s structure is obtained by assuming that EΣ(U) = U , which corresponds to model237
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(13) with Γ = U, which seems too specialized to warrant further attention. Additional discussion238

of Rao’s structure is available in Supplement Section 10.239

2.4.2 U ⊇ EΣ(B)240

Assuming that U ⊇ EΣ(B) is another way to simplify the variance comparison. Let Γ ∈ Rr×u be a241

semi-orthogonal basis matrix for EΣ(B) and let (Γ,Γ0) be an orthogonal matrix. Since U ⊇ EΣ(B),242

we can construct semi-orthogonal bases U = (Γ,Γ01) and Γ0 = (Γ01,Γ02). Partition Ω0 = (Ω0,ij)243

to correspond to the partitioning of Γ0. Then244

Proposition 2.3 Assume that U ⊇ EΣ(B) and let c ∈ Rr. Then245

1. If c ∈ EΣ(B) then avar(
√
ncT β̂cm) = avar(

√
ncT β̂em).246

2. If c ∈ span(Γ02) then avar(
√
ncT β̂cm) ≤ avar(

√
ncT β̂em).247

3. If c ∈ span(Γ01), rank(M(ΣX)) = rank(ηΣXη
T⊗Ω−1

0 ) and Ω12 = 0 then avar(
√
ncT β̂cm) ≥248

avar(
√
ncT β̂em).249

The main takeaway of this lemma is that the difference between the asymptotic covariance matrices250

for the estimators β̂em and β̂cm can be positive semi-definite or negative semi-definite, depending251

on the characteristics of the problem.252

Although the above derivation is under two simple cases where U and the envelope space are253

nested, the conclusion actually holds for the general case: if we have a correct parsimoniously254

parameterized constrained model then the envelope model (4) is less efficient, but if the basis U255

in the constrained model is incorrect or excessively parameterized, then envelopes can be much256

more efficient. This motivated us to incorporate envelopes into the constrained model so that we257

can further improve efficiency if constraints are reasonably well modeled for the data258
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3 Envelopes in constrained models259

In this section, we consider two different ways of imposing envelopes in a constrained model when260

B ⊆ U . As previously dane, we focus on envelope estimators in the constrained model (2) and261

later describe the modifications necessary for model (3). In Section 3.1 we describe the envelope262

estimation of α when there is an application-grounded basis U that is key to interpretation and263

inference. In Section 3.2 we address envelope estimation of β = Uα. Here the choice of basis264

U has no effect on the MLE of β under the constrained models (2), but it does affect the envelope265

estimator of β. Basis selection is also addressed in Section 3.2.266

3.1 Enveloping α267

Estimation of α will be of interest when it is desirable to interpret β = Uα in terms of its coor-268

dinates α relative to the known application-grounded basis U. Let A = span(α). The envelope269

estimator of α in model (5) can be found by first transforming (5) into (6)–(7) and then parameter-270

izing (7) in terms of a semi-orthogonal basis matrix φ ∈ Rk×u for EΣD|S
(A), the ΣD|S-envelope of271

A with dimension u ≤ k. Since avar(
√
nvec(α̂cm)) = Σ−1

X
⊗ΣD|S is in the form of a Kronecker272

product that allows separation of row and column effects of α, this structure follows also from the273

theory of Cook and Zhang (2015a,b) for matrix-valued envelope estimators based on envelopes of274

the form Rp ⊕ EΣD|S
(A), where ⊕ denotes the direct sum.275

Let η ∈ Ru×p be an unconstrained matrix giving the coordinates of α in terms of a semi-276

orthogonal basis matrix φ, so α = φη, and let (φ,φ0) ∈ Rk×k be an orthogonal matrix. Then the277
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envelope version of model (6)–(7) is278

YSi = eSi

YDi | (Xi,YSi) = α0 + φηXi + φD|SYSi + eD|Si, (14)

ΣD|S = φΩφT + φ0Ω0φ
T
0 ,

where Ω ∈ Ru×u and Ω0 ∈ R(k−u)×(k−u) are positive definite matrices. Part of this model can be279

seen as a version of the partial envelope model (Su and Cook, 2011)280

The total real parameters in model (14) is Necm(u) = k + pu + r(r + 1)/2, which reduces to281

that given previously for model (6)–(7) when u = k. The subscript ecm is used to indicate selected282

key quantities that arise from enveloping A in the constrained model (2). A basis φ̂ for the MLE283

ÊΣD|S
(A) of EΣD|S

(A) is constructed as284

φ̂ = argmin
G

log |GTSD|(X,S)G|+ log |GTS−1
D|SG|, (15)

where the minimum is computed over all semi-orthogonal matrices G ∈ Rk×u with u ≤ k. The285

fully maximized log likelihood is286

L̂u = c− n

2

{
log |TS|+ log |SD|S|+ log |φ̂T

SD|(X,S)φ̂|+ log |φ̂T
S−1
D|Sφ̂|

}
. (16)

where c = n log |W| − (nr/2)(1 + log(2π)) with the log |W| term corresponding to the Jacobian287

transformation back to the scale of Y.288

Once φ̂ is obtained we get the following envelope estimators for constrained model (2). Specif-289
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ically, we have290

• β̂ecm = Uα̂ecm, α̂ecm = P
Φ̂
α̂cm = φ̂η̂, and α̂0 = ȲD − α̂ecmX̄− φ̂D|SȲS .291

• η̂ = φ̂
T
α̂cm, φ̂D|S = SD,SS

−1
S − α̂ecmSX,SS

−1
S , and β̂ecm = Uα̂ecm292

• Ω̂ = φ̂
T
SD|(X,S)φ̂ and Ω̂0 = φ̂

T

0 SD|Sφ̂0,293

• Σ̂D|S = φ̂Ω̂φ̂
T
+ φ̂0Ω̂0φ̂

T

0 and Σ̂S = TS .294

The variances ΣW and Σ can be estimated as indicated in Section 2.1. The variances ΣW and Σ295

can be estimated as indicated in Section 2.1. The asymptotic variances for α̂ecm and β̂ecm can be296

deduced from recognizing that in our application YS is random, X is fixed, and the distribution of297

YS|X is the same as that of the marginal of YS:298

avar(
√
nvec(α̂ecm)) = Σ−1

X
⊗ φΩφT + (ηT ⊗ φ0)M

†(ΣX)(η ⊗ φT
0 ) (17)

avar(
√
nvec(β̂ecm)) = Σ−1

X
⊗U

[
φΩφT + (ηT ⊗ φ0)M

†(ΣX)(η ⊗ φT
0 )
]
UT (18)

We have avar(
√
nvec(α̂ecm)) ≤ avar(

√
nvec(α̂cm)) and avar(

√
nvec(β̂ecm)) ≤ avar(

√
nvec(β̂cm))299

being equal when u = k, so using an envelope in the constrained model always improves estima-300

tion asymptotically.301

Because EΣD|S
(A) ⊆ Rk, EΣ(B) ⊆ Rr and k ≤ r, it is reasonable to expect that dim{EΣD|S

(A)} ≤302

dim{EΣ(B)}, as we have estimated in many examples. However, this relationship between the303

envelope dimension is not guaranteed in general. The following proposition gives sufficient con-304

ditions to bound dim{EΣD|S
(A)}.305
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Proposition 3.1 Assume that U = (ΓG,Γ0G0), where the Γ’s are as defined for model (4), and306

that G ∈ Ru×u1 and G0 ∈ R(r−u)×(k−u1) both have full column rank, so that u1 ≤ u. Then307

dim{EΣD|S
(A)} ≤ u1 ≤ dim{EΣ(B)}.308

We can assess the model fitting of (14) using BIC, assuming that the error terms follows a309

normal distribution. That is, we can compare the constrained envelope model with alternative310

models by inspecting whether −2L̂u + Necm(u)log(n) is small. By comparing the BICs of the311

constrained model with different dimensions u, we can also select the dimension that has the best312

fit. More about estimating the envelope dimension is given in Supplement 9.313

3.2 Enveloping β314

Estimation of β = Uα will be of interest in applications where prediction is important or where315

U is selected based on convenience, say, rather than on criteria that facilitate understanding and316

inference. For instance, if X serves to indicate different treatments then plots of the columns of317

β versus time give a visual comparisons of the treatment profiles. The choice of U is of course318

relevant to estimation of β, but a basis U is not uniquely determined. While this flexibility has no319

effect on the MLE of β under the constrained model (2), it does affect the envelope estimator of320

β. This raises the issue of selecting a good basis for the purpose of estimating β via envelopes.321

Consider re-parameterizing U as UV−1 and α as Vα for some positive definite matrix V ∈322

Rk×k, giving β = Uα = (UV−1)(Vα). We could use either EΣD|S
(A) or EVΣD|SV

T (VA)323

to estimate β as β̂ecm = Uα̂ecm or, in terms of re-parameterized coordinates Vα, as β̂ecm,V =324

UV−1(̂Vα)ecm. In general β̂ecm 6= β̂ecm,V and we cannot tell which estimator is better. In this sec-325

tion, we show that the envelope estimator of β is invariant under orthogonal re-parameterization,326

so that we only need to consider diagonal re-parameterization: β = Uα = (UΛ−1)(Λα), where327

18

Page 18 of 69Scandinavian Journal of Statistics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

Λ is a diagonal matrix with positive diagonal elements. In growth curve or longitudinal analyses,328

the columns of U may correspond to different powers of time, and then it seems natural to consider329

rescaling to bring the columns of U closer to the same scale.330

In Supplement Section 3.1 we provided technical tools for demonstrating that the maximum331

likelihood envelope estimator of β = Uα, when U is semi-orthogonal, is simply β̂ecm = Uα̂ecm.332

Thus, to consider the constrained model envelope under a linear transformation of U, it suffices333

to consider a re-scaling transformation. That is, we consider β = Uα = (UΛ−1)(Λα), where334

Λ = diag(1, λ2, . . . , λk). The first diagonal element of Λ is 1 to ensure identifiability. We follow335

the general logic of Cook and Su (2013) in their development of a scaled version of model (2).336

Without loss of generality, we cast our discussion of scaling in the context of the condi-337

tional model (7). We assume that there is a scaling of the response YD so that the scaled re-338

sponse ΛYD follows an envelope model in Λα with the envelope EΛΣD|SΛ
(ΛA) having dimen-339

sion v and semi-orthogonal basis matrix Θ ∈ Rk×v. Let (Θ,Θ0) denote an orthogonal matrix.340

Then we can parametrize Λα = Θη and ΛΣD|SΛ = ΘΩΘT + Θ0ΩΘT
0 ; equivalently, this341

setup can also be viewed as a rescaling U 7→ UΛ−1 of U, since ΛYD = Λ(UTU)−1UTY =342

(Λ−1UTUΛ−1)−1Λ−1UTY. Since ΛYD is unobserved, we now transform back to the original343

scale for analysis, leading to the marginal model YSi | X = eSi and conditional model344

YDi | (Xi,YSi) = α0 +Λ−1ΘηXi + φD|SYSi + eD|Si, (19)

ΣD|S = Λ−1(ΘΩΘT +Θ0Ω0Θ
T
0 )Λ

−1.

The total real parameters in this scaled envelope model is Nsecm(v) = 2k − 1 + pv + r(r + 1)/2,345

where the subscript secm is used to indicate quantities arising from the scaled envelope version of346
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the conditional model. For identifiability we typically need Nsecm(v) ≤ Ncm or p(k − v) ≥ k − 1.347

The goal now is to estimate α0, the coefficient matrix β = UΛ−1Θη and ΣD|S , which requires348

the estimation of several constituent parameters. We presented in Supplement Section 3.2 the349

maximum likelihood estimators under this model and prove that the asymptotic variance of the350

estimator βsecm of β is avar(
√
nvec(β̂secm)) = (Ip ⊗U)Vsecm(Ip ⊗UT ) and therefore it is never351

less efficient than β̂cm.352

3.3 Estimation under model (3)353

The modifications necessary to adapt the results in Sections 3.1–3.2 for model (3) all stem from354

the new model for the subordinate response, YS = WT
2 β0 + eS , and the new definitions of355

α0 = WT
1 β0 − φD|SW

T
2 β0 for models (14) and (19). This implies that TS is replaced by SS356

throughout, including log likelihoods (16) and (13) and that the estimator of β0 can be constructed357

as indicated near the end of Section 2.1. There is no change in the objective functions (15) and358

(12), and consequently no change in the envelope estimators of α and β.359

4 Simulations360

4.1 Efficiency Comparison361

We first evaluate the efficiency of the envelope estimator β̂em, the constrained estimator β̂cm and362

the constrained envelope estimator β̂ecm using simulations in two scenarios. We also include the363

unconstrained estimator β̂um as a reference. In the first scenario considered the eigenvalue cor-364

responding to the material part is small relative to the immaterial part and the dimension of U is365

large; therefore the envelope estimator β̂em is expected to have substantial efficiency gain. In the366
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second scenario the eigenvalue of the immaterial part is small relative to the one of the material367

part and the envelope estimator is not expected to have substantial efficiency gain.368

4.1.1 Scenario 1369

The simulation for Scenario 1 is carried out in the following steps:370

Step 1. We first generated a sample of size n = 200. For each individual i, we generated p = 8371

predictors Xi from a multivariate normal distribution with mean 0 and variance CCT ,372

where each element in C is identically and independently distributed with a standard nor-373

mal distribution N(0, 1).374

Step 2. Set r = 20, u = 6, q = 15, q1 = 4 and q2 = q − q1. Set Ω = bdiag(0.5Iu−q1 , 1.5Iq1) and375

Ω0 = 50Ir−u. Set (Γ,Γ0) = O and let Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , where O is an orthogonal376

matrix obtained by singular value decomposition of a randomly generated matrix. Set η =377

K1K2, where K1 ∈ Ru×q1 , K2 ∈ Rq1×p and each element in K1 and K2 is identically and378

independently generated from N(0, 1). Let U = (Γ,Γ0)φ, where φ = bdiag{MU,MU

0 },379

MU = K1 and MU

0 = (Iq2 ,0q2×(r−u−q2))
T , given U ∈ Rr×q. Set β = Γη; notice that it380

also satisfies β = Uα with α = (KT
2 ,0p×q2)

T .381

Step 3. For each individual i, generated Yi identically and independently from a normal distribu-382

tion N(βXi,Σ).383

Step 4. Calculate β̂um, β̂em, β̂cm and β̂ecm, where U is correctly specified when calculating β̂cm384

and β̂ecm.385

Step 5. Repeat Steps 3–4 1000 times.386
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We also carried out simulations with a smaller sample size of n = 80, with results similar to387

those presented below. They are presented in Supplement Section 4.1388

From the choice of η in Step 2 we have colrank(η) = q1, and span(β) is strictly contained389

in both span(Γ) and span(U) since the dimension of span(β) is q1 = 4 which is smaller than390

min(u, q) = 6. Specifically, we have span(β) = span(ΓU) = span(Γ) ∩ span(U). As men-391

tioned before, α = (KT
2 , 0p×q2)

T in this example. Therefore, we also have a non-trivial con-392

strained envelope of dimension 4: Under the conditions of Scenario 1, we have that Σ−1
D|S =393

φTbdiag(Ω−1,Ω−1
0 )φ = bdiag(KT

1Ω
−1K1, 50

−1Iq2). As a consequence, the envelope of α with394

respect to ΣD|S is (K̃T
2 ,0q2×(r−u−q2))

T with K̃2 ∈ Rq1×q1 such that K2 = K̃2J with J ∈ Rq1×p
395

and K̃2 orthogonal. Such a decomposition of K2 is possible since K2 as rank q1. In the 1000396

simulations repetitions, the envelope dimension was always correctly estimated as 6 using BIC.397

The dimension of the constrained envelope estimator was correctly estimated as 4 for 989 times398

and 5 for 11 times. The empirical results for β̂um−β, β̂em−β, β̂cm−β and β̂ecm−β are shown399

in Figure 2a, where all the elements of β are plotted in the same boxplot as if they are from the400

same population and the outliers are suppressed for a cleaner representation. Since U is correctly401

specified, β̂cm and β̂ecm are asymptotically unbiased estimators, as are β̂um and β̂em. Hence, the402

boxplots of the four estimators are all centered at 0. In Step 2, the larger eigenvalues of Σ are403

contained in Ω0 rather than Ω. That is, the variability of the immaterial part is bigger than that of404

the material part. Additionally, the column space of U is very conservatively specified as q = 15,405

which is much bigger than the dimension of q1 = colrank(β) = 4, and the span(U) contains 11406

eigenvectors corresponds to large eigenvalues (i.e., 50 in this simulation). Hence, this scenario407

favors of the envelope estimator in terms of the efficiency: the envelope estimator is the most ef-408

ficient estimator among the three estimators, while β̂cm is also more efficient than the saturated409
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estimator β̂um.410

The average estimated asymptotic variances were close to the theoretical asymptotic variances411

calculated using the true parameter values for all three estimators. The mean of the empirical412

asymptotic variances across all the elements in four estimators are 51.66 for
√
nβ̂um and 39.48 for413

√
nβ̂cm but is only 1.12 for

√
nβ̂em and 0.37 for

√
nβ̂ecm. That is, in this setting, the envelope414

estimator is about 40 times more efficient that the saturated estimator and the unconstrained esti-415

mator and the constrained envelope estimator is about 100 times more efficient than those two. A416

comparison between the envelope and constrained envelope estimator demonstrates the advantage417

of leveraging prior information in terms of achieving better efficiency.418

Figure 2: Box plot of β̂um − β, β̂em − β, β̂cm − β and β̂ecm − β in two scenarios in 1000

simulations.

−
1

.0
0

.5

β
^

um β
^

em β
^
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(a) Scenario 1

−
0

.4
0

.0
0

.4

β
^

um β
^

em β
^

cm β
^

ecm

(b) Scenario 2

4.1.2 Scenario 2419

To carry out simulations in Scenario 2, we modify some of the parameters in Step 2. In the new420

Scenario 2, q = 6 and we redefine the eigenvalues of Σ by setting Ω = bdiag(50Iu−q1 , 0.5Iq1)421

and Ω0 = 0.5Ir−u. In this scenario, the larger eigenvalues of Σ are associated with Ω. Now the422

dimension of U is 6 and therefore is only 2 dimension larger than the dimension of β.423

Since the envelope is also of dimension 6 and needs to be estimated, the envelope method is at424

a disadvantage in terms of the efficiency as compared with β̂cm. We have α = (KT
2 ,0p×q2)

T and425
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ΣD|S = bdiag(KT
1Ω

−1K1, (0.5)
−1Iq2) and the dimension of the constraint envelope is still 4. In426

the 1000 simulations repetitions, the envelope dimension and the constrained envelope dimension427

are always correctly estimated as 6 and 4, respectively. The empirical biases of the estimators are428

shown in Figure 2b. Again, all four estimators are centered around 0, indicating the asymptotic429

unbiasedness. As expected, the estimator β̂cm and β̂ecm are the most efficient among the four430

estimators, while the envelope estimator β̂em is still more efficient than β̂um.431

The average estimated asymptotic variance of the three estimators were all close to their the-432

oretical values. The average empirical variances of all the elements in three estimators are 8.26433

for
√
nβ̂um, 7.87 for

√
nβ̂em, 1.50 for

√
nβ̂cm and 1.55 for

√
nβ̂ecm. That is, in this setting, the434

estimators using a correctly specified U are on average about 4 times of more efficient that the435

saturated estimator and the envelope estimator, but the envelope constraint estimator does not pro-436

vide additional advantages over the constrained estimator. We also carried out simulations with437

a smaller sample size of n = 80, with results similar to those presented here. The details are438

presented in Supplement Section 4.2439

4.2 Potential Bias of the constrained estimator440

We conducted a small simulation generating data from envelope model (4), to further illustrate441

potential bias effects. The sample size is again n = 200, and the parameters to generate the data442

are chosen as in Scenario 1, only changing the definition of U, which now is U = (Γ,Γ0)Ak with443

Ak = (Ik, 0)
T , k = 1, . . . , r. For k < u, B 6⊆ U and so both β̂cm and β̂ecm are biased. But for444

k ≥ u, B ⊆ U and there is no bias in β̂cm and β̂ecm. Again, the dimension of the constrained445

envelope remains at 4 when k ≥ u.446
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Figure 3: Illustration of potential bias in the constrained estimator (3) under Scenario 1, where

k = dim(U), U = span{(Γ,Γ0)(Ik, 0)
T} and MSE denotes the average element-wise squared

error for the indicated estimators.

We generated response vectors according to model (4) using normal errors, and fitted the result-447

ing data to obtain the envelope estimator β̂em. We used the same data to construct the unconstrained448

estimator β̂um, the constrained estimator β̂cm and the constrained envelope β̂ecm with different se-449

lections for U = (Γ,Γ0)Ak where Ak = (Ik, 0)
T , k = 1, . . . , r. For k < u, B 6⊆ U and so both450

β̂cm and β̂ecm are biased, but for k ≥ u, B ⊆ U and there is no bias in β̂cm and β̂ecm. Actually, the451

dimension of the constrained envelope remains at 4 when k ≥ u. We summarized the bias by com-452

puting the mean squared error over all elements βij of β: MSE = (rp)−1
∑r

i=1

∑p

j=1(β̂(·),ij−βij)
2

453

for the three four estimators β̂um, β̂cm, β̂em and β̂ecm. Shown in Figure 3 are plots of the MSE454

averaged over 1000 replications of this scheme for Scenario 1, each replication starting with the455

generation of the response vectors. The constant MSE for β̂em was 7.4× 10−2 and that for uncon-456

strained model was about 36 times greater at 0.27. The MSE for both the constrained estimator457

and the constrained envelope estimator decreased monotonically from its maximum value of about458

1.75 at k = 1 to around 2.5 × 10−3, at k = u = 6, the constrained estimator increased monotoni-459

cally to 0.25 at k = 20, while the constrained envelope estimator remains about the same. This is460

because the constraint envelope is adapted to the data and does not loose much efficiency even if461
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U is large as it was shown in Section 4. This suggests that it may be a good practice to specify a462

conservative U and apply the constrained envelope to gain more efficiency so that we can enjoy the463

benefit of prior information but do not suffer from large bias. The corresponding plot for Scenario464

2 is similar and therefore is not presented here. It seems clear that the bias in the constrained and465

constrained envelope estimators can be substantial until we achieve B ⊆ U .466

4.3 A more general case467

The previous simulations were conducted so that both the constrained model and the envelope468

model can hold under the data generating mechanism. Here, we consider a general case where U469

is arbitrarily generated but correctly specified. Because U is correctly specified but the envelope470

model no longer holds, we only compare the constrained model and the constrained envelope471

model. We carried out the simulations similar to those in Section 4.1, replacing Steps 2–4 with:472

Step 2*. Set r = 20, u∗ = 3, q = 15. Set Ω∗ = 0.5Iu∗ and Ω0 = 50Iq−u∗ . Set (Γ∗,Γ∗
0) = I and473

let var(εD|S) = ΣD|S = Γ∗Ω∗Γ∗T + Γ∗
0Ω

∗
0Γ

∗
0
T

. Generate η∗ ∈ Ru∗×p and U, where474

each element in η∗ and U is identically and independently generated from N(0, 1). Set475

α∗ = Γ∗η∗ and β∗ = Uα∗.476

Step 3*. For each i, generate YSi identically and independently from normal distribution N(0, Ir−q).477

Generate φ ∈ Rq×(r−q), where each element is generated identically and independently478

from standard normal. Generate YDi from the distribution N(α∗Zi + φYSi,ΣD|S)479

Step 4*. Calculate β̂cm and β̂ecm., where U is correctly specified for both estimators.480

The average MSE of β̂cm and β̂ecm was 0.12 and 0.03. The Monte Carlo mean variances over481
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all the elements were 24.86 and 6.81 for
√
nβ̂cm and

√
nβ̂ecm, demonstrating the efficiency of the482

additional envelope structure over the β̂cm estimator.483

5 Application: Postbiotics study484

The aim of the posbiotics study (Dunand et al., 2019) was to determine the protective capacity485

against Salmonella infection in mice of the cell-free fraction (postbiotic) of fermented milk, pro-486

duced at laboratory and industrial level. The capacity of the postbiotics produced by pH-controlled487

fermentation to stimulate the production of secretory IgA in feces and to protect mice against488

Salmonella infection was evaluated. There were 3 study groups with seven mice per group: (i) a489

control group (C) where mice received the unfermented milk supernatant, (ii) a F36 group (F36)490

where mice received the cell-free supernatant obtained by DSM-100H fermentation in 10% (w/v)491

skim milk produced in the laboratory, and (iii) a F36D group (F36D) where mice received the492

product F36 diluted 1/10 in tap water. Feces samples (approximately 50 mg per mouse) were col-493

lected once a week for 6 weeks and the concentration of secretory IgA (S-IgA) was determinate494

by ELISA. The response was the IgA measures over the 6 weeks period and the predictors the495

group indicators. The research question was whether there were differences in the IgA measures496

among the treatment groups. We present the average response by group over the weeks in Figure497

4. We set the control group as the baseline and therefore β ∈ R6×2. We calculate all estimators498

based on various envelopes on model (3) because we were interested in profile contrasts rather than499

modeling profiles. We use UT (t) = (1, t/6, (t/6)2, cos(2πt/6), sin(2πt/6)), where t = 1, . . . , 6500

are the weeks where the measures were taking. The unconstrained estimator β̂um was considered501

in Dunand et al. (2019) and it did not show a difference between treatment groups even when502
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Figure 4: Average of IgA by group over time in the Posbiotics Study data

exploratory differences can be seen (Figure 4).503

Table 1 shows the BIC, envelope dimension and MSE of the estimators. We listed the maximum504

envelope dimension for the two non-envelope methods as their estimated envelope dimensions.505

The unconstrained estimator performs the worst and the scaled constrained envelope estimator506

performs the best in terms of both the BIC and the efficiency.

Table 1: Envelope dimension, BIC, BIC order, and MSE for the Postbiotics Study

Estimator Dimension BIC BIC order MSE

β̂um 6 -133.90 6 0.15

β̂em 1 -163.52 2 0.13

β̂cm 2 -144.37 5 0.15

β̂ecm 1 -160.76 3 0.14

β̂secm 1 -251.48 1 0.13

507

To answer the researcher question, we look the p-values of the β̂ components. From Table 2508

we can see that the unconstrained estimator does not reveal any difference, which aligns with the509

findings in Dunand et al. (2019). None of the estimators demonstrate any evidence of difference510

between F36D group and the control group at any time. On the other hand, β̂secm reveals a signifi-511
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cance difference between the control and F36 groups in all followup weeks. The p-values for such512

a comparison of β̂em are only significant in week 3. Other estimators also fail to find all followup513

weeks significant between F36 and control groups, e.g., the scaled envelope is not significant in514

week 5 and 6, and constrained envelope is significant only in week 2. The variance gains for the

Table 2: The p-values for coefficients for β̂um, β̂em and β̂secm

week F36 vs control F36 D vs control

β̂um β̂em β̂secm β̂um β̂em β̂secm

1 0.91 0.07 0.13 0.77 0.27 0.30

2 0.09 0.10 0.01 0.83 0.28 0.21

3 0.83 0.01 0.01 0.48 0.20 0.22

4 0.26 0.06 0.02 0.90 0.23 0.22

5 0.55 0.05 0.00 0.16 0.20 0.20

6 0.57 0.63 0.01 0.59 0.64 0.21

515

scale version of the constrained envelope model over the unconstrained model (and therefore the516

p-values) are reflected by the eigenvalue 1 × 10−4 of Ω̂ and the four eigenvalues of Ω̂0 which are517

23.06, 13.67, 0.41 and 0.22. The reason for the envelope estimator to be not as significant when518

comparing F36 and control groups is that there is not as big a discrepancy between the eigenvalues519

of Ω̂ (2× 10−3) and those of Ω̂0 (0.02, 0.04, 0.03, 0.01,4× 10−3).520

6 Discussion521

In this paper, we first compared the envelope model with the commonly used linear constraint522

model in terms of both the potential bias and efficiency. We then proposed a constrained envelope523

model for studying growth curve and longitudinal data when a well-grounded linear constraint is524

available. We recommend using the constrained envelope model with a relatively conservative U525

so that it is likely to contain the space of interest and to achieve efficiency gain. Extensions to526
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unbalanced data and random effects models are designated for future research.527

The primary computational step for all of the envelope methods described herein involves find-528

ing Ĝ = argminG∈G log |GTM1G| + log |GTM2G| over a class G of semi-orthogonal matrices,529

where the inner product matrices M1 and M2 depend on the application. The R package Renvlp530

by M. Lee and Z. Su contains a routine for minimizing objective functions of this form. Compu-531

tations are straightforward once Ĝ has been found. Renvlp also implements specialized method-532

ology for data analysis under envelope model (4) and the partial envelope model. The associated533

routines can be modified for the models described herein. The codes to reproduce the exam-534

ples and simulations from this paper can be found at https://github.com/lanliu1815/535

constrained_env.536

7 Supplementary Material537

Discussion of certain well-established aspects of envelope methodology is available in Supplement538

Section 1–3. We include an additional simulation with smaller sample size in Section 4. We539

revisited the Dental data using the methodology presented in this paper in Section 5, and we studied540

the China Health and Nutrition Survey data set in Section 6. Enveloping for (α0,α) jointly is541

discuss in Section 7. Non-normality and the bootstrap are discussed in Section 8 and methods542

for selecting the envelope dimension are reviewed in Section 9. Finally a brief discussions of543

envelopes and Rao’s simple structure is in Section 10.544
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Supplement to “Envelopes for multivariate linear1

regression with linearly constrained coefficients”2

R. Dennis Cook,* Liliana Forzani† and Lan Liu‡
3

November 14, 20224

1 Supplementary material for Section 2.15

We will derive here the formula for ΣD|S , the maximum likelihood estimator for αcm and ΣD|S ,6

the asymptotic variance for α̂cm and the estimator of Σ from the constraint model.7

Derivation of ΣD|S . Direct calculation gives8

ΣD|S = (UTU)−1(UTΣU−UTΣU0(U
T
0ΣU0)

−1UT
0ΣU)(UTU)−1.

*R. Dennis Cook is Professor, School of Statistics, University of Minnesota, Minneapolis, MN 55455
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The result follows by multiplying the identity9

P
Σ

−1/2
W1

+P
Σ

1/2
W2

= Ir

on left and right by WT
1 Σ

1/2 and Σ1/2W1, and then rearranging terms. (See also Cook and10

Forzani, 2008, eq. (A1)).11

Derivation of α̂cm. First construct a version of (7) is construct so that its predictors are orthogonal:12

Let α∗
0 = α0 +αX̄+ φD|SȲS and φ∗

D|S = φD|S +αSX,SS
−1
S . Then13

YDi | (Xi,YSi) = α∗
0 +αRX|(1,S)i + φ∗

D|S(YSi − ȲS) + eD|Si, (1)

where for clarity RX|(1,S)i = Xi − X̄− SX,SS
−1
S (YSi − ȲS). The three addends on the right side14

are orthogonal and so the three terms can be fitted separately. The starred parameters are not of15

direct interest, but α is the same as in the original model.16

Derivation of Σ̂D|S . It can be express as17

Σ̂D|S = SD|(X,S) = SD − SD,RX|(1,S)
S−1
X|SS

T
D,RX|(1,S)

− SD,SS
−1
S ST

D,S

= SD|S − α̂cmSX|Sα̂
T
cm.

Derivation of var(vec(α̂cm)). First, suppressing notation for the conditioning on X,18

var(vec(α̂cm)) = E{var(vec(α̂cm) | YS1, . . . ,YSn)}+ var{E(vec(α̂cm) | YS1, . . . ,YSn)}

2
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The second addend on the right side is 0 since E(αcm) = α. For notational convenience, let19

Ri = RX|(1,S)i and recall that
∑n

i=1 Ri = 0 and that the X’s are non-stochastic. To evaluate the20

first term we have from (9),21

α̂cm = n−1

n∑

i=1

(YDi − ȲD)R
T
i S

−1
X|S = n−1

n∑

i=1

YDiR
T
i S

−1
X|S

vec(α̂cm) = n−1

n∑

i=1

(S−1
X|SRi ⊗ Ik)YDi

var(vec(α̂cm) | YS1, . . . ,YSn) = n−2

n∑

i=1

(S−1
X|SRi ⊗ Ik)ΣD|S(R

T
i S

−1
X|S ⊗ Ik)

= n−2

n∑

i=1

(S−1
X|SRiR

T
i S

−1
X|S)⊗ΣD|S

= n−1S−1
X|S ⊗ΣD|S

Taking the expectation with respect to YS | X gives the finite sample result. The asymptotic22

variance follows by direct calculation from the Fisher information, recalling that the distribution23

of YS does not depend on X. It can be similarly computed from the finite sample variance.24

Estimator of Σ from the constrained model Starting from the main paper,we have25

Σ̂cm = W−T Σ̂WW−1 = W−T




Σ̂D Σ̂D,S

Σ̂S,D Σ̂S


W−1, (2)

2 Proofs from Section 2.426

Proof of Proposition 2.1 Comparing (12) and (11), it is sufficient to show that27

U(UTΣ−1U)−1UT ≤ ΓΩΓT ,

3
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where Γ is a semi-orthogonal basis matrices for EΣ(B) and without loss of generality we take U28

to be a semi-orthogonal basis matrix for U . Since by hypothesis U ⊆ EΣ(B) there is a semi-29

orthogonal matrix H ∈ R
p×k so that U = ΓH. Let (H,H0) be an orthognal matrix and recall that30

ΓTΣ−1Γ = Ω−1. Then31

U(UTΣ−1U)−1UT = ΓH(HTΩ−1H)−1HTΓT ≤ ΓΩΓT ,

where the inequality follows from the identity P
Ω

−1/2
H
+P

Ω
1/2

H0
= Iu. ✷32

33

Proof of Proposition 2.2 Recall that β = Uα. (1) follows immediately since span(Uα) ⊆34

span(U).35

For (2) assume that span(U) ⊆ EΣ(span(Uα)). Then EΣ(span(Uα)) is a reducing subspace36

of Σ that contains span(U). Using (1) and the fact that EΣ(span(U)) is the intersection of all37

reducing subspaces of Σ that contains span(U), it follows that EΣ(span(Uα)) = EΣ(span(U)).38

The reverse implication is immediate. Part (3) is also immediate. ✷39

40

Preparatory lemma The following lemma, which follows immediately from Milliken and Ak-41

deniz (1977), will be used in the justification of Proposition 2.3.42

Lemma 2.1 Let U and V be two real positive semi-definite r × r matrices with U ≥ V and43

rank(U) = rank(V). Then (a) {a ∈ R
r | Ua = 0} = {a ∈ R

r | Va = 0}, (b) span(U) =44

span(V) and (c) U† ≤ V†, where † denotes the Moore-Penrose inverse.45

4
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Proof of Proposition 2.3 Let46

D(c) = avar(
√
ncT β̂cm)− avar(

√
ncT β̂em)

= Σ−1
X

⊗ cT (U(UTΣ−1U)−1UT − ΓΩΓT )c− (ηT ⊗ cTΓ0)M
†(ΣX)(η ⊗ ΓT

0 c)

We first simplify terms in D(c). Let Ω0,1|2 = Ω0,11 − Ω0,12Ω
−1
0,22Ω0,21, and recall that Σ =47

ΓΩΓT + Γ0Ω0Γ
T
0 . Then48

UTΣ−1U = bdiag(Ω−1, (Ω−1
0 )11)

U(UTΣ−1U)−1UT = ΓΩΓT + Γ01Ω0,1|2Γ
T
01.

Consequently,49

D(c) = Σ−1
X

⊗ cTΓ01Ω0,1|2Γ
T
01c− (ηT ⊗ cTΓ0)M

†(ΣX)(η ⊗ ΓT
0 c).

It follows that D(c) = 0 for all c ∈ EΣ(B) and D(c) ≤ 0 for all c ∈ span(Γ02). This established50

parts 1 and 2 of the lemma.51

Since Ω0,12 = 0 by hypothesis, we justify part 3 by first replacing Ω0,1|2 with Ω0,11 in D(c) to52

get53

D(c) = Σ−1
X

⊗ cTΓ01Ω0,11Γ
T
01c− (ηT ⊗ cTΓ0)M

†(ΣX)(η ⊗ ΓT
0 c).

Next, since M(ΣX) ≥ ηΣXη
T ⊗Ω−1

0 and by hypothesis rank(M(ΣX)) = rank(ηΣXη
T ⊗Ω−1

0 ),54

5
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we have from Lemma 2.1 that M†(ΣX) ≤ (ηΣXη
T )† ⊗Ω0. Substituting into D(c) we get55

D(c) ≥ Σ−1
X

⊗ cTΓ01Ω0,11Γ
T
01c− (ηT ⊗ cTΓ0){(ηΣXη

T )† ⊗Ω0}(η ⊗ ΓT
0 c)

= (Σ−1
X

− ηT (ηΣXη
T )†η)⊗ cTΓ01Ω0,11Γ

T
01c ≥ 0.

3 Proofs from Section 356

Derivation of the MLE for model (14). In this case estimation of α corresponds to the partial57

envelope model and so the estimators for most of the parameters can be taken directly from Su58

and Cook. (2011). To be self-inclusive, we give a sketch of the derivation here. The likelihood59

function for model (14) is60

L =−n
2
log |ΣS| −

1

2

n∑

i=1

tr(YT
SiΣ

−1
S YSi)−

n

2
log |ΣD|S|

−1

2

n∑

i=1

[(YDi −α0 − φηXi − φD|SYSi)
TΣ−1

D|S(YDi −α0 − φηXi − φD|SYSi)] (3)

The MLE of ΣS is Σ̂S = TS . To get the estimators of all other quantities we can always write61

YDi −α0 − φηXi − φD|SYSi

= YDi − {α0 + φD|SȲS + φηX̄} − φη(Xi − X̄)− φD|S(YSi − ȲS)

:= YDi −α0c − φη(Xi − X̄)− φD|S(YSi − ȲS),

where α0c = α0 + φD|SȲS + φηX̄ denotes the intercept in the model with centered predictors.62

The predictors Xi − X̄ and YSi − ȲS in this model are now centered although their coefficients63

6
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are the same as those in the uncentered version. The intercept vector has changed but this is of64

no consequence since we are not estimating α0. Consequently, we can use the centered version to65

derive the estimators of interest.66

The centered model leading immediately to α̂0c = ȲD. Holding all other parameters fixed, the67

value of φD|S that maximizes L is68

φD|S = SDSS
−1
S − φηSXSS

−1
S . (4)

Let RD|(1,S) = YD − ȲD − SDSS
−1
S (YS − ȲS) denote a typical residual vector from the69

regression of YD on YS including an intercept, and let RX|(1,S) = X− X̄− SXSS
−1
S (YS − ȲS)70

denote a typical residual from the regression of X on YS including an intercept.71

Then, evaluating at (4) we have72

YDi − ȲD − φηXi − φD|SYSi = RD|(1,S) − φηRX|(1,S)

and the first partially maximized log likelihood becomes73

L1 =−n
2
log |TS| −

np

2
− n

2
log |ΣD|S|

−1

2

n∑

i=1

[(RD|(1,S) − φηRX|(1,S))
TΣ−1

D|S(RD|(1,S) − φηRX|(1,S))]

=−n
2
log |Σ̂S| −

np

2
− n

2
log |Ω|−n

2
log |Ω0|

−1

2

n∑

i=1

[RD|(1,S) − φηRX|(1,S))
T (φΩ−1φT + φ0Ω

−1
0 φT

0 )(RD|(1,S) − φηRX|(1,S))], (5)

where the i subscripts on RD|(1,S) and RX|(1,S) have been suppressed. The value of η that maxi-74

7
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mizes L1 is75

η = φTSRD|(1,S),RX|(1,S)
S−1
RX|(1,S)

= φTBRD|(1,S)|RX|(1,S)
,

where BRD|(1,S)|RX|(1,S)
∈ R

pD is the OLS coefficient vector from the regression of RD|(1,S) on76

RX|(1,S). These coefficients can also be interpreted as the OLS coefficients of X from the regres-77

sion of YD on (X,YS) including an intercept. That is, BRD|(1,S)|RX|(1,S)
= α̃. Substituting this78

into L1 we get the following partially maximized log likelihood79

L2 = −n
2
log |Σ̂S| −

np

2
− n

2
log |Ω|−n

2
log |Ω0|

−1

2

n∑

i=1

[(RD|(1,S) − α̃RX|(1,S))
TφΩ−1φT (RD|(1,S) − α̃RX|(1,S))]

−1

2

n∑

i=1

(RT
D|(1,S)φ0Ω

−1
0 φT

0RD|(1,S)). (6)

But RD|(1,S)− α̃RX|(1,S) = RD|(1,X,S), the residual vectors from the regression of YD on (X,YS)80

including an intercept. We have81

L2 = −n
2
log |TS| −

np

2
− n

2
log |Ω|−n

2
log |Ω0|

−1

2

n∑

i=1

[RT
D|(1,X,S)φΩ

−1φTRD|(1,X,S)]

−1

2

n∑

i=1

(RT
D|(1,S)φ0Ω

−1
0 φT

0RD|(1,S)). (7)

Taking φ fixed,82

Ω = φTSD|(X,S)φ

Ω0 = φT
0 SD|Sφ0

8
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and, letting u denote the dimension of the envelope, the following partially maximized log likeli-83

hood becomes84

L3 = −n
2
log |TS| −

np

2
− n

2
log |φTSD|(X,S)φ|−

n

2
log |φT

0 SD|Sφ0| (8)

From what ot follows that the MLE of φ can be found as85

φ̂ = argmin
φ

log |φTSD|(X,S)φ|+ log |φTS−1
D|Sφ|, (9)

where for clarity SD|S is the sample residual covariance matrix of the regression of YD on YS86

with an intercept, and SD|(X,S) is the sample residual covariance matrix of the regression of YD on87

(X,YS) with an intercept.88

Once we get φ̂, we get the estimators for the rest of the parameters.89

Proof of the Asymptotic distribution of vec(α̂ecm) and vec(β̂ecm) Let us call the parameters90

of model (2) as h = (α0, vech(αcm),φD|S, vech(ΣD|S), vech(ΣS)), the asymptitic distribution91

of the MLE estimator ĥ is the inverse of its Fisher information matrix that can be obtained using92

9
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straightforward computing of the second derivative of the log-likelihood as93

J =




Σ−1
D|S 0 0 0 0

0 ΣS ⊗Σ−1
D|S 0 0 0

0 0 ΣX ⊗Σ−1
D|S 0 0

0 0 0 1
2
ET

k (Σ
−1
D|S ⊗Σ−1

D|S)Ek 0

0 0 0 0 1
2
ET

r−k(Σ
−1
S ⊗Σ−1

S )Er−k




(10)

where Er is the expansion matrix that satisfy vec(Σ) = Er vech(Σ) for Σ a symmetric matrix of94

dimension r.95

Since the envelope model (14) is over-parameterized, we will apply Proposition 4.1 from96

Shapiro (1986) to prove the asymptotic distribution (17) as in Cook et al. (2015) and Cook et al.97

(2010). To apply Proposition 4.1 of Shapiro (1986), we will check the assumptions first. Along the98

discussion, we will match Shapiro’s notations in our context. Let us call F (ĥ) = L̂u(ĥ) − L̂u(h)99

where L̂ is the likelihood function (16). Then F satisfies the four conditions for F in Section 3 in100

Shapiro (1986). The function g defined by Shapiro in (2.1) is the function101

h = g(ψ) =




vec(α0)

vec(α)

vec(φD|S)

vech(ΣD|S)

vech(ΣS)




=




vec(α0)

vec(φη)

vec(φD|S)

vech(φΩφT + φ0Ω0φ
T
0 )

vech(ΣS)




with ψT = (vecT (α0), vec
T (η), vecT (φ), vecT (φD|S), vech

T (ΣD|S), vech
T (ΣS)) denote the pa-

10
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rameters in the envelope model (14). It is obvious that g is twice continuous differentiable. There-

fore all the assumptions of Shapiro’s Proposition 4.1 are satisfied, and we can get the asymptotic

distribution of the estimators ĥ(ψ̂) from model (14) as

H(HTJH)†HT ,

where J is the Fisher information under model (2), and H is the gradient matrix, which equals to102

∂h/∂Tψ. Computing H we have103

H =




I 0 0 0 0 0 0

0 φ (ηT ⊗ I) 0 0 0 0

0 0 0 I 0 0 0

0 0 2Ck(φΩ⊗ I− φ⊗ φ0Ω0φ
T
0 ) 0 Ck(φ⊗ φ)Eu Ck(φ0 ⊗ φ0)Ek−u 0

0 0 0 0 0 0 I




.

(11)

where Cr is the contraction matrix that satisfy vech(Σ) = Crvec(Σ) for Σ a symmetric matrix of104

dimension r.105

Following similar calculations than in Su and Cook (2011, Prop. 1) we get (17) and since106

H(HTJH)†HT ≤ J−1 we get the efficiency of the estimator vec(α̂ecm)) under model (14) com-107

pare with the estimator of vec(α̂cm) under model (2) when u < k being the same when u = k.108

The asymptotic distribution of vec(β̂ecm)) follows since βecm = Uαecm and as a consequence the109
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asymptotic efficiency of vec(β̂ecm)) compare with vec(β̂cm))110

Proof of Proposition 3.1 The proof consists of showing that (1) α = (UTU)−1UTΓη, (2)111

rank(UTΓ) = u1, (3) span(UTΓ) = span((UTU)−1UTΓ), and (4) span(UTΓ) is a reducing112

subspace of ΣD|S that contains A = span(α). It follows from these statements that EΣD|S
(A) ⊆113

span(UTΓ). Since dim(span(UTΓ)) = u1, the conclusion will follow: dim{EΣD|S
(A)} ≤ u1 ≤114

u = dim{EΣ(span(β))}. It remains then to show (1)–(4).115

(1) Since U has full column rank and Γη = Uα it follows immediately that α = (UTU)−1UTΓη.116

(2) Direct multiplication gives UTΓ = (G, 0)T . The conclusion follows since GT ∈ R
u1×u

117

has rank u1.118

(3) Since (UTU) is full rank, rank(UTΓ) = rank((UTU)−1UTΓ). It is then sufficient to119

show that span(UTΓ) ⊆ span((UTU)−1UTΓ). For an arbitrary γ ∈ R
u, let g = (UTΓ)γ and120

h = GGTγ. Then by direct multiplication we have g = (UTU)−1UTΓh. Consequently we have121

that every vector g ∈ span(UTΓ) is also in span((UTU)−1UTΓ)).122

(4) That span(UTΓ) contains A follows immediately from (1) and (3). It remains to show that123

span(UTΓ) reduces ΣD|S or, equivalently, that it reduces124

Σ−1
D|S = UTΣ−1U

= UTΓΩ−1ΓTU+UTΓ0Ω
−1ΓT

0U.

Since UTΓ0 = (0,G0)
T , we have immediately that UTΓ and UTΓ0 are orthogonal. Let C be125

a semi-orthogonal basis matrix for span(UTΓ) and let C0 be a semi-orthogonal basis matrix for126

12
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span(UTΓ0). Then there exists matrices A and A0 so that127

Σ−1
D|SC = UTΓΩ−1ΓTUC = CA

Σ−1
D|SC0 = UTΓ0Ω

−1
0 ΓT

0UC0 = C0A0.

The conclusion follows from Cook (2018, Lemma A.1). ✷128

129

3.1 Maximum likelihood estimator when U is semi-orthogonal130

The following two propositions provide technical tools for demonstrating that the maximum like-131

lihood envelope estimator of β = Uα is simply β̂ecm = Uα̂ecm when U is semi-orthogonal.132

Proposition 3.1 (a) Let S ⊆ R
k be a reducing subspace of the symmetric matrix M ∈ R

k×k, and133

let V ∈ R
p×k be a semi-orthogonal matrix. Then VS is a reducing subspace of VMVT . (b) Let134

D ∈ R
p be a reducing subspace of VMVT . Then VTD is a reducing subspace of M.135

Proof of Proposition 3.1 Since M is symmetric it is sufficient to show for conclusion (a) that VS136

is an invariant subspace of VMVT . That is, by definition we must show that VMVT (VS) ⊆ VS .137

But this follows immediately from the condition that S reduces M: MS ⊆ S . Conclusion (b)138

follows similarly since VMVTD ⊆ D and multiplying both sides by VT gives the desired con-139

clusion. ✷140

141

Proposition 3.2 Let EM(S) ⊆ R
k be the smallest reducing subspace of the symmetric matrix142

M ∈ R
k×k that contains S ⊆ R

k, and let V ∈ R
p×k be a semi-orthogonal matrix. Then VEM(S)143
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is the smallest reducing subspace of VMVT that contains VS; that is, VEM(S) = EVMVT (VS).144

Proof of Proposition 3.2 We need to show that (a) VEM(S) is a reducing subspace of VMVT ,145

(b) that VEM(S) contains VS and (c) that VEM(S) is minimal. It follows immediately from146

Proposition 3.1 that VEM(S) is a reducing subspace of VMVT , so (a) is satisfied. Since S ⊆147

EM(S) it follows immediately that VS ⊆ VEM(S), so (b) holds.148

To show (c) we use the fact that the smallest reducing subspace of VMVT that contains VS149

is the intersection of all such subspaces. Consequently, if VEM(S) is not minimal then there is a150

subspace D that satisfies (a) and (b) while being a proper subset of VEM(S), D ⊂ VEM(S). But151

we know from Proposition 3.1 that VTD is a reducing subspace of M and from part (b) it contains152

S . However, VTD ⊂ EM(S) which contradicts the minimality of EM(S). ✷153

154

These two propositions show that the results of Section 3.1 can be used directly to get the en-155

velope estimator of Uα when U is semi-orthognonal. The standard MLE of Uα is just Uα̂cm156

with asymptotic covariance matrix UΣD|SU
T . In consequence, following the rationale at the157

beginning of Section 3.1, we seek the MLE of EUΣD|SU
T (UA), which by Proposition 3.2 is158

equal to UEΣD|S
(A). From Proposition 3.2, the MLE of EUΣD|SU

T (UA) is UÊΣD|S
(A), which159

implies that the envelope estimator of β = Uα is β̂ecm = Uα̂ecm with asymptotic variance160

Uavar(
√
nα̂ecm)U

T . Propositions 3.1 and 3.2 also suggest how to proceed when re-prameterizing161

as β = Uα = (UOT )(Oα), where O is an orthognal matrix and U is not necessarily orthogonal.162

In that case the envelope estimator of Oα is simply Oαecm, and so the envelope estimator of β is163

invariant under orthogonal re-paramterization of the kind used here.164
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3.2 Maximum likelihood estimators and asymptotic distribution under Model165

(19)166

Given the envelope dimension u, the log likelihood based on YD is167

Lu = −(nk/2) log(2π)− n

2
log |ΣD|S|

−1

2

n∑

i=1

(YDi −α0 −Λ−1ΘηXi − φD|SYSi)
TΣ−1

D|S(YDi −α0 −Λ−1ΘηXi − φD|SYSi),

where168

−n
2
log |ΣD|S| = n log |Λ| − n

2
log |Ω| − n

2
log |Ω0|

Σ−1
D|S = Λ(ΘΩ−1ΘT +Θ0Ω

−1
0 ΘT

0 )Λ.

Let ν0 = Λα0 and ν = ΛφD|S . Substituting these various quantities we get

Lu = − (nk/2) log(2π) + n log |Λ| − n

2
log |Ω| − n

2
log |Ω0|

− 1

2

n∑

i=1

(ΛYDi − ν0 −ΘηXi − νYSi)
T (ΘΩ−1ΘT +Θ0Ω

−1
0 ΘT

0 )(ΛYDi − ν0 −ΘηXi − νYSi),

Aside from the addend n log |Λ|, this log likelihood has the same form as that associated with169

model (14) after replacing the response YD with the transformed response ΛYD. This enables us170

to adapt the log likelihood and estimators listed in Section 3.1 for the present setting.171

After maximizing the log likelihood over all parameters except (Λ,Θ) we have172

(Λ̂, Θ̂) = argmin
A,G

log |GTASD|(X,S)AG|+ log |GTA−1S−1
D|SA

−1G|, (12)
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where the minimum is computed over all semi-orthogonal matrices G ∈ R
k×v and diagonal matri-173

ces A = diag(1, a2, . . . , ak). Aside from the inner product matrices SD|(X,S) and S−1
D|S this is the174

same as the objective function that Cook and Su (2013) derived for response scaling prior to using175

model (4), which allowed us to adapt their optimization algorithm to handle (12).176

Having determined the MLEs Λ̂ and Θ̂, the remaining parameter estimators are177

• β̂secm = UΛ̂
−1
P

Θ̂
Λ̂α̂cm, α̂ = Λ̂

−1
P

Θ̂
Λ̂α̂cm, α̂0 = ȲD − β̂secmX̄− φ̂D|SȲS178

• η̂ = Θ̂
T
Λ̂α̂cm, φ̂D|S = (SD,S − α̂SX,S)S

−1
S179

• Ω̂ = Θ̂
T
Λ̂SD|(X,S)Λ̂Θ̂, Ω̂0 = Θ̂

T

0 Λ̂SD|SΛ̂Θ̂0180

• Σ̂D|S = Λ̂
−1
(Θ̂Ω̂Θ̂

T
+ Θ̂0Ω̂0Θ̂

T

0 )Λ̂
−1

, Σ̂S = TS .181

The variances ΣW and Σ can be estimated as indicated in Section 2.1.182

This representation of the scaled envelope estimator β̂secm shows the construction process. First183

the direct-information response is transformed to Λ̂YD. The constrained estimator Λ̂α̂cm and the184

envelope estimator P
Θ̂
Λ̂α̂cm are then determined in the transformed scale. Next, the estimator is185

transformed back to the original scale by multiplying by Λ̂
−1

to get Λ̂
−1
P

Θ̂
Λ̂α̂cm, which is the186

estimator of α in the original scale. Finally, the estimator in the original scale is multiplied by U187

to give the scaled envelope estimator of β. In effect, Λ̂ is a similarity transformation to represent188

P
Θ̂

in the original coordinate system as Λ̂
−1
P

Θ̂
Λ̂.189

The fully maximized log likelihood is190

L̂u = c− n

2

{
log |TS|+ log |SD|S|+ log |Θ̂T

Λ̂SD|(X,S)Λ̂Θ̂|+ log |Θ̂T
Λ̂

−1
S−1
D|SΛ̂

−1
Θ̂|

}
, (13)
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where c = n log |W| − (nr/2)(1 + log(2π)). To describe the asymptotic variance of β̂secm, let191

Vsecm denote the upper pk× pk diagonal block of the asymptotic variance V given by Proposition192

2 from Cook and Su (2013) with Σ replaced by ΣD|S , Γ by Θ and Γ0 by Θ0 and Λ with Λ−1.193

Additionally, Ω and Ω0 in the Cook-Su notation are the same as the corresponding quantities in194

the decomposition of ΣD|S for model (19). For the asymptotic variance of the estimators, we195

need to recognize that the log-likelihood function (12) correspond to the log-likelihood function196

from Su and Cook (2013) where SD|S correspond to their Σ̃y. Then avar(
√
nvec(β̂secm)) = (Ip ⊗197

U)Vsecm(Ip ⊗UT ) is an estimator that is never less efficient than β̂cm.198

4 Additional simulations199

We carry out an additional set of simulations under the settings described in Section 4.1 with a200

small sample size n = 80. The overall performance of the four estimators are similar to that with201

a larger sample size shown in the main text.202

4.1 Scenario 1203

In the 1000 simulations repetitions, the envelope dimension was correctly estimated as 6 for 329204

times, under estimated as 4 for 132 times and 5 for 398 times, overly estimated as 7 for 131 times205

and 8 for 10 times using BIC. The dimension of the constrained envelope estimator was correctly206

estimated as 4 for 787 times, overly estimated as 5 for 207 times, and 6 for 6 times. The empirical207

results for β̂um−β, β̂em−β, β̂cm−β and β̂ecm−β are shown in Figure 1a, where all the elements208

of β are plotted in the same boxplot as if they are from the same population and the outliers are209

suppressed for a cleaner representation.210
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The average estimated asymptotic variances were close to the theoretical asymptotic variances211

calculated using the true parameter values for all three estimators. The mean of the empirical212

asymptotic variances across all the elements in four estimators are 54.94 for
√
nβ̂um and 40.07213

for
√
nβ̂cm but is only 1.59 for

√
nβ̂em and 1.16 for

√
nβ̂ecm. That is, in this setting, the enve-214

lope estimator and the constrained envelope estimator are about 40 times more efficient that the215

saturated estimator and the unconstrained estimator. A comparison between the envelope and con-216

strained envelope estimator demonstrates the advantage of leveraging prior information in terms217

of achieving better efficiency.218

Figure 1: Box plot of β̂um −β, β̂em −β, β̂cm −β and β̂ecm −β in two scenarios with a relatively

small sample size n = 80 in 1000 simulations.

−
2

0
1

2

β
^

um β
^

em β
^

cm β
^

ecm

(a) Scenario 1

−
0

.6
0

.0
0

.6

β
^

um β
^

em β
^

cm β
^

ecm

(b) Scenario 2

4.2 Scenario 2219

In the 1000 simulations repetitions, the envelope dimension is correctly estimated as 6 for 675220

times, and overly estimated as 7 for 281 times and 8 for 44 times. The constrained envelope221

dimension is correctly estimated as 4 for 994 times and overly estimated as 5 for 6 times. The222

empirical biases of the estimators are shown in Figure 2b. Again, all four estimators are centered223

around 0, indicating the asymptotic unbiasedness. As expected, the estimator β̂cm and β̂ecm are the224

most efficient among the four estimators, while the envelope estimator β̂em is still more efficient225
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than β̂um.226

The average estimated asymptotic variance of the three estimators were all close to their the-227

oretical values. The average empirical variances of all the elements in three estimators are 8.76228

for
√
nβ̂um, 8.36 for

√
nβ̂em, 1.37 for

√
nβ̂cm and 1.60 for

√
nβ̂ecm. That is, in this setting, the229

estimators using a correctly specified U are on average about 4 times of more efficient that the sat-230

urated estimator and the envelope estimator, but the envelope constraint estimator does not provide231

additional advantages over the constrained estimator.232

5 Dental data revisited233

The dental data consists of measurements of the distance (mm) from the center of the pituitary234

to the pterygomaxillary fissure for each of 11 girls and 16 boys at ages 8, 10, 12, and 14 years235

(t). Since their introduction by Potthoff and Roy (1964), these data have been used frequently to236

illustrate the analysis of longitudinal data. We respect that tradition in this section. We removed237

the outlying and influential male case described by Pan and Fang (2002) prior to application of238

the methods discussed herein. We set as a goal to characterize the differences between boys and239

girls rather than to profile modeling and so we contrasted the behavior of estimators from the240

unconstrained model (1), the envelope model (4), the constrained model (3), and the envelope241

version of model (3) discussed in Section 3.1.242

Consistent with the literature, we fitted constrained model (3) and its envelope counterpart with243

the rows of U being UT (t) = (1, t). The estimated dimension of the envelope for model (4) was244

u = 2, and thus it was inferred that only two linear combinations of the response vectors are245

needed to fully characterize the differences between boys and girls. The estimated dimension of246
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the envelope for the constrained envelope model (14) was u = 1. Table 1 shows the estimated247

asymptotic variances, determined by the plug-in method, for the four estimators β̂um, β̂em, β̂cm248

and β̂ecm. The unconstrained model has the worst estimated performance, followed by the regular249

envelope model and the constrained model. The enveloping in the constrained model has the best250

estimated performance. We would need to increase the sample size by about 2.5 times for the251

constrained estimator β̂cm to have the performance estimated for the enveloped version β̂ecm with252

the current sample size. The relatively bad performance of the envelope estimator β̂em can be

Table 1: Estimated asymptotic variances avar(
√
nβ̂(·)) of the four elements of β̂um from the un-

constrained model (1), β̂em from the envelope model (4), β̂cm from the constrained model (3) and

β̂ecm from the envelope version of constrained model (3).

Age

β̂(·) 8 10 12 14

β̂um 15.53 16.41 25.42 18.95

β̂em 15.29 13.56 22.79 18.73

β̂cm 13.97 13.57 15.00 18.27

β̂ecm 5.88 9.16 13.16 17.89

253

traced back to the estimated eigen-structure of Σ. The eigenvalues of Ω̂ and Ω̂0 were (14.61, 1.10)254

and (2.20, 0.70). Envelopes offer relatively little gain when most of the variation in the response is255

associated material information, as is the case here. On the other hand, the eigenvalues of Ω̂ and256

Ω̂0 arising from enveloping in the constrained model were 0.02 and 8.31. In this case most of the257

variation in the direct response YD is associated with immaterial information, the general setting258

when envelopes perform well. Figure 2a gives a profile plot of the fitted vectors from envelope259

model (4). The implied fit is quite good and close to the profile plot of the raw mean vectors shown260

in Supplement Figure 3a (profile plots of residuals are also shown in Figure 3). Under envelope261

theory, the distribution of QΓY should be independent of the predictor values, in this case, sex.262
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Figure 2: Profile plots by sex of (a) the fitted vectors from envelope model (4), (b) means projected

onto span⊥(Γ̂), (c) the fitted vectors from the constrained model (3) and (d) means projected onto

U⊥. The vertical axis for each plot is the distance for the plotted vectors.

The profile plot of Q
Γ̂
Ȳ by sex shown in Figure 2b reflects this property. Figures 2cd show the263

corresponding plots from the fit of the constrained model (3). The fit of the constrained model264

altered the shape of the profile for girls so that it more closely matches that for boys, which was265
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not done by the fit of the envelope model. This type of conformity is an intrinsic property of266

constrained model (3).267

If there is uncertainty about the containment B ⊆ U needed for the constrained model then it268

may be desirable to base an analysis on the envelope model (4). Otherwise, the results in the last269

two rows of Table 1 indicate that enveloping in the constrained model (3) is the best option from270

among those considered.271

We also applied the scaled envelope estimator discussed in Section 3.2. The asymptotic vari-272

ances of the elements of the corresponding estimator of β did not differ materially from those273

shown in Table 1 for β̂um and β̂em: Scaling offered no gains in this example. This was as expected274

since good scale estimation generally requires large sample size.275

5.1 Additional plots for the dental data276

Figure 3 gives additional plots for the dental data. Figure 3a is a profile plot of the raw mean277

vectors by sex, where there is a slight upward bend in the line for girls at age 10. This bend278

accounts for the residual pattern from the fit of constrained model (3) shown in Figure 3c. The279

bend is reduced in the plot of the residual vectors Y − Ŷem from envelope model (3) shown in280

Figure 3b. A comparison of the residual plots in Figures 3bc indicates that the envelope model fits281

the raw means noticeably better than the constrained model. For contrast, Figure 2d is a plot of282

the fitted vectors from model (2). In that model we have span(β0,β) ⊆ U and consequently the283

profile plots of the fitted vectors are linear.284
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c. Residuals Ȳ − Ŷcm from (3) b. Fitted vectors Ŷcm from (2)

Figure 3: Dental data: Profile plots by sex of (a) the raw mean vectors, (b) Residual vectors from

the fit of envelope model (4),(c) Residual vectors from the fit of constrained model (2) and (d)

Fitted vectors Ŷcm from the fit of constrained model (3).

6 The China Health and Nutrition Survey285

The China Health and Nutrition Survey (CHNS) was designed to evaluate the effects of the health,286

nutrition and family planning policies on the health and nutritional status of its population (Popkin287
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et al., 2009). The survey used a multistage, random cluster process to draw samples of households288

in 15 provinces and municipal cities that vary substantially in geography, economic development,289

public resources, and health indicators. In total, 9 surveys were carried out between 1989 and 2011.290

We included in our analysis only the 1209 individuals that participated in all of the 9 surveys, giving291

a total of 9 × 1209 = 10, 881 records. Five individuals were deleted for having unreasonable292

changes in weight or height. For instance, one individual had a height of 65 cm in the seventh293

survey but a height of 160 cm in all other surveys. The baseline predictors we considered include294

age at the first survey, binary indicators for gender and region (urban or rural), and a six-level295

indicator for highest education levels obtained at the first survey. About 98.2% of the individuals296

in the analysis were over 21 years old. Age at first survey, gender and region were fully observed297

but there were 28 individuals with missing education levels at baseline. We imputed the missing298

values with the education level collected at the next available visit. The response was the change in299

BMI from baseline at the 8 followup surveys. In the 10, 881 records, there was a total of 371 values300

of either missing height or weight information needed to calculate BMI. We assumed that height301

and weight were missing at random and imputed them by carrying the last observation forward.302

We compared the estimated asymptotic variances of the unconstrained estimator β̂um, the enve-303

lope estimator β̂em and the constrained estimator β̂cm from model (3) using UT = (1, t, t2), where304

t is the time in years from baseline. We also included the envelope version of the constrained305

estimator β̂ecm, the scaled envelope estimator β̂sem from Cook and Su (2013) and its constrained306

version β̂secm corresponding to model (3). We used version (3) of the constrained model because307

we were interested in profile contrasts rather than modeling profiles per se.308

Since β̂(·) ∈ R
8×8, we first report in columns 4–9 of Table 2 various location statistics com-309

puted over the estimated variances of the individual elements in β̂(·). Using these summary statis-310
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tics as the basis for comparison, we see that the estimators fall into two clear groups. The uncon-311

strained estimator does the worst, followed closely by the envelope estimator and the constrained312

estimator. Our assessment based on just the variance summary statistics and taking computational313

difficulty into account leads us to prefer the envelope constrained estimator β̂ecm. The model order314

determined by BIC given in the third column of Table 2 tells a similar story. Based on the actual315

BIC values, the unconstrained estimator in the first row appears clearly inferior to the others, while316

the scaled constrained envelope model in the last row is clearly the best. The remaining models317

are relatively difficult to distinguish. We next give a few additional details.

Table 2: BIC order, minimum, maximum, mean and quartiles Q1–Q3 of the estimated asymptotic

variances of the elements in β̂(·) for the CHNS study

Estimator Dimension BIC order Min Q1 Q2 Mean Q3 Max

β̂um 8 6 0.03 0.07 0.12 0.12 0.15 0.20

β̂em 2 5 0.02 0.05 0.11 0.11 0.15 0.21

β̂cm 3 4 0.03 0.05 0.10 0.10 0.13 0.19

β̂ecm 1 3 0.00 0.00 0.02 0.05 0.06 0.17

β̂sem 1 2 0.00 0.03 0.03 0.04 0.04 0.08

β̂secm 1 1 0.00 0.00 0.02 0.05 0.06 0.17

318

The estimated dimensions of the various envelopes based using BIC are listed in the second319

column of Table 2. We listed the maximum envelope dimension for the two non-envelope methods.320

The variance gains for the envelope model over the unconstrained model shown in Table 2 are321

reflected by the two eigenvalues (17.44, 15.90) of Ω̂ and the six eigenvalues of Ω̂0 which ranged322

between 1.11 and 1.62. Turning to the envelope version of the constrained model (3), the estimated323

dimension of EΣD|S
(A) using BIC was 1. The variance gain over the unconstrained model shown324

in Table 2 is again reflected by the value of Ω̂ = 3× 10−5 and the two eigenvalues of Ω̂0, 0.16 and325

2.74. As with the regular envelope model, most of the variability lies in the immaterial part of the326

response.327
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The point estimates and standard errors of the considered estimators are given in Tables 3-8.328

Out of 8 predictors across 8 time points (64 variables in total), the unconstrained estimator β̂um,329

the envelope estimator β̂em, the constrained estimator β̂cm and the scaled envelope estimator β̂sem330

find 53, 41, 51, and 56 variables significant, while both the envelope constrained estimator β̂ecm331

and the scaled version β̂secm find all 64 variables significant.332

Table 3: Point estimates (×10), standard error in backets (×10) of β̂um for CHNS study, where the

rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 0.09[0.05] 0.22[0.05] 0.25[0.05] 0.21[0.05] 0.17[0.05] 0.07[0.05] 0.21[0.05] 0.16[0.04]

2 0.15[0.07] 0.17[0.06] 0.25[0.07] 0.09[0.07] 0.14[0.07] 0.06[0.07] 0.19[0.07] 0.15[0.05]

3 -0.16[0.08] -0.04[0.08] -0.09[0.08] -0.01[0.08] -0.04[0.08] -0.21[0.08] -0.10[0.08] -0.09[0.06]

4 -0.27[0.10] -0.26[0.09] -0.21[0.10] -0.23[0.10] -0.28[0.10] -0.49[0.10] -0.31[0.10] -0.30[0.07]

5 -0.51[0.11] -0.37[0.10] -0.42[0.11] -0.44[0.11] -0.50[0.11] -0.60[0.11] -0.44[0.11] -0.48[0.08]

6 -0.64[0.11] -0.61[0.11] -0.58[0.11] -0.71[0.11] -0.69[0.11] -0.81[0.11] -0.63[0.11] -0.68[0.08]

7 -0.91[0.13] -0.73[0.12] -0.77[0.13] -0.92[0.12] -0.80[0.12] -0.99[0.12] -0.91[0.12] -0.88[0.09]

8 -1.00[0.13] -0.87[0.12] -0.86[0.13] -1.10[0.13] -0.94[0.13] -1.11[0.13] -1.07[0.13] -0.99[0.10]

Table 4: Point estimates (×10), standard error in backets (×10) of β̂em for CHNS study, where the

rows correspond to surveys, columns are predictors

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 0.09[0.05] 0.13[0.05] 0.14[0.05] 0.15[0.05] 0.11[0.05] 0.03[0.05] 0.14[0.05] 0.09[0.04]

2 0.05[0.07] 0.10[0.06] 0.12[0.07] 0.12[0.07] 0.07[0.07] -0.03[0.07] 0.10[0.07] 0.04[0.05]

3 -0.04[0.08] 0.04[0.08] 0.06[0.08] 0.04[0.08] 0.00[0.08] -0.14[0.08] 0.02[0.08] -0.04[0.06]

4 -0.20[0.10] -0.11[0.09] -0.09[0.10] -0.13[0.10] -0.16[0.10] -0.32[0.10] -0.15[0.10] -0.21[0.07]

5 -0.51[0.11] -0.40[0.10] -0.40 [0.11] -0.49[0.11] -0.47[0.11] -0.64[0.11] -0.49[0.11] -0.52[0.08]

6 -0.63[0.11] -0.52[0.11] -0.52[0.11] -0.64[0.11] -0.59[0.11] -0.75[0.11] -0.63[0.11] -0.65[0.08]

7 -0.85[0.13] -0.73[0.12] -0.74[0.13] -0.89[0.12] -0.81[0.12] -0.97[0.12] -0.87[0.12] -0.87[0.09]

8 -1.01[0.13] -0.89[0.12] -0.91[0.13] -1.09[0.13] -0.97[0.13] -1.12[0.13] -1.06[0.13] -1.03[0.10]
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Table 5: Point estimates (×10), standard error in backets (×10) of β̂cm for CHNS study, where the

rows correspond to surveys, columns are predictors

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 0.12[0.06] 0.23[0.06] 0.27[0.06] 0.20[0.06] 0.19[0.06] 0.09[0.06] 0.22[0.06] 0.18[0.05]

2 0.05[0.06] 0.14[0.06] 0.17[0.06] 0.13[0.06] 0.10[0.06] -0.01[0.06] 0.13[0.06] 0.09[0.05]

3 -0.11[0.08] -0.06[0.07] -0.04[0.08] -0.05[0.08] -0.10[0.08] -0.23[0.08] -0.07[0.08] -0.10[0.06]

4 -0.27[0.09] -0.22[0.08] -0.21[0.09] -0.22[0.09] -0.26[0.09] -0.41[0.09] -0.25[0.09] -0.27[0.07]

5 -0.51[0.10] -0.45[0.09] -0.45[0.10] -0.50[0.10] -0.49[0.10] -0.66[0.10] -0.52[0.10] -0.52[0.08]

6 -0.65[0.11] -0.57[0.10] -0.58[0.10] -0.65[0.10] -0.62[0.10] -0.79[0.10] -0.67[0.10] -0.65[0.08]

7 -0.88[0.11] -0.76[0.11] -0.77[0.11] -0.92[0.11] -0.82[0.11] -1.00[0.11] -0.91[0.11] -0.87[0.09]

8 -1.05[0.13] -0.90[0.12] -0.90[0.13] -1.12[0.12] -0.96[0.12] -1.15[0.12] -1.09[0.12] -1.03[0.10]

Table 6: Point estimates (×10), standard error in backets (×10) of β̂ecm for CHNS study, where

the rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00]

2 -0.04[0.00] -0.03[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00]

3 -0.15[0.02] -0.14[0.01] -0.14[0.02] -0.17[0.02] -0.14[0.02] -0.15[0.02] -0.16[0.02] -0.15[0.01]

4 -0.28[0.03] -0.26[0.03] -0.27[0.03] -0.32[0.03] -0.27[0.03] -0.29[0.03] -0.31[0.03] -0.28[0.02]

5 -0.52[0.06] -0.48[0.05] -0.50[0.06] -0.59[0.05] -0.50[0.05] -0.54[0.05] -0.57[0.05] -0.52[0.04]

6 -0.67[0.07] -0.62[0.07] -0.64[0.07] -0.76[0.07] -0.64[0.07] -0.69[0.07] -0.74[0.07] -0.67[0.05]

7 -0.93[0.10] -0.86[0.09] -0.88[0.10] -1.05[0.10] -0.89[0.10] -0.96[0.10] -1.02[0.10] -0.93[0.07]

8 -1.13[0.12] -1.04[0.11] -1.07[0.12] -1.27[0.12] -1.07[0.12] -1.16[0.12] -1.23[0.12] -1.13[0.09]

Table 7: Point estimates (×10), standard error in backets (×10) of β̂sem for CHNS study, where

the rows correspond to surveys, columns are predictors

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 0.32[0.05] 0.34[0.05] 0.35[0.05] 0.39[0.05] 0.33[0.05] 0.33[0.05] 0.39[0.05] 0.32[0.04]

2 0.30[0.05] 0.32[0.05] 0.33[0.06] 0.37[0.06] 0.31[0.05] 0.31[0.05] 0.37[0.06] 0.31[0.05]

3 0.20[0.05] 0.21[0.06] 0.22[0.06] 0.24[0.06] 0.20[0.05] 0.20[0.05] 0.24[0.06] 0.20[0.05]

4 0.09[0.05] 0.10[0.06] 0.10[0.06] 0.11[0.06] 0.09[0.05] 0.09[0.05] 0.11[0.06] 0.09[0.05]

5 0.06[0.02] 0.06[0.02] 0.07[0.02] 0.07[0.02] 0.06[0.02] 0.06[0.02] 0.07[0.02] 0.06[0.02]

6 -0.19[0.04] -0.20[0.04] -0.21[0.05] -0.23[0.05] -0.20[0.04] -0.20[0.04] -0.23[0.05] -0.19[0.04]

7 -0.37[0.06] -0.39[0.06] -0.40[0.06] -0.45[0.07] -0.37[0.06] -0.37[0.06] -0.44[0.07] -0.37[0.05]

8 -0.52[0.08] -0.56[0.08] -0.57[0.08] -0.64[0.08] -0.53[0.08] -0.53[0.08] -0.63[0.08] -0.53[0.07]
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Table 8: Point estimates (×10), standard error in backets (×10) of β̂secm for CHNS study, where

the rows correspond to surveys, columns are predictors and 0.00 means < 0.01

S Gender edu1b edu2b edu3b edu4b edu5b Urban ageb

1 -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00] -0.01[0.00]

2 -0.04[0.00] -0.03[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00] -0.04[0.00]

3 -0.15[0.02] -0.14[0.01] -0.14[0.02] -0.17[0.02] -0.14[0.02] -0.15[0.02] -0.16[0.02] -0.15[0.01]

4 -0.28[0.03] -0.26[0.03] -0.27[0.03] -0.32[0.03] -0.27[0.03] -0.29[0.03] -0.31[0.03] -0.28[0.02]

5 -0.52[0.06] -0.48[0.05] -0.50[0.06] -0.59[0.05] -0.50[0.05] -0.54[0.05] -0.57[0.05] -0.52[0.04]

6 -0.67[0.07] -0.62[0.07] -0.64[0.07] -0.76[0.07] -0.64[0.07] -0.69[0.07] -0.74[0.07] -0.67[0.05]

7 -0.93[0.10] -0.86[0.09] -0.88[0.10] -1.05[0.10] -0.89[0.10] -0.96[0.10] -1.02[0.10] -0.93[0.07]

8 -1.13[0.12] -1.04[0.11] -1.07[0.12] -1.27[0.12] -1.07[0.12] -1.16[0.12] -1.23[0.12] -1.13[0.09]

7 Enveloping (α0,α)333

Our focus has so far been on estimation of β, either in the unconstrained model (1), the constrained334

model with β = Uα, the envelope model (4) with β = Γη, the envelope constrained model with335

β = Uφη or in one of the scaled version. This emphasis on β reflects an interest in profile336

contrasts rather than on the profiles themselves. When U is selected to model profiles rather than337

profile contrasts, as in model (2), the intercept vector α0 may be of interest because it represents338

coordinates of the profile when X = 0. In this section we again consider the model (2), but now we339

pursue envelop estimation of α0 and α simultaneously, which may be appropriate when profiles340

are important.341

The model decomposition (6)–(7) still holds so only (7) is required to estimate (α0,α), al-342

though both are again required for the full likelihood function and asymptotic variances. The stan-343

dard estimator (α̂0,cm, α̂cm) is asymptotically normal with variance avar(
√
nvec(α̂0,cm, α̂cm)) =344
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τ−1
X

⊗ΣD|S where345

τX = lim
n→∞




1 X̄T

X̄ TX


 .

Turning to envelopes and writing Z = (1,XT )T , model (7) can be rewritten as346

YDi | YSi = (α0,α)Zi + φD|SYSi + eD|Si

= ΓηZi + φD|SYSi + eD|Si (14)

ΣD|S = ΓΩΓT + Γ0ΩΓT
0 ,

where Γ is a semi-orthogonal basis matrix for EΣD|S
(span(α0,α)). The number of real parameters347

in this model is u(p + 1) + r(r + 1)/2. Since we are enveloping only on (α0,α) this is again in348

the form of a partial envelope, but now there is no intercept term. The likelihood function for349

parameters (Γ,Ω,Ω0,η,φD|S,ΣS) is350

Lu = −nr(1 + log(2π))/2− n

2
log |ΣS| −

1

2

n∑

i=1

YT
SiΣ

−1
S YSi −

n

2
log |ΣD|S|

−1

2

n∑

i=1

[(YDi − ΓηZi − φD|SYSi)
TΣ−1

D|S(YDi − ΓηZi − φD|SYSi)]

The maximum likelihood estimator of ΣS is TS , which is the same as for the other models we351

have considered. Holding all other parameters fixed, the value of φD|S that maximizes L is352

φD|S = TD,ST
−1
S − ΓηTZ,ST

−1
S .

Substituting this into the log likelihood we find its maximized over η by ΓT times the coefficient353
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matrix from the ordinary least squares regression of YD on (Z,YS), η = ΓTSD,(Z,S)S
−1
(Z,S) Con-354

tinuing to maximize the resulting partially maximized log likelihoods, we have Ω = ΓTSD|(Z,S)Γ355

and Ω0 = ΓT
0TRD|S

Γ0, which results in the log likelihood maximized over all parameters except356

Γ:357

Lu(Γ) = −n
2

{
r(1 + log(2π)) + log |Σ̂S|+ log |ΓTSD|(Z,S)Γ|+ log |ΓT

0TRD|S
Γ0|

}
.

The maximum likelihood estimator of an envelope basis can thus be represented as358

Γ̂ = argmin
G

log |GTSD|(Z,S)G|+ log |GTT−1
RD|S

G|,

where the minimum is computed over all semi-orthogonal matrices G ∈ R
k×u. The fully maxi-359

mized log likelihood is then360

L̂u = c− n

2

{
log |Σ̂S|+ log |TRD|S

|+ log |Γ̂T
SD|(Z,S)Γ̂|+ log |Γ̂T

T−1
RD|S

Γ̂|
}
,

where c = n log |W| − (nr/2)(1 + log(2π)).361

Finally, the maximum likelihood estimator of a basis for EΣD|S
(span(α0,α)) can be repre-362

sented as Γ̂ = argminG log |GTSD|(Z,S)G|+ log |GTT−1
RD|S

G|, where the minimum is computed363

over all semi-orthogonal matrices G ∈ R
k×u. The envelope estimator of (α0,α) is then (α̂0, α̂) =364

P
Γ̂
(α̃0, α̃) where (α̃0, α̃) is the ordinary least squares estimators for the coefficient of the predic-365

tor (1,X) in the regression of YD onto (1,X,YS). The estimators of φD|S , η, Ω, Ω0 and ΣD|S can366

then be constructed by substituting Γ̂ into previously given expressions for them. The asymptotic367

variance of vec(α̂0, α̂) is avar(
√
nvec(α̂0, α̂)) = τ−1

Z
⊗ ΓΩΓT + (ηT ⊗ Γ0)M

−1(τZ)(η ⊗ Γ0).368
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8 Non-normality and the bootstrap369

The methods presented herein are all based on maximum likelihood estimators, assuming normal370

errors. When the errors are non-normal with finite fourth moments, all estimators are still root-n371

consistent and asymptotically normal (see, for example, Cook and Zhang, 2015, Section 5.1), but372

the asymptotic variances based on the Fisher information under normality may no longer be accu-373

rate. In such cases the residual bootstrap can be used for variances and inference. For illustration,374

we next describe how to use the bootstrap to estimate var(vec(α̂)), the variance of the envelope375

estimator of α as described in Section 3.1. The procedure is similar for other settings.376

Let R = {R1, . . . ,Rn} denote the collection of residual vectors Ri from the standard fit of377

model (2) and recall that the estimators for the corresponding envelope model are denoted with378

“hats”, as described in Section 3.1. Then a bootstrap sample {R∗
1, . . . ,R

∗
n} from R is used to379

generate a bootstrap sample {Y∗
i } of the responses as follows,380

Y∗
i = Uα̂0 +Uα̂Xi +R∗

i , i = 1, . . . , n.

The resulting bootstrap data {Y∗
i ,Xi, i = 1, . . . , n} are then used to construct the first bootstrap381

estimator α̂
∗
1 of α, employing the value of u used in the construction of α̂ along with methods de-382

scribed in Section 3.1. Repeating this process B times gives bootstrap estimates α̂
∗
j , j = 1, . . . , B.383

The sample variance S
vec(α̂∗

)
is then a bootstrap estimator of var(vec(α̂)). Background on using384

the residual bootstrap with envelope models is available from Cook (2018, Section 11.1).385
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9 Estimating the envelope dimension386

Methods for estimating the envelope dimension u include likelihood ratio testing, an information387

criterion or cross validation (Cook et al., 2010). A review and expanded discussion of estimation388

of u is available from Cook (2018).389

The likelihood ratio for testing an envelope model with dimension u < k against the model390

with u = k can be cast as a test of the hypothesis u = u0 versus the alternative u = k. The391

likelihood ratio statistic for this hypothesis is Λ(u0) = 2(L̂k − L̂u0), where L̂a is the maximized392

envelope log likelihood for the envelope model in question with u = a. Under the null hypothesis393

this statistic is distributed asymptotically as a chi-squared random variable with (k − u0) degrees394

of freedom, the number of real parameters for the standard model (u = k) minus that for the395

envelope model with u = u0, The likelihood ratio test statistic Λ(u0) can be used sequentially to396

estimate u: Starting with u0 = 0, test the hypothesis u = u0 against u = k at a selected level397

α. If the hypothesis is rejected, increment u0 by 1 and test again. The estimate û of u is the first398

hypothesized value that is not rejected.399

The envelope dimension can also be selected by using an information criterion:400

û = argmin
u

{−2L̂u + h(n)N(u)}, (15)

where N(u) is the number of real parameters in the envelope model with envelope dimension401

u, and h(n) = log n for BIC and h(n) = 2 for AIC. Theoretical results (Su and Cook, 2013,402

Prop. 4) supported by simulations indicate that AIC tends to overestimate u. BIC will select the403

correct u with probability tending to 1 as n → ∞ (Yang, 2005), but it can be slow to respond in404

32

Page 65 of 69 Scandinavian Journal of Statistics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

small samples. Selection by likelihood ratio testing can perform well depending on the sample405

size, but asymptotically it makes an error with rate α. It may be useful to use all three methods406

in applications, giving a preference to BIC and LRT if there is disagreement, or using the largest407

estimate of u in cases where it is desirable to be conservative. It is also possible to avoid the408

selection of u by using model averaging to combine the envelope estimators over all possible409

values of u (Eck and Cook, 2017).410

10 Envelopes and Rao’s simple structure411

In this section we contrast envelopes and Rao’s structure. Since Rao’s structure is typically em-412

ployed the context of prediction we assume that U is semi-orthogonal to ease exposition. In the413

context of model (2), Rao’s simple structure is414

Σ = U∆UT +U0∆0U
T
0 , (16)

where ∆ ∈ R
k×k and ∆0 ∈ R

(r−k)×(r−k) are positive definite and (U,U0) is orthogonal, as defined415

previously. It follows from this structure that the eigenvectors of Σ must be in either U or U⊥, and416

that EΣ(U) = U . This simplifies the analysis considerably since it implies that UTΣU0 = 0 and417

thus that YS YD | X, φD|S = 0, ΣD|S = ∆, ΣS = ∆0 and that analysis can be based on the418

unconstrained model YDi | Xi = α0 + αXi + eD|Si, which becomes the basis for an analysis419

based on the envelope E∆(A), recalling that A = span(α).420

In an envelope analysis based on a model like (14), the envelope dimension u is in effect a421

model-selection parameter that typically needs to be inferred from the data (see Section 9). As-422

33

Page 66 of 69Scandinavian Journal of Statistics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

suming that an originating model like (2) holds, the only remaining model selection issue is the423

choice of u. If it is concluded that u = k, so the model defaults to the original growth curve model,424

then envelopes offer no gain. If it is concluded that u < k then there is a proper envelope model425

and some perhaps substantial efficiency gains can be expected. In this sense an envelope analysis426

is adaptive through the choice of u. In contrast, Rao’s simple structure is non-adaptive because it427

relies on the strong assumption that EΣ(U) = U . One possible generalization of Rao’s structure is428

to base analysis on EΣ(U) without requiring that it equal U .429

Rao’s approach was to impose a structure on Σ via (16), while in the envelope approach we430

use an adaptive structure on ΣD|S . It seems most informative to compare these structures on the431

W scale via the precision matrix, Σ−1
W

. Under Rao’s structure,432

Σ−1
W

=




∆−1 0

0 ∆−1
0


 ,

while under the envelope model (14)433

Σ−1
W

=




Σ−1
D|S −Σ−1

D|SφD|S

−φT
D|SΣ

−1
D|S Σ−1

S + φT
D|SΣ

−1
D|SφD|S


 .

It seems clear from these representations that the envelope structure is much less restrictive, which434

is reflected also by the parameter counts in the ΣW’s. The number of free real parameters in Rao’s435

ΣW is r(r+1)/2− k(r− k), while that for the envelope model is r(r+1)/2, the difference being436

reflected by the absence of φD|S in Rao’s structure.437
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